当前位置:文档之家› 12.高考必考十四大经典物理专题集锦 应用气体实验定律解决“三类模型问题”(原卷版)

12.高考必考十四大经典物理专题集锦 应用气体实验定律解决“三类模型问题”(原卷版)

12.高考必考十四大经典物理专题集锦 应用气体实验定律解决“三类模型问题”(原卷版)
12.高考必考十四大经典物理专题集锦 应用气体实验定律解决“三类模型问题”(原卷版)

【专题12】应用气体实验定律解决“三类模型问题”

(原卷版)

考点分类:考点分类见下表

考点内容

常见题型及要求

考点一 “玻璃管液封”模型 计算题 考点二 “汽缸活塞类”模型 计算题 考点三 “变质量气体”模型 计算题

考点一: “玻璃管液封”模型

1.三大气体实验定律

(1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p

T =C (常数).

(3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V

T =C (常数).

2.利用气体实验定律及气态方程解决问题的基本思路

3.玻璃管液封模型

求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意:

(1)液体因重力产生的压强大小为p=ρgh(其中h为至液面的竖直高度);

(2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力;

(3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等;

(4)当液体为水银时,可灵活应用压强单位“cmHg”等,使计算过程简捷.

考点二“汽缸活塞类”模型

汽缸活塞类问题是热学部分典型的物理综合题,它需要考虑气体、汽缸或活塞等多个研究对象,涉及热学、力学等物理知识,需要灵活、综合地应用知识来解决问题.

1.一般思路

(1)确定研究对象,一般地说,研究对象分两类:一类是热学研究对象(一定质量的理想气体);另一类是力学研究对象(汽缸、活塞或某系统).

(2)分析物理过程,对热学研究对象分析清楚初、末状态及状态变化过程,依据气体实验定律列出方程;对力学研究对象要正确地进行受力分析,依据力学规律列出方程.

(3)挖掘题目的隐含条件,如几何关系等,列出辅助方程.

(4)多个方程联立求解.对求解的结果注意检验它们的合理性.

2.常见类型

(1)气体系统处于平衡状态,需综合应用气体实验定律和物体的平衡条件解题.

(2)气体系统处于力学非平衡状态,需要综合应用气体实验定律和牛顿运动定律解题.

(3)两个或多个汽缸封闭着几部分气体,并且汽缸之间相互关联的问题,解答时应分别研究各部分气体,找出它们各自遵循的规律,并写出相应的方程,还要写出各部分气体之间压强或体积的关系式,最后联立求解.

说明当选择力学研究对象进行分析时,研究对象的选取并不唯一,可以灵活地选整体或部分为研究对象进行受力分析,列出平衡方程或动力学方程.

考点三:“变质量气体”模型

分析变质量气体问题时,要通过巧妙地选择研究对象,使变质量气体问题转化为定质量气体问题,用气体实验定律求解.

(1)打气问题:选择原有气体和即将充入的气体作为研究对象,就可把充气过程中气体质量变化问题转化为

定质量气体的状态变化问题.

(2)抽气问题:将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程可以看成是等温膨胀过程.

(3)灌气问题:把大容器中的剩余气体和多个小容器中的气体整体作为研究对象,可将变质量问题转化为定质量问题.

(4)漏气问题:选容器内剩余气体和漏出气体整体作为研究对象,便可使问题变成一定质量气体的状态变化,可用理想气体的状态方程求解.

★考点一:“玻璃管液封”模型

◆典例一:(单独气体问题)(2019广东深圳二模)某同学设计了测量液体密度的装置。如图,左侧容器开口;右管竖直,上端封闭,导热良好,管长Lo=1m,粗细均匀,底部有细管与左侧连通,初始时未装液体。现向左侧容器缓慢注入某种液体,当左侧液面高度为h1=0.7m时,右管内液柱高度h2=0.2m。己知右管横截面积远小于左侧横截面积,大气压强p0=l.0×105Pa,取g=10m/s2。

(i)求此时右管内气体压强及该液体的密度;

(ii)若此时右管内气体温度T=260K,再将右管内气体温度缓慢升高到多少K时,刚好将右管中液体全部挤出?(不计温度变化对液体密度的影响)

◆典例二:关联气体问题(2016·全国卷Ⅲ·33(2))一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图3所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0 cmHg.环境温度不变.(保留三位有效数字)

图3

★考点二:“汽缸活塞类”模型

◆典例一:.(2018·高考全国卷Ⅰ)(10分)如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K 。开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0, 现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为

8V 时,将K 关闭,活塞平衡时其下方气体的体积减小了6

V

,不计活塞的质量和体积,外界温度保持不变,重力加速度大小为g 。求流入汽缸内液体的质量。

◆典例二:关联气体问题(2017·全国卷Ⅰ·33(2))如图7,容积均为V 的汽缸A 、B 下端有细管(容积可忽略)连通,阀门K 2位于细管的中部,A 、B 的顶部各有一阀门K 1、K 3;B 中有一可自由滑动的活塞(质量、体积均可忽略).初始时,三个阀门均打开,活塞在B 的底部;关闭K 2、K 3,通过K 1给汽缸充气,使A 中气体的压强达到大气压p 0的3倍后关闭K 1.已知室温为27 ℃,汽缸导热.

图7

(1)打开K 2,求稳定时活塞上方气体的体积和压强; (2)接着打开K 3,求稳定时活塞的位置;

(3)再缓慢加热汽缸内气体使其温度升高20 ℃,求此时活塞下方气体的压强. ★考点三:“变质量气体”模型 ◆典例一:一氧气瓶的容积为,开始时瓶中氧气的压强为20个大气压。某实验室每天消耗1个大气

压的氧气

当氧气瓶中的压强降低到2个大气压时,需重新充气。若氧气的温度保持不变,求这瓶氧

气重新充气前可供该实验室使用多少天。

◆典例二 某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p ,设充气过程为等温过程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同、压强也是p 0、体积为________的空气. A.p 0p V B.p p 0

V C.(p p 0-1)V D.(p

p 0+1)V

1. (2019·山西太原市模拟) (10分)如图所示,马桶吸由皮吸和汽缸两部分组成,下方半球形皮吸空间的容积为1000 cm 3,上方汽缸的长度为40 cm ,横截面积为50 cm 2。小明在试用时,用手柄将皮吸压在水平地面上,

皮吸中气体的压强等于大气压。皮吸与地面及活塞与汽缸间密封完好不漏气,不考虑皮吸与汽缸的形状变化,环境温度保持不变,汽缸内薄活塞、连杆及手柄的质量忽略不计,已知大气压强p0=1.0×105Pa,g=10 m/s2。

①若初始状态下活塞位于汽缸顶部,当活塞缓慢下压到汽缸皮吸底部时,求皮吸中气体的压强;

②若初始状态下活塞位于汽缸底部,小明用竖直向上的力将活塞缓慢向上提起20 cm高度保持静止,求此时小明作用力的大小。

2.(2020四川泸州市泸县一中月考)一圆柱形气缸,质量M为10kg,总长度L为40cm,内有一活塞,质量m为5kg,截面积S为50cm2,活塞与气缸壁间摩擦可忽略,但不漏气(不计气缸壁与活塞厚度),当外界大气压强p0为1×105Pa,温度t0为7℃时,如果用绳子系住活塞将气缸悬挂起来,如图所示,气缸内气体柱的高L1为35cm,g取10m/s2.求:

①此时气缸内气体的压强;

②当温度升高到多少摄氏度时,活塞与气缸将分离?

