当前位置:文档之家› 15CrMo钢焊接试样制备及金相、硬度分析

15CrMo钢焊接试样制备及金相、硬度分析

15CrMo钢焊接试样制备及金相、硬度分析
15CrMo钢焊接试样制备及金相、硬度分析

3 试样制备及金相、硬度分析

3.1 金相试样制备

(1)切割试样

为防止因切割试样使热影响区组织和硬度发生变化,不能准确反映原始数据,切割采用机械切割。

(2)粗磨

为了便于精磨,首先将机械切割下的试样用砂轮机在观察一面进行找平。为了保证在粗磨、精磨和抛光中不损坏砂纸和绒布,将试样各个角都磨出1.5×1.5的倒角,并在试样四个角处磨出圆弧。

(3)细磨

将粗磨后的面放在砂纸上进行单相磨制,待试样表面划痕方向一致后转换打磨方向,磨制中,受力和磨制速度要均匀,一定要使试样观察面保持与砂纸面平行,力量不能过大也不能过小。力量过大容易使砂纸过早破损,过小则磨制时间增加。砂纸型号从100~1200目,由粗到细进行磨光,一直到试样表面用肉眼观察不到磨制的痕迹为止。

(4)抛光

抛光布应选择表面有绒、平整,并具有一定紧实程度的呢子布。如果选用绒层过厚表面又软的幕布,就会将试样抛圆。抛光前首先将绒布用剪子剪成大于抛光盘40mm左右的圆形样,并用清水洗净和湿透绒布,放置在抛光盘上用紧固圈将绒布固定。打开抛光机,将混制好的Al2O3抛光溶液倒入圆盘中间,将试样观察面轻轻放在绒布上,从圆盘周边开始,慢慢向中间推进,反复多次,直到表面无划痕,光亮如镜。

(5)浸蚀

将抛光后的试样用药棉在清水中冲洗干净,然后滴数滴硝酸酒精再磨好的一面上,静置片刻,再用药棉在水中擦洗,然后滴数滴酒精,最后用吹风机吹干磨面。

3.2 金相组织观察

将浸蚀好的试样放在金相显微镜下,先用低倍镜找到要观察的区域,再换用高倍镜观察。若组织不清晰或存在划痕,则要重新抛光磨制,然后浸蚀、观察。

三个试验主要金相图片列如下:

图3.1 试验一室温组织(母材)图3.2 试验一90A电流

图3.3 试验二110A 电流图3.4 试验二50℃预热

图3.5 试验二150℃预热图3.6 试验三250℃预热

图3.7 试验三单层焊母材图3.8试验三单层焊熔合线

图3.9 试验三三层焊心部

3.3 显微硬度测试

3.3.1 显微硬度测试步骤

①打开电源开关,指示灯及光源灯亮。

②转动物镜、压头转换手柄,使40×物镜处于主体前方位置。

③将标准试块或试样安放在试台上,转动旋轮使试台上升。眼睛接近测微

目镜观察。当试样或试块离物镜下端2~3mm时,在目镜的视场中心出现明亮光斑,说明聚焦面即将来到,此时应缓慢微量上升,直至在目镜中观察到试块或试

样表面的清晰成像。这时聚焦过程完成。

④如果在目镜中观察到的成像成模糊状或一半清晰一半模糊,则说明光源

中心偏离系统光路中心,需调节灯泡的中心位置。如果视场太暗或太亮可通过操

作面板上的软键调节光源强弱。

⑤如果想观察试块或试样上的较大视场范围,可将物镜压头转换手柄逆时

针转至主体前方,此时,光学系统总放大倍率为100×,处于观察状态。

⑥将转换手柄逆时针转动使压头主轴处于主体前方,此时压头顶尖与聚焦

好的平面之间间隙约为0.4~0.5mm。当测量不规则的试样时,要小心,防止压

头碰及试样,损坏压头。

⑦转动实验力变换手轮,使实验力符合选择要求。旋转实验力变换手轮时,应小心缓慢地进行,防止过快产生冲击。

⑧根据实验要求在操作面板上键入实验力延时保荷时间,(每键入一次为

五秒,“+”为加,“—”为减。)

⑨按下操作面板上的“启动”键,此时加实验力,LED指示灯亮。

⑩实验力施加完毕,延时LED亮,数码管显示逆计数时间到,实验力开

始卸除,卸实验力LED亮。在LED未灭前不准转动物镜压头转换手柄,否则会

造成仪器损坏。

当卸荷实验力指示灯LED灭,显示屏出现设定的时间时方可将转换手柄顺

时针转动,使40×物镜处于主体前方。这时就可在测微目镜中测量对角线长度,

根据测量长度查表得到显微维氏或努氏硬度值[9][10]。

3.3.2 测试数据

按照上述方法,有关试验一的试样硬度测试后结果可列表如下:

表3.1 试验一焊接试样硬度表

焊缝热影响区细晶区球化区基体试验一90A 274 247 255 218 158 试验一110A 258 242 278 268 206

表3.2 试验二、三焊接试样硬度表

母材 热影响区 焊缝 试验二50℃预热 228 320 321 试验二150℃预热 195 264 230 试验二250℃预热 182 248 211 试验三 单层焊 204 268 251 试验三 多层焊

215

292

285

按照所测的硬度值可画出对应的焊接接头硬度曲线,如下:

50100150200

250300焊缝 热影响区 母材

H V

90A

110A

50100150200

250300350焊缝 热影响区 母

H V

50℃预热150℃预热

图 3.10 不同电流焊接显微硬度曲线图 图3.11 不同预热温度显微硬度曲线图

50100150200

250300350焊缝 热影响区 母材

H V

单层焊三层焊

图3.12 单层焊、多层焊显微硬度曲线图

3.4 金相、硬度分析

(1) 不同焊接电流对HAZ 组织和性能的影响分析

在实际生产中,)(c w <0.6%的亚共析钢和)(c w >1.2%的过共析钢在铸造、热轧、锻造后的空冷,焊缝或热影响区空冷,或者当加热温度过高并以较快速度冷却时,先共析铁素体或先共析渗碳体从奥氏体境界沿奥氏体一定晶面往晶内生长,呈针片状析出。在金相显微镜下可以观察到从奥氏体晶界生长出来的近于平行的或其他规则排列的针状铁素体或渗碳体以及期间存在的珠光体组织,这种组织称为魏氏组织。前者称为铁素体魏氏组织,后者称为渗碳体魏氏组织。

魏氏组织中铁素体是按切变机制形成的,与贝氏体中铁素体形成机制相似,在试样表面上也会出现浮凸现象。由于铁素体是在较快冷却速度下形成的,因此铁素体只能演奥氏体某一特定晶面(惯习面{111}γ)析出,并与母相奥氏体存在晶体学位相关系。这种针状铁素体可以从奥氏体中直接析出,也可以沿奥氏体晶界首先析出网状铁素体,然后再从网状铁素体平行地想晶内生长。当魏氏组织中的铁素体形成时,铁素体中的碳扩散到两侧母相奥氏体中,从而使铁素体针之间的奥氏体碳含量不断增加,最终转变为珠光体。按贝氏体转变机制形成的魏氏组织,其铁素体实际上就是无碳贝氏体。

魏氏组织的形成与钢中含碳量、奥氏体晶粒大小及冷却速度(转变温度)有关。奥氏体晶粒越细小,越容易形成网状铁素体,而不容易形成魏氏组织。奥氏体晶粒越粗大,越容易形成魏氏组织,形成魏氏组织的含碳量的范围变宽。

