当前位置:文档之家› 立体几何文科高考题

立体几何文科高考题

立体几何文科高考题
立体几何文科高考题

历年高考立体几何文科汇编

1.(江苏)如图,在四棱锥ABCD

P 中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E、F分别是AP、AD的中点

求证:

(1)直线E F‖平面PCD;

(2)平面BEF⊥平面PAD

2.(北京卷)如图,在四面体PABC中,PC⊥AB,PA⊥BC,点D,E,F,G分别是棱AP,AC,BC,PB 的中点.

(Ⅰ)求证:DE∥平面BCP;

(Ⅱ)求证:四边形DEFG为矩形;

3.(福建卷)如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,

且CE∥AB。

(I)求证:CE⊥平面PAD;

(11)若PA=AB=1,AD=3,CDA=45°,求四棱锥P-ABCD的体积

4.(辽宁卷)如图,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =

1

2

PD . (I )证明:PQ ⊥平面DCQ ;

5.(陕西卷)如图,在△ABC 中,∠ABC=45°,∠BAC=90°,AD 是BC 上的高,沿AD 把

△ABD 折起,使∠BDC=90°。

(Ⅰ)证明:平面ADB ⊥平面BDC;

6.(天津卷)如图,在四棱锥P ABCD -中,底面ABCD 为 平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点,

PO ⊥平面ABCD , 2PO =,

M 为PD 中点.

(Ⅰ)证明:PB //平面ACM ; (Ⅱ)证明:AD ⊥平面PAC ;

7.(新课标)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=?,

2AB AD =,PD ⊥底面ABCD .

(I )证明:PA BD ⊥;

(2013年湖南文)如图所示,在直棱柱111C B A ABC -中,?=∠90BAC ,2=

=AC AB ,

31=AA ,D 是BC 的中点,点E 在棱1BB 上运动.

⑴证明:E C AD 1⊥;

⑵当异面直线AC 、E C 1所成的角为?60时,求三棱锥E B A C 111-的体积.

.

(2012年湖南 文) 如图6,在四棱锥P-ABCD 中,PA ⊥平面ABCD ,底面ABCD 是等腰梯形,AD ∥BC ,AC ⊥BD. (Ⅰ)证明:BD ⊥PC ;

(Ⅱ)若AD=4,BC=2,直线PD 与平面PAC 所成的角为30°,求四棱锥P-ABCD 的体积.

【解析】(Ⅰ)因为,,.PA ABCD BD ABCD PA BD ⊥?⊥平面平面所以 又,,AC BD PA AC ⊥是平面PAC 内的两条相较直线,所以BD ⊥平面PAC , 而PC ?平面PAC ,所以BD PC ⊥.

(Ⅱ)设AC 和BD 相交于点O ,连接PO ,由(Ⅰ)知,BD ⊥平面PAC , 所以DPO ∠是直线PD 和平面PAC 所成的角,从而DPO ∠30=. 由BD ⊥平面PAC ,PO ?平面PAC ,知BD PO ⊥. 在Rt POD 中,由DPO ∠30=,得PD=2OD. 因为四边形ABCD 为等腰梯形,AC BD ⊥,所以,AOD BOC 均为等腰直角三角形,

从而梯形ABCD 的高为

111

(42)3,222

AD BC +=?+=于是梯形ABCD 面积 1

(42)39.2

S =?+?=

在等腰三角形AOD中,2

OD AD =

=

所以2 4.PD OD PA ===

=

故四棱锥P ABCD -的体积为11

941233

V S PA =

??=??=.

【点评】本题考查空间直线垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明BD ⊥平面PAC 即可,第二问由(Ⅰ)知,BD ⊥平面PAC ,所以DPO ∠是直线PD 和平面PAC 所成的角,然后算出梯形的面积和棱锥的高,由1

3

V S PA =??算得体积.

(湖南卷)如图3,在圆锥PO

中,已知PO O =的直径

2,,AB C AB D AC =∠点在上,且CAB=30为的中点.

(I )证明:;AC POD ⊥平面

(II )求直线和平面PAC 所成角的正弦值.

11.(2008湖南文) 如图所示,四棱锥P ABCD -的底面ABCD 是边长为1的菱形,

60=∠BCD ,

E 是CD 的中点,PA ⊥底面ABCD ,3=PA 。

(I )证明:平面PBE ⊥平面PAB ; (II )求二面角A —BE —P 和的大小。

P

A B

C

E

D

11.解:解法一

(I )如图所示, 连结,BD 由ABCD 是菱形且060=∠BCD 知,

BCD △是等边三角形. 因为E 是CD 的中点,

所以,BE CD ⊥又,AB CD //所以,BE AB ⊥ 又因为PA ⊥平面ABCD ,BE ?平面ABCD , 所以,BE PA ⊥而,AB A =PA

因此 BE ⊥平面PAB.

又BE ?平面PBE ,所以平面PBE ⊥平面PAB. (II )由(I )知,BE ⊥平面PAB, PB ?平面PAB,

所以.PB BE ⊥

又,BE AB ⊥所以PBA ∠是二面角A BE P --的平面角.

在Rt PAB △中,

tan 60.PA

PBA PBA AB

∠=

=∠=. 故二面角A BE P --的大小为60.

解法二:如图所示,以A 为原点,建立空间直角坐标系.则相关各点的坐标分别是

(000),A ,,(100),B ,,3(0),22C ,1(0),22D ,

(00P (10).2

E , (I

)因为0),BE =平面PAB 的一个法向量是0(010),n =,,所以BE 和0n 共线. 从而BE ⊥平面PAB. 又因为BE ?平面PBE ,所以平面PBE ⊥平面PAB. (II )易知3

(10,3),(0,

0),PB BE =-=,设1n 111()x y z =,,是平面PBE 的一个法向量, 则由1

100n PB n BE ??=?

??=?

?,得111111000002

x y x y z ?+?=???+

+?=??,

所以111.y

x ==0,

故可取1n =,而平面ABE 的 一个法向量是2(001).n =,, 于是,1212121

cos ,.2

||||n n n n n n ?<>=

=.

故二面角A BE P --的大小为60.

2011年高考立体几何文科答案汇编

(江苏卷)

(安徽卷) (19)(本小题满分13分)本题考查空间直线与直线,直线与平面,平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.

