当前位置:文档之家› 波色爱因斯坦凝聚态

波色爱因斯坦凝聚态

波色爱因斯坦凝聚态
波色爱因斯坦凝聚态

浅谈玻色爱因斯坦凝聚态(BEC)

玻色爱因斯坦凝聚态(BEC)概念:

1924年印度物理学家玻色预言物质新状态的存在,爱因斯坦看到玻色的想法发表论文预言原子温度足够低时,所有原子会突然以可能的最低能态凝聚——玻色爱因斯坦凝聚。定义:当温度足够低、原子的运动速度足够慢时,会有相变—新的物质状态产生,它们将集聚到能量最低的同一量子态(电子做稳恒的运动,具有完全确定的能量,这种稳恒的运动状态称为量子态)。简单来说表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态),物质的第五种状态。BEC 成为一种特殊的超低温实验平台,用来研究基础原子物理学以及凝聚体的力学,光学,热学,声学和超流体等性质及其物理机制。

玻色爱因斯坦凝聚态(BEC)实现:

原子的激光冷却和陷俘,在三个互相垂直的方向安置三对相对传播的激光束, 则形成所谓的“光学粘团”, 它可以使原子在三维方向上得到冷却。其基本原理是通过原子与光子的动量交换来达到原子冷却的目的,遵循动量守恒定律。激光冷却后的原子由磁场与激光组成的磁光阱囚禁,磁光阱是一种囚禁中性原子的有效手段。它由三对两两相互垂直具有特定偏振组态井且负失谐的对射激光束形成的三维空间驻波场和反向亥姆赫兹线圈产生的梯度磁场构成.磁场的零点与光场的中心重合,负失谐的激光对原子产生阻尼力.梯度磁场与激光的偏振相结合产生了对原子的束缚力.这样就在空间对中性原子构成了一个带阻尼作用的简谐势(粒子在某力场中运动,势能函数曲线在空间的某一有限范围内势能最小,形如陷阱,称为势阱)。在囚禁阱的边缘部分,磁场很强,控制原子磁极的射频场的频率很高,通过逐渐降低频率(微波频率)可以将动能比平均动能大很多的原子排出阱外留下动能较小的原子,从而达到蒸发冷却的目的。

玻色爱因斯坦凝聚态(BEC)性质:

BEC静态性质:大小10-100um,椭球形,其长短轴比为几到几十,转变温度为100nK 至2uK,受势阱影响大,也与阱中原子数和密度有关,原子密度变化大。

刚发生BEC转变时,整个原子团由凝聚态原子与非凝聚态原子混合组成。

BEC动态性质:不稳定,随着时间衰变,具有一定寿命,原子间非弹性碰撞发生衰变,一些原子脱离凝聚体。

铷原子玻色爱因斯坦凝聚态(BEC)激光系统:

在铷原子玻色爱因斯坦凝聚(BEC)实验架构中,该套系统配置如下:

1.锁定在主振激光器上的一号从激光头输出冷却光和再泵浦光通过3路光纤分

光实现3D MOT和光学黏团

2.锁定在主振激光器上的二号从激光头输出冷却光和再泵浦光实现2D MOT 和

探测光

该套光纤激光系统专为铷原子冷却应用打造,采用主从激光器架构。从激光器频率锁定在通过饱和吸收谱稳频的主振荡激光器上,从而将波长精度锁定在铷原子D2线780.23nm上,高精度的电路设计保证了整套系统低噪声以及长达数星期不失锁的绝佳频率锁定特性。整套系统采用高可靠性的全光纤架构,通过独特的保偏分光技术可以支持每个激光头最高六路高质量光束输出。

玻色一爱因斯坦凝聚

第六章 近独立粒子的最概然分布 教学目标:1. 理解玻色分布和费米分布。 2. 理解三种分布之间的关系。 授课方式:理论讲授。 教学重点:1. 分布与微观状态 2. 三种分布之间的关系 教学难点:非简并性条件 教学内容: 玻色分布和费米分布 上节课中已经求出了玻耳兹曼系统的最概然分布,本节将推导玻色系统和费米系统中粒子的最概然分布。现对费米分布推导如下 : 对! !()!l F D l l l l a a ωω?Ω= -∏取对数得:().ln ln !ln !ln !F D l l l l l a a ωωΩ=---???? ∑ 1N ,若假设1l a ,1l ω可得到: ()()[] ∑----=Ωl l l l l l l l l D F a a a a ωωωωln ln ln ln .. 约束条件: l l a N =∑ ; l l l a E ε =∑。 为求在此约束条件下的最大值,使用拉格朗日乘数法,取未定因子为α和β则拉格朗日函数为:.ln ln 0l F D l l L l l a N E a a δαδβδαβεδω??Ω--=- ++= ?-?? ∑ 若令上式为零,则有:ln 0l l l l a a αβεω++=- , 即 1l l l a e αβεω+=+。 上式给出了费米系统粒子的最概然分布,称为费米——狄拉克分布。 玻色分布的推导作为练习,请同学们课后自己推导。 三种分布的关系 1 、由: l l a N =∑ ; l l l a E ε =∑ 确定拉氏乘子a 和β的值。在许多实际问题中,也 往往将β看作由实验确定的已知参量而由: l l l a E ε =∑ 确定系统的内能.或将a 和β都 当作由实验确定的已知参量,而由:l l a N =∑ ;l l l a E ε=∑ 确定系统的平均总粒子数 和内能。