3.如图所示,一圆筒形汽缸静止于地面上,汽缸的质量为M,活塞(连同手柄)的质量为m,汽缸内部的横截面积为S,大气压强为p0,平衡时汽缸内的容积为V.现用手握住活塞手柄缓慢向上提.设汽缸足够长,不计汽缸内气体的重力和活塞与汽缸壁间的摩擦,求汽缸在开始以及刚提离地面时封闭气体的压强分别为多

少?

4.(2018·全国Ⅱ卷)如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质量的理想气体,已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸壁均绝热,不计它们之间的摩擦,开始时活塞处于静止状态,上、下方气体压强均为p0,温度均为T0.现用电热丝缓慢加热汽缸中的气体,直至活塞刚好到达b处,求此时汽缸内气体的温度以及在此过程中气体对外所做的功.重力加速度大小为g.

5.如图所示,一根粗细均匀的长l=72 cm的细玻璃管AB开口朝上竖直放置,玻璃管中有一段长h=24 cm 的水银柱,下端封闭了一段长x0=24 cm的空气柱,系统温度恒定,外界大气压强恒为p0=76 cmHg.现将玻璃管缓慢倒置,若空气可以看做理想气体,求倒置后水银柱相对B端移动的距离.

6.(2018·全国Ⅰ卷)如图,容积为V 的汽缸由导热材料制成,面积为S 的活塞将汽缸分成容积相等的上下两部分,汽缸上部通过细管与装有某种液体的容器相连,细管上有一阀门K ,开始时,K 关闭,汽缸内上下两部分气体的压强均为p 0.现将K 打开,容器内的液体缓慢地流入汽缸,当流入的液体体积为V

8时,将K 关

闭,活塞平衡时其下方气体的体积减小了V

6,不计活塞的质量和体积,外界温度保持不变,重力加速度大小

为g .求流入汽缸内液体的质量.

7.如图所示,内壁光滑的圆柱形导热汽缸固定在水平面上,汽缸内部被活塞封有一定质量的理想气体,活塞横截面积为S,质量和厚度都不计,活塞通过弹簧与汽缸底部连接在一起,弹簧处于原长。已知周围环境温度为T 0,大气压强为p 0,弹簧的劲度系数k=

0l s

p (S 为活塞横截面积),原长为l 0,一段时间后,环境温度降低,在活塞上施加一水平向右的压力F,使活塞缓慢向右移动,当压力增大到一定值时保持恒定,此时活塞向右移动了0.2l 0,缸内气体压强为1.1p 0。

(ⅰ)求此时缸内的气体的温度T1;

(ⅱ)对汽缸加热,使气体温度缓慢升高,当活塞移动到距离汽缸底部1.2l0时,求此时缸内的气体温度T2。

8.如图所示,体积为V、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞;汽缸内密封有温度为2.4T0、压强1.2p0的理想气体,p0与T0分别为大气的压强和温度。已知:理想气体内能U与温度T的关系为U=αT,α为正的常量;容器内气体的所有变化过程都是缓慢的。求:

①汽缸内气体与大气达到平衡时的体积V1;

②在活塞下降过程中,汽缸内气体放出的热量Q。

9.如图中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下。两个汽缸内分别封闭有一定质量的空气A、B,大气压为p0,求封闭气体A、B的压强各多大?

10.如图6所示,两端开口的汽缸水平固定,A、B是两个厚度不计的活塞,可在汽缸内无摩擦滑动,面积分别为S1=20 cm2,S2=10 cm2,它们之间用一根水平细杆连接,B通过水平细绳绕过光滑的轻质定滑轮与质

量为M =2 kg 的重物C 连接,静止时汽缸中的气体温度T 1=600 K ,汽缸两部分的气柱长均为L ,已知大气压强p 0=1×105 Pa ,取g =10 m/s 2,缸内气体可看做理想气体.

图6

(1)活塞静止时,求汽缸内气体的压强;

(2)若降低汽缸内气体的温度,当活塞A 缓慢向右移动L

2时,求汽缸内气体的温度.

11.某自行车轮胎的容积为V ,里面已有压强为p 0的空气,现在要使轮胎内的气压增大到p ,设充气过程为等温过程,空气可看做理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同、压强也是p 0、体积为________的空气. A.p 0p V B.p p 0

V C.(p p 0-1)V D.(p

p 0

+1)V

高考物理专题汇编物理牛顿运动定律的应用(一)及解析

高考物理专题汇编物理牛顿运动定律的应用(一)及解析 一、高中物理精讲专题测试牛顿运动定律的应用 1.如图,质量为m =lkg 的滑块,在水平力作用下静止在倾角为θ=37°的光滑斜面上,离斜面末端B 的高度h =0. 2m ,滑块经过B 位置滑上皮带时无机械能损失,传送带的运行速度为v 0=3m/s ,长为L =1m .今将水平力撤去,当滑块滑 到传送带右端C 时,恰好与传送带速度相同.g 取l0m/s 2.求: (1)水平作用力F 的大小;(已知sin37°=0.6 cos37°=0.8) (2)滑块滑到B 点的速度v 和传送带的动摩擦因数μ; (3)滑块在传送带上滑行的整个过程中产生的热量. 【答案】(1)7.5N (2)0.25(3)0.5J 【解析】 【分析】 【详解】 (1)滑块受到水平推力F . 重力mg 和支持力F N 而处于平衡状态,由平衡条件可知,水平推力F=mg tan θ, 代入数据得: F =7.5N. (2)设滑块从高为h 处下滑,到达斜面底端速度为v ,下滑过程机械能守恒, 故有: mgh = 212 mv 解得 v 2gh ; 滑块滑上传送带时的速度小于传送带速度,则滑块在传送带上由于受到向右的滑动摩擦力而做匀加速运动; 根据动能定理有: μmgL = 2201122 mv mv 代入数据得: μ=0.25 (3)设滑块在传送带上运动的时间为t ,则t 时间内传送带的位移为: x=v 0t 对物体有: v 0=v ?at