(I )证明:设G 是线段DA 与EB 延长线的交点. 由于△OAB 与△ODE 都是正三角形,所以 OB ∥DE 2

1

,OG=OD=2,

同理,设G '是线段DA 与FC 延长线的交点,有.2=='OD G O 又由于G 和G '都在线段DA 的延长线上,所以G 与G '重合.

在△GED 和△GFD 中,由OB ∥DE 21

和OC ∥DF 2

1,可知B 和C 分别是GE 和GF

的中点,所以BC 是△GEF 的中位线,故BC ∥EF. (II )解:由OB=1,OE=2,2

3

,60=?=∠EOB S EOB 知,而△OED 是边长为2的正三角形,故.3=O ED S

所以.2

3

3=

+=OED EOB OEFD S S S

= = = =

过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥

F —OBED 的高,且FQ=3,所以.2

331=?=

-OBED OBED F S FQ V (北京卷)

(17)(共14分) 证明:(Ⅰ)因为D ,E 分别为AP ,AC 的中点,

所以DE//PC 。

又因为DE ?平面BCP ,

所以DE//平面BCP 。

(Ⅱ)因为D ,E ,F ,G 分别为 AP ,AC ,BC ,PB 的中点,

所以DE//PC//FG ,DG//AB//EF 。 所以四边形DEFG 为平行四边形, 又因为PC ⊥AB , 所以DE ⊥DG ,

所以四边形DEFG 为矩形。

(Ⅲ)存在点Q 满足条件,理由如下: 连接DF ,EG ,设Q 为EG 的中点

由(Ⅱ)知,DF∩EG=Q ,且QD=QE=QF=QG=

2

1

EG. 分别取PC ,AB 的中点M ,N ,连接ME ,EN ,NG ,MG ,MN 。

与(Ⅱ)同理,可证四边形MENG 为矩形,其对角线点为EG 的中点Q , 且QM=QN=

2

1

EG , 所以Q 为满足条件的点. (福建卷)

20.本小题主要考查直线与直线、直线与平面的位置关系,几何体的体积等基础知识;考查

空间想象能力,推理论证能力,运算求解能力;考查数形结合思想,化归与转化思想,满分12分

(I )证明:因为PA ⊥平面ABCD ,CE ?平面ABCD ,

所以.PA CE ⊥

因为,//,.AB AD CE AB CE AD ⊥⊥所以 又,PA

AD A =

所以CE ⊥平面PAD 。

(II )由(I )可知CE AD ⊥,

在Rt ECD ?中,DE=CD cos 451,sin 451,CE CD ??==??= 又因为1,//AB CE AB CE ==, 所以四边形ABCE 为矩形,

所以1151211.222

ECD ADCE ABCD S S S AB AE CE DE ?=+=?+

?=?+??=矩形四边形

又PA ⊥平面ABCD ,PA=1, 所以11551.3326

P ABCD ABCD V S PA -=

?=??=四边形四边形

(湖南卷) 19.(本题满分12分)

解析:(I )因为,OA OC D AC =⊥是的中点,所以AC OD. 又,,.

PO O AC O AC OD ⊥?⊥底面

底面所以PO 是平面POD 内的两条相交直

线,所以;AC POD ⊥平面

(II )由(I )知,,AC POD ⊥平面又

,AC PAC ?平面所以平面,POD PAC ⊥平面在

平面POD 中,过O 作OH

PD ⊥于H,则

,OH PAC ⊥平面连结CH ,则CH 是

OC PAC

在平面上的射影,所以OCH ∠是直线

OC

和平面PAC 所成的角.

1

,3Rt POD OH =

=

=中

在,sin OH Rt OHC OCH OC

∠==中 (江西卷)

解:(1)设x PA =,则2(31312

x

x x S PA V PDCB PBCD

A -=?='底面- 令)0(,632)22(31)(3

2>-=-=x x x x x x f

则2

32)(2

x x f -='

由上表易知:当3

3

2=

=x PA 时,有PBCD A V -'取最大值。 证明:

(2)作B A '得中点F ,连接EF 、FP

由已知得:FP ED PD BC EF ////2

1

//

? PB A '?为等腰直角三角形,PF B A ⊥' 所以DE B A ⊥'.

(辽宁卷) 18.解:(I )由条件知PDAQ 为直角梯形

因为QA ⊥平面ABCD ,所以平面PDAQ ⊥平面ABCD ,交线为AD.

又四边形ABCD 为正方形,DC ⊥AD ,所以DC ⊥平面PDAQ ,可得PQ ⊥DC.

在直角梯形PDAQ 中可得PD ,则PQ ⊥QD 所以PQ ⊥平面DCQ. ………………6分 (II )设AB=a .

由题设知AQ 为棱锥Q —ABCD 的高,所以棱锥Q —ABCD 的体积311.3

V a =

由(I )知PQ 为棱锥P —DCQ 的高,而,△DCQ 的面积为2

22

, 所以棱锥P —DCQ 的体积为321.3

V a =

故棱锥Q —ABCD 的体积与棱锥P —DCQ 的体积的比值为1.…………12分 (山东卷) 19.(I )证法一:

因为1D D ⊥平面ABCD ,且BD ?平面ABCD ,

所以1D D BD ⊥,

又因为AB=2AD ,60BAD ∠=?,

在ABD ?中,由余弦定理得

22222cos603BD AD AB AD AB AD =+-??=,

所以2

2

2

AD BD AB +=, 因此AD BD ⊥, 又1,AD

D D D =

所以11.BD ADD A ⊥平面 又1AA ?平面ADD 1A 1, 故1.AA BD ⊥ 证法二:

因为1D D ⊥平面ABCD ,且BD ?平面ABCD , 所以1.BD D D ⊥

取AB 的中点G ,连接DG ,

在ABD ?中,由AB=2AD 得AG=AD ,

又60BAD ∠=?,所以ADG ?为等边三角形。 因此GD=GB ,

故DBG GDB ∠=∠, 又60AGD ∠=?