玻色_爱因斯坦凝聚领域Feshbach共振现象研究进展

玻色—爱因斯坦凝聚领域Feshbach 共振现象研 究进展 摘要玻色—爱因斯坦凝聚领域中的Feshbach共振现象是当前的一个研究热点。在很多相关实验都已观测到Feshbach共振现象。在实验里通过调节外加磁场用原子散射的Feshbach共振可以任意改变这些系统中原子之间的相互作用强度,从强相互排斥作用到强相互吸引作用都可以实现。文章详细介绍Feshbach共振现象以及目前它在原子气体系统里的最重要的两个应用,研究有强相互作用的玻色子气体和费米子气体里的超流态。最后,阐述了Feshbach共振现象研究意义,以及对玻色—爱因斯坦凝聚体系统的应用前景作了展望。 关键词Feshbach 共振,玻色- 爱因斯坦凝聚,超流态,强相互作用 Abstract Feshbach resonace is currently a very hot topic in the of Bose-Einstein condensa -tion ,and has already been observed in most low- temperture alkali gases. In these systems the interaction between atoms can be tuned from strong repulsion to strong attraction. A detailed overview is guven of the Feshbach resonance and two of its most important aspects, the superfluid phase in Fermi gases and the strong-interaction regime in Bose gase.Finally,this paper expounds the significance of feshbach resonace research,and the Bose-Einstein conden –sation application prospects are described. Key words Feshbach resonance,Bose-Einstein condensation ,superfluid, strong interaction

玻色—爱因斯坦凝聚体的腔光力学

玻色—爱因斯坦凝聚体的腔光力学 【摘要】:在最近几年中腔光力学正经历着飞速的发展,成为了大量理论与实验研究的焦点。其中十分诱人的一项进展是使用原子玻色-爱因斯坦凝聚体取代被光压驱动的腔镜展示出各种腔光力学效应。而本文则设计了一个将凝聚体与腔镜结合在一起的混合腔光力学系统,试图通过这个系统把光学、腔量子电动力学、超冷原子物理、凝聚态物理、纳米技术、量子信息等学科交融在了一起来推动腔光力学的发展。本文的内容可根据原子与腔相互作用的不同区域而分成两个部分。当腔与原子的相互作用处于弱色散耦合区域时,腔内的驻波光场会使原子凝聚体感受到一个周期性的偶极势——光晶格,但凝聚体作为色散介质对腔场的影响却可以忽略不计。腔内光场的强度由于腔镜位置与光压之间的非线性耦合而具有双稳的性质,而这种双稳性质也同样反映在了光晶格的深度以及取决于这个深度的凝聚体多体基态上。同一个输入光强可以使腔内的凝聚体处于超流或者绝缘这两种迥然不同的状态,而对输入光进行特殊的时序控制,则可能实现凝聚体的双稳量子相变。尤其是在双稳切换点附近光场强度发生跳变时,原子凝聚体的动力学是本文的研究重点之一。当腔与原子的相互作用处于强色散耦合区域时,腔内的凝聚体被驻波光场激发出的动量边模能够等效为一个光压驱动的腔镜。而驻波场除了驱动凝聚体和腔镜外还像一个非线性的弹簧一样把两者连接起来形成一对非线性耦合振子。在适当的参量下,整个系统,无论是腔内光强,腔镜位置,还是凝聚体的激发都是

双稳的。我们发现在这个双稳区域附近,如果忽略系统的耗散,则其经典动力学能够展现奇异的哈密顿混沌行为。此外我们还在频率空间中分析了腔镜与凝聚体之间的量子关联,给出了两者之间实现纠缠的条件。【关键词】:玻色-爱因斯坦凝聚体腔光力学光学双稳量子相变混沌量子纠缠 【学位授予单位】:华东师范大学 【学位级别】:博士 【学位授予年份】:2010 【分类号】:O431.2 【目录】:摘要6-7Abstract7-9目录9-12第一章绪论12-221.1光压的故事12-141.2腔光力学14-161.3向量子区域迈进16-201.4本文内容安排20-22第二章腔光力学装置基本原理22-442.1光力学腔的经典模型22-292.1.1法布里-珀罗型光学腔23-252.1.2辐射压力的经典理论25-262.1.3单镜光力学腔26-282.1.4双镜光力学腔28-292.2光力学腔的非线性效应29-352.2.1稳态分析30-312.2.2动力学分析31-352.3光力学腔的量子模型35-442.3.1腔的输入输出理论36-382.3.2振子的量子布朗运动38-402.3.3辐射压力的本征模理论40-412.3.4单镜光力学腔的量子模型41-44第三章光晶格中的原子玻色-爱因斯坦凝聚体44-683.1稀薄原子气体的玻色-爱因斯坦凝聚44-473.1.1无相互作用玻

自旋F=1旋量玻色—爱因斯坦凝聚的基态和动力学性质

自旋F=1旋量玻色—爱因斯坦凝聚的基态和动力学性质 【摘要】:自从MIT小组成功地实现用光阱束缚冷原子23Na以来,旋量玻色爱因斯坦凝聚(BEC)作为一门新兴学问在多个方面取得了突破性的进展:比如自旋磁畴,涡旋态,自旋组分相分离,破裂凝聚态,及自旋相干混合动力学等等。本文研究了旋量混合物基态特性和非均匀外场中旋量BEC的动力学两方面内容。首先,我们探讨了由两种不同的自旋都为1的原子组成的旋量凝聚体混合物的基态特性。当两种不同类的玻色子发生碰撞时,由于玻色对称性的限制被打破,这导致两种F=1旋量凝聚体混合物(简称自旋1+1系统)会有种间耦合相互作用和种间配对相互作用。首先,通过角动量耦合理论给出了简并内态近似(DIA)下系统所有可能的基态,另外,我们还研究了特殊相AA相中各个塞曼能级的粒子数分布和量子涨落,并发现在这种情况下系统基态是破裂凝聚体,粒子数涨落的分布与单原子破裂凝聚体有很大不同。然后我们用精确对角化方法数值结果做了验证,严格符合。用精确对角化方法可以数值地给出了更一般的存在单态配对项时的基态解,我们展示了两种配对机制之间的竞争,发现系统总自旋为零的情况下,体系仍然有不同的配对机制之间的竞争,由种间耦合项所决定。其次,我们研究存在磁场梯度的弱磁场中旋量BEC的动力学性质。因为磁场的非均匀性,磁场梯度使得原子自旋在1到-1之间反转,导致系统磁化强度不再守恒。我们分别展示了在平均场理论下铁磁和反铁磁两种原子的磁化强度和mF=0塞曼能级上的粒子布居的动力学行为。当初态是三个