ma=μmg 滑块相对传送带滑动的位移为: △x =L?x 相对滑动产生的热量为: Q=μmg △x 代值解得: Q =0.5J 【点睛】 对滑块受力分析,由共点力的平衡条件可得出水平作用力的大小;根据机械能守恒可求滑块滑上传送带上时的速度;由动能定理可求得动摩擦因数;热量与滑块和传送带间的相对位移成正比,即Q=fs ,由运动学公式求得传送带通过的位移,即可求得相对位移. 2.如图,质量分别为m A =2kg 、m B =4kg 的A 、B 小球由轻绳贯穿并挂于定滑轮两侧等高H =25m 处,两球同时由静止开始向下运动,已知两球与轻绳间的最大静摩擦力均等于其重力的0.5倍,且最大静摩擦力等于滑动摩擦力.两侧轻绳下端恰好触地,取g =10m/s 2,不计细绳与滑轮间的摩擦,求:, (1)A 、B 两球开始运动时的加速度. (2)A 、B 两球落地时的动能. (3)A 、B 两球损失的机械能总量. 【答案】(1)2 5m/s A a =27.5m/s B a = (2)850J kB E = (3)250J 【解析】 【详解】 (1)由于是轻绳,所以A 、B 两球对细绳的摩擦力必须等大,又A 得质量小于B 的质量,所以两球由静止释放后A 与细绳间为滑动摩擦力,B 与细绳间为静摩擦力,经过受力分析可得: 对A :A A A A m g f m a -= 对B :B B B B m g f m a -= A B f f = 0.5A A f m g = 联立以上方程得:2 5m/s A a = 27.5m/s B a = (2)设A 球经t s 与细绳分离,此时,A 、B 下降的高度分别为h A 、h B ,速度分别为V A 、V B ,因为它们都做匀变速直线运动

专题三:气体实验定律_理想气体的状态方程

专题三:气体实验定律 理想气体的状态方程 [基础回顾]: 一.气体的状态参量 1.温度:温度在宏观上表示物体的________;在微观上是________的标志. 温度有________和___________两种表示方法,它们之间的关系可以表示为:T = ________.而且ΔT =____(即两种单位制下每一度的间隔是相同的). 绝对零度为____0 C,即___K ,是低温的极限,它表示所有分子都停止了热运动.可以无限接近,但永远不能达到. 2.体积:气体的体积宏观上等于___________________________________,微观上则表示_______________________.1摩尔任何气体在标准状况下所占的体积均为_________. 3.压强:气体的压强在宏观上是___________;微观上则是_______________________产生的.压强的大小跟两个因素有关:①气体分子的__________,②分子的_________. 二.气体实验定律 1.玻意耳定律(等温变化) 一定质量的气体,在温度不变的情况下,它的压强跟体积成______;或者说,它的压强跟体积的________不变.其数学表达式为_______________或_____________. 2.查理定律(等容变化) (1)一定质量的气体,在体积不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的压强等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在体积不变的情况下,它的压强与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(P ,T )开始,发生一等容变化过程,其压强的变化量△P 与温度变化量△T 的关系为_____________. 3.盖·吕萨克定律(等压变化) (1)一定质量的气体,在压强不变的情况下,温度每升高(或降低)10 C ,增加(或减少)的体积等于它在___________.其数学表达式为_______________或_____________. (2)采用热力学温标时,可表述为:一定质量的气体,在压强不变的情况下,它的体积与热力学温度成______.其数学表达式为____________. (3)推论:一定质量的气体,从初状态(V ,T )开始,发生一等压变化过程,其体积的变化量△V 与温度变化量△T 的关系为_____________. 三.理想气体状态方程 1.理想气体 能够严格遵守___________的气体叫做理想气体.从微观上看,分子的大小可忽略,除碰撞外分子间无___________,理想气体的内能由气体_____和_____决定,与气体_____无关.在___________、__________时,实际气体可看作理想气体. 2.一定质量的理想气体状态方程: 2 2 2111T V P T V P = 3.密度方程: 2 22111ρρT P T P = [重难点阐释]: 一.气体压强的计算

气体实验定律物理教案

气体实验定律物理教案 知识目标 1、知道什么是等温变化,知道玻意耳定律的实验装置和实验过程,掌握玻意耳定律 的内容与公式表达. 2、知道什么是等容变化,了解查理定律的实验装置和实验过程,掌握查理定律的内 容与公式表达. 3、掌握三种基本图像,并能通过图像得到相关的物理信息. 能力目标 通过实验培养学生的观察能力和实验能力以及分析实验结果得出结论的能力. 情感目标 通过实验,培养学生分析问题和解决问题的能力,同时树立理论联系实际的观点. 教学建议 教材分析 本节的内容涉及三个实验定律:玻意耳定律、查理定律和盖?吕萨克定律.研究压强、体积和温度之间的变化关系,教材深透了一般物理研究方法――“控制变量法”:在研究 两个以上变量的关系时,往往是先研究其中两个变量间的关系,保持其它量不变,然后综 合起来得到所要研究的几个量之间的关系,在牛顿第二定律、力矩的平衡、单摆周期确定 等教学中,我们曾经几次采用这种方法. 教法建议 通过演示实验,及设定变量的方法得到两个实验定律;注意定律成立的条件.提高学生 对图像的分析能力. 教学设计方案 教学用具:验证玻意耳定律和查理定律的实验装置各一套. 教学主要过程设计:在教师指导下学生认识实验并帮助记录数据,在教师启发下学生 自己分析总结、推理归纳实验规律. 课时安排:2课时 教学步骤

(一)课堂引入: 教师讲解:我们学习了描述气体的三个物理参量――体积、温度、压强,并知道对于 一定质量的气体,这三个量中一个量变化时,另外两个量也会相应的发生变化,三个量的 变化是互相关联的,那么,对于一定质量的气体,这三个量的变化关系是怎样的呢?这节课,我们便来研究一下! (二)新课讲解: 教师讲解:在物理学中,当需要研究三个物理量之间的关系时,往往采用“保持一个 量不变,研究其它两个量之间的关系,然后综合起来得出所要研究的几个量之间的关系”,我们研究一定质量的气体温度、体积、压强三者的关系,就可以采用这种方法.首先,我 们设定温度不变,研究气体体积和压强的关系. 1、气体的压强与体积的关系――玻意耳定律 演示实验:一定质量的气体,在保持温度不变的情况下改变压强,研究压强与体积的 关系.让学盛帮助记录数据. 压强Pa0.51.01.52.02.53.03.54.0 体积V/L8.04.02.72.01.61.31.11.0 4.04.04.054.04.03.93.854.0 以横坐标表示气体的体积,纵坐标表示气体的压强,作出压强p与体积的关系如图所示. 可见,一定质量的气体,在体积不变的情况,压强P随体积V的关系图线为一双曲线,称为等温线.①见等温线上的每点表示气体的一个状态.②同一等温线上每一状态的温度均 相同.③对同一部分气体,在不同温度下的等温线为一簇双曲线,离坐标轴越近的等温线 的温度越高. 通过实验得出,一定质量的某种气体,在温度保持不变的情况下,压强p与体积V的 乘积保持不变,即:常量 或压强p与体积V成反比,即: 这个规律叫做玻意耳定律,也可以写成:或 例如:一空气泡从水库向上浮,由于气泡的压强逐渐减小,因此体积逐渐增大. 例题1:如图所示,已知:,求:和 解:根据图像可得:

高考物理牛顿运动定律试题经典及解析

高考物理牛顿运动定律试题经典及解析 一、高中物理精讲专题测试牛顿运动定律 1.质量为2kg的物体在水平推力F的作用下沿水平面做直线运动,一段时间后撤去F,其运动的图象如图所示取m/s2,求: (1)物体与水平面间的动摩擦因数; (2)水平推力F的大小; (3)s内物体运动位移的大小. 【答案】(1)0.2;(2)5.6N;(3)56m。 【解析】 【分析】 【详解】 (1)由题意可知,由v-t图像可知,物体在4~6s内加速度: 物体在4~6s内受力如图所示 根据牛顿第二定律有: 联立解得:μ=0.2 (2)由v-t图像可知:物体在0~4s内加速度: 又由题意可知:物体在0~4s内受力如图所示 根据牛顿第二定律有: 代入数据得:F=5.6N (3)物体在0~14s内的位移大小在数值上为图像和时间轴包围的面积,则有:

【点睛】 在一个题目之中,可能某个过程是根据受力情况求运动情况,另一个过程是根据运动情况分析受力情况;或者同一个过程运动情况和受力情况同时分析,因此在解题过程中要灵活 处理.在这类问题时,加速度是联系运动和力的纽带、桥梁. 2.如图所示为工厂里一种运货过程的简化模型,货物(可视为质点质量4m kg =,以初速度010/v m s =滑上静止在光滑轨道OB 上的小车左端,小车质量为6M kg =,高为 0.8h m =。在光滑的轨道上A 处设置一固定的障碍物,当小车撞到障碍物时会被粘住不 动,而货物继续运动,最后恰好落在光滑轨道上的B 点。已知货物与小车上表面的动摩擦因数0.5μ=,货物做平抛运动的水平距离AB 长为1.2m ,重力加速度g 取210/m s 。 ()1求货物从小车右端滑出时的速度; ()2若已知OA 段距离足够长,导致小车在碰到A 之前已经与货物达到共同速度,则小车 的长度是多少? 【答案】(1)3m/s ;(2)6.7m 【解析】 【详解】 ()1设货物从小车右端滑出时的速度为x v ,滑出之后做平抛运动, 在竖直方向上:2 12 h gt = , 水平方向:AB x l v t = 解得:3/x v m s = ()2在小车碰撞到障碍物前,车与货物已经到达共同速度,以小车与货物组成的系统为研 究对象,系统在水平方向动量守恒, 由动量守恒定律得:()0mv m M v =+共, 解得:4/v m s =共, 由能量守恒定律得:()2201122 Q mgs mv m M v μ==-+共相对, 解得:6s m =相对, 当小车被粘住之后,物块继续在小车上滑行,直到滑出过程,对货物,由动能定理得: 22 11'22 x mgs mv mv 共μ-= -,

气体实验定律及应用参考答案

第2节气体实验定律及应用 知识梳理 一、气体分子运动速率的统计分布气体实验定律理想气体 1.气体分子运动的特点 (1)分子很小,间距很大,除碰撞外不受力. (2)气体分子向各个方向运动的气体分子数目都相等. (3)分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布.(4)温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大. 2.气体的三个状态参量 (1)体积;(2)压强;(3)温度. 3.气体的压强 (1)产生原因:由于气体分子无规则的热运动,大量的分子频繁地碰撞器壁产生持续而稳定的压力. (2)大小:气体的压强在数值上等于气体作用在单位面积上的压力.公式:p=. (3)常用单位及换算关系: ①国际单位:帕斯卡,符号:Pa,1Pa=1N/m2. ②常用单位:标准大气压(atm);厘米汞柱(cmHg). ③换算关系:1atm=76cmHg= 1.013×105Pa≈1.0×105Pa. 4.气体实验定律 (1)等温变化——玻意耳定律: ①内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比. ②公式:p1V1=p2V2或pV=C(常量). (2)等容变化——查理定律: ①内容:一定质量的某种气体,在体积不变的情况下,压强p与热力学温度T 成正比.②公式:=或=C(常量). ③推论式:Δp=·ΔT. (3)等压变化——盖—吕萨克定律: ①内容:一定质量的某种气体,在压强不变的情况下,其体积V与热力学温度T 成正比. ②公式:=或=C(常量). ③推论式:ΔV=·ΔT. 5.理想气体状态方程 (1)理想气体:在任何温度、任何压强下都遵从气体实验定律的气体. ①理想气体是一种经科学的抽象而建立的理想化模型,实际上不存在. ②理想气体不考虑分子间相互作用的分子力,不存在分子势能,内能取决于温度,与体积无关. ③实际气体特别是那些不易液化的气体在压强不太大,温度不太低时都可看作理想气体. (2)一定质量的理想气体状态方程: =或=C(常量). 典例突破 考点一气体压强的产生与计算1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强. 2.决定因素 (1)宏观上:决定于气体的温度和体积. (2)微观上:决定于分子的平均动能和分子的密集程度. 3.平衡状态下气体压强的求法 (1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程.求得气体的压强. (2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.

2019-2020年教科版物理选修3-3讲义:第2章+3.气体实验定律及答案

3.气体实验定律 [先填空] 1.研究气体的性质,用压强、体积、温度等物理量描述气体的状态.描述气体状态的这几个物理量叫做气体的状态参量. 2.气体的体积是指气体占有空间的大小,就是贮放气体的容器的容积.在国际单位制中,体积的单位是立方米,符号是m3.常用单位间的换算关系:1 L=10-3 m3,1 mL=10-6 m3. 3.温度是气体分子平均动能的标志,热力学温度,亦称绝对温度,用符号T 表示,单位是开尔文,符号是K.两种温度间的关系是T=t+273. 4.气体的压强是大量气体分子对器壁撞击的宏观表现,用符号p表示.在国际单位制中,单位是帕斯卡,符号是Pa. [再判断] 1.气体体积就是所有气体分子体积的总和.(×) 2.温度越高,所有的分子运动越快.(×) 3.一个物体的温度由10 ℃升高到20 ℃,与它从288 K升高到298 K所升高的温度是相同的.(√) [后思考] 摄氏温度的1 ℃与热力学温度的1 K大小相同吗?

