当前位置:文档之家› 运筹学12-整数规划II

运筹学12-整数规划II

运筹学12-整数规划II
运筹学12-整数规划II

管理运筹学课后答案——谢家平

管理运筹学 ——管理科学方法谢家平 第一章 第一章 1. 建立线性规划问题要具备三要素:决策变量、约束条件、目标函数。决策变量(Decision Variable)是决策问题待 定的量值,取值一般为非负;约束条件(Constraint Conditions)是指决策变量取值时受到的各种资源条件的限制, 保障决策方案的可行性;目标函数(Objective Function)是决策者希望实现的目标,为决策变量的线性函数表达式, 有的目标要实现极大值,有的则要求极小值。 2.(1)设立决策变量; (2)确定极值化的单一线性目标函数; (3)线性的约束条件:考虑到能力制约,保证能力需求量不能突破有效供给量; (4)非负约束。 3.(1)唯一最优解:只有一个最优点 (2)多重最优解:无穷多个最优解 (3)无界解:可行域无界,目标值无限增大 (4)没有可行解:线性规划问题的可行域是空集 无界解和没有可行解时,可能是建模时有错。 4. 线性规划的标准形式为:目标函数极大化,约束条件为等式,右端常数项bi≥0 , 决策变量满足非负性。 如果加入的这个非负变量取值为非零的话,则说明该约束限定没有约束力,对企业来说不是紧缺资源,所以称为松弛变量;剩余变量取值为非零的话,则说明“≥”型约束的左边取值大于右边规划值,出现剩余量。 5. 可行解:满足约束条件AX =b,X≥0的解,称为可行解。 基可行解:满足非负性约束的基解,称为基可行解。 可行基:对应于基可行解的基,称为可行基。 最优解:使目标函数最优的可行解,称为最优解。 最优基:最优解对应的基矩阵,称为最优基。 6. 计算步骤: 第一步,确定初始基可行解。 第二步,最优性检验与解的判别。 第三步,进行基变换。 第四步,进行函数迭代。 判断方式: 唯一最优解:所有非基变量的检验数为负数,即σj< 0 无穷多最优解:若所有非基变量的检验数σj≤ 0 ,且存在某个非基变量xNk 的检验数σk= 0 ,让其进基,目标函数

运筹学整数规划例题

练习4.9 连续投资问题 某公司现有资金10万元,拟在今后五年考虑用于下列项目的投资: 项目A:从第一年到第四年每年年初需要投资,并于次年收回本利115%,但要求第一年投资最低金额为4万元,第二.三.四年不限. 项目B:第三年初需要投资,到第五年末能收回本利128%,但规定最低投资金额为3万元,最高金额为5万元. 项目C:第二年初需要投资,到第五年末能收回本利140%,但规定其投资金额或为2万元,或为4万元,或为6万元,或为8万元. 项目D:五年每年年初都可购买公债,于当年末归还,并获利6%,此项目投资金额不限. 试问该公司应图和确定这些项目的每年投资金额,使到第五年末拥有最大的资金收益. (1) x 为项目各年月初投入向量。 (2) ij x 为 i 种项目j 年的月初的投入。 (3) 向量c 中的元素 ij c 为i 年末j 种项目收回本例的百分比。 (4) 矩阵A 中元素 ij a 为约束条件中每个变量ij x 的系数。 (5) Z 为第5年末能拥有的资金本利最大总额。 因此目标函数为 4325max 1.15 1.28 1.40 1.06A B C D Z x x x x =+++ 束条件应是每年年初的投资额应等于该投资者年初所拥有的资金. 第1年年初该投资者拥有10万元资金,故有 11100000A D x x +=. 第2年年初该投资者手中拥有资金只有()116%D x +,故有 22211.06A C D D x x x x ++=. 第3年年初该投资者拥有资金为从D 项目收回的本金: 21.06D x ,及从项目A 中第1年投资收回的本金: 11.15A x ,故有 333121.15 1.06A B D A D x x x x x ++=+ 同理第4年、第5年有约束为 44231.15 1.06A D A D x x x x +=+, 5341.15 1.06D A D x x x =+