魏氏组织是钢的一种过热缺陷组织。它使钢的力学性能,特别是冲击韧度和

塑性有显著降低,并提高钢的脆性转折温度,因而使钢容易发生脆性断裂。

图3.2中奥氏体晶粒周围存在针状铁素体,结合图3.11硬度曲线,可判断试样中粗晶区存在魏氏组织,而当电流增大时,如图3.3所示,魏氏组织减少、消失,造成这种现象的原因是试板导热性好,电流较小时,焊缝冷却速度很快,在不平衡结晶状态下,铁素体未来得及及时扩散,冷却后呈针状铁素体便残留下来,形成了魏氏组织。但当电流增大时,焊接接头冷却速度降低,这样便直接降低了魏氏组织的形成倾向。电流须有一个上限,否则,热影响区将出现晶粒长大粗化,使接头硬度、强度降低。在其他条件(焊接速度、预热温度等)不变的情况下,经多组电流焊接试验比较后,可发现,电流在110~120A左右,焊接接头热影响区既无明显魏氏组织,又不会引起晶粒长大,在强度和硬度上,性能最佳[14][15]。

(2)不同预热温度对HAZ组织和性能的影响分析

液态金属在冷却结晶的过程中,存在各种相变,其实质是原子的扩散、转移以及晶格的转变。C原子在钢中为间隙性原子,容易扩散和转移,形成不同碳化物或不同晶格。钢的淬透性是指奥氏体化后的钢获得马氏体的能力,它反映钢的过冷奥氏体稳定性,即与钢的临界冷却速度有关。过冷奥氏体越稳定,临界冷却速度越小,钢的淬透性越好。钢从奥氏体状态快速冷却,抑制其扩散性分解,在较低温度下(低于M s点)发生的无扩散型相变叫做马氏体转变。马氏体转变具有无扩散性、切变共格性,并且具有特定的惯习面和位相关系。钢中马氏体有两种基本形态:一种是板条马氏体,另一种是片状马氏体。马氏体转变是强化金属的重要手段之一。

15CrMo钢试板中C含量为0.14%,含量较低,但能提高强度;含有的合金元素Cr、Mo,能阻碍相变时碳化物的形核长大,从而有效推迟珠光体转变,增加奥氏体的稳定性,提高钢的淬透性[16][17]。

预热可直接影响到焊接试验后焊缝的冷却速度,从而直接影响到钢的淬透性。预热温度越高,焊缝金属冷却速度越低,越达不到形成奥氏体的临界冷却速度,最终形成的脆硬组织马氏体含量越低。比较试验二不同的预热温度的金相照片如图3.4、3.5和图3.6,可以发现随着预热温度的提高,马氏体含量越来越低,直至消失。但预热温度不宜过高。预热温度的确定主要是依据钢的合金成分、接

头的拘束度和焊缝金属的氢含量。从硬度曲线上看,如图3.11,预热温度越高,接头热影响区硬度越低,这正是因为马氏体含量降低所致。

(3)不同焊接层数对HAZ组织和性能的影响分析

单层焊时,焊缝冷却速度较大,金属在不平衡状态下结晶,C原子扩散不充分,容易造成晶格畸变。多层焊接时,后一道焊缝对前一道有退火作用,可降低前道焊缝的冷却速度,使液态金属在趋于平衡状态下冷却,发生畸变的晶格随着C及碳化物的充分扩散而得到纠正。同时,“退火”还可以细化晶粒,均匀组织,降低硬度,提高钢的韧性。

图3.8和图3.9相比,后者在三层焊接时晶粒更细,组织更均匀,这既是多层焊的退火作用所致。在硬度曲线上,如图3.12,多层焊退火使硬度降低[14][15]。

3.5 小结

比较后可以得出以下结论:

①焊接电流在110~120A左右时,接头组织既无魏氏组织,又不会出现晶粒长大。

②较小的15CrMo钢板材的预热温度宜控制在150~250℃左右,既能减少马氏体组织的产生,又能避免热影响区晶粒粗化。

③电流在110~120A、预热温度控制在150~250℃左右时,多层焊时要比单层焊组织、性能更佳。

4 结论

经过以上焊接试验、金相观察及硬度测试,可以分析得出以下结论:

①15CrMo钢导热性好,焊接电流宜控制在110~120A左右,这样,即可避免魏氏组织,又不会出现晶粒长大。

②15CrMo钢焊接时,容易出现淬硬组织和冷裂纹。为此,预热温度应控制在150~250℃左右。这样,可有效减少马氏体的产生。

③多层焊时,后道焊缝对前道有退火作用,可延长接头冷却时间,减少马氏体的产生,降低冷裂纹形成倾向,提高接头韧性。

金相实验报告

金相实验报告 篇一:金相实验报告 广州大学机械与电气工程学院 课程报告 报告题目: 金相实验报告 专业班级:机械111 姓名:邓永明 学号: 1107XX14 组别:第六组 指导老师:胡一丹 完成日期: XX.10.18 一. 热处理工艺分析 1. 正火 (1)工艺内容:正火(英文名称:normalizing),又称常化,是将工件加热至Ac3(A 是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是 从727℃到912℃之间)或Acm(Acm是实际加热中过共析钢完全 奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从 炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处

理工艺。 其目的是在于使晶粒细化和碳化物分布均匀化。根本目的是去 除材料的内应力、降低材料的硬度为接下来的加工做准备。 (2)工艺特点:正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速 度稍大,组织较细。有些临界冷却速度很小的钢,在空气中冷 却就可以使奥氏体转变为马氏体,这种处理不属于正火性质, 而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制 作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的 效果接近正火。钢正火后的硬度比退火高。正火时不必像退火 那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在 生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的 低碳钢,正火后达到的硬度适中,比退火更便于切削加

工,一 般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中 碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作 的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴 承钢正火是为了消除组织中的网状碳 化物,为球化退火作组织 准备。正火与退火的不同点是正火冷却速度比退火冷却速度稍 快,因而正火组织要比退火组织更细一些,其机械性能也有所 提高。另外,正火炉外冷却不占用设备,生产率较高,因此生 产中尽可能采用正火来代替退火。对于形状复杂的重要锻件, 在正火后还需进行高温回火(550-650℃)高温回火的目的在于 消除正火冷却时产生的应力,提高韧性和塑性。 正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+

金相分析 概述

第一讲金相分析技术之概述 1.1金相分析技术 金相分析技术是指用光学金相显微镜,观察,记录,分析,金属材料的微观组织结构的技术。 铁碳合金根据含碳量的不同分为亚共析钢,共析钢,过共析钢,白口铸铁等。不同成分的钢,它们的金相组织各不相同。另外成分相同的钢,根据热处理状态不同,它的组织结构也各不相同。组织不同,材料的性能也不相同。所以,成分,热处理状态等,决定了材料的组织,材料的组织结构,又决定着材料的各种性能。可见,研究材料组织结构的重要作用。 金属材料的结构,可分为:原子结构、晶体结构、组织结构和宏观结构。 我们所研究的主要是金属材料。要对这些材料进行合理地,有效地使用,充分发挥它们的潜力,必须要了解和掌握它们的某种或某些性能。为了达到这个目的,必须对材料进行测试。实际上金相分析技术应该是材料测试的一种。往往和其它测试手段共同进行,综合分析。 1.2材料的测试技术 材料的测试,从它的根本意义来说,它是属于信息技术的具体的应用。因为它是通过采用一定的方法,将材料的某种性能有关的内涵信息,进行提取,分离,输出,转换,处理,显示,记录,分析等等。经过这样一些过程,从而得到,我们所要探求的,真实的性能特征。 然后,将这些处理后的信息反馈到生产现场或实验室,对生产或实验进行指导或进行控制。 例如:最简单的是金属的拉伸试验……….。 近年来,由于近代物理,化学,光学,声学,及微电子,材料科学,计算机,自动控制等学科的迅速发展,提供了很多敏感元件,转换元件,检测器件,显示和记录装置等器材和技术,这样不仅使以前的测试方法和仪器有了很大的改进和更新。同时也开发了一些新的设备解决了以前所不能解决的问题。 如:硬度计。便携式,现场金相分析仪,高温金相分析仪及可以看到原子的扫描遂道电子显微镜,原子力显微镜,快速金相显微镜,可以看到动态变化的显微镜等等。 现在的检测技术要求:是向着快速,简便,精确,自动化,多功能,低费用的方向发展。 例如:以前化学分析到现在的光谱分析 以前洗相照相到现在的电脑,打印机输出。 1.2.1关于材料测试的重要意义: 我们可以从实际应用中的一些例子看出 1、在设计新的设备,或新的构件时就必须选用合适的材料,这就必须提供材料 有关的性能数据,特别需要提供设备或构件实际服役的性能,来作为设计的依据。如航空母舰的钢板。飞机发动机的材料。 2、在合成和制备新材料或制定新工艺时,要对材料的性能进行比较,筛选,和 确定最佳方案。如焊接工艺评定。 3、在工业生产中,对投产的原材料的质量,必须进行检查,用来了解它是不是 符合规格,用来保证产品的质量。如压力容器的生产。 4、在生产加工过程中要对各道工序前后的材料半成品,成品的性能进行监控,