【提示】热力学温度与摄氏温度零点选择不同,但它们的分度方法,即每一度的大小是相同的. 1.温度的含义:温度表示物体的冷热程度,这样的定义带有主观性,因为冷热是由人体的感觉器官比较得到的,往往是不准确的. 2.温标 (1)常见的温标有摄氏温标、华氏温标、热力学温标. (2)比较摄氏温标和热力学温标. 1.关于热力学温度下列说法中正确的是() A.-33 ℃=240 K B.温度变化1 ℃,也就是温度变化1 K C.摄氏温度与热力学温度都可能取负值 D.温度由t℃升至2t℃,对应的热力学温度升高了273 K+t E.-136 ℃比136 K温度高 【解析】T=273+t,由此可知:-33 ℃=240 K,A正确,同时B正确;D中初态热力学温度为273+t,末态为273+2t温度变化t K,故D错;对于摄氏温度可取负值的范围为0到-273 ℃,因绝对零度达不到,故热力学温度不可能取

最新高考物理牛顿运动定律练习题

最新高考物理牛顿运动定律练习题 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量2kg M =的木板静止在光滑水平地面上,一质量1kg m =的滑块(可 视为质点)以03m/s v =的初速度从左侧滑上木板水平地面右侧距离足够远处有一小型固定挡板,木板与挡板碰后速度立即减为零并与挡板粘连,最终滑块恰好未从木板表面滑落.已知滑块与木板之间动摩擦因数为0.2μ=,重力加速度210m/s g =,求: (1)木板与挡板碰撞前瞬间的速度v ? (2)木板与挡板碰撞后滑块的位移s ? (3)木板的长度L ? 【答案】(1)1m/s (2)0.25m (3)1.75m 【解析】 【详解】 (1)滑块与小车动量守恒0()mv m M v =+可得1m/s v = (2)木板静止后,滑块匀减速运动,根据动能定理有:2102 mgs mv μ-=- 解得0.25m s = (3)从滑块滑上木板到共速时,由能量守恒得:220111 ()22 mv m M v mgs μ=++ 故木板的长度1 1.75m L s s =+= 2.如图,光滑固定斜面上有一楔形物体A 。A 的上表面水平,A 上放置一物块B 。已知斜面足够长、倾角为θ,A 的质量为M ,B 的质量为m ,A 、B 间动摩擦因数为μ(μ<), 最大静擦力等于滑动摩擦力,重力加速度为g 。现对A 施加一水平推力。求: (1)物体A 、B 保持静止时,水平推力的大小F 1; (2)水平推力大小为F 2时,物体A 、B 一起沿斜面向上运动,运动距离x 后撒去推力,A 、B 一起沿斜面上滑,整个过程中物体上滑的最大距离L ; (3)为使A 、B 在推力作用下能一起沿斜面上滑,推力F 应满足的条件。 【答案】(1) (2) (3)

应用气体实验定律解决“三类模型问题”

专题强化十四 应用气体实验定律解决“三类模型问题” 专题解读 1.本专题是气体实验定律在玻璃管液封模型、汽缸活塞类模型、变质量气体模型中的应用,高考在选考模块中通常以计算题的形式命题. 2.学好本专题可以帮助同学们熟练的选取研究对象和状态变化过程,掌握处理三类模型问题的基本思路和方法. 3.本专题用到的相关知识和方法有:受力分析、压强的求解方法、气体实验定律等. 命题点一 “玻璃管液封”模型 1.三大气体实验定律 (1)玻意耳定律(等温变化):p 1V 1=p 2V 2或pV =C (常数). (2)查理定律(等容变化):p 1T 1=p 2T 2或p T =C (常数). (3)盖—吕萨克定律(等压变化):V 1T 1=V 2T 2或V T =C (常数). 2.利用气体实验定律及气态方程解决问题的基本思路 3.玻璃管液封模型 求液柱封闭的气体压强时,一般以液柱为研究对象分析受力、列平衡方程,要注意: (1)液体因重力产生的压强大小为p =ρgh (其中h 为至液面的竖直高度); (2)不要漏掉大气压强,同时又要尽可能平衡掉某些大气的压力; (3)有时可直接应用连通器原理——连通器内静止的液体,同种液体在同一水平面上各处压强相等; (4)当液体为水银时,可灵活应用压强单位“cmHg ”等,使计算过程简捷.

类型1 单独气体问题 例1 (2017·全国卷Ⅲ·33(2))一种测量稀薄气体压强的仪器如图1(a)所示,玻璃泡M 的上端和下端分别连通两竖直玻璃细管K 1和K 2.K 1长为l ,顶端封闭,K 2上端与待测气体连通;M 下端经橡皮软管与充有水银的容器R 连通.开始测量时,M 与K 2相通;逐渐提升R ,直到K 2中水银面与K 1顶端等高,此时水银已进入K 1,且K 1中水银面比顶端低h ,如图(b)所示.设测量过程中温度、与K 2相通的待测气体的压强均保持不变.已知K 1和K 2的内径均为d ,M 的容积为V 0,水银的密度为ρ,重力加速度大小为g .求: 图1 (1)待测气体的压强; (2)该仪器能够测量的最大压强. 答案 (1)ρπgh 2d 24V 0+πd 2?l -h ? (2)πρgl 2d 24V 0 解析 (1)水银面上升至M 的下端使玻璃泡中气体恰好被封住,设此时被封闭的气体的体积为V ,压强等于待测气体的压强p .提升R ,直到K 2中水银面与K 1顶端等高时,K 1中水银面比顶端低h ;设此时封闭气体的压强为p 1,体积为V 1,则 V =V 0+1 4πd 2l ① V 1=1 4πd 2h ② 由力学平衡条件得 p 1=p +ρgh ③ 整个过程为等温过程,由玻意耳定律得 pV =p 1V 1 ④ 联立①②③④式得 p =ρπgh 2d 2 4V 0+πd 2?l -h ? ⑤ (2)由题意知 h ≤l ⑥ 联立⑤⑥式有 p ≤πρgl 2d 24V 0 ⑦ 该仪器能够测量的最大压强为