能级粒子数目非平衡分布时,我们发现磁化强度的动力学类似于双阱中的约瑟夫森振荡并伴随有自俘获现象,同时mF=0塞曼能级上的粒子布居数的动力学被充分抑制。当初态是三个能级粒子数目均匀分布时,反铁磁原子凝聚体系统磁化强度出现拍频振荡。【关键词】:旋量凝聚体BEC混合物破裂凝聚体单态配对自旋混合动力学 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2011 【分类号】:O469;O562 【目录】:中文摘要10-11ABSTRACT11-13第一章绪论13-231.1引言13-211.1.1旋量玻色-爱因斯坦凝聚体15-161.1.2自旋交换相互作用16-181.1.3Feshbach共振和BEC混合物18-191.1.4旋量BEC自旋相干混合动力学19-201.1.5平均场与量子多体理论20-211.2我们的工作211.3本文内容21-23第二章旋量BEC的基态性质23-452.1多粒子系统的二次量子化23-242.2平均场方法24-322.2.1多分量耦合Gross-Pitaevskii方程组24-262.2.2旋量BEC基态问题的平均场处理26-322.3量子多体方法32-452.3.1单模近似下的有效哈密顿量32-332.3.2赝角动量算符与系统基态33-362.3.3破裂凝聚态36-422.3.4磁场梯度与自旋反转42-45第三章旋量BEC的动力学性质45-553.1平均场动力学45-523.1.1等效非刚性单摆模型45-493.1.2非刚性单摆模型的解49-503.1.3无磁场时的动力学50-523.2量子动力学52-55第四章旋量BEC混合物的基态特性55-794.1旋量BEC混合物的哈密顿

玻色_爱因斯坦凝聚的研究

玻色———爱因斯坦凝聚的研究 谢世标 (广西民族学院物理与电子工程系,广西 南宁 530006) 摘 要: 综述了玻色—爱因斯坦凝聚的由来、概念及其形成条件,并介绍了当前国内外玻色—爱 因斯坦凝聚研究的动态与进展及其前景展望。 关键词: 玻色—爱因斯坦凝聚;临界温度;激光冷却;磁陷阱 中图分类号: O469 文献标识码:A 文章编号:1003-7551(2002)03-0047-04 1 玻色—爱因斯坦凝聚的由来 我们知道,自然界中,粒子按统计性质分为玻色(Bose)子和费米(Fermi)子。自旋为整数的粒子,如光子、π介子和α粒子是玻色子,玻色子服从玻色—爱因斯坦统计;自旋为半整数的粒子,如电子、质子、中子、μ介子是费米子,费米子服从费米—狄拉克统计。1924年6月24日,30岁的印度物理教师玻色送一份手稿给爱因斯坦,试图不依赖经典电动力学来推导普朗克(黑体辐射)定律的系数8πν2/c3,办法是假定相空间最基本区域的体积为h3。爱因斯坦亲自把玻色的手稿译成德文,送去发表,并在文末加注说:“我以为玻色对普朗克公式的推导乃是一项重大进步,所用方法也将导致理想气体的量子理论”。爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究。他于1924年和1925年发表两篇论文,将玻色对光子的统计方法推广到某类原子,并预言当这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色—爱因斯坦凝聚。但在很长一段时间里,没有任何物理系统认为与玻色—爱因斯坦凝聚现象有关。直到1938年,伦敦(F.London)指出,超流和超导现象可能是玻色—爱因斯坦凝聚的表现,玻色—爱因斯坦凝聚才真正引起物理学界的重视。不过这两种现象都发生在强相互作用的体系中。超流液氦中只有10%的原子凝聚;超导与玻色—爱因斯坦凝聚的关系要经过电子的配对,涉及更复杂的相互作用。只有近理想或弱相互作用的玻色气体的玻色—爱因斯坦凝聚,才更易于同理论比较,但一直没有实验证实。在上个世纪五十年代,物理学家发展了很多弱相互作用玻色系统的理论,华人物理学家杨振宁、李政道和黄克逊在这方面做了很出色的工作。然而这些理论在1995年之前都没有得到很好的验证。 随着实验技术的发展,在上世纪80年代初,物理学家开始了在气体中实现玻色—爱因斯坦凝聚的尝试。终于在爱因斯坦理论预言之后的70年,于1995年在实验室看到了中性原子的玻色—爱因斯坦凝聚。7月13日,美国科罗拉多大学和国家标准局合办的实验天体物理研究所发布新闻说:在冷却到绝对温度170nk(毫微度)的碱金属铷(87Rb)蒸气中观察到了玻色—爱因斯坦凝聚。8月底,休斯顿市Rice大学的一个小组发表文章说在锂(7Li)中看到玻色—爱因斯坦凝聚(BEC)的迹象。11月间,麻省理工学院宣布,在钠(23Na)蒸汽中实现了玻色—爱因斯坦凝聚(BEC)。为此,科罗拉多大学和国家标准局实验天体物理研究所的美国科学家埃里克?康奈尔、卡尔?维曼和麻省理工学院的德国科学家沃尔夫冈?克特勒获2001年诺贝尔物理学奖。 2 玻色—爱因斯坦凝聚的概念 设在体积为V的容器中存在由N个同种玻色粒子组成的理想气体。理想玻色气体处于热平衡状态3 收稿日期:2002-07-08