焊缝的宏观和微观金相检验方法

附件A 焊缝的宏观和微观金相检验方法 A1范围 本附件是为宏观和微观检测的试样制备、试验程序及其目的,规定的推荐方法。 A2 术语和定义 A2.1 宏观检验 用肉眼或低倍放大镜(放大倍数一般小于50)检查试样,试样表面可处理或不处理。 A2.2 微观检验 用显微镜检查试样,一般放大倍数为50~500,试样表面可处理或不处理。 A2.3检验操作人员 进行宏观、微观检验的操作人员。 A3 缩略语 本方法采用的缩略语如下: (1)A,宏观检验; (2)I,微观检验; (3)E,腐蚀处理; (4)U,不腐蚀处理。 A4 原理 宏观和微观检验用来显示焊缝的宏观和微观特性,通常检验焊缝的横截面。 A5 试验目的 宏观和微观检验目的是单纯地评定组织(包括晶粒组织、形态和取向,沉淀和夹渣)、与各种裂纹和空穴关系。检测截面还要能记录截面平面的取样形状。 A6 试样的截取

试样的截取方向一般垂直于焊缝轴线(横截面),试样包括焊缝熔敷金属和焊缝两侧的热影响区。但也可以从其它方向截取试样。 在试验前应确定时间的位置、方向和数量,以及参照应用标准。 A7 试验程序 A7.1一般原则 应给出下列信息: (1)母材和焊接材料; (2)试验对象; (3)腐蚀剂的组成/名称; (4)表面抛光(见A7.2.1); (5)腐蚀方法(见A7.2.2); (6)腐蚀时间; (7)安全措施(见A7.3); (8)其他附加要求。 A7.2试样制备 用于检验试样的制备包括通过切割、镶嵌、研磨、抛光、适当腐蚀。这些加工过程不应对检验表面产生有害的影响。 A7.2.1 表面抛光 表面抛光的要求取决于下述因素: (1)检验类型; (2)材料种类; (3)记录(例如照片)。 A7.2.2 腐蚀 A7.2.2.1 腐蚀方法 在腐蚀前,先确定腐蚀方法。在常用的方法有以下几种: (1)把试样侵入腐蚀剂中腐蚀; (2)擦拭试样表面腐蚀; (3)电解腐蚀。

焊接接头的组织

焊接接头的组织 一、实验目的 1.掌握焊接接头各区域典型的金相组织。 2.熟悉焊接接头各区域的性能变化。 二、实验设备及材料 1.金相显微镜。 2.焊接试样。 3.预磨机 4.抛光机 三、实验原理 熔化焊是局部加热的过程,焊缝及其附近的母材都经历一个加热和冷却的过程。焊接热过程将引起焊接接头组织和性能的变化,从而影响焊接质量。 焊接接头组织由焊缝金属和热影响区两部分组成。现以低碳钢为例,根据焊缝横截面的温度分布曲线,结合铁碳合金相图,对焊接接头各部分的组织和性能变化加以说明,见图13-1。 1.焊缝金属 焊缝区的金属在焊接时处于完全熔化状态,它的结晶是从熔池底壁上许多未熔化的晶粒开始的。因结晶时各个方向冷却速度不同,垂直于熔合线方向冷却速度最大,所以晶粒由垂直于熔合线向焙池中心生长,最终呈柱状晶,如图13-2所示。熔池中心最后结晶,聚集了等轴状低熔点合金和夹杂物,并可能在此处形成裂纹。 焊缝金属结晶后,其成分是填充材料与熔化母材混合后的 平均成分。在随后的冷却过程 中,若发生相变,则上述组织均 要发生不同程度的转变。对低碳 钢来说,焊缝组织大部分是柱状的铁素体加少量的珠光体。 2.热影响区 热影响区是指焊缝两侧因焊接热作用而发生组织和性能变化的区域。按受热影响的大小,热影响区可分为熔合区、过热区、正火区和部分相变区。 1)熔合区 熔合区是焊缝和基体金属的交界区,相当于加热到固相线和液相线之间的区域。由于该区域温度高,基体金属部分熔化,所以也称为“半熔化区”。熔化的金属凝固成铸态组织,未熔化金属因温度过高而长大成粗晶粒。此区域在显微镜下一般为2~3 个晶粒 图13-1 低碳钢焊接接头组织变化示意图 1-熔合区;2-过热区;3-正火区;4-部分相变区

焊缝接头组织的金相观察与分析

焊缝接头组织的金相观察与分析 一、实验说明 焊接是工业生产中用来连接金属材料的重要加工方法。根据工艺特点不同,焊接方法又分为许多种,其中熔化焊应用得最广泛。 熔化焊的实质就是利用能量高度集中的热源,将被焊金属和填充材料快速熔化,热后冷却结晶而形成牢固接头。 由于熔化焊过程的这一特点,不仅焊缝区的金属组织与母材组织不一样,而且靠近焊缝区的母材组织也要发生变化。这部分靠近焊缝且组织发生了变化的金属称为热影响区。热影响区内,和焊缝距离不一样的金属由于在焊接过程中所达到的最高温度和冷却速度不一样,相当于经受了不同规范的热处理,因而最终组织也不一样。 以低碳钢为例,根据热影响区内各区段在焊接过程中所达到的最高温度范围,依次分为熔合区(固相线一液相线),过热区(1100℃——固相线);完全正火区(AC3——1100℃);不完全旺火区(AC1~AC3)。对易淬火钢而言,还会出现淬火组织。 焊接结构的服役能力和工作可靠性,既取决于焊缝区的组织和质量,也取决于热影响区的组织和宽窄。因此对焊接接头组织进行金相观察与分析已成为焊接生产与科研中用以评判焊接质量优劣,寻找焊接结构的失效原因的一种重要手段。 本实验采用焊接生产中应用最多的低碳钢为母材,用手工电弧施焊,然后对焊接接头进行磨样观察。 二、实验目的 1、学会正确截取焊接接头试样。 2、认识焊缝区和热影响区各区段的组织特征。 3。深刻领会熔化焊焊接过程特点。 三、实验设备及器材 1、施焊设备及器材(手弧焊机、结422焊条,面罩)。 2、200×100×8mmA3钢板一块。施焊前用牛头刨床沿其长度方向中心线刨一条深2mm,宽4~5mm的弧形槽。 3、砂轮切割机一台。 4、钳工工具一套。 5,制备金相试样的全部器材。 6、金相显微镜若干台。 四、实验方法与步骤 1、在钢板上沿刨槽用F4mm结422焊条一根施焊。焊接电流取140~150A。 2、待钢板冷至室温后,用砂轮切割机截取试样。截取部位如下图所示,切割时须用水冷却。以防止组织发生变化(图中虚线为砂轮切割线,两端30mm长焊缝舍弃不用)。 焊接接头金相试样取样位置示意图 3、依照实验一步骤3所述方法截下的焊缝接头制备成金相试样。注意磨制面应选择与焊缝走向垂直的横截面。 4、在金相显微镜上观察制备好的焊接接头试样。光用低倍镜镜头(放大150倍)观察焊缝区及热影响区全貌,再用高倍镜镜头(450倍)逐区进行观察,注意识别各区的金相组织特征, 并画出草图。 五、实验报告要求 1、明确实验目的。