高考物理牛顿运动定律练习题及解析

高考物理牛顿运动定律练习题及解析 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,在倾角为θ = 37°的足够长斜面上放置一质量M = 2kg 、长度L = 1.5m 的极薄平板 AB ,在薄平板的上端A 处放一质量m =1kg 的小滑块(视为质点),将小滑块和薄平板同时无初速释放。已知小滑块与薄平板之间的动摩擦因数为μ1=0.25、薄平板与斜面之间的动摩擦因数为μ2=0.5,sin37°=0.6,cos37°=0.8,取g=10m/s 2。求: (1)释放后,小滑块的加速度a l 和薄平板的加速度a 2; (2)从释放到小滑块滑离薄平板经历的时间t 。 【答案】(1)24m/s ,21m/s ;(2)1s t = 【解析】 【详解】 (1)设释放后,滑块会相对于平板向下滑动, 对滑块m :由牛顿第二定律有:0 11sin 37mg f ma -= 其中0 1cos37N F mg =,111N f F μ= 解得:002 11sin 37cos374/a g g m s μ=-= 对薄平板M ,由牛顿第二定律有:0 122sin 37Mg f f Ma +-= 其中00 2cos37cos37N F mg Mg =+,222N f F μ= 解得:2 21m/s a = 12a a >,假设成立,即滑块会相对于平板向下滑动。 设滑块滑离时间为t ,由运动学公式,有:21112x a t =,2221 2 x a t =,12x x L -= 解得:1s t = 2.如图1所示,在水平面上有一质量为m 1=1kg 的足够长的木板,其上叠放一质量为m 2=2kg 的木块,木块和木板之间的动摩擦因数μ1=0.3,木板与地面间的动摩擦因数μ2=0.1.假定木块和木板之间的最大静摩擦力和滑动摩擦力相等?现给木块施加随时间t 增大的水平拉力F =3t (N ),重力加速度大小g =10m/s 2

气体的等温变化、玻意耳定律典型例题

气体的等温变化、玻意耳定律典型例题 【例1】一个气泡从水底升到水面时,它的体积增大为原来的3倍,设水的密度为ρ=1×103kg/m3,大气压强p0=×105Pa,水底与水面的温度差不计,求水的深度。取g=10m/s2。 【分析】气泡在水底时,泡内气体的压强等于水面上大气压与水的静压强之和。气泡升到水面上时,泡内气体的压强减小为与大气压相等,因此其体积增大。由于水底与水面温度相同,泡内气体经历的是一个等温变化过程,故可用玻意耳定律计算。 【解答】设气泡在水底时的体积为V1、压强为:

p1=p0+ρgh 气泡升到水面时的体积为V2,则V2=3V1,压强为p2=p0。 由玻意耳定律 p1V1=p2V2,即 (p0+ρgh)V1=p0·3V1 得水深 【例2】如图1所示,圆柱形气缸活塞的横截面积为S,下表面与水平面的夹角为α,重量为G。当大气压为p0,为了使活塞下方密闭气体的体积减速为原来的1/2,必须在活塞上放置重量为多少的一个重物(气缸壁与活塞间的摩擦不计) 【误解】活塞下方气体原来的压强 设所加重物重为G′,则活塞下方气体的压强变为

∵气体体积减为原的1/2,则p2=2p1 【正确解答】据图2,设活塞下方气体原来的压强为p1,由活塞的平衡条件得 同理,加上重物G′后,活塞下方的气体压强变为 气体作等温变化,根据玻意耳定律:

得 p2=2p1 ∴ G′=p0S+G 【错因分析与解题指导】【误解】从压强角度解题本来也是可以的,但 免发生以上关于压强计算的错误,相似类型的题目从力的平衡入手解题比较好。在分析受力时必须注意由气体压强产生的气体压力应该垂直于接触面,气体压强乘上接触面积即为气体压力,情况就如【正确解答】所示。 【例3】一根两端开口、粗细均匀的细玻璃管,长L=30cm,竖直插入水银槽中深h0=10cm处,用手指按住上端,轻轻提出水银槽,并缓缓倒转,则此时管内封闭空气柱多长已知大气压P0=75cmHg。 【分析】插入水银槽中按住上端后,管内封闭了一定质量气体,空气柱长L1=L-h0=20cm,压强p1=p0=75cmHg。轻轻提出水银槽直立在空气中时,有一部分水银会流出,被封闭的空气柱长度和压强都会发生变化。设管中水银柱长h,被封闭气体柱长为L2=L-h。倒转后,水

高考物理牛顿运动定律专项训练及答案.doc

高考物理牛顿运动定律专项训练及答案 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,一足够长木板在水平粗糙面上向右运动。某时刻速度为v0= 2m/s ,此时一质量与木板相等的小滑块(可视为质点)以v1= 4m/s 的速度从右侧滑上木板,经过1s 两者速度恰好相同,速度大小为v2= 1m/s,方向向左。重力加速度g= 10m/s2,试求: (1)木板与滑块间的动摩擦因数μ1 (2)木板与地面间的动摩擦因数μ2 (3)从滑块滑上木板,到最终两者静止的过程中,滑块相对木板的位移大小。 【答案】( 1)0.3( 2)1 (3)2.75m 20 【解析】 【分析】 (1)对小滑块根据牛顿第二定律以及运动学公式进行求解; (2)对木板分析,先向右减速后向左加速,分过程进行分析即可; (3)分别求出二者相对地面位移,然后求解二者相对位移; 【详解】 (1)对小滑块分析:其加速度为:a1 v2 v1 1 4 m / s2 3m / s2,方向向右 t 1 对小滑块根据牛顿第二定律有:1mg ma1,可以得到: 1 0.3 ; (2)对木板分析,其先向右减速运动,根据牛顿第二定律以及运动学公式可以得到: v0 1 mg22mg m t1 然后向左加速运动,根据牛顿第二定律以及运动学公式可以得到: 1 mg 2 2mg m v2 t2 而且 t1 t2 t 1s 联立可以得到: 1 t1 0.5s,t2 0.5s ; 2 , 20 (3)在t1 0.5s时间内,木板向右减速运动,其向右运动的位移为:0v0 x1t10.5m ,方向向右; 在 t20.5s 时间内,木板向左加速运动,其向左加速运动的位移为:

高考物理学霸复习讲义气体实验定律-第一部分 气体实验定律——玻意耳定律

1.玻意耳定律:pV=C或p1V1=p2V2(温度不变)。 2.利用气体实验定律解决问题的基本思路: 【典例】如图所示,U形细玻璃管竖直放置,各部分水银柱的长度分别为L2=25 cm、L3 =25 cm、L4=10 cm,A端被封空气柱的长度为L1=60 cm,BC在水平面上。整个装置处在恒温环境中,外界气压p0=75 cmHg。将玻璃管绕B点在纸面内沿逆时针方向缓慢旋转90°至AB管水平,求此时被封空气柱的长度。 【答案】40 cm 【解析】设细玻璃管的横截面积为S,旋转前,V1=L1S,p1=p0–L2+L4 旋转后,V2=L S,p2=p0+L3 由玻意耳定律:1122 p V p V = 代入数据:()() 7525107525 60L S S -++ ?= 解得:() 6010 36cm cm L L- =< ,不成立 所以设原水平管中有长为x cm的水银进入左管(75–25+10)×60S=(75+25–x)×(60–10–x)S 解得:x=10 cm 所以L′=60?10?x=40 cm 【名师点睛】由玻意耳定律进行分析,即可求得空气柱的长度,再根据实际情况进行计论,明确是否第一部分气体实验定律——玻意耳定律