管理运筹学目标规划

管理运筹学课程 实验报告 实验名称:造纸厂目标规划问题 实验者:普丁玲 实验日期:2012年5月21日 专业年级:10级工程管理 指导教师:许娟

目的与要求实验目的: 通过实验掌握以及实际问题建立线性规划模型的方法,并熟练运用运筹学软件求解线性规划问题,以及根据求解结果进行灵敏度分析。 实验要求: (1)根据所给出的实际问题,建立其相应的数学模型,并利用软件进行求解。 (2)通过对求解结果的分析研究,回答相应的问题。 背景资料某造纸厂成产一般类型纸张的利润为300元/吨,每吨纸产生的工业废水的处理费用为30元;生产某种特种纸张的利润为500元/吨,每吨特种纸产生的工业废水的处理费用为40元。该纸张造纸厂近期目标如下: 目标1:纸张利润不少于15万元; 目标2:工业废水的处理费用不超过1万元。 (1)设目标1的优先权为p1,目标2的优先权为p2,建立目标规划模型并用图解法求解。 (2)若目标2的优先权为p1,建立目标规划模型并求解,所得的解是否与(1)中的相同? (3)若目标2的罚数权重为5,目标1的罚数权重为2,建立目标规划模型求解

数学模型 求解结果step 1 目标函数值为: 0 变量解相差值 ------- -------- -------- x1 0 0 x2 300 0 d1- 0 1 d1+ 0 0 d2- 0 0 d2+ 12000 0

step 2 目标函数值为: 12000 变量解相差值 ------- -------- -------- x1 0 6 x2 300 0 d1- 0 0 d1+ 0 .08 d2- 0 1 d2+ 12000 0 step 1 目标函数值为: 0 变量解相差值 ------- -------- -------- x1 0 0 x2 0 0 d1- 150000 0 d1+ 0 0 d2- 0 0 d2+ 0 1 step 2 目标函数值为: 150000 变量解相差值 ------- -------- -------- x1 0 75 x2 0 100 d1- 150000 0 d1+ 0 1 d2- 0 12.5 d2+ 0 0

7.运筹学之目标规划(胡运权版)

第七章目标规划 §1 目标规划的提出 线性规划问题是讨论一个给定的线性目标函数在一组线性约束条件下的最大值或最小值问题。对于一个实际问题,管理科学者根据管理层决策目标的要求,首先确定一个目标函数以衡量不同决策的优劣,且根据实际问题中的资源、资金和环境等因素对决策的限制提出相应的约束条件以建立线性规划模型;然后用计算机软件求出最优方案并作灵敏度分析以供管理层决策之用。而在一些问题中,决策目标往往不只一个,且模型中有可能存在一些互相矛盾的约束条件的情况,用已有的线性规划的理论和方法无法解决这些问题。因此,1961年美国学者查恩斯(A.Charnes)和库柏(W.W.Coopor)提出了目标规划的概念与数学模型,以解决经济管理中的多目标决策问题。 我们将通过几个例子来说明在实际应用中线性规划存在一系列的局限性。 例1某厂生产A、B两种产品每件所需的劳动力分别为4个人工和6个人工,所需设备的单位台时均为1。已知该厂有10个单位机器台时提供制造这两种产品,并且至少能提供70个人工。又,A、B产品的利润,每件分别为300元和500元。试问:该厂各应生产多少件A、B产品,才能使其利润值最大? 解设该厂能生产A、B产品的数量分别为 ,x x件,则有 12

12 1212max 30050010..4670 0, 1,2.j z x x x x s t x x x j =+?+≤?+≥??≥=? 图解法求解如下: 由上图可得,满足约束条件的可行解集为?,即机时约束和人工约束之间产生矛盾,因而该问题无解。但在实际中,该厂要增加利润,不可能不生产A 、B 两种产品,而由线性规划模型无法为其找到一个合适的方案。 例2 某厂为进行生产需采购A 、B 两种原材料,单价分别为70元/公斤和50元/公斤。现要求购买资金不超过5000元,总购买量不少于80公斤,而A 原材料不少于20公斤。问如何确定最好的采购方案(即花掉的资金最少,购买的总量最大)? 解 这是一个含有两个目标的数学规划问题。设12,x x 分别为购买两种 原材料的公斤数,()112,f x x 为花掉的资金,()212,f x x 为购买的总量。建 立该问题的数学模型形式如下:

128502-管理运筹学-习题-04-目标规划

习题 4-1对每题结论进行判断,如果结论错误请改正。 (1)正偏差变量大于等于零,负偏差变量小于等于零。 (2)系统约束中最多含有一个正或负的偏差变量。 (3)目标约束一定是等式约束。 (4)一对正负偏差变量至少一个大于零。 (5)一对正负偏差变量至少一个等于零。 (6)要求至少到达目标值的目标函数是maxZ=d +。 (7)要求不超过目标值的目标函数是minZ= d +。 (8)超出目标的差值称为正偏差。 (9)未到达目标的差值称为负偏差。 4-2 现有一船舶的舱容为3万立方米、载重量为2万吨,准备装运每件均为1立方米的三种货物A 、B 、C ,三种货物的每件重量和单位运费收入见下表:考虑以下几个方面: 1、总运费收入不低于350万元;2、总货物重量不低于1.25万吨;3、A 货物运量恰好为0.5万吨;4、B 货物运量不少于0.2万吨;5、C 货物运量不少于0.2万吨。请建立目标规划模型。 4-3用图解法求解以下目标规划模型 ???????=≥=-++-=-++=-++++=+-+-+-+-- -+3,2,1;0,,,6 226210min 21332122211121332211i d d x x d d x x d d x x d d x x d p d p d p z i i 4-4已知目标规划问题 ???????=≥=-+-=-+-≤++=+-+-+---+2,1;0,,,632226)(min 212221112112 2111i d d x x d d x x d d x x x d p d d p z i i 试用单纯形法求其满意解,若有多个满意解求出其中两个。