低碳钢熔化焊焊接接头组织分析

低碳钢熔化焊焊接接头组织分析 一、实验目的 1观察焊接接头的宏观组织及焊接缺陷 2、观察焊缝、热影响区及母材的各种典型结晶形态 3、掌握低碳钢焊接接头各区域的组织变化 4、测定在不同的焊接工艺下热影响区的宽度 二、实验概述 手工电弧焊的焊接过程如图1所示。当电弧在焊条与焊件之间引燃后,电弧热使焊件(与电弧接触部分)及焊条末端熔化,熔化的焊件和焊条(以熔滴形式下落)形成共同的金属熔池。焊条外面的药皮受热熔化并发生分解反应,产生液态熔渣和大量气体。液态熔渣包围着 熔滴,当其进入金属熔池后,因其比重小而浮在熔池表面。所产生的气体则包围在电弧和熔池周围。 图1手工电弧焊过程示意图 1、焊条芯 2、焊条药皮 3、液态熔渣 4、固态渣壳 5、气体 6、金属熔滴 7、熔池8焊缝9、工件 焊条因不断熔化下滴而应连续向下送进,以保持一定的电弧长度。同时,焊条还应沿焊接方向前进。当电弧离开熔池后,被熔渣覆盖的熔化金属就缓慢冷却凝固成焊缝金属,液态熔渣也凝固成固态熔壳。在电弧移达的下方,又形成新的熔池及其上的液态熔渣,以后又凝固成新的焊缝金属和渣壳。上述过程继续进行下去,只至整个焊缝被焊完为止。从而形成一条连续的焊缝金属。

在焊接过程中,由于焊接接头各部分经受了不同的热循环,因而所得组织各异。组织的 不同,导致机械性能的变化。对焊接接头进行金相组织分析,是对接头机械性能鉴定的不可 缺少的环节。 焊接接头的金相分析包括宏观和显微分析两个方面。 宏观分析的主要内容为:观察与分析焊缝成型、焊缝金属结晶方向和宏观缺陷等。 显微分析的主要内容为:借助于放大100倍以上的光学金相显微镜或电子显微镜进行观察,分析焊缝的结晶形态,焊接热影响区金属的组织变化,焊接接头的微观缺陷等。 焊接接头由焊缝金属和焊接热影响区金属组成。焊缝金属的结晶形态与焊接热影响区的 组织变化不仅与焊接热循环有关,而且与所用的焊接材料和被焊材料有密切关系。 (一)焊缝凝固时的结晶形态 熔化焊是通过加热使被焊金属的联接处达到熔化状态,焊缝金属凝固后实现金属的焊接。联接处的母材和焊缝金属具有交互结晶的特征,图2为母材和焊缝金属交互结晶的示意 图。由图可见,焊缝金属与联接处母材具有共同的晶粒,即熔池金属的结晶是从熔合区母材 的半熔化晶粒上开始向焊缝中心成长的。这种结晶形式称为交互结晶或联生结晶。当晶体最 易长大方向与散热最快方向一致时,晶体便优先得到成长,有的晶体由于取向不利于成长,晶粒的成长会被竭止,这就是 所谓选择长大,并形成焊缝中的柱状晶形态,如图3(a)所 示。 图2焊缝金属的交互结晶示意图 (a)

铁碳合金平衡组织观察实验报告

铁碳合金平衡组织观察实验报告 一、实验目的 (1)观察和识别铁碳和金(碳素钢和白口铸铁)在平衡状态下的显微组织特征; (2)了解铁碳合金成分(含碳量)对铁碳合金显微组织的影响,从而加深理解成分、组织、性能之间的关系; (3)熟悉金相显微镜的使用。 二、实验原理 状态图是研究铁碳合金组织与成分关系的重要工具,了解和掌握状态图,对于制定钢铁材料的各种加工工艺有着很重要的指导意义。 所谓平衡状态的显微组织是指合金在极缓慢的条件下冷却到室温所得到的组织。铁碳合金的平衡组织主要是指碳钢和白口铸铁的缓慢冷却到室温得到的组织,它们是(特别是碳钢)工业上应用最广泛的金属材料,它们的性能与其显微组织有密切的关系。 三、使用的仪器设备 金相显微镜 四、实验方法、步骤 (1)实验前,阅读实验指导书,为实验做好理论方面的准备; (2)在老师的指导下调节好金相显微镜; (3)在金相显微镜下分别观察工业纯铁、20钢、45钢、65钢、T8钢、T12钢、亚共晶白口铁、共晶白口铁、过共晶白口铁等9种铁碳合金的平衡组织,识别钢和铁的组织形态的特征;根据相图分析各合金的形成过程;建立成 分,组织之间相互关系的概念; (4)画出所观察金相样品的显微组织示意图。 五、实验结果分析 (1)根据所观察并画出的金相样品的显微组织示意图,在图中标出组织,在图下标出:含碳量、组织、放大倍数、侵蚀剂。

样品名称:1.2%碳钢 状态:退火 显微组织:珠光体和网状渗碳体放大倍数:500倍 侵蚀剂:3%硝酸酒精溶液

样品名称:共晶白口铁 状态:铸造 含碳量:4.3% 显微组织:莱氏体 放大倍数:400倍;侵蚀剂:3%酒精溶液 样品名称:工业纯铁 含碳量:C%小于0.02% 状态:退火 显微组织:铁素体 放大倍数:500倍;侵蚀剂:3%硝酸酒精溶液 (2)根据观察的组织,说明含碳量对铁碳合金的组织和性能影响的大致规律 含碳量越高,强度,硬度越高,而塑韧性变差,反之,强度,硬度越低,塑韧性越好。 随着含碳量的增加,铁碳合金依次有工业纯铁、亚共析钢、共析钢、过共析钢、亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁的平衡组织形态。并且,碳含量的微小变化也会对某组织产生影响,随着含碳量的增加,工业纯铁中的三次渗碳体的量增加;亚共析钢中的铁素体量减少;过共析钢析钢中的二次渗碳体量增加;亚共晶白口铸铁的珠光体和二次渗碳体量

焊接接头金相组织分析

焊接接头金相组织分析 实验目的 ?观察与分析焊缝的各种典型结晶形态; ?掌握低碳钢焊接接头各区域的组织变化。 二、实验装置及实验材料 ?粗细金相砂纸1套 ?平板玻璃1块 ?不同焊缝结晶形态的典型试片若干 ?低碳钢焊接接头试片1块 ?正置式金相显微镜1台 ?抛光机1台 ?工业电视(或幻灯机)1台 ?吹风机1个 ?4%硝酸酒精溶液无水醇脱脂棉若干 ?典型金相照片(或幻灯照片)一套 三、实验原理 焊接过程中,焊接接头各部分经受了不同的热循环,因而所得组织各异。组织的不同,导致机械性能的变化。对焊接接头进行金相组织分析,是对接头机械性能鉴定的不可缺少的环节。 焊接接头的金相分析包括宏观和显微分析两个方面。 宏观分析的主要内容为:观察与分析焊缝成型,焊缝金属结晶方向和宏观缺陷等。 显微分析是借助于放大100倍以上的光学金相显微镜或电子显微镜进行观察,分析焊缝的结晶形态,焊接热影响区金属的组织变化,焊接接头的微观缺陷等。 焊接接头由焊缝金属和焊接热影响区金属组成。焊缝金属的结晶形态与焊接热影响区的组织变化,不仅与焊接热循环有关,也和所用的焊接材料和被焊材料有密切关系。 ?焊缝凝固时的结晶形态