能符合题意,判断是否有水银进行左管;从而确定长度。 1.如图所示,由导热材料制成的气缸和活塞将一定质量的理想气体封闭在气缸内,活塞与气缸壁之间无摩擦。在活塞上缓慢地放上一定量的细砂。假设在此过程中,气缸内气体的温度始终保持不变,下列说法正确的是 A.气缸中气体的内能增加 B.气缸中气体的压强减小 C.气缸中气体的分子平均动能不变 D.单位时间内气缸中气体分子对活塞撞击的次数不变 【答案】C 【解析】气体做等温变化,而温度是气体是分子平均动能的标志,故气体分子的平均动能不变,理想气体的内能等于分子动能,所以内能不变,A错误,C正确;在活塞上缓慢地、一点点放上一定量的细沙,封闭气体压强增大,故B错误;封闭气体压强增大,温度不变,根据理想气体的状态方程可得气体的体积减小,缸中气体分子数密度增大,单位时间内气缸中气体分子对活塞撞击的次数增大,D错误。 【名师点睛】根据题意可知,被封闭气体作等温变化,在活塞上缓慢地、一点点放上一定量的细沙,压强逐渐增大。 2.一足够长的粗细均匀的玻璃管开口向上竖直放置,管内由15 cm长的水银柱封闭着50 cm长的空气柱。若将管口向下竖直放置,空气柱长变为多少cm?(设外界大气压强为75 cmHg,环境温度不变) 【答案】75 cm 【解析】封闭气体的状态参量:p1=p0+h=75 cmHg+15 cmHg=90 cmHg,V1=L1S=50S p2=p0﹣h=75 cmHg﹣15 cmHg=60 cmHg 气体发生等温变化,由玻意耳定律得p1V1= p2V2 即90×50S=60×LS 解得:L=75cm 3.如图所示,开口向上竖直放置的内壁光滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为m

高中物理:热力学定律与气体实验定律的综合

高中物理:热力学定律与气体实验定律的综合 1.如图1,一定质量的理想气体,由状态a 经过ab 过程到达状态b 或者经过ac 过程到达状态c .设气体在状态b 和状态c 的温度分别为T b 和T c ,在过程ab 和ac 中吸收的热量分别为Q ab 和Q ac ,则( ) 图1 A .T b >T c ,Q ab >Q ac B .T b >T c ,Q ab <Q ac C .T b =T c ,Q ab >Q ac D .T b =T c ,Q ab <Q ac 答案 C 解析 a →b 过程为等压变化,由盖-吕萨克定律得:V 0T a =2V 0T b ,得T b =2T a ,a →c 过程为等容变化,由查理定律得:p 0T a =2p 0T c ,得T c =2T a ,所以T b =T c . 由热力学第一定律,a →b :W ab +Q ab =ΔU ab a →c :W ac +Q ac =ΔU ac 又W ab <0,W ac =0,ΔU ab =ΔU ac >0,则有Q ab >Q ac ,故C 项正确. 2.如图2所示,一定质量的理想气体从状态A 变化到状态B ,再由状态B 变化到状态C .已知状态A 的温度为300 K. 图2 (1)求气体在状态B 的温度; (2)由状态B 变化到状态C 的过程中,气体是吸热还是放热?简要说明理由. 答案 (1)1 200 K (2)放热,理由见解析 解析 (1)由理想气体的状态方程p A V A T A =p B V B T B 解得气体在状态B 的温度T B =1 200 K

(2)由B →C ,气体做等容变化,由查理定律得:p B T B =p C T C T C =600 K 气体由B 到C 为等容变化,不做功,但温度降低,内能减小,根据热力学第一定律,ΔU =W +Q ,可知气体要放热. 3.如图3所示,体积为V 、内壁光滑的圆柱形导热汽缸顶部有一质量和厚度均可忽略的活塞;汽缸内密封有温度为2.4T 0、压强为1.2p 0的理想气体,p 0与T 0分别为大气的压强和温度.已知:气体内能U 与温度T 的关系为U =αT ,α为正的常量;容器内气体的所有变化过程都是缓慢的.求: 图3 (1)汽缸内气体与大气达到平衡时的体积V 1; (2)在活塞下降过程中,汽缸内气体放出的热量Q . 答案 见解析 解析 (1)在气体由压强p =1.2p 0下降到p 0的过程中,气体体积不变,温度由T =2.4T 0变为 T 1,由查理定律得:p T =p 0T 1 , 解得T 1=2T 0 在气体温度由T 1变为T 0过程中,体积由V 减小到V 1,气体压强不变,由盖—吕萨克定律得 V T 1=V 1T 0 得V 1=12 V (2)在活塞下降过程中,活塞对气体做的功为 W =p 0(V -V 1) 在这一过程中,气体内能的减少为ΔU =α(T 1-T 0) 由热力学第一定律得,汽缸内气体放出的热量为Q =W +ΔU 解得Q =12 p 0V +αT 0.

高考物理牛顿运动定律真题汇编(含答案)

高考物理牛顿运动定律真题汇编(含答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图,有一水平传送带以8m/s 的速度匀速运动,现将一小物块(可视为质点)轻轻放在传送带的左端上,若物体与传送带间的动摩擦因数为0.4,已知传送带左、右端间的距离为4m ,g 取10m/s 2.求: (1)刚放上传送带时物块的加速度; (2)传送带将该物体传送到传送带的右端所需时间. 【答案】(1)24/a g m s μ==(2)1t s = 【解析】 【分析】 先分析物体的运动情况:物体水平方向先受到滑动摩擦力,做匀加速直线运动;若传送带足够长,当物体速度与传送带相同时,物体做匀速直线运动.根据牛顿第二定律求出匀加速运动的加速度,由运动学公式求出物体速度与传送带相同时所经历的时间和位移,判断以后物体做什么运动,若匀速直线运动,再由位移公式求出时间. 【详解】 (1)物块置于传动带左端时,先做加速直线运动,受力分析,由牛顿第二定律得: mg ma μ= 代入数据得:2 4/a g m s μ== (2)设物体加速到与传送带共速时运动的位移为0s 根据运动学公式可得:2 02as v = 运动的位移: 2 0842v s m a ==> 则物块从传送带左端到右端全程做匀加速直线运动,设经历时间为t ,则有 212 l at = 解得 1t s = 【点睛】 物体在传送带运动问题,关键是分析物体的受力情况,来确定物体的运动情况,有利于培养学生分析问题和解决问题的能力. 2.四旋翼无人机是一种能够垂直起降的小型遥控飞行器,目前正得到越来越广泛的应用.一架质量m =2 kg 的无人机,其动力系统所能提供的最大升力F =36 N ,运动过程中所受空气阻力大小恒为f =4 N .(g 取10 m /s 2)