1,

D D ∠?∠∠∠???⊥=所以GDB=30,

故ADB=ADG+GDB=60+30=90,所以BD AD.又AD D

所以BD ⊥平面ADD 1A 1, 又1AA ?平面ADD 1A 1, 故1.AA BD ⊥

(II )连接AC ,A 1C 1,

设AC BD E =,连接EA 1

因为四边形ABCD 为平行四边形, 所以1

.2

EC AC =

由棱台定义及AB=2AD=2A 1B 1知 A 1C 1//EC 且A 1C 1=EC ,

所以边四形A 1ECC 1为平行四边形, 因此CC 1//EA 1,

又因为EA 1?平面A 1BD ,1CC ?平面A 1BD , 所以CC 1//平面A 1BD 。 (陕西卷)

16.解(Ⅰ)∵折起前AD是BC边上的高,

∴ 当Δ ABD折起后,AD ⊥DC,AD ⊥DB, 又DB ?DC=D, ∴AD⊥平面BDC,

∵AD 平面平面ABD .

BDC.ABD ∴⊥平面平面

(Ⅱ)由(Ⅰ)知,DA DB ⊥,DB DC ⊥,DC DA ⊥, DB=DA=DC=1,

从而1111,22

DAM

DBC

DCA

S

S

S

=

==

??

= 1sin

6022

ABC

S

=

?=

表面积:132S =?+=

(上海卷)

20、解:⑴ 连1111,,,BD AB B D AD ,∵ 1111

//,B D B D A B A D =, ∴ 异面直线BD 与1AB 所成角为

11AB D ∠,记11AB D θ∠=,

2221111

111cos 210

AB B D AD AB B D θ

+-=

=

? ∴ 异面直线BD 与1AB 所成角为arccos

10

。 ⑵ 连11,,AC CB CD ,则所求四面体的体积

111111112

42433

ABCD A B C D C B C D V V V --=-?=-?=。

(四川卷)

解法一:

(Ⅰ)连结AB 1与BA 1交于点O ,连结OD ,

∵C 1D ∥平面AA 1,A 1C 1∥AP ,∴AD =PD ,又AO =B 1O , ∴OD ∥PB 1,又OD ?面BDA 1,PB 1?面BDA 1, ∴PB 1∥平面BDA 1.

(Ⅱ)过A 作AE ⊥DA 1于点E ,连结BE .∵BA ⊥CA ,BA ⊥AA 1,且AA 1∩AC =A , ∴BA ⊥平面AA 1C 1C .由三垂线定理可知BE ⊥DA 1. ∴∠BEA 为二面角A -A 1

D -B 的平面角.

在Rt △A 1C 1D 中,1A D =,

D

B

D 1

1

B

又1111122AA D S AE ?=

??=

,∴AE =. 在Rt △BAE

中,BE ,∴2

cos 3

AH AHB BH ∠==.

故二面角A -A 1D -B 的平面角的余弦值为2

3

解法二:

如图,以A 1为原点,A 1B 1,A 1C 1,A 1A 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A 1-B 1C 1A ,则1(0,0,0)A ,1(1,0,0)B ,1(0,1,0)C ,(1,0,1)B ,(0,2,0)P .

(Ⅰ)在△PAA 1中有111

2

C D AA =,即1(0,1,)2D .

∴1(1,0,1)A B =,1(0,1,)A D x =,1(1,2,0)B P =-. 设平面BA 1D 的一个法向量为1(,,)a b c =n ,

则1111

0,

1

0.2

A B a c A D b c ??=+=?

??=+=??n n 令1c =-,则11(1,,1)2=-n . ∵111

1(1)2(1)002

B P ?=?-+?+-?=n ,

∴PB 1∥平面BA 1D ,

(Ⅱ)由(Ⅰ)知,平面BA 1D 的一个法向量11

(1,,1)2

=-n .

又2(1,0,0)=n 为平面AA 1D 的一个法向量.∴12121212

cos ,3||||3

12

?<>===??n n n n n n .

故二面角A -A 1D -B 的平面角的余弦值为2

3

(天津卷)

(17)本小题主要考查直线与平面平行、直线与平面垂直、直线与平面所成的角等基础知

识,考查空间想象能力、运算能力和推理论证能力。满分13分。

(Ⅰ)证明:连接BD ,MO ,在平行四边形ABCD 中,因为O 为AC 的中点,所以O

为BD 的中点,又M 为PD 的中点,所以PB//MO 。因为PB ?平面ACM ,MO ?平面ACM ,所以PB//平面ACM 。

(Ⅱ)证明:因为45ADC ∠=?,且AD=AC=1,所以90DAC ∠=?,即AD AC ⊥,

又PO ⊥平面ABCD ,AD ?平面ABCD ,所以,PO AD AC PO O ⊥?=而,所以

AD ⊥平面PAC 。

(Ⅲ)解:取DO 中点N ,连接MN ,AN ,因为M 为PD 的中点,所以MN//PO ,且

1

1,2

MN PO PO =

=⊥由平面ABCD ,得MN ⊥平面ABCD ,所以MAN ∠是直线AM 与平面ABCD 所成的角,在Rt DAO ?中,11,2AD AO ==

,所以DO =

,从而

12AN DO =

=

在,tan

MN

Rt ANM MAN

AN

?∠===

中,即直线AM与平面ABCD所成角的

(新课标)

(18)解:

(Ⅰ)因为60,2

DAB AB AD

∠=?=,

由余弦定理得BD=

从而BD2+AD2= AB2,故BD⊥AD

又PD⊥底面ABCD,可得BD⊥PD

所以BD⊥平面PAD.故PA⊥BD

(Ⅱ)如图,作DE⊥PB,垂足为E。已知PD⊥底面ABCD,则PD⊥BC。由(Ⅰ)知BD⊥AD,又BC//AD,所以BC⊥BD。

故BC⊥平面PBD,BC⊥DE。

则DE⊥平面PBC。

由题设知,PD=1,则BD=3,PB=2,

根据BE·PB=PD·BD,得DE=

2

3

即棱锥D—PBC的高为.

2

3

立体几何高考真题专项练习2019

立体几何高考真题专项练习2019 1.(2018)如图,在三棱锥P﹣ABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC 的中点. (1)证明:PO⊥平面ABC; (2)若点M在棱BC上,且MC=2MB,求点C到平面POM的距离. 2.(2017)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°. (1)证明:直线BC∥平面PAD; (2)若△PCD面积为2,求四棱锥P﹣ABCD的体积.

3.(2016)如图,菱形ABCD的对角线AC与BD交于点O,点E、F分别在AD,CD上,AE=CF,EF交BD于点H,将△DEF沿EF折到△D′EF的位置. (Ⅰ)证明:AC⊥HD′; (Ⅱ)若AB=5,AC=6,AE=,OD′=2,求五棱锥D′﹣ABCFE体积. 4.(2015)如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F 分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值.