?焊缝的交互结晶 熔化焊是通过加热使被焊金属的联接处达到熔化状态,焊缝金属凝固后实现金属的焊接。联接处的母材和焊缝金属具有交互结晶的特征,图1为母材和焊缝金属交互结晶示意图。由图可见,焊缝金属与联接处母材具有共同的晶粒,即熔池金属的结晶是从熔合区母材的半熔化晶粒上开始向焊缝中心成长的。这种结晶形式称为交互结晶或联生结晶。当晶体最易长大方向与散热最快方向一致时,晶体便优先得到成长,有的晶体由于取向不利于成长,晶粒的成长会被遏止,这就是所谓选择长大,并形成焊缝中的柱状晶。 ?焊缝的结晶形态 根据浓度过冷的结晶理论,合金的结晶形态与溶质的浓度C0、结晶速度(或晶粒长大速度)R和温度梯度G有关。图1-16为C0、R和G对结晶形态的影响。 由图可见,当结晶速度R和温度梯度G不变时,随着金属中溶质浓度的提高,浓度过冷增加,从而使金属的结晶形态由平面晶变为胞状晶,胞状树枝晶,树枝状晶及等轴晶。 当合金成分一定时,结晶速度越快,浓度过冷越大,结晶形态由平面晶发展到胞状晶树枝状晶,最后为等轴晶。 当合金成分C0和结晶速度R一定时,随着温度梯度G的长升高,浓度过冷将减小,因而结晶形态会由等轴晶变为树枝晶,直至平面晶。 随着晶粒的成长,熔池中晶粒界面前的浓度过冷和温度梯度也随着发生变化。因而,熔池全部凝固以后,各处将会出现不同的结晶形态。在焊接熔池的熔化边界上,温度梯度G较大,结晶速度R很小,因此此处的浓度过冷最小,随着焊接熔池的结晶,温度梯度G由熔化过边界处直到焊缝中心渐变小,熔池的结晶速度却渐增大,焊缝中心处,温度梯度最小,结晶速度最大,故浓度过冷最大。由上述分析可知,焊缝中结晶形态的变化,

金相显微镜的使用与金相样品的制备实验报告

金相显微摄像 一、实验目的: (一)了解普通金相显微镜的构造与使用方法。 (二)了解金相试样的制备方法。 (三)学习使用金相显微镜观察金相组织。 二、实验设备及材料: 实验设备:金相显微镜、砂轮机、抛光机、吹风机、玻璃板、培养皿、镊子。材料:金相试样、砂纸一套(800,1000,1200 )、抛光液(Al2O3)、腐蚀剂(4% 硝酸酒精溶液)、药棉、酒精 三、实验内容及步骤: 实验内容:(1)用机械抛光和化学侵蚀的方法制备金相样品 (2)观察试样的显微组织,并绘制组织图。 试验步骤:(1)金相样品的截取及镶嵌 (2)金相样品磨光 (3)金相样品的抛光 (4)金相样品的化学侵蚀 (5)显微组织的观察与记录

四、简述金相显微镜的放大原理:显微镜的成象放大部分主要由两组透镜组成。靠近观察物体的透镜叫物镜,而靠近眼睛的透镜叫目镜。通过物镜和目镜的两次放大,就能将物体放大到较高的倍数 五、简述金相显微镜的基本构造 金相显微镜通常由光学系统,照明系统和机械系统三大部分组成,有的显微镜还附有摄影装置 (一)金相显微镜机械装置 显微镜的机械装置要由镜座、镜臂、载物台、镜简、物镜转换器及调焦装置等。它是支持放大、照明部分的支架、具固定与调解光学镜头,固定和移动标本作用。 二)金相显微镜放大部分 放大部分包括接物镜和接目镜。 (三)金相显微镜照明部分 照明部分包括反光镜、滤光镜、虹彩光圈和聚光镜等 六、金相制样的基本过程包括几个方面?这几个方面各是哪些? 制备显微试样包括取样、磨光、抛光及浸蚀四个步骤 1、取样 取样时应根据被分析材料或零件的特点。选择有代表性的部分。试样最适合的尺寸是直径为12mm,高为10mm的圆柱体或面积为12*12㎜2,高10mm的长方体。根据材料性质不同,可用手锯、用车床切削、用锤子击碎以及用砂轮切割等方法截

金相分析介绍

有色合金彩色金相技术的研究与应用 朱锦艳王凤花 (太原重型机械集团公司,太原030024) 摘要:本文应用化学沉积着色法对铜、铝合金及双金属焊接接头的显微组织进行了上千次的着色试验。结果表明:彩色金相能够清晰地显示一般金相方法看不到的组织细节和特殊的相,其色彩鲜艳、分辩率高,给人们提供了很有意义的信息。同时还系统地介绍了化学沉积试剂的应用方法和试验操作技巧。 关键词:金相技术;着色;衬度;组织鉴别 O 引言 光学金相技术对揭示合金内部组织的奥秘起了十分重要的作用。随着科学技术的高速发展,普遍的金相方法限于其反着能力,已满足不了人类对金属材料微观世界的进一步探讨。由于电子金相技术的蓬勃兴起,使材料的研究进入一个新领域.作为基础的光学金相技术依然是解决生产实际问题所不可缺少的重要手段。人们为了提高光学金相的测试水平,必须从提高组织中各相间衬度入手,由此发展了一种崭新的显示方法——彩色金相。基于人眼对彩色差异的特殊敏感,利用彩色衬度来区分合金组织更为准确可靠,彩色金相已成为光学金相发展的方向。本文应用彩色金相的原理和方法对铝、铜合金等有色金属的显微组织进行了大量的试验和探讨工作,积累了较丰富的实践操作经验和技术,并研制出一册《有色合金彩色金相图谱》。 1 彩色金相原理及方法 彩色金相主要是通过物理或化学的方法,使试样表面形成一层干涉膜,利用光的薄膜干涉效应,使合金的显微组织产生鲜明的彩色衬度,以此来提高光学金相的鉴别能力。彩色金相显示合金组织的方法主要从两方面着手:一是改变样品表面状况的彩色侵蚀着色法、化学沉积着色法、热染法和真空蒸镀法等;二是不改变样品表面状况的纯光学方法,有偏光干涉法和分色法等,这些方法各有特点和局限性。本试验基于有色合金的特点及实验条件,主要选用化学沉积干涉膜着色法。 化学沉积着色的机理是,根据电化学原理,金属试样浸入到化学沉积试剂中时,必然会发生一系列的电化学过程,试样表面上的各区域按它们各自的稳定电位与试样综合稳定电位之差值,分为不同的阴极区域和阳极区域。如果选用了合适的试剂,则该试剂有能力,使不同区域上沉积不同厚度的干涉膜。不同的合金相其化学常数不同或膜的厚度不同,利用多重反射与薄膜干涉效应,使各相之间或位向与成份不同的晶体之间产生不同的干涉色,从而产生彩色图象,以达到辩认组织的目的。

材料课件实验一光学金相组织观察方法

材料课件实验一光学金相 组织观察方法 Jenny was compiled in January 2021

实验一光学金相组织观察方法 目的 1.了解光学金相组织观察方法及步逐; 2.了解光学金相显微镜的结构,熟悉其使用的基本方法; 3.了解光学金相样品的制备过程,体会制过程对观察组织的影响。光学金相显微镜的结构 为观察材料的显微组织,必须借助显微镜,大家可能用过生物显微镜,知道其大致结构有:物镜、目镜、粗调、微调等,生物样品是透明的,可用自然光。 工程材料,如金属材料,是不透明的,成像利用的是反射光,因此在光学金相显微镜中,结构上明显特点是有一套照明设备,现用显微镜的照明设备包括:电源、变压器、灯泡、透镜组——得到平行光,经过孔径光栏、滤色片、视场光栏,再经过物镜照射到试样上。经过试样的反射光进入物镜经过一次放大,再经过目镜的再次放大,我们看到的是经过二次放大的虚像。因为最后看到的像和各人的视力的影响,不同人观察时对显微镜要进行微调。

显微组织成像原理 如图所示,从透镜内垂直照射 到试样上的平行光,将发生反射和 吸收。如果试样是镜面,光线全部 原路返回,最后成像为亮点;如果 试样有不平的沟槽,部分光线反射后不能进入物镜,这样这些地方成像为暗区。有明有暗就构成了表面的图象,就是我们观察到的组织形貌。金相试样的制备方法 取样:从材料或零件上截取准备观察的样品,要求组织要有代表性,大小要适合制样和观察,尺寸过小的还要进行镶嵌。 打平:让观察面宏观为平面,用砂轮、锉刀或其它方法来实现。 磨光:用不同粒度的金相砂纸,从粗到细依次细磨,让其粗糙度不断减小。细磨的方法有干磨和湿磨,可用手工细磨和机械细磨。