玻色-爱因斯坦凝聚及其研究进展简述

玻色-爱因斯坦凝聚及其研究进展 姓名:于超宇专业班级:201505080226 第1章前言 玻色-爱因斯坦凝聚实际是一类涉及原子分子物理学、量子光学、统计物理学和凝聚态物理学等相关物理学中许多领域的普通物理现象。1925年爱因斯坦根据玻色能量统计分布规律预言:当玻色系统的温度降低到一定程度,理想的全同玻色子会在动量空间最低能态上聚集,并达到宏观的数量。这就是玻色-爱因斯坦凝聚,而这种宏观数量级的原子凝聚在同一状态可视为一种新物态。这一物质形态具有的奇特性质,在芯片技术、精密测量和纳米技术等领域都有美好的应用前景。全世界已经有数十个实验室实现了9种元素的BEC(玻色-爱因斯坦凝聚态)。主要是碱金属,还有氦原子,铬原子和镱原子等。而本论文着手于玻色-爱因斯坦凝聚现象的理论与凝聚态的应用,对当下最新研究进展与研究结果进行文献综述,介绍达成凝聚态的几种方式以及对凝聚态在芯片技术等方面的的应用进行介绍。 第2章玻色-爱因斯坦凝聚的研究历史 2.1 玻色-爱因斯坦凝聚的起源与发展 1924年印度物理学家玻色提出以不可分辨的n个全同粒子的新观念,使得每个光子的能量满足爱因斯坦的光量子假设,也满足波尔兹曼的最大机率分布统计假设,这个光子理想气体的观点可以说是彻底解决了普朗克黑体辐射的半经验公式的问题。可能是当初玻色的论文因没有新结果,遭到退稿的命运。他随后将论文寄给爱因斯坦,爱因斯坦意识到玻色工作的重要性,立即着手这一问题的研究,并于1924和1925年发表两篇文章,将玻色对光子(粒子数不守恒)的统计方法推广到原子(粒子数守恒),预言当这类原子的温度足够低时,会有相变—新的物质状态产生,所有的原子会突然聚集在一种尽可能低的能量状态,这就是我们所说的玻色-爱因斯坦凝聚现象。 1938年:FritzLondon提出液氦(He4)超流本质上是量子统计现象,也是一种凝

实现玻色_爱因斯坦凝聚态的重大意义

!"实现玻色!爱因斯坦凝聚态的重大意义"#$%年印度物理学家玻色研究了“光子在各能量级上的分布&问题,他以不同于普朗克的方式推导出普朗克黑体辐射公式。玻色将这一结果寄给爱因斯坦,请其翻译成德文并在德国发表。爱因斯坦意识到玻色工作的重要性,立即着手研究这一问题。爱因斯坦于"#$%年和"#$’年发表了两篇文章,将玻色对光子的统计方法推广到某类原子,并预言这类原子的温度足够低时,所有的原子就会突然聚集在一种尽可能低的能量状态,这就是所谓的玻色!爱因斯坦凝聚(()*+,-.*/+-.0).1+.*2/-).,(,0),这时宏观量物质的状态可以用同一波函数来描写。自"#$’年提出(,0以来,陆续有不少寻求(,0实验实现的研究出现。首先是"#3%年提出的超流态液氦。后来的实验中确实看到量子简并的特性,但是由于系统中存在着强相互作用,很难看成是纯的(,0。接着"#’#年有人提出自旋极化氢原子气体可能是(,0的候选者,但至今仍未能在实验上实现。"#45年, 第三种重要的(,0候选者———氧化亚铜(06$7)中的激子被提出。 经过"5多年的努力, 虽然于"##8年在实验上观测到了,但是由于复杂的相互作用过程,(,0的特性得不到很好的研究。45年代中期,激光冷却和捕陷原子的研究已取得长足的进步,几个研究小组提出了冷却的碱金属原子可以形成只有弱相互作用的(,0。在不断克服实现(,0的一系列技术难题后,"##’年9月,威曼和康奈尔小组使用铷原子首次实现了玻色!爱因斯坦凝聚。 玻色!爱因斯坦凝聚是独一无二的量子力学相变,因为它是在原子间无相互作用条件下发生的,在科学上,玻色!爱因斯坦凝聚对基础研究具有重要意义,它证实了存在一种新的物质态,为实验物理学家提供了一种独一无二的新介质;在应用上,科学家们已提出了很多设想:如改善精密测量的准确度,制造原子钟、原子干涉仪,测量原子物理常数和微重力;实现光速减慢、光信息存储、量子信息传递和量子逻辑操作;进行微结构刻蚀等。例如,玻色!爱因斯坦凝聚体中的原子几乎不动,可以用来设计精确度更高的原子钟,以应用于太空航行和精确定位等。 凝聚体具有很好相干性,可以用于研制高精度的原子干涉仪,测量各种势场,测量重力场加速度和加速度的变化等。另外,以芯片技术为例,传统的芯片技术现已接近发展极限,因为目前的芯片都是利用普通激光来完成集成电路的光刻,而普通激光的波长是有限的。今后,如果利用原子激光来进行集成电路的光刻,将大大提高集成电路的密度,因此将大大提高电脑芯片的运算速度。随着对玻色!爱因斯坦凝聚研究的深入,也许它会像发现普通激光那样给人类带来另一次技术革命。 从实现玻色!爱因斯坦凝聚到获得诺贝尔奖只有9年时间,这在诺贝尔物理学奖授奖的百年史上是相对较短的。然而从爱因斯坦的预言到它的实现,物理学家却花了整整35年。曼才使用一个特制的外边缠有电 磁线圈的玻璃容器进行了他们的 实验。康奈尔说,如果科特勒和他 的同事们能够有类似的装置,那 么他们就不会因为他们的设备中 一个线圈熔化、污染了整个设备 而导致试验耽搁几周了,科学史 可能也会因此而改写了。 为科学家们制造实验用的专 门设备需要有一些创新的思维。 比如要正确使用电子元件,可能 需要查阅大量难懂的产品目录。 对于爱好这项工作的人来说,这 是非常有吸引力的。他们往往会坚持把它做到最好。高效的工作为技术上要求较高的实验创造良好的环境,这一点也表现在:;<=对于实验设备的购置方面。其订购一个部件乃至部件送达的时间都要比其他地方快很多。节省的时间对于实验的进度是至关重要的。但是和任何成功的实验室一样,:;<=不能在它的成绩面前止步不前。其实验计划的更新正在进行中,其中一个重要的领域就是超短激光脉冲。:;<=有专家正在一系列项目中使用最先进的激光技术,包括原子钟的改进研发、化学反应的精密控制、安全通讯的研究以及活体细胞成像等等。不过,这个实验室也遭遇到了一些挫折,其中最严重的就是>;?@在$5世纪#5年代逐步停止了对:;<=原子物理学计划的资金支持。为了不至于给:;<=造成重大的困难,>;?@的撤出是在足够长的时间内进行的。此外,尽管科罗拉多大学拥有很高的声誉,但毕竟不能与哈佛或斯坦福大学齐名,这就使得:;<=的一些资历较深的科学家对它是否能够 持久地吸引优秀的学生多少有些 担心。 然而人们知道,那些希望在 这里建立自己学术权威的人是不受欢迎的,因为这里是一个科学的自由之地。A 袁永康B 编译C ?团队?