5.(2014)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E 为PD的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离. 6.(2013)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD; (Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积. 7.(2012)如图,三棱柱ABC﹣A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=

全国高考文科数学立体几何综合题型汇总

新课标立体几何常考证明题汇总 1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形 (2) 若 BD=AC=2,EG=2。求异面直线AC 、BD 所成的角和EG 、BD 所成的角。 证明:在ABD ?中,∵,E H 分别是,AB AD 的中点∴1 //,2 EH BD EH BD = 同理,1 //,2 FG BD FG BD =∴//,EH FG EH FG =∴四边形EFGH 是平行四边形。 (2) 90° 30 ° 考点:证平行(利用三角形中位线),异面直线所成的角 2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。 求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。 证明:(1)BC AC CE AB AE BE =??⊥?=? 同理, AD BD DE AB AE BE =? ?⊥?=? 又∵CE DE E ?= ∴AB ⊥平面CDE (2)由(1)有AB ⊥平面CDE 又∵AB ?平面ABC , ∴平面CDE ⊥平面ABC 考点:线面垂直,面面垂直的判定 A H G F E D C B A E D B C

3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。 证明:连接AC 交BD 于O ,连接EO , ∵E 为1AA 的中点,O 为AC 的中点 ∴EO 为三角形1A AC 的中位线 ∴1//EO AC 又EO 在平面BDE 内,1A C 在平面BDE 外 ∴1//A C 平面BDE 。 考点:线面平行的判定 4、已知ABC ?中90ACB ∠=o ,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC . 证明:90ACB ∠=∵° BC AC ∴⊥ 又SA ⊥面ABC SA BC ∴⊥ BC ∴⊥面SAC BC AD ∴⊥ 又,SC AD SC BC C ⊥?=AD ∴⊥面SBC 考点:线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1 AC ⊥面11AB D . 证明:(1)连结11A C ,设 11111 A C B D O ?=,连结1AO ∵ 1111ABCD A B C D -是正方体 11A ACC ∴是平行四边形 ∴A 1C 1∥AC 且 11A C AC = 又1,O O 分别是11,A C AC 的中点,∴O 1C 1∥AO 且11O C AO = 11AOC O ∴是平行四边形 111,C O AO AO ∴? ∥面11AB D ,1C O ?面11AB D ∴C 1O ∥面11AB D (2)1CC ⊥Q 面1111A B C D 11!CC B D ∴⊥ 又 1111 A C B D ⊥∵, 1111B D A C C ∴⊥面 1 11AC B D ⊥即 同理可证 11 A C AD ⊥, 又 1111 D B AD D ?= ∴1A C ⊥面11AB D 考点:线面平行的判定(利用平行四边形),线面垂直的判定 A E D 1 C B 1 D C B A S D C B A D 1O D B A C 1 B 1 A 1 C

立体几何高考真题大题

立体几何高考真题大题 1.(2016 高考新课标 1 卷)如图 , 在以 A,B,C,D,E,F为顶点的五面体中, 面 ABEF为正方形 ,AF=2FD,AFD 90 ,且二面角D-AF-E与二面角C-BE-F都是 60 . D C F (Ⅰ)证明:平面ABEF平面EFDC; (Ⅱ)求二面角E-BC-A 的余弦值. 【答案】(Ⅰ)见解析;(Ⅱ) 2 19 19 【解析】 试题分析:(Ⅰ)先证明 F平面FDC ,结合F平面 F ,可得平面F 平面 FDC .(Ⅱ)建立空间坐标系, 分别求出平面C的法向量 m 及平面 C 的法 向量 n ,再利用 cos n, m n m 求二面角.n m 试题解析:(Ⅰ)由已知可得F DF, F F, 所以F平面 FDC . 又F平面F,故平面 F 平面FDC . (Ⅱ)过 D 作DG F ,垂足为 G ,由(Ⅰ)知 DG平面 F . 以 G 为坐标原点,GF 的方向为 x 轴正方向, GF 为单位长度, 建立如图所示的空间直角坐标系 G xyz . 由(Ⅰ)知DF为二面角D F的平面角,故DF60,则DF 2, DG3,可得1,4,0 ,3,4,0,3,0,0, D0,0, 3 . 由已知 ,// F,所以//平面FDC . 又平面CD平面FDC DC,故//CD , CD// F . 由//F,可得平面FDC ,所以 C F为二面角 C F 的平面角, C F60 .从而可得C2,0,3.

设 n x, y, z 是平面C的法向量,则 n C 0, 即x 3z 0, n0 4 y0 所以可取 n3,0, 3 . 设 m 是平面 m C0 CD 的法向量,则, m0 同理可取 m0, 3, 4 .则 cos n, m n m 2 19. n m19 故二面角C 219的余弦值为. 19 考点:垂直问题的证明及空间向量的应用 【名师点睛】立体几何解答题第一问通常考查线面位置关系的证明, 空间中线面位置关 系的证明主要包括线线、线面、面面三者的平行与垂直关系, 其中推理论证的关键是结 合空间想象能力进行推理, 要防止步骤不完整或考虑不全致推理片面, 该类题目难度不 大 , 以中档题为主.第二问一般考查角度问题, 多用空间向量解决. 2 .( 2016 高考新课标 2 理数)如图,菱形ABCD 的对角线AC 与BD交于点 O , AB 5,AC 6,点 E, F 分别在 AD,CD 上, AE CF 5 ,EF交BD于点H.将4 DEF 沿 EF 折到 D EF 位置,OD10. (Ⅰ)证明: D H平面 ABCD ; (Ⅱ)求二面角 B D A C 的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)295 .25