128503-管理运筹学-习题-06-动态规划

习题 6-1. 考虑下面的网络图,箭头上的数字代表相连两个节点之间的距离。 (1)用动态规划找出从节点1到节点10的最短路。 (2)从节点4到节点10的最短路呢? 6-2. 从北京到上海的包机的剩余装载能力为2000kg ,某一运输公司现有4种货物需要从北京运输到上海。每种货物的单位、单位重量和单位运输费用如下表所示。 (1)用动态规划找出包机应该运输的每种货物的单位数。 (2)假设包机同意装载另一批货物,剩余装载能力降为1800kg ,计算结果会怎样变化? 6-3. 假定有一个3阶段的过程,每一阶段的产量是需要做出决策的函数。使用数学符号,问题表述如下: Max ()()()332211d r d r d r ++ s.t. 1000321≤++d d d 每个阶段的决策变量和相应的返回值如下所示:

6-4. 某制造公司为一家汽车工厂提供发动机的部件,以下是3个月的生产计划的数据。 量是10单位,并且生产批量是10的倍数(例如,10,20或者30单位)。 6-5. 某物流公司雇佣了8名新员工,现决定如何把他们分配到4项作业上。公司给出了以下每项作业分配不同的作业人员的估计利润表。 (1) 用动态规划决定每项作业应该分配的新员工数目。 (2) 如果公司只雇佣了6名新员工,应该把这些员工分配给哪些作业? 6-6. 一个锯木厂采购了一批20ft 长的原木,想要把这些原木切成更短的原木,然后把切后的小原木卖给制造公司。制造公司已经订购了一批4种尺寸的原木:l 1=3ft ,l 2=7ft ,l 3=11ft ,l 4=16ft 。锯木厂现在有2000个长度为20ft 的原木的库存,并希望有选择地裁截原木以最大化利润。假定锯木厂的订单是无限的,唯一的问题就是确定把现有原木裁成的类型以最大化利润。原木的利润如下表所示: 任何裁截类型的长度限制如下: 201173321≤++d d d 其中,i d 是长度为i l 的类型的裁截数目,4,3,2,1=i . (1)为这个问题建立动态规划模型,并使用模型解决问题。你需要设立哪些变量?状态变量有哪些? (2)简要介绍如果总的长度l 被截成l 1,l 2,……l N 这样N 中长度的话,如果扩展现有模型以找到最优解? 6-7. 一家港口公司建立了良好的管理训练计划,希望每一个员工完成一个4阶段的作业。但是在训练计划的每个阶段,员工都会被分配一系列艰难的作业。以下是训练计划的每个阶段员工可能被分派的作业和任务估计完成时间。 次级阶段的作业取决于其先前的作业。例如,在阶段1接受作业A 的员工在阶段2只能接受作业F 或者作业G ——即每一项作业都存在优先关系。

7.运筹学之目标规划(胡运权版)

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 第七章目标规划 §1 目标规划的提出 线性规划问题是讨论一个给定的线性目标函数在一组线性约束条件下的最大值或最小值问题。对于一个实际问题,管理科学者根据管理层决策目标的要求,首先确定一个目标函数以衡量不同决策的优劣,且根据实际问题中的资源、资金和环境等因素对决策的限制提出相应的约束条件以建立线性规划模型;然后用计算机软件求出最优方案并作灵敏度分析以供管理层决策之用。而在一些问题中,决策目标往往不只一个,且模型中有可能存在一些互相矛盾的约束条件的情况,用已有的线性规划的理论和方法无法解决这些问题。因此,1961年美国学者查恩斯(A.Charnes)和库柏(W.W.Coopor)提出了目标规划的概念与数学模型,以解决经济管理中的多目标决策问题。 我们将通过几个例子来说明在实际应用中线性规划存在一系列的局限性。 例1某厂生产A、B两种产品每件所需的劳动力分别为4个人工和6个人工,所需设备的单位台时均为1。已知该厂有10个单位机器台时提供制造这两种产品,并且至少能提供70个人工。又,A、B产品的利润,每件分别为300元和500元。试问:该厂各应生产多少件A、B产品,才能使其利润值最大? 解设该厂能生产A、B产品的数量分别为 ,x x件,则有 12