波色爱因斯坦凝聚

波色-爱因斯坦凝聚 玻色-爱因斯坦凝聚。 研究范围:质量不为零,粒子数守恒的波色粒子组成的理想气体。 概念:这种粒子不受泡利不相容原理的限制,当T→0Κ时,几乎所有的玻色子会聚集到能量为0,动量为0的基态,这是并不奇怪的。令我们感兴趣的是,研究表明,当温度降低到一个有限的低温T(大约为3K)时,就会有宏观数量的波色粒子聚集在基态。这一情况与蒸汽凝聚有些类似,因而称为玻色-爱因斯坦凝聚(BEC)。 历史概况: 20世纪头20年,物理学界正在萌发量子力学的新兴学科。在黑体辐射和光电效应的研究中诞生了量子的概念,光的量子被称为光子。德国物理学家普朗克找到了一个经验公式,很好地符合了黑体辐射观测得到的曲线,但是他当时不能解释这一经验公式的物理含义。时光推到1924年,当时年仅30岁的玻色,接受了黑体辐射是光子理想气体的观点,他研究了“光子在各能级上的分布”问题,采用计数光子系统所有可能的各种微观状态统计方法,以不同于普朗克的方式推导出普朗克黑体辐射公式,证明了普朗克公式可以从爱因斯坦气体模型导出。兴奋之余,他写了一篇题为《普朗克准则和光量子假设》的文章投到英国的《哲学杂志》,但被拒绝了。不得已,他把那篇只有六页的论文寄给了爱因斯坦,期望爱因斯坦能理解他的发现。爱因斯坦立即意识到玻色工作的重要性,他亲自将文章翻译成了德文,帮助在《德国物理学报》发表了。之后,爱因斯坦把波色统计方法推广到静止质量不为零、粒子数不变的系统上,建立了量子统计学中波色—爱因斯坦统计。爱因斯坦将玻色的理论用于原子气体中,于1924和1925年发表了两篇文章,他推测到,在正常温度下,原子可以处于任何一个能级,但在非常低的温度下,大部分原子会突然跌落到最低的能级上,原来不同状态的原子突然“凝聚”到同一状态。后来物理界将这种现象称为玻色-爱因斯坦凝聚。 在波色之前,传统理论认为一个体系中所有的原子(或分子)都是可以辨别的,例如我们可以分辨氧原子、氢原子、碳原子。然而,玻色却挑战了上面的假定,认为在接近绝对零度的条件下,原子尺度上我们根本不可能区分不同的原子——所有的原子似乎都变成了同一个原子。原子会跌落到最低的能级上,就好像一座突然坍塌的大楼一样。处于这种状态的大量原子的行为像一个大超级原子,再也分不出你我他了!这就是物质第五态——玻色-爱因斯坦凝聚态。 然而,实现玻-爱凝聚态的条件极为苛刻和矛盾:一方面需要达到极低的温度,另一方面还需要原子体系处于气体状态。后来物理学家创造出了

玻色-爱因斯坦统计

玻色-爱因斯坦统计 玻色-爱因斯坦统计,适用于被称作玻色子的基本粒子的统计类别,它是指光子、介子,以及W和Z粒子。玻色子拥有整数值的被称为自旋的量子力学特性,并且是“聚集的(gregarious)”,它的意义是能够处于同一状态的玻色子的数量是无限的。所有传递自然界中的基本力的粒子都是玻色子。 玻色-爱因斯坦统计 在统计力学中,玻色-爱因斯坦统计(更通常的被称为B-E统计)确定了在热平衡下同一的不可分辨的(indistinguishable)玻色子相对于能量状态的统计分布。 费米-狄拉克和玻色-爱因斯坦统计适用于量子效应必须考虑和粒子被看作是“不可分辨的”情况下。如果粒子的密度N/V n q(n q为量子密度),量子效应就显现出来。量子密度就是粒子间距等于热德?布罗意波长的时候,即粒子的波函数已经接触但还未重叠时。量子密度依赖于温度;高温会使大多数系统处于经典的限制中,除非它们有非常高的密度比如白矮星。费米-狄拉克统计适用于费米子(服从泡利不相容定律的粒子),玻色-爱因斯坦统计适用于玻色子。在高温或低密度下费米-狄拉克和玻色-爱因斯坦统计都变为麦克斯韦-玻耳兹曼统计。 麦克斯韦-玻耳兹曼统计经常被描述为“可分辨的”经典粒子的统计。换句话说,处在状态1的粒子A和处在状态2的粒子B的结构相比于粒子B是状态1和粒子A是状态2是不同的。当沿着这条思路充分展开时,就会导出适当的(玻耳兹曼)对于能量状态的粒子分布,但由于熵也会导出非自然(non-physical)的结果,如吉布斯反论。当认识到所有的粒子实际上都是不可分辨的,这些问题就消失了。这些分布在高温和低密度限制下都会趋近于麦克斯韦-玻耳兹曼分布,而不需要任何额外的假设。麦克斯韦-玻耳兹曼统计对于研究气体非常有用;F-D统计经常用于固体中的电子的研究。同样的,它们都成为半导体设备和电子学理论的基础。 玻色子,不同于费米子,不受泡利不相容定律的影响:无限数量的粒子可以同时占据相同的状态。这解释了为什么,在低温下玻色子的表现和费米子非常不同:所有的粒子趋向于聚集在最低的能量状态下,形成所谓的玻色-爱因斯坦凝聚态。 B-E统计由玻色于1920年引入光子中,并由爱因斯坦于1924年推广到原子。 处于一种能量状态i的粒子数的期望值由B-E统计给出:

玻色-爱因斯坦凝聚理论研究

南京师范大学泰州学院 毕业论文(设计) ( 2014 届) 题目:__玻色-爱因斯坦凝聚理论研究_院(系、部):信息工程学院____专业:物理学(师范)____姓名:严加林______学号: 12100134 _____指导教师:朱庆利____ 南京师范大学泰州学院教务处制

摘要 玻色-爱因斯坦凝聚(玻色—爱因斯坦凝聚)是科学巨匠爱因斯坦在80年前预言的一种新物态。这里的“凝聚”与日常生活中的凝聚不同,它表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态)。即处于不同状态的原子“凝聚”到了同一种状态。形象地说,这就像让无数原子“齐声歌唱”,其行为就好像一个玻色子的放大,可以想象着给我们理解微观世界带来了什么。本文针对玻色-爱因斯坦凝聚这一课题,综述了玻色-爱因斯坦凝聚理论的诞生和发展、概念及其形成条件。在凝聚体实现发面,随着科学技术的发展,我们实现了玻色-爱因斯坦凝聚。1995年,随着 JILA 小组、MIT小组、Rice大学的试验成功,玻色-爱因斯坦凝聚到热浪被推上了高潮。本文中还将介绍一些玻色—爱因斯坦凝聚的实验和国内外的研究动态,最后展望了其发展前景。 关键词:玻色-爱因斯坦凝聚,激光冷却与囚禁,原子激光

Abstract Bose Einstein condensation (BEC) is a new material predicted by science master Einstein in 80 years ago. Here the "cohesion" is different from condensation in everyday life. It says that different states of atomic suddenly "condensed" to the same state (usually the ground state). In different states of atoms "condensed" to the same state. Figure ground says, this is like so many atomic "sing in union", amplifying its behavior as a boson, you can imagine what brings to our understanding of the microscopic world. According to Bose Einstein condensates of this topic, reviews the Bose Einstein condensates birth and development, theory and its formation conditions. In the realization of yeast aggregates, with the development of science and technology, we realize the Bose Einstein condensation. In 1995, with the test of JILA group, MIT group, Rice University's success, Bose Einstein condensates to heat was pushed to the climax. This paper will also introduce some of Bose Einstein condensation in the experiment and research dynamic status, and its development prospects. Keywords: Bose Einstein condensation, laser cooling and trapping, Atom laser

奥秘探索~玻色-爱因斯坦凝聚

大多数人初次听到玻色-爱因斯坦凝聚这个术语时,都感到既陌生又神秘。那它到底是什么意思呢?早在1924年,印度物理学家萨蒂延德拉·纳思·玻色(Satyendra Nath Bose,1894-1974)提出了一个分析光子行为的统计力学方法,也就是现在我们所说的“玻色统计”。玻色提出了一种新的统计理论,它与传统的统计理论仅在一条基本假定上不同。传统统计理论假定一个系统中所有粒子是可区别的。基于这一假定的经典统计理论圆满地解释了理想气体定律,取得了非凡的成功。然而玻色认为,我们实际上根本不可能区分两个光子有何不同。玻色讨论了如下问题:将N个相同的小球放进M个标号为1,2,……的箱子中,假定箱子的容积足够大,可能有多少种不同的放法?在此问题的基础上,他采用与传统统计相似的方法得到了一套新的统计理论。玻色的理论无须借助经典物理就可以正确描述光子的行为,但他在发表自己的论文时遇到了一些麻烦,因为人们不相信他的理论,不肯在科学杂志上刊登他的论文。于是玻色就将论文寄给了爱因斯坦这位当时最著名的物理学家。爱因斯坦立刻意识到这篇论文的重要性,并通过自己的影响力将它发表在德国的学术刊物上。也许有人会问,玻色的理论为什么还同时用爱因斯坦的名字命名呢?事实上,爱因斯坦不仅帮助玻色发表论文,而且进一步对他的理论进行深化和推广。爱因斯坦认为,玻色的理论不但对光子适用,而且可以用来研究所有原子的行为。他最终建立了遵守玻色-爱因斯坦统计的粒子的完整量子理论模型。有关结果在1924-1925年的两篇论文中发表。所谓的“玻色-爱因斯坦统计”就这样诞生了。爱因斯坦发现,他建立的方程式表明,原子在非常低的温度下的表现与通常状态相比大为不同。如果原子足够冷,那么就可能会有一些不同寻常的事情发生。它是那样的奇异,以至爱因斯坦无法确定自己的理论是否正确。也许有人认为,爱因斯坦是永远不会错的,但事实上他只对了一半。因为并不是所有的原子都遵守玻色-爱因斯坦统计。现在我们已经知道,粒子实际上可以分成两大类。所有微观粒子均有自旋,其效果等价于粒子的自旋角动量,但又不是由机械运动产生的。奇怪的是,自旋的取值,以普朗克常数为单位,取分立的值。一类粒子自旋取值是半整数,如1/2,3/2,5/2……叫费米子,如电子、质子等,遵守费米-狄拉克统计;另一类取值为整数,如0,1,2……称为玻色子,如光子、介子等,遵守玻色-爱因斯坦统计。爱因斯坦的理论表明,无相互作用的玻色子在足够低的温度下,将发生相变,即全部玻色子会分布在相同的最低能级上。这就是著名的“玻色-爱因斯坦凝聚”(BEC:Bose-Einstein Condensation)如何实现玻色-爱因斯坦凝聚爱因斯坦的预言引起了实验物理学家的广泛兴趣,并部分实现了玻色-爱因斯坦凝聚,例如超导中的库伯电子对无电阻现象,超流体中的无摩擦现象。但因其系统特别复杂,难以对玻色-爱因斯坦凝聚现象进行充分的研究。然而1995年以前,人们一直未能观察到严格意义上的BEC现象。原因何在呢?这是因为BEC的实现条件太苛刻了。它要求凝聚粒子(原子)的德布罗意波彼此重叠,同时又要求原子的内部运动可以忽略。通常情况下,这两种要求是互相矛盾的。任何微观粒子都具有波动性,即一定的粒子相应的具有一定的物质波(德布罗意波),其波长与粒子的动量成反比。德布罗意波彼此重叠一般要求原子靠得很近,从而原子之间会出现交换电子等“强作用”,但这样一来,原子内部的运动就不可忽略了。因此,为了满足原子内部运动可以忽略这个条件,就应使原子彼此间相距很远,也就是应该考虑的是稀薄气体原子。但此时要使德布罗意波彼此重叠,只有增大其波长。为此,可以减少原子的动量,或者说,降低原子气体的温度,使之足够低,导致原子的德布罗意波有足够长,可以彼此重叠,全体进入相同的量子态(一般是能量最低态)。可见,这里的技术关键是使原子气体的温度降到非常低。这也是与低温冷却有关的研究屡次获得诺贝尔物理学奖的原因所在。早在1976年,人们开始寻找实现BEC的办法。当时,诺桑劳、斯特瓦里提出,自旋极化的氢原子实际上是玻色子,一般不会结合为分子。后来,麻省理工学院的克勒普奈尔和格瑞达克、阿姆斯特丹的斯尔威那和瓦尔纳文利用所谓的“蒸汽冷却”法,以后又有人利用“磁陷阱”法冷却自旋极化的氢原子气体,试图实现“玻色-爱因斯坦凝聚”,但都未能取得成功。实现玻色-爱因斯坦凝聚的第一步是激光冷却原子,其基本原理是通过原子与光子的动量交换来达到冷却原子的目的。通过这一步骤可以将原子冷却到10-4开,然后再用蒸发冷却的方法把热的原子蒸发掉,使原子达到所需要的温度。