立体几何(高考真题)专题

立体几何(高考真题+模拟新题)专题训练 1、[2011·四川卷]l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3 B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3 C .l 1∥l 2∥l 3?l 1,l 2,l 3共面 D .l 1,l 2,l 3共点?l 1,l 2,l 3共面 2、[2011·南京质检]平面α∥平面β的一个充分条件是( ) A .存在一条直线a ,a ∥α,a ∥β B .存在一条直线a ,a ?α,a ∥β C .存在两条平行直线a 、b ,a ?α,b ?β,a ∥β,b ∥α D .存在两条异面直线a 、b ,a ?α,b ?β,a ∥β,b ∥α 3、[2011·北京崇文一模] 已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的为 ( ) A .若α⊥γ,β⊥γ,则α∥β B .若m ∥α,m ∥β,则α∥β C .若m ∥α,n ∥α,则m ∥n D .若m ⊥α,n ⊥α,则m ∥n 4、[2011·宁波二模]已知a ,β表示两个互相垂直的平面,a ,b 表示一对异面直线,则a ⊥b 的一个充分条件是( ) A .a ∥α,b ⊥β B .a ∥α,b ∥β C .a ⊥α,b ∥β D .a ⊥α,b ⊥β 5、[2011·泸州二诊] 如图K40-4,在正三棱柱ABC -A 1B 1C 1中,AB =1.若二面角C -AB -C 1的大小为60°,则点C 到平面C 1AB 的距离为( ) A.34 B.12 C.3 2 D .1 6、[2011·大连一模]已知三棱锥底面是边长为1的等边三角形,侧棱长均为2,则侧棱与底面所成角的余弦值为( ) A.32 B.12 C.33 D.36 7、 [2011·深圳调研] 在三棱柱ABC -A 1B 1C 1中,各棱长相等,侧棱垂直于底面,点D 是侧面BB 1C 1C 的中心,则AD 与平面BB 1C 1C 所成角的大小是( ) A .30° B .45° C .60° D .90° 8、 [2011·沈阳模拟] 设A ,B ,C ,D 是空间不共面的四个点,且满足AB →·AC →=0,AD →·AC → =0,AD →·AB →=0,则△BCD 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定 9、大纲理数11.G8[2011·全国卷]已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 10、大纲文数12.G8[2011·全国卷] 已知平面α截一球面得圆M ,过圆心M 且与α成60°二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为( ) A .7π B .9π C .11π D .13π 11、课标文数7.G8[2011·湖北卷] 设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是( ) A .V 1比V 2大约多一半 B .V 1比V 2大约多两倍半 C .V 1比V 2大约多一倍 D .V 1比V 2大约多一倍半 12、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 12、[2011·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( ) A .2 B. 3 C. 2 D .1 13、课标理数4.G5[2011·浙江卷] 下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β B .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β C .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥平面γ D .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 14、大纲理数6.G5、G11[2011·全国卷]已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( ) A.23 B.33 C.6 3 D .1 15、大纲理数9.G11[2011·重庆卷] 高为2 4 的四棱锥S -ABCD 的底面是边长为1的正方形,点 S 、A 、B 、C 、D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为( ) A.24 B.2 2C .1 D. 2 16、大纲理数16.G11[2011·全国卷]已知点E 、F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1、CC 1 上,且B 1E =2EB ,CF =2FC 1,则面AEF 与面ABC 所成的二面角的正切值等于________. 17、课标理数12.G8[2011·辽宁卷] 已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S -ABC 的体积为( ) A .3 3 B .2 3 C. 3 D .1 18、课标理数15.G8[2011·课标全国卷] 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =6,B C =23,则棱锥O -ABC D 的体积为________. 18、大纲文数15.G8[2011·四川卷] 如图1-3,半径为4的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是________. 4 19、[2011·北京卷] 如图,在四面体P ABC 中,PC ⊥AB ,P A ⊥BC ,点D ,E ,F ,G 别是棱AP ,AC ,BC ,PB 的中点. (1)求证:DE ∥平面BCP ; (2)求证:四边形DEFG 为矩形; (3)是否存在点Q ,到四面体P ABC 六条棱的中点的距离相等?说明理由. 20、[2011·北京卷] 如图1-6,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.

立体几何高考题(文科)

4.(10安徽)如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,E F∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点, (Ⅰ)求证:F H∥平面EDB;(Ⅱ)求证:A C⊥平面EDB;(Ⅲ)求V B—DEF 5.(10江苏本小题满分14分)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=900。 (1)求证:PC⊥BC; (2)求点A到平面PBC的距离。 7.如图,四棱锥P-ABCD中,P A⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。 (1)求证:CE⊥平面PAD; (11)若P A=AB=1,AD=3,CD=2,∠CDA=45°,求四棱锥P-ABCD的体积

8.(11安徽19)(本小题满分13分)如图,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,1OA =,2OD =,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形。 (Ⅰ)证明直线BC EF ∥;(Ⅱ)求棱锥F OBED -的体积. 9.(11重庆20)(本小题满分12分,(Ⅰ)小问6分,(Ⅱ)小问6分) 如题(20)图,在四面体ABCD 中,平面ABC ⊥平面ACD ,,2,1AB BC AC AD BC CD ⊥==== (Ⅰ)求四面体ABCD 的体积(Ⅱ)求二面角C-AB-D 的平面角的正切值。 10.(11新课标18)(本小题满分12分) 如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=?,2AB AD =,PD ⊥底面ABCD . (I )证明:PA BD ⊥; (II )设PD=AD=1,求棱锥D-PBC 的高.

(完整版)2019年高考试题汇编文科数学--立体几何

(2019全国1文)16.已知90ACB ∠=?,P 为平面ABC 外一点,2PC =,点P 到ACB ∠两边,AC BC 的距离均为3,那么P 到平面ABC 的距离为 . 答案: 2 解答: 如图,过P 点做平面ABC 的垂线段,垂足为O ,则PO 的长度即为所求,再做,PE CB PF CA ⊥⊥,由线面的垂直判定及性质定理可得出,OE CB OF CA ⊥⊥,在Rt PCF ?中,由2,3PC PF ==,可得出1CF =,同理在Rt PCE ?中可得出1CE =,结合90ACB ∠=?,,OE CB OF CA ⊥⊥可得出1OE OF ==,2OC =,222PO PC OC =-= (2019全国1文)19.如图直四棱柱1111ABCD A B C D -的底面是菱形,14,2AA AB ==,60BAD ∠=o , ,,E M N 分别是11,,BC BB A D 的中点. (1)证明://MN 平面1C DE (2)求点C 到平面1C DE 的距离. 答案: 见解析 解答: (1)连结1111,AC B D 相交于点G ,再过点M 作1//MH C E 交11B C 于点H ,再连结GH ,NG . Q ,,E M N 分别是11,,BC BB A D 的中点. 于是可得到1//NG C D ,//GH DE , 于是得到平面//NGHM 平面1C DE , 由MN ?Q 平面NGHM ,于是得到//MN 平面1C DE

(2)E Q 为BC 中点,ABCD 为菱形且60BAD ∠=o DE BC ∴⊥,又1111ABCD A B C D -Q 为直四棱柱,1DE CC ∴⊥ 1DE C E ∴⊥,又12,4AB AA ==Q , 1DE C E ∴=,设点C 到平面1C DE 的距离为h 由11C C DE C DCE V V --=得 1111 143232 h ?=?? 解得h = 所以点C 到平面1C DE (2019全国2文)7. 设,αβ为两个平面,则//αβ的充要条件是( ) A. α内有无数条直线与β平行 B. α内有两条相交直线与β平行 C. ,αβ平行于同一条直线 D. ,αβ垂直于同一平面 答案:B 解析: 根据面面平行的判定定理易得答案. (2019全国2文)16.中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分.)