焊缝接头金相试样制备及显微组织分析

实验一焊缝接头金相试样制备及显微组织分析 一、实验目的 1.学会正确截取焊接接头试样。 2.认识焊缝区和热影响区各区段的组织特征。 二、实验原理 焊接是工业生产中用来连接金属材料的重要加工方法。根据工艺特点不同,焊接方法又分为许多种,其中熔化焊应用得最广泛。 熔化焊的实质就是利用能量高度集中的热源,将被焊金属和填充材料快速熔化,然后冷却结晶而形成牢固接头。 由于熔化焊过程的这一特点,不仅焊缝区的金属组织与母材组织不一样,而且靠近焊缝区的母材组织也要发生变化。这部分靠近焊缝且组织发生了变化的区域称为热影响区。热影响区内,和焊缝距离不一样的金属由于在焊接过程中所达到的最高温度和冷却速度不一样,相当于经受了不同规范的热处理,因而最终组织也不一样。 焊接结构的服役能力和工作可靠性,既取决于焊缝区的组织和质量,也取决于热影响区的组织和宽窄。因此对焊接接头组织进行金相观察与分析已成为焊接生产与科研中用以评判焊接质量优劣,寻找焊接结构的失效原因的一种重要手段。 本实验采用焊接生产中应用最多的低碳钢为母材,用焊条电弧焊(又称为手工电弧焊)施焊,然后对焊接接头进行磨样观察。 焊条电弧焊的原理如图1所示。焊接前,将电焊机的输出端分别与工件和焊钳相连,接通电路后,焊条和被焊工件之间引燃电弧,焊条和工件作为阴极或阳极。电弧热使工件和焊条同时熔化形成熔池,焊条药皮也随之熔化形成熔渣覆盖在焊接区的金属上面,药皮燃烧时产生大量CO2气流围绕在电弧周围,熔渣和气流可防止空气中的氧氮侵入起到保护熔池的作用。随着焊条的移动,焊条前的金属不断熔化,焊条移动后的金属则冷却凝固成焊缝,于是形成一个焊接接头。 在焊条电弧焊焊接中,受电弧的热作用焊接接头的金属都要经历常温状态升温到一定温度后,然后再逐渐冷却到常温的过程。图2表示了焊件截面上各区域温度的变化情况。在焊接时各部分和焊缝距离不同而受热不均匀,导致不同位置的点所经历的焊接热循环是不同的(即被加热的最高温度不同),而且焊接后的冷却速度也不同。因此,各部分组织与性能变化也不同。 以低碳钢为例,根据焊缝横截面的温度分布曲线,结合铁碳合金相图,依次分为熔合区(固相线一液相线),过热区(1100℃——固相线);完全正火区(AC3——1100℃);不完全正火区(AC1~AC3),对易淬火钢而言,还会出现淬硬组织并对焊接接头各部分的组织与性能变化加以说明。

焊接接头金相组织分析报告报告材料

焊接接头金相组织分析 一、试验目的 (一)观察与分析焊缝的各种典型结晶形态 (二)掌握低碳钢焊接接头各区域的组织变化 (三)了解低碳钢焊接热影响区的组织变化规律。二、试验装置 及试验材料 (一)粗、细金相砂纸一套 (二)平板玻璃 2块 (三)金相显微镜 4台 (四)吹风机 1个 (五)抛光机 4台 (六)低碳钢焊接接头试片 1个 (七)腐蚀液: 4%硝酸酒精溶液 (八)乙醇、丙酮、棉花等 三、试验原理 (一)焊缝凝固时的结晶形态 ?1、焊缝的交互结晶,如图1所示

? ?熔池金属的结晶是从熔合区母材的半熔化晶粒上开始向焊缝中心成长 2、焊缝的结晶形态 根据成分过冷的结晶理论,合金的结晶形态与溶质的浓度C0、结晶速度R和温度剃度G有关。 图2 C0、R和G对结晶形态的影响 (二)低碳钢焊缝热影响区金属的组织变化 以低碳钢为例,根据其热影响区金属组织的特性,可分为四个区域,如图3所示:

图3低碳钢焊接热影响区分布特征 1-熔合区;2-粗晶区;3-结晶区;4-不完全重结晶区;5-母材 a、接头金相组织: 1、未受热影响的焊缝金属区; 2、受影响的层间金属区,结晶形态消失; 3、受过热作用的热影响区; 4、母材;

b、过热粗晶区魏氏体组织 C、左侧一次正火细晶区,右侧二次正火,晶粒较粗 d、不完全结晶区组织

e、母材组织 (三)30CrMnSiA钢焊缝热影响区金属组织变化 30CrMnSiA钢的连续冷却转变曲线

四、实验方法及步骤 (一)低碳钢焊接接头金相分析 1、试样的准备; 2、用金相砂纸打磨试片; 3、抛光试片; 4、腐蚀; 5、在显微镜下观察与分析 (二) 30CrMnSiA钢试片的制作 1、将厚度为2.5mm的30CrMnSiA钢板切成180× 20mm和180× 35mm两种规格的试片; 2、试片焊前进行退火处理; 3、去除试片表面油污及氧化物; 4、分别用电弧焊和气焊焊接试片; 5、制作金相试样:打磨、抛光、腐蚀等; 6、在显微镜下观察已制备好的金相试样;

金相实验报告(成分组织观察分析)

金相综合实验报告 实验名称: 碳钢成分-工艺-组织-性能综合分析实验专业: 材料科学与工程 班级: 材料11(1) 指导老师:席生岐高圆 小组组长: 仇程希 小组成员:齐慧媛李敏朱婧王艳姿闫士琪陈长龙黄忠鹤郭晓波丁江蒋经国庞小通林乐 二〇一四年四月三日

一、实验目的 1.了解碳钢热处理工艺操作; 2.学会使用洛氏硬度计测量材料的硬度性能值; 3.利用数码显微镜获取金相组织图像,掌握热处理后钢的金相组织分析方法; 4.探讨淬火温度、淬火冷却速度、回火温度对45和T12钢的组织和性能(硬度)的影响; 5.巩固课堂教学所学相关专业知识,体会材料的成分—工艺—组织—性能之间关系。 二、实验内容 1.进行45和T12钢试样退火、正火、淬火、回火热处理,工艺规范参考相关资料; 2.用洛氏硬度计测定试样热处理试样前后的硬度; 3.制备所给表中样品的金相试样,观察并获取其显微组织图像; 4.对照金相图谱,分析探讨本次实验可能得到的典型组织:片状珠光体、片状马氏体、板条状马氏体、回火马氏体、回火托氏体、回火索氏体等的金相特征。三、实验原理 热处理是一种很重要的金属加工工艺方法。热处理的主要目的是改变钢的性能,热处理工艺的特点是将钢加热到一定温度,经一定时间保温,然后以某种速度冷却下来,从而达到改变钢的性能的目的。研究非平衡热处理组织,主要是根据过冷奥氏体等温转变曲线来确定。 热处理之所以能使钢的性能发生显著变化,主要是由于钢的内部组织结构发生了的一系列的变化。采用不同的热处理工艺,将会使钢得到不同的组织结构,从而获得所需要的性能。 钢的热处理基本工艺方法可分为退火、正火、淬火和回火等。 (一)碳钢热处理工艺 1.加热温度 亚共析钢加热温度一般为Ac3+30-50℃,过共析钢加热温度一般为Ac 1+30-50℃(淬火)或Acm+50-100℃(正火)。 淬火后回火温度有三种,即:低温回火(150-250℃)、中温回火(350-500℃)、