波色爱因斯坦凝聚态

浅谈玻色爱因斯坦凝聚态(BEC) 玻色爱因斯坦凝聚态(BEC)概念: 1924年印度物理学家玻色预言物质新状态的存在,爱因斯坦看到玻色的想法发表论文预言原子温度足够低时,所有原子会突然以可能的最低能态凝聚——玻色爱因斯坦凝聚。定义:当温度足够低、原子的运动速度足够慢时,会有相变—新的物质状态产生,它们将集聚到能量最低的同一量子态(电子做稳恒的运动,具有完全确定的能量,这种稳恒的运动状态称为量子态)。简单来说表示原来不同状态的原子突然“凝聚”到同一状态(一般是基态),物质的第五种状态。BEC 成为一种特殊的超低温实验平台,用来研究基础原子物理学以及凝聚体的力学,光学,热学,声学和超流体等性质及其物理机制。 玻色爱因斯坦凝聚态(BEC)实现: 原子的激光冷却和陷俘,在三个互相垂直的方向安置三对相对传播的激光束, 则形成所谓的“光学粘团”, 它可以使原子在三维方向上得到冷却。其基本原理是通过原子与光子的动量交换来达到原子冷却的目的,遵循动量守恒定律。激光冷却后的原子由磁场与激光组成的磁光阱囚禁,磁光阱是一种囚禁中性原子的有效手段。它由三对两两相互垂直具有特定偏振组态井且负失谐的对射激光束形成的三维空间驻波场和反向亥姆赫兹线圈产生的梯度磁场构成.磁场的零点与光场的中心重合,负失谐的激光对原子产生阻尼力.梯度磁场与激光的偏振相结合产生了对原子的束缚力.这样就在空间对中性原子构成了一个带阻尼作用的简谐势(粒子在某力场中运动,势能函数曲线在空间的某一有限范围内势能最小,形如陷阱,称为势阱)。在囚禁阱的边缘部分,磁场很强,控制原子磁极的射频场的频率很高,通过逐渐降低频率(微波频率)可以将动能比平均动能大很多的原子排出阱外留下动能较小的原子,从而达到蒸发冷却的目的。 玻色爱因斯坦凝聚态(BEC)性质: BEC静态性质:大小10-100um,椭球形,其长短轴比为几到几十,转变温度为100nK 至2uK,受势阱影响大,也与阱中原子数和密度有关,原子密度变化大。 刚发生BEC转变时,整个原子团由凝聚态原子与非凝聚态原子混合组成。

超冷分子的诞生与分子玻色—爱因斯坦凝聚

超冷分子的诞生与分子玻色—爱因斯坦凝聚 文/金政 一、介绍 在1985~1986年,朱棣文教授(Steven Chu, 目前在美国的劳伦斯柏克莱国家实验室Lawrence Berkeley National Laboratory, LBNL)与William D. Phillips教授(目前在美国的国家标准及技术中心National Institute of Standards and Technology, NIST)成功的以雷射捕捉和冷却中性原子,此技术为原子物理学开启了一个新的纪元。这项成就加上Claude Cohen-Tannoudji教授(目前在巴黎的Ecole Normale Supérieure, ENS)所作的理论研究于1997年获颁了诺贝尔物理奖。 近年来科学家对超冷原子气体的研究已有了长足的进展。在1995 年有一个重大的突破,科学家将具有玻色子性质的原子进一步冷却,并观察到原子玻色—爱因斯坦凝聚(Bose-Einstein Condensation),简称为玻色凝聚。由于这个实验,JILA的Eric A. Cornell教授、Carl E. Wieman教授与麻省理工学院的Wolfgang Ketterle教授分享了2001年的诺贝尔物理奖。原子的玻色凝聚导致了许多重要的实验发现;例如,第一个物质波放大器[1]、物质波的孤立子(soliton)[2]和涡流(vortex)[3]以及在光晶格(optical lattices)中的量子相变(quantum phase transition)[4]。 在超冷原子气体的研究中我们提出了一个新的构想:是否也能对分子气体做类似的量子控制?若答案是肯定的,由分子组成的量子气体将能对相位和谐(phase coherent)的化学反应有全新的贡献;分子气体也可能提供更高精确度的精密量测,并加深我们对于费米系统中的库柏配对(Cooper pairing)现象及其超导或超流性质的了解。那么,我们怎样去产生分子的超冷气体?分子气体在什么样的情形下会产生玻色—爱因斯坦凝聚?利用分子气体的玻色凝聚可以进行什么样的实验?在这篇文章里,我将会对新近的分子气体实验和令人惊异的结果—费米原子的实验首先达到分子玻色凝聚的里程碑—做一个简介。 二、冷却分子气体 如同原子的量子气体,分子的量子气体意指每个量子态的平均分子数是一或大于一。在如此高的相空间密度下,气体的行为完全被量子统计所支配,而形成一个量子简并气体(quantum degenerate gas)。在这个机制下,玻色气体会产生玻色—爱因斯坦凝聚,许多玻色子会占据同一个巨观量子态。另一方面,对费米气体来说,由于鲍立不兼容原理(Pauli exclusion principle)禁止两个或更多个相同的费米子占有同一个量子态,系统于是形成一个简并费米气体(degenerate Fermi gas)。 达到量子简并的条件是:原子的德布洛依波长(de Broglie wavelength)必须超过粒子之间的平均距离,而气体必须被冷却到极低温才能达到此种状态。在原子气体的实验中,冷却降温通常由两步骤组成。首先,透过雷射冷却与局限的技术将原子初步的减速并限制其活动;其次,将较“热”的原子从位能阱中移除,促使得剩下的原子进一步降温(蒸发冷却,evaporative cooling ),直到达成量子简并态。 不过,雷射冷却的方法对分子来说是无效的,因为雷射冷却的高效率是倚赖原子简单的能阶结构和其能够被连续激发的特性,这种特性允许原子透过连续散射数千个光子而减速。但对于分子而言,复杂的分子振动与旋转的能阶结构,使得利用连续雷射激发致冷几乎是不可能的。想要获得超冷的分子气体我们必须应用其他策略。 近几年所发展出冷却分子的一种方法是倚赖缓冲 物理双月刊(廿七卷二期)2005年4月