高考立体几何文科大题及标准答案

高考立体几何大题及答案 1.(2009全国卷Ⅰ文)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD , 2AD =,2DC SD ==,点M 在侧棱SC 上,o ∠ABM=60。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.(2009全国卷Ⅱ文)如图,直三棱柱ABC-A 1B 1C 1中,AB ⊥AC,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BD-C 为60°,求B 1C 与平面BCD 所成的角的大小 3.(2009浙江卷文)如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====, 120ACB ∠=o ,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ;(II )求AD 与平 面ABE 所成角的正弦值. A C B A 1 B 1 C 1 D E

4.(2009北京卷文)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB = 且E 为PB 的中点时,求 AE 与平面PDB 所成的角的大小. 5.(2009江苏卷)如图,在直三棱柱111ABC A B C -中,E 、F 分别是1A B 、1A C 的中点,点D 在11B C 上,11A D B C ⊥。 求证:(1)EF ∥平面ABC ;(2)平面1A FD ⊥平面11BB C C .

6.(2009安徽卷文)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC , 和是平面ABCD 内的两点,和都与平面ABCD 垂直,(Ⅰ)证明:直线垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多 面体ABCDEF 的体积。 7.(2009江西卷文)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球 面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 8.(2009四川卷文)如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 O A P B M D

高考立体几何大题及答案理

1.如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面 ABCD ,2AD =,2DC SD ==,点M 在侧棱SC 上, ∠ABM=60 。 (I )证明:M 是侧棱SC 的中点; ()II 求二面角S AM B --的大小。 2.如图,直三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,D 、E 分别为AA 1、B 1C 的中点,DE ⊥平面BCC 1(Ⅰ)证明:AB =AC (Ⅱ)设二面角A -BD -C 为60°,求B 1C 与平面BCD 所成的角的大小 3.如图,DC ⊥平面ABC ,//EB DC ,22AC BC EB DC ====,120ACB ∠=,,P Q 分别为,AE AB 的中点.(I )证明://PQ 平面ACD ; (II )求 AD 与平面ABE 所成角的正弦值. 4.如图,四棱锥P ABCD -的底面是正方形, PD ABCD ⊥底面,点E 在棱PB 上.(Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当2PD AB =且E 为PB 的中 点 时,求AE 与平面PDB 所成的角的大小. 5.如图,在四棱锥P ABCD -中,底面ABCD 是矩形, PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . B C D E O A P B M

(1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离. 6.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠=(I )求证:EF BCE ⊥平面; (II )设线段CD 、AE 的中点分别为P 、M ,求证: PM ∥BCE 平面 (III )求二面角F BD A --的大小。 7.如图,四棱锥S -ABCD 的底面是正方形,SD ⊥平面ABCD ,SD =AD =a ,点E 是SD 上的点,且DE =λa (0<λ≦1). (Ⅰ)求证:对任意的λ∈(0、1), 都有AC ⊥BE : (Ⅱ)若二面角C -AE -D 的大小为600C ,求λ的值。 8.如图3,在正三棱柱111ABC A B C -中,AB =4, 17AA =,点D 是BC 的中点,点E 在AC 上,且DE ⊥1A E .(Ⅰ)证明:平面1A DE ⊥平面 11ACC A ;(Ⅱ)求直线AD 和平面1A DE 所成角的正弦值。 9.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,,,45AB AE FA FE AEF ?==∠= (I )求证:EF BCE ⊥平面;

山东高考文科数学立体几何大题及答案汇编

2008年-2014年山东高考文科数学立体几何大题及答案 (08年)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB DC ∥,PAD △是等边三角形,已知28BD AD ==,245AB DC == (Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面PAD ; (Ⅱ)求四棱锥P ABCD -的体积. (09年)如图,在直四棱柱ABCD-A 1B 1C 1D 1中,底面ABCD 为等腰梯形,AB 11111 (10年)(本小题满分12分) 在如图所示的几何体中,四边形ABCD 是正方形,MA ⊥平面ABCD ,//PD MA ,E 、G 、F 分别为MB 、PB 、PC 的中点,且2AD PD MA ==. (I )求证:平面EFG ⊥平面PDC ; (II )求三棱锥P MAB -与四棱锥P ABCD -的体积之比. (11年)(本小题满分12分) 如图,在四棱台 1111 ABCD A B C D -中, 1D D ABCD ⊥平面,底面 ABCD 是平行四边形, 112,,60AB AD AD A B BAD ==∠= (Ⅰ)证明:1AA BD ⊥; (Ⅱ)证明:11//CC A BD 平面. A B C M P D E A B C F E1 A1 B1 C1 D1 D D B1 D1 C1 C B A A1

(12年) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点, 求证:DM ∥平面BEC . (13年)(本小题满分12分) 如图,四棱锥P —ABCD 中,AB ⊥AC , AB ⊥PA ,AB ∥CD ,AB=2CD ,E ,F ,G , M ,N 分别为PB ,AB ,BC ,PD ,PC 的中点。 (Ⅰ)求证,CE ∥平面PAD; (Ⅱ)求证,平面EFG ⊥平面EMN 。 (14年)(本小题满分12分) 如图,四棱锥P ABCD -中,,//,BC AD PCD AP 平面⊥AD BC AB 2 1 = =,F E ,分别为线段PC AD ,的中点。 (Ⅰ)求证:BEF AP 平面// (Ⅱ)求证:PAC BE 平面⊥ P A C D E