12 12 12 max300500 10 ..4670 0,1,2. j z x x x x s t x x x j =+ ?+≤ ? +≥ ? ?≥= ? 图解法求解如下: 由上图可得,满足约束条件的可行解集为?,即机时约束和人工约束之间产生矛盾,因而该问题无解。但在实际中,该厂要增加利润,不可能不生产A、B两种产品,而由线性规划模型无法为其找到一个合适的方案。 例2某厂为进行生产需采购A、B两种原材料,单价分别为70元/公斤和50元/公斤。现要求购买资金不超过5000元,总购买量不少于80公斤,而A原材料不少于20公斤。问如何确定最好的采购方案(即花掉的资金最少,购买的总量最大)? 解这是一个含有两个目标的数学规划问题。设 12 ,x x分别为购买两种 原材料的公斤数,() 112 , f x x为花掉的资金,() 212 , f x x为购买的总量。建立该问题的数学模型形式如下:

运筹学试验:整数规划

《运筹学》上机实验报告三 (整数线性规划) 实验名称:利用Gomory割平面法编程求解整数规划问题;利用分枝定界法编程求解整数规划问题 实验目的:1. 学会软件lindo/lingo的安装及基本的操作;2. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo 对问题进行求解。 实验内容: 1.用lindo/lingo 计算(学会输入、查看、运行、结果分析) max z = 20x1 + 10x2 5x1 + 4x2 ≤ 24 2x1 + 5x2 ≤ 13 x1,x2 ≥ 0 x1,x2取整数 2.(指派问题) 现在有A 、B、C、D、E五种任务,要交给甲、乙、丙、丁、戊去完成,每人完成一种任务,每个人完成每种任务所需要的时间如下表。问应该如何安排个人完成哪项任务可使总的花费的时间最少?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明) A B C D E 任务 人 甲127979 乙89666 丙717121412 丁15146610 戊4107106 3.选址问题 某跨国公司准备在某国建三个加工厂,现有8个城市供选择,每个城市需要的投资分别为1200万美元、1400万美元、800万美元、900万美元、1000万美元、1050万美元、950万美元、150万美元,但投资总额

不能超过3400万美元,形成生产能力分别为100万台、120万台、80万台、85万台、95万台、100万台、90万台、130万台,由于需求的原因,要求:城市1和城市3最多选1个,城市3、城市4、城市5最多选两个,城市6和城市7最少选1个,问选择哪些城市建厂,才能使总的生产能力最大?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明) 整数变量定义 LinDo 一般整数变量:GIN 0-1整数变量: INT LinGo 一般整数变量: @GIN( variable_name); 0-1整数变量:@BIN( variable_name); 例如(1) Lindo运算程序 max 3 x1+5 x2+4 x3 subject to 2 x1+ 3 x2<=1500 2 x2+4 x3<=800 3 x1+2 x2 +5 x3<=2000 end gin x1 gin x3 (2) max z = 3x1 - 2x2 + 5x3 x1 + 2x2 - x3 ≤ 2 x1 + 4x2 + x3 ≤ 4 x1 + x2 ≤ 3 4x2 + x3 < 6 x1,x2,x3 = 0或1 lingo程序: max =3*x1 – 2*x2 + 5*x3; x1 + 2*x2 - x3 <= 2; x1 + 4*x2 + x3 <= 4;

运筹学实验报告四整数规划

2018-2019学年第一学期 《运筹学》 实验报告(四) 班级:交通运输171 学号: 1000000000 姓名: ***** 日期: 2018.11.22

实验一: 用Lingo 软件求解下列整数规划问题(要求附程序和结果) 12 121212max 2506221 0,1,2i z x x x x x x x x x i =++≤?? -+≤?? +≤??≥=?且取整数 12312323123123 123max 232 45 2244 ,,01 z x x x x x x x x x x x x x x x x x =+-++≤??+≤?? +-≤??+-≤?=??或 解:例题(左)解题程序及运行结果如下: sets : bliang/1,2/:x,a; yshu/1,2,3/:b; xshu(yshu,bliang):c; endsets data : a=2,1; b=5,0,21; c=1,1 -1,1 6,2; enddata max =@sum (bliang(i):a(i)*x(i)); @for (yshu(j):@sum (bliang(i):x(i)*c(j,i))<=b(j)); @for(bliang(i):@gin(x(i))); Global optimal solution found. Objective value: 7.000000 Objective bound: 7.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X( 1) 3.000000 -2.000000 X( 2) 1.000000 -1.000000 A( 1) 2.000000 0.000000

相关主题
文本预览
相关文档 最新文档