玻色-爱因斯坦凝聚(BEC)简介

玻色-爱因斯坦凝聚(BEC ) 玻色-爱因斯坦凝聚现象最早由爱因斯坦预言。因为玻色子遵循的统计规律,玻色气体中的原子在温度趋近绝对零度时将全部凝聚到能量的基态上。理想情况下的BEC 完全由玻色气体原子的统计性质造成,而与原子间的相互作用无关。实验上实现BEC ,需要对玻色气体进行束缚、稀释和冷却,其中的冷却过程在技术上难度最大,也是BEC 实验的关键。1995年在铷原子气中实现了第一个BEC 系统。2000年在实验上发现了BEC 中的超流现象,这是继液氦系统之后的第二种超流系统。与液氦系统相比,BEC 系统具有极弱的相互作用,因而在理论上更容易分析。同时,BEC 系统的各种物理参数如密度、动能等都在实验上可调。另外,利用具有自旋的BEC 系统可以进行与自旋有关的超流现象研究,如存在自旋-轨道耦合的BEC 超流及不伴随净质量流的自旋超流等。相关的理论和实验工作仍在不断取得进展。本文先通过讨论理想玻色气体在低温下的性质阐明BEC 的量子统计来源,再介绍实验上实现BEC 的束缚、冷却和观测技术,然后介绍与BEC 超流有关的理论和实验方法,最后会简单提及与自旋有关的BEC 超流现象。 1.BEC 的起源:玻色子的统计性质 根据量子力学,玻色子在一个量子态上的数目不受任何限制。以此为基础利用统计系综的方法可以得到理想玻色气体在均匀势场中的粒子数按能级的分布: 1 11-= -βεεe z a (1) 据此可计算粒子数密度: z z V e z d m h n -+-=?∞-111)2(2012/12/33βεεεπ (2) 其中2/32)2(1h mkT n e z πα==-。右边第二项为基态的粒子数密度。

如何实现玻色—爱因斯坦凝聚

玻色—爱因斯坦凝聚的实现 摘要:本文说明了玻色—爱因斯坦凝聚的概念,以及研究了如何实现玻色—爱因斯坦。 关键词:玻色—爱因斯坦凝聚,临界温度 1、玻色—爱因斯坦凝聚的概念 爱因斯坦于1925年在理论上预言:当理想玻色气体的n λ3等于或大于2.612的临界值时将出现独特的玻色—爱因斯坦凝聚现象。 设系统由N 个全同、近独立的玻色子组成,温度为T 、体积为V 。假设粒子的自旋为零。根据玻色分布,处在能级εl 的粒子数为: 1--= KT l l l e w a μ ε ⑴ 由于处在任一级的粒子数都不能取负数,以ε0表粒子的最低能级,则从①式可知: ε0>μ ⑵ 即理想玻色气体的化学势必须低于粒子最低能级的能量。当取最低能级的能量为零点即 ε0=0,则②式可表示为μ<0 ⑶ 化学势μ由公式:n V N e w V l KT l l ==∑--11με ⑷ 由④式知,化学势μ为温度T 及粒子数密度n 的函数,而其中ωl 和εl 与温度无关,在粒子数密度n 一定时,温度越低化学势μ越高,④式求和将改为积分: n e d m h KT =-?∞-0212 331 )2(2μεεεπ ⑸ ⒈当温度降到某一临界温度 T c 时,μ将趋于-0,此时T>T c ,⑤式变为n e d m h KT =-?∞0212331 )2(2εεεπ ⑹ 令x=ε/KT c ,⑥式可表为:

n e dx x mKT h x =-?∞ 02/12331 )2(2π ⑺ 由积分公式:612.221 02/1?=-?∞πx e dx x 得出,当粒子数密度n 一定时,临界温度T c 为: 3/23/22 )()612.2(2n mk T c π= ⑻ ⒉当T0的粒子数密度n(ε>0)。 令x=ε/KT c ,得3/2c )T T n(0)n(=?ε ⑽ 则 ?? ????-=2/30)(1)(c T T n T n ⑾ 由此可知,在T c 以下n 0与n 具有相同的量级,n 0随温度的变化如下图所示: 在绝对零度下粒子将尽可能占据能量最低的状态。对于玻色粒子,一个量子态所能容纳的粒子数目不受限制,因此绝对零度下玻色粒子将全部处在ε=0的最低能级。式⑾表明在T

相关主题
相关文档 最新文档