2018年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 ?选择题(共9小题) 1 ?如图,在下列四个正方体中,A, B为正方体的两个顶点,M , N, Q为所在 棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 2. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, 则该圆柱的体积为() A. n B. C. D. 3. 在正方体ABCD- A i B i CD i中,E为棱CD的中点,贝U( ) A. A i E± DC i B. A i E丄BD C A i E丄BG D. A i E丄AC 4. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A. 60 B. 30 C. 20 D . i0 侧〔左)视圄 C

5?某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 2) 是( ) 6?如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为 AB 、BC CA 上的点,AP=PB ==2,分别记二面角 D- PR- Q , D- PQ- R, D - A .产 aV B B. aV 产 B C ? a< Y D. p< 产 a 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A . 90 n B. 63 n C. 42 n D . 36 n 1 .某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 D . +3 +1

4 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为( ) A . 10 B. 12 C. 14 D . 16 2. 已知直三棱柱 ABC- A 1B 1C 1中,/ ABC=120, AB=2, BC=CC=1,则异面直线 AB 1与BG 所成角的余弦值为( ) A . B. C. D. 二.填空题(共5小题) 8. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,SC 是球0的直径.若平 面SCAL 平面SCB SA=AC SB=BC 三棱锥S-ABC 的体积为9,则球0的表面 积为 _______ . 9. 长方体的长、宽、高分别为3, 2,1,其顶点都在球0的球面上,则球0的 表面积为 _______ . 10. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18, 则这个球的体积为 ________ . 11. 由一个长方体和两个亍圆柱体构成的几何体的三视图如图,则该几何体的

立体几何高考真题大题

立体几何咼考真题大题 1. (2016高考新课标1 卷)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方 形,AF=2FD, NAFD =90:且二面角 D-AF-E 与二面角 C-BE-F 都是 60: (I )证明:平面 ABEF 丄平面EFDC (n )求二面角 E-BC-A 的余弦值. 【答案】(I )见解析;(n ) -2蜃 19 【解析】 试题分析:(I )先证明AF 丄平面E FDC ,结合直F U 平面AB E F ,可得平面ABE F 丄 平面E FDC . (n )建立空间坐标系,分别求出平面E C E 的法向量m 及平面E C E 的法 试题解析:(I )由已知可得 A F 丄DF, A F 丄F E|,所以A F 丄平面E FDC . 又A F U 平面 AE E F ,故平面AEE F 丄平面|E F D C . _ (n )过D 作DG 丄E F ,垂足为G ,由(I )知DG 丄平面[A E 百F . 以G 为坐标原点,GF 的方向为x 轴正方向,GF 为单位长度,建立如图所示的空间直 角坐标系G —xyz . 由(I )知N DF E 为二面角D -A F -E 的平面角,故N DF E =60:贝U DF = 2 , DG|=3,可得九(1,4,0 ), B(—3,4,0 ), E(—3,0,0 ), D (0,0, 73 ). 由已知,AE //E F ,所以AE //平面E FDC . 又平面 A ECD n 平面 |E FDC = DC ,故〕AB //CD , CD//EF . 由EE //A F ,可得EE 丄平面I E F DC ,所以N C E F |为二面角C —EE —F 的平面角, 向量n ,再利用cos (n,m ) 求二面角. n ||m |

高考文科数学立体几何试题汇编

图 2 俯视图 侧视图 正视图1.(北京8)如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点, 则 P 到各顶点的距离的不同取值有( ) A .3个 B .4个 C .5个 D .6个 2.(广东卷6)某三棱锥的三视图如图所示,则该三棱锥的体积是( ) A .1 6 B .1 3 C .2 3 D .1 3. (广东卷8)设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβ B .若l α⊥,l β⊥,则//αβ C .若l α⊥,//l β,则//αβ D .若αβ⊥,//l α,则l β⊥ 4. (湖南卷7)已知正方体的棱长为1,其俯视图是一个面积为1 的矩形,则该正方体的正视图的面积等于 A . B.1 C. 1 2 5. 江西卷8).一几何体的三视图如右所示,则该几何体的体积为( ) A.200+9π B. 200+18π C. 140+9π D. 140+18π 6. (辽宁卷10)已知三棱柱 1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,, ,AB AC ⊥112AA O =,则球的半径为 A . 2 B . C .13 2 D .B .. (全国卷11)已知正四棱柱1111112,ABCD A B C D AA AB CD BDC -=中,则与平面所成角的正弦值等于 ( A ) 23 (B (C (D )1 3 8. (四川卷2)一个几何体的三视图如图所示,则该几何体可以是( )

(A )棱柱 (B )棱台 (C )圆柱 (D )圆台 9. (全国新课标9)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1), (0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( ) (A) (B) (C) (D) 10.(浙江卷4)设m 、n 是两条不同的直线,α、β是两个不同的平面, A 、若m ∥α,n ∥α,则m ∥n B 、若m ∥α,m ∥β,则α∥β C 、若m ∥n ,m ⊥α,则n ⊥α D 、若m ∥α,α⊥β,则m ⊥β 11.(浙江卷5)已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是 A 、108cm 3 B 、100 cm 3 C 、92cm 3 D 、84cm 3 12. (重庆卷8)某几何体的三视图如题(8)所示,则该几何体的表面积为( ) (A )180 (B )200 (C )220 (D )240 13. (辽宁卷13)某几何体的三视图如图所示,则该几何体的体积是 . 14.(安徽15)如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q 为线段1CC 上的动点,过点,,A P Q 的平面截该正方体所得的截面记为S ,则下列命题正确的 是 (写出所有正确命题的编号)。 ①当1 02 CQ << 时,S 为四边形

2015-2017近三年高考理科立体几何高考题汇编

2015-2017高考立体几何题汇编 2017(三)16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最小值为60°; 其中正确的是________。(填写所有正确结论的编号) 2017(三)19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ; (2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D –AE –C 的余弦值. 2017(二)4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A .90π B .63π C .42π D .36π 2017(二)10.已知直三棱柱111ABC A B C -中,120ABC ∠=?,2AB =, 11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为 A . 32 B . 155 C . 105 D . 33 2017(二)19.(12分)如图,四棱锥P -ABCD 中,侧面PAD 为等边三角形且 垂直于底 面ABCD ,o 1 ,90,2 AB BC AD BAD ABC == ∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值. 2017(一)7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为

2017年高考立体几何大题(文科)

2017年高考立体几何大题(文科)1、(2017新课标I文数)(12分) 如图,在四棱锥P-ABC[中,AB//CD,且BAP CDP 90° (1)证明:平面PABL平面PAD 8 (2)若PA=PD=AB=DC APD 90°,且四棱锥P-ABCD勺体积为-,求该四棱锥的侧面 3 积?