金相分析软件介绍

金相分析软件介绍 检验类别模块名称功能说明 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89 【019】珠光体平均晶粒度测定…GB 6394-2002 【062】金属的平均晶粒度评级…ASTM E112 【074】黑白相面积及晶粒度评级…BW 2003-01 【149】彩色试样图像平均晶粒度测定…GB 6394-2002 辅助评级【304】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(面积法)自动评级【305】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(切割线法)自动评级【322】铜及铜合金_平均晶粒度测定方法…YS/T 347-2004 自动评级【328】彩色试样图像平均晶粒度测定方法2 2、非金属夹杂物显微评定【002】非金属夹杂物显微评定…GB 10561-89 自动评级【252】钢中非金属夹杂物含量的测定标准评级图显微检验法…GB/T 10561-2005/ISO 4967:1998 3、贵金属氧化亚铜金相检验【003】贵金属氧化亚铜金相检验…GB 3490-83 自动评级 4、脱碳层深度测定【004】脱碳层深度测定…GB 224-87 辅助评级 5、铁素体晶粒延伸度测定【005】铁素体晶粒延伸度测定…GB 4335-84 自动评级 6、工具钢大块碳化物评级【006】工具钢大块碳化物评级…GB 4462-84 自动评级 7、不锈钢相面积含量测定【007】不锈钢相面积含量测定…GB 6401-86 自动评级 8、灰铸铁金相【008】铸铁共晶团数量测定…GB 7216-87 自动评级【056】贝氏体含量测定…GB 7216-87 【058】石墨分布形状…GB 7216-87 比较评级 【059】石墨长度…GB 7216-87 辅助评级【065】珠光体片间距…GB 7216_87 【066】珠光体数量…GB 7216_87 自动评级【067】灰铸铁过冷石墨含量…SS 2002-01 【185】碳化物分布形状…GB 7216-87 比较评级 【186】碳化物数量…GB 7216-87 自动评级 【187】磷共晶类型…GB 7216-87 比较评级【188】磷共晶分布形状…GB 7216-87 【189】磷共晶数量…GB 7216-87 自动评级

焊接金相分析(大纲)

焊接金相分析(大纲) 一概述 1 定义:焊接金相分析是以焊接金属学为理论基础,密切联系焊接工艺条件,以金相分析方法来研究焊接接头的组织变化,研究焊接缺陷和接头性能与焊接方法之间的关系,是验证和提高焊接接头质量的一门试验学科。 焊接金相分析的应用:基本内容是焊接前后发生的组织、性能变化,可以应用于―――新材料焊接性分析与焊接材料焊接工艺优化;焊接结构失效分析;焊接裂缝及其他焊接缺陷产生原因分析;焊接相变过程;焊接裂缝的形态和产生机理;焊接缺陷与焊接工艺间的关系;合金元素对接头组织和性能的影响;焊缝的一次组织、二次组织与焊缝性能的关系等。 焊接金相分析设备:实体显微镜,光学显微镜,高温显微镜,TEM,SEM,XRD等等。性能测定设备有:万能试验机(拉、压、弯),冲击试验机,各种硬度计,显微硬度计,差热分析仪,热膨胀分析仪,等等。 焊接系统工程学:焊接工程有三个分枝,即焊接冶金学、焊接工艺学和焊接力学。它们相互联系 又自成体系,焊接系统 工程学简图见图1。 图1 焊接技术系统化

2 焊接金相分析方法 焊接金相分析方法是通过解剖试样,直接在金相显微镜下进行观察、分析或通过金相物理方法的测试检查。 焊接金相分析方法的特点:因为焊接热过程的复杂性,使焊接金相比一般金相研究更困难。例如HAZ是母材在焊接热循环作用下形成的一系列连续变化的梯度组织区域。 焊接接头缺陷的分析是焊接金相研究的一个重要内容。要准确、直观地检查出焊接裂缝、夹杂物、夹渣、气孔、未焊透等。较无损探伤更准确可靠,尤其是微裂纹。 二焊接区金相试样制备方法 1.焊接区金相取样方法 取样原则:服从于金相分析特点和要求,充分考虑焊接接头特点和焊接工艺特点来确定焊接金相取样的部位、数量及大小。 焊接区显微组织金相样的切取方法 焊接结构及焊接产品事故分析取样方法 2.焊接区金相试样制备方法 大型产品及焊接结构的事故分析取样,多采用气割或机械加工方法切下大块样品,然后像小型试件一样,经过切割、平整、磨光、抛光、浸蚀等一系列加工制成小金相试样。 3.焊接区金相试样显示方法 显示焊接金相试样组织的方法有两种:化学试剂显示法和电解浸蚀剂显示法。化学试剂浸蚀显示法在金相组织显示中是最常用的。使用化学药品作为溶

金相实验报告

金相实验报告 三、实验目的 1.掌握铝合金的制备过程和抛光机等仪器设备的使用方法; 2.掌握金相显微镜的使用方法; 3.认识铝合金的金相组织; 4.结合理论,理解铝合金成分与组织之间的相互关系四、实验要求1对实验原理与方法的要求:要求学生掌握相关教材的基本知识,通过查阅手册和文献了解相关材料常规的金相组织,对有关名词、概念有清楚地认识,了解观察显微组织的原理、方法和作用。 22对操作技能与仪器设备的要求: 要求学生有较强的动手能力,了解砂纸的型号和使用,熟悉抛光机和显微镜的使用,会判断试样制备的好坏。仪器设备:砂轮机、砂纸、抛光机、金相显微镜等。 33对实验报告的要求: 1.记录实验过程; 2.根据金相照片分析成分和金相组织的关系; 3.要求用正规实验报告纸,书写清晰。 五、实验所用仪器设备及材料 1.设备:金相显微镜、抛光机、砂轮机。 2.各号金相砂纸、抛光布、脱脂棉、3~5﹪硝酸酒精溶液、试样(成分:xxxxx)。 六、实验步骤(1)金相显微试样的制备金相试样的制备包括取样、磨制、抛光和浸蚀等步骤。 金相试样的制备过程主要步骤 本实验金相试样制备过程的步骤如下: 磨制抛光浸蚀观察砂纸磨抛光剂抛光机浸蚀剂吹吹风酒精清洗水清洗水清洗吹干显微镜磨制抛光浸蚀镶嵌取样 1.取样试样的选取应根据被检验材料或零件的特点,取其有代表性的部位。例如研究零件的失效原因时,应在失效部位取样,并在完好部位取样,以便对比分析。对于铸造合金,考虑到组织的不均匀性,应从表层到中心各个部位进行选取。对于轧材,研究表层缺陷和夹杂物的分布时应横向取样;研究夹杂物类型、形状、变形程度、带状组织时应纵向取样。对一般热处理后的零件,由于组织均

焊接金相组织

第四章焊接接头组织性能分析 焊接过程是个局部快速加热到高温并随后冷却的过程,整个焊件的温度随时间和空间急剧变化,易形成在时间和空间域内梯度都很大的不均匀温度场,温度场的分布决定着焊缝区和热影响区的范围,对焊接接头的质量有着直接影响。由于焊接过程中的特殊传热过程,焊接所连接的材料上距离热源的远近不同,其组织和性能也各有差异。通常将受到焊接热作用后组织和性能相对于基材发生改变的区域称为焊接接头。焊接接头不仅包括结合区,也包括其周围区域。 4.1焊接冶金基础 焊接时,焊件或同焊接材料被加热到高温而熔化,冷却后形成的结合部分叫做焊缝。焊件材料称为母材。由于局部加热,焊缝邻近区域的母材势必会因热量的传导而受影响。母材因受热的影响(但未熔化)而发生组织与力学性能变化的区域叫热影响区。焊缝与热影响区的交界线叫做熔合线或熔合区,实际为具有一定尺寸的过渡区,常称为熔合区。对于焊接结构件来说,其安全性主要取决于焊接接头,特别是焊接热影响区的组织和性能。焊缝、热影响区与熔合区共同构成焊接接头,如图1-1所示。 图1-1 焊接接头示意图 在焊接过程中,随着温度的变化,焊缝区要发生熔化、化学反应、凝固及固态相变一系列过程;热影响区则会发生组织变化。这些变化总称为焊接冶金过程。冶金过程将决定焊缝的成分和接头的组织以及某些缺陷的形成,从而决定了焊接接头的质量。下面就介绍一下焊接冶金的基本知识与基本规律。 4.1.1. 焊接传热过程的特点 在焊接过程中,被焊金属由于热的输入和传播,而经历加热、熔化(或达到热塑性状态)和随后的凝固及连续冷却过程,称之为焊接热过程。凡是通过局部加热来达到连接金属的焊接方法,不论是熔焊或固态焊接(如电阻焊接、摩擦焊),由于其加热的瞬时性和局部性使得焊缝附近的母材都经受了一种特殊热循环的作用。其特点为升温速度快,冷却速度快;焊