气体实验定律

气体实验定律 专题一:密闭气体压强的计算 一、平衡态下液体封闭气体压强的计算 1. 理论依据 ① 液体压强的计算公式 gh p ρ=。 ② 液面与外界大气相接触。则液面下h 处的压强为 gh + p = p 0ρ 帕斯卡定律:加在密闭静止液体(或气体)上的压强能够大小不变地由液体(或气体)向各个方向传递(注意:适用于密闭静止的液体或气体) ③ 连通器原理:在连通器中,同一种液体(中间液体不间断)的同一水平面上的压强 是相等的。 2、计算的方法步骤(液体密封气体) ① 选取假想的一个液体薄片(其自重不计)为研究对象 ② 分析液体两侧受力情况,建立力的平衡方程,消去横截面积,得到液片两面侧的压 强平衡方程 ③ 解方程,求得气体压强 例1:试计算下述几种情况下各封闭气体的压强,已知大气压P 0,水银的密度为ρ,管中 水银柱的长度均为h 。均处于静止状态 练1:计算下图中各种情况下,被封闭气体的压强。(标准大气压强0p =76cmHg ,图中液体为水银 θ θ

练2、如图二所示,在一端封闭的U 形管内,三段水银柱将空气柱A 、B 、C 封在管中,在竖直放置时,AB 两气柱的下表面在同一水平面上,另两端的水银柱长度分别是h 1和h 2,外界大气的压强为0p ,则A 、B 、C 三段气体的压强分别是多少? 练3、 如图三所示,粗细均匀的竖直倒置的U 型管右端封闭,左端开口插入水银槽中,封闭着两段空气柱1和2。已知12cm Hg =h 1,15cm Hg =h 2,外界大气压强76cm Hg =p 0,求空气柱1和2的压强。 二、平衡态下活塞、气缸密闭气体压强的计算 1. 解题的基本思路 (1)对活塞(或气缸)进行受力分析,画出受力示意图; (2)列出活塞(或气缸)的平衡方程,求出未知量。 注意:不要忘记气缸底部和活塞外面的大气压。 例2 如下图所示,一个横截面积为S 的圆筒形容器竖直放置,金属圆板A 的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为M 。不计圆板与容器内壁之间的摩擦。若大气压强为P 0,则被圆板封闭在容器中的气体压强P 等于( ) A B. C. D. P Mg S 0+ cos θP Mg S 0cos cos θθ + P Mg S 02+ cos θ P Mg S 0+

高中物理-气体导学案

高中物理-气体导学案 高中物理-气体的等温变化导学案 一、课前预习: (一) 1.内容:一定质量的某种气体,在温度保持不变的情况下,压强p和体积V成_____。 2.公式:_____(常量)或__________。 3.适用条件:气体质量不变、_____不变。(2)气体_____不太低、_____不太大。 (二)气体等温变化的p -V图像 1.p -V图像:一定质量的气体的p -V图像为一条_______,如图。 2.p - 图像:一定质量的理想气体的p - 图像为过原点的_________, 二、课堂探究: 探究一:探究气体等温变化的规律 在用如图所示的装置做“探究气体等温变化的规律”实验时: 1、实验中如何保证气体的质量和温度不变? 2、实验中可观察到什么现象?为验证猜想,可采用什么方法对实验数据进行处理? 探究二:探究玻意耳定律 1、玻意耳定律的数学表达式为pV=C,其中C是一常量,C是不是一个与气体无关的恒量? 2、玻意耳定律成立的条件是气体的温度不太低、压强不太大,那么为什么在压强很大、温度很低的 情况下玻意耳定律就不成立了呢? 探究三:气体等温变化的p -V图像 1.如图为气体等温变化的p -V图像,你对图像是怎样理解的? 2、如图,p - 图像是一条过原点的直线,更能直观描述压强与体积的关系,为什么直线在原点附近 要画成虚线?两条直线表示的温度高 低有什么关系? 三、课堂训练: 1、关于“探究气体等温变化的规律”实验,下列说法正确的是( ) A.实验过程中应保持被封闭气体的质量和温度不发生变化 B.实验中为找到体积与压强的关系,一定要测量空气柱的横截面积 C.为了减小实验误差,可以在柱塞上涂润滑油,以减小摩擦 D.处理数据时采用p - 图像,是因为p - 图像比p -V图像更直观 2、某自行车轮胎的容积为V,里面已有压强为p0的空气,现在要使轮胎内的气压增大到p,设充气过 程为等温过程,空气可看作理想气体,轮胎容积保持不变,则还要向轮胎充入温度相同,压强也是p0, 体积为( )的空气。 A. B. C.( -1)V D.( +1)V 1 V 1 V 1 V 1 V 1 V p V p0 p V p p p p p

高考物理牛顿运动定律题20套(带答案)

高考物理牛顿运动定律题20套(带答案) 一、高中物理精讲专题测试牛顿运动定律 1.如图所示,质量M=0.4kg 的长木板静止在光滑水平面上,其右侧与固定竖直挡板问的距离L=0.5m ,某时刻另一质量m=0.1kg 的小滑块(可视为质点)以v 0=2m /s 的速度向右滑上长木板,一段时间后长木板与竖直挡板发生碰撞,碰撞过程无机械能损失。已知小滑块与长木板间的动摩擦因数μ=0.2,重力加速度g=10m /s 2,小滑块始终未脱离长木板。求: (1)自小滑块刚滑上长木板开始,经多长时间长木板与竖直挡板相碰; (2)长木板碰撞竖直挡板后,小滑块和长木板相对静止时,小滑块距长木板左端的距离。 【答案】(1)1.65m (2)0.928m 【解析】 【详解】 解:(1)小滑块刚滑上长木板后,小滑块和长木板水平方向动量守恒: 解得: 对长木板: 得长木板的加速度: 自小滑块刚滑上长木板至两者达相同速度: 解得: 长木板位移: 解得: 两者达相同速度时长木板还没有碰竖直挡板 解得: (2)长木板碰竖直挡板后,小滑块和长木板水平方向动量守恒: 最终两者的共同速度: 小滑块和长木板相对静止时,小滑块距长木板左端的距离: 2.某物理兴趣小组设计了一个货物传送装置模型,如图所示。水平面左端A 处有一固定挡板,连接一轻弹簧,右端B 处与一倾角37o θ=的传送带平滑衔接。传送带BC 间距 0.8L m =,以01/v m s =顺时针运转。两个转动轮O 1、O 2的半径均为0.08r m =,半径

O 1B 、O 2C 均与传送带上表面垂直。用力将一个质量为1m kg =的小滑块(可视为质点)向左压弹簧至位置K ,撤去外力由静止释放滑块,最终使滑块恰好能从C 点抛出(即滑块在C 点所受弹力恰为零)。已知传送带与滑块间动摩擦因