如图,四棱锥P ABCD中,侧面PAD为等边三角形且垂直于底面ABCD , 1 AB BC AD, BAD ABC 90 . 2 (1)证明:直线BC//平面PAD ; (2)若厶PCD的面积为2.1,求四棱锥P ABCD的体积.

(1) 证明:ACL BD ; (2) 已知△ ACD 是直角三角形,AB=BD 若E 为棱BD 上与D 不重合的点, 求四面体 ABCBf 四面体 ACDE 勺体积比. 如图,四面体ABCD K AEL EC,

4、(2017北京文)(本小题14分) 如图,在三棱锥P- ABC中, PAI AB PA! BC AB! BC PAAB=BG=2, D 为线段AC的中点,E 为线段PC上一点. (H)求证:平面BD!平面PAC (川)当PA/平面BDE时,求三棱锥E- BCD勺体积.

由四棱柱ABCDA i BQD截去三棱锥C-BQD后得到的几何体如图所示,四边形ABC[为正方形,O为AC与BD的交点,E为AD的中点,A i E 平面ABCD (I)证明:AO //平面BCD; n)设

如图,在三棱锥 A-BCD 中,ABL AD BCL BD 平面 ABDL 平面 BCD 点E , RE 与A , D 求证:(1)EF//平面ABC (2) AD L AC D 不重合)分别在棱AD,

最新高考文科立体几何大题

1.(2013年高考辽宁卷(文))如 图,.AB O PA O C O 是圆的直径,垂直圆所在的平面,是圆上的点 (I)求证:BC PAC ⊥平面; (II)设//.Q PA G AOC QG PBC ?为的中点,为的重心,求证:平面 2.2013年高考陕西卷(文))如图, 四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形, O 为底面中 心, A 1O ⊥平面ABCD , 12AB AA == (Ⅰ) 证明: A 1BD // 平面CD 1B 1; (Ⅱ) 求三棱柱ABD -A 1B 1D 1的体积. O D 1 B 1 C 1 D A C A 1

3.(2013年高考福建卷(文))如图,在四棱锥P ABCD -中,PD ABCD ⊥面,//AB DC ,AB AD ⊥,5BC =,3DC =,4AD =, 60PAD ∠=o .(1)当正视图方向与向量AD u u u r 的方向相同时,画出四棱锥P ABCD -的正视图.(要求标出尺寸,并画出演算过程); (2)若M 为PA 的中点,求证://DM PBC 面; (3)求三棱锥D PBC -的体积. 4. 如图,四棱锥P —ABCD 中,ABCD 为矩形,△PAD 为等腰直角三角形,∠APD=90°,面PAD ⊥面ABCD ,且AB=1,AD=2,E 、F 分别为PC 和BD 的中点. (1)证明:EF ∥面PAD ; (2)证明:面PDC ⊥面PAD ; (3)求四棱锥P —ABCD 的体积.

5.(2013年高考广东卷(文))如图4,在边长为1的等边三角形ABC 中,,D E 分别是,AB AC 边上的点,AD AE =,F 是BC 的中点,AF 与DE 交于点G ,将ABF ?沿AF 折起,得到如图5所示的三棱锥A BCF -,其中2BC =. (1) 证明:DE //平面BCF ; (2) 证明:CF ⊥平面ABF ; (3) 当23 AD =时,求三棱锥F DEG -的体积F DEG V -. 图 4G E F A B C D 图 5D G B F C A E 6.(2013年高考北京卷(文))如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ;(2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD

高考立体几何大题20题汇总

(2012省)(本小题满分12分) 如图,在梯形ABCD 中,AB ∥CD ,E ,F 是线段AB 上的两点,且DE ⊥AB ,CF ⊥AB ,AB=12,AD=5,BC=42,DE=4.现将△ADE ,△CFB 分别沿DE ,CF 折起,使A ,B 两点重合与点G ,得到多面体CDEFG. (1) 求证:平面DEG ⊥平面CFG ; (2)求多面体CDEFG 的体积。 2012,(19) (本小题满分12分) 如图,几何体E ABCD -是四棱锥,△ABD 为正三角形, ,CB CD EC BD =⊥. (Ⅰ)求证:BE DE =; (Ⅱ)若∠120BCD =?,M 为线段AE 的中点,求证:DM ∥平面BEC . 201220.(本题满分15分)如图,在侧棱锥垂直底面 的四棱锥1111ABCD A B C D -中,,AD BC //AD 11,2,2,4,2,AB AB AD BC AA E DD ⊥====是的中点,F 是平面11B C E 与直线1AA 的交点。 (Ⅰ)证明:(i) 11;EF A D //ii ()111;BA B C EF ⊥平面 (Ⅱ)求1BC 与平面11B C EF 所成的角的正弦值。 (2010)18、(本小题满分12分)已知正方体''''ABCD A B C D -中,点M 是棱'AA 的中点,点O 是对角线'BD 的中点, (Ⅰ)求证:OM 为异面直线'AA 与'BD 的公垂线; (Ⅱ)求二面角''M BC B --的大小; (第20题图) F E C 1 B 1 D 1A 1 A D B C

2010文(19)(本小题满分12分) 如图,棱柱111ABC A B C -的侧面11BCC B 是菱形,11B C A B ⊥ (Ⅰ)证明:平面11A B C ⊥平面11A BC ; (Ⅱ)设D 是11A C 上的点,且1//AB 平面1B CD ,求11:A D DC 的值。 2012(18)(本小题满分12分) 如图,直三棱柱/ / / ABC A B C -,90BAC ∠=, 2,AB AC ==AA ′=1,点M ,N 分别为/A B 和//B C 的 中点。 (Ⅰ)证明:MN ∥平面/ / A ACC ; (Ⅱ)求三棱锥/ A MNC -的体积。 (椎体体积公式V= 1 3 Sh,其中S 为地面面积,h 为高) 2012,(16)(本小题共14分) 如图1,在Rt ABC ?中,90C ∠=?,D ,E 分别为 AC ,AB 的中点,点F 为线段CD 上的一点,将ADE ? 沿DE 折起到1A DE ?的位置,使1A F CD ⊥,如图2. D F D E B C A 1 F E C B A

相关主题
文本预览
相关文档 最新文档