金相实验报告

实验五 铁碳合金平衡组织的显微观察 一.实验目的 1. 观察铁碳合金在平衡状态下的显微组织特征。 2. 掌握铁碳合金成分,组织性能之间的变化规律。 二、 实验器材 1、金相显微镜 2、金相标准试样 四.实验原理 铁碳合金室温下基本相和组织组成物的基本特征 1.铁素体(F ) 是碳溶入α-Fe 中的间隙固溶体,晶体结构为体心立方晶格,具有良好的塑韧性,但强度硬度低,经4%硝酸酒精浸蚀呈白色多边形晶粒,在不同成分的碳钢中其形态为块状和断续网状。 2.渗碳体(Fe 3C ) 是铁与碳形成的化合物,含碳量为6.69%。 晶格为复杂的八面体结构,硬度高,脆性大,用4%的硝酸酒精浸蚀后呈白色,用碱性苦味酸钠热蚀后呈黑色,用此法可以区分铁碳合金中的渗碳体和铁素体。由铁碳相图知,随着碳的质量分数的不同,渗碳体有不同的形态,一次渗碳体是由液态直接析出的渗碳体,呈白色长条状;二次渗碳体是从奥氏体中析出的渗碳体,呈网状分布,三次渗碳体是从铁素体中析出的渗碳体,沿晶界呈小片状,共晶渗碳体在莱氏体中为连续基体,共析渗碳体是同铁素体交替形成呈交替片状。 3.珠光体(P ) 是铁素体与渗碳体的机械混合物,在平衡状态下,铁素体和渗碳体是片层相间的层状组织。在高倍下观察时铁素体和渗碳体都呈白色,渗碳体周围有圈黑线包围着,在低倍下当物镜的鉴别能力小于渗碳体厚度的时候,渗碳体就成为一条黑线。见图3-1。 五。实验内容及步骤 a (15000×) b (400×) 图2-1 不同放大倍数下珠光体的显微组织

观察以下铁碳合金组织 在铁碳状态图上,根据碳的质量分数的不同,铁碳合金分为工业纯铁,碳钢及白口铸铁。 1.工业纯铁 碳的质量分数小于 0.0218%的铁碳合金称为工业纯铁。室温下的组织为单相的铁素体晶粒。用4%的硝酸酒精浸蚀后,铁素体呈白色。当碳的质量分数偏高时,在少数铁素体晶界上析出微量的三次渗碳体小薄片,见图 3-2。 2.碳钢 碳的质量分数在0.0218~2.11%范围内的铁碳合金称为碳钢,根据钢中含碳量的不同,其组织也不同,钢又分为亚共析钢,共析钢,过共析钢三种。 1)亚共析钢 碳的质量分数在0.0218~0.77%范围内,室温下的组织为铁素体和珠光体,随着碳的质量分数的增加,先共析铁素体逐渐减少,珠光体数量增加。见图 3-3 。白色有晶界的为铁素体,黑色层片状的组织为珠光体。 在显微镜下,可根据珠光体所占面积的百分数估计出亚共析钢的碳的质量分数: Wc ≈Wp%×0.77% Wc –碳的质量分数 Wp –珠光体所占面积的百分数 2) 过共析钢 碳的质量分数在0.77~2.11%范围的碳钢为过共析钢。室温下的组织 为层片状珠光体和二次渗碳体,见图 3-4。 用4%硝酸酒精浸蚀,二次渗碳体呈白色网状分布在珠光体周围。用碱性苦味酸钠溶液热蚀后,渗碳体呈黑色。 图 3-2 工业纯铁显微组织 a 用4%硝酸酒精浸蚀 b 用碱性苦味酸钠热蚀 图 3-4 T12钢显微组织 20钢 45钢 70钢 图 3-3 亚共析钢的显微组织

实验三-偏光、暗场在金相分析中的应用

实验三偏光、暗场在金相分析中的应用(验证性) 一、实验目的及要求 1.了解偏振光和暗场的基本原理。 2.学会偏振光和暗场的操作方法和分析方法。 3.了解偏振光和暗场在钢中非金属夹杂物分析及多相合金的组织鉴别方面的应用。 二、实验原理 暗场和偏振光是金相分析方面应掌握的一种基本的分析手段,它们主要应用在一些组织、晶粒的鉴别,晶粒取向,形变织构的研究,特别是在非金属夹杂物的研究分析方面使用较广。 1、暗场 1)暗场与明场的区别 明场:入射光束通过物镜垂直照射到试样表面,反射光进入物镜成像。 暗场:入射光束绕过物镜,以极大的角度斜射到试样表面,散射光(漫射光)进入物镜成像。这样的光束是靠暗场折光反射镜和环形反射镜获得。 2)暗场的操作 使用暗场照明时的步骤: (a)孔径光栏、视场光栏都要开大; (b)将暗场遮光反射镜插入光路。入射光中插入暗场遮光反射镜后,使入射光变成环形光环。 (c)将暗场聚光镜套在物镜外面。入射光环不通过物镜,而经暗场聚光镜反射之后,以极大的倾斜角照射到试样表面,实现倾斜光照明。 (d)要将光路中明场用的平面半反射镜拉出来,它已不起作用。这样,使入射光不能

进入物镜,提高了成像质量。暗场环形反射镜已固定在光路里,将暗场遮光反射镜造成的环形光束反射到置于外面的“暗场聚光镜”表面上,然后以极大的倾斜角反射到试样表面上。 倾斜光照射到试样表面平坦部位反射光会以相同的角度反射回去,这部分反射光不能到达物镜,视场内是暗黑的。而使光线产生漫反射的凹凸处、透明夹杂物处等,因漫反射使部分光线可到达物镜,在视场内观察到是明亮的,因此形成在暗黑的基体上有部分明亮的映像。因此称这种照明方式为暗场照明。 3)暗场照明的特点及应用 (1)暗场照明提高了显微镜的实际分辨能力和衬度 暗场采用倾斜光照明,充分利用了物镜的孔径角,而且暗色基体衬度好,实际的分辨能力提高了。 例如取一含有珠光体的试样,在明场观察时,有许多珠光体领域由于细密使物镜分辨不清的片层。而转换成暗场照明,同一部位的片层状清晰可见,这说明暗场下,物镜的实际分辨能力提高了。 另外,钢中有许多超显微的粒子,明场时无法辨认,有的可见隐约小点。但若用暗场照明,由于消除了跌加在这些微粒散射光成像的亮背景,从而加强了这些粒子衍射象的衬度可看到在暗黑的基体上分布着很多小亮点,有的还呈现出各种色彩,使小质点清晰可辨。就像晚上可看到星星一样,我们虽不能分辨这些粒子的细节,却可察觉到这些微粒子的存在。 (2)鉴别钢中的夹杂物和固有色彩 明场观察时,金属基体反射光很强,夹杂物处的反射光或漫射光或汇合,其固有色彩被掩盖。暗场照明,透明、半透明夹杂物由于内反射的结果,在暗场下是明亮的,同时还可以观察到它的固有色彩。一般情况下,暗场下越明亮,其透明度越好。例Al2O3等氧化物。明场下为暗黑色。暗场为白亮色,说明其透明度很好,色彩也呈现出来了。不透明的夹杂物,

相关主题
文本预览
相关文档 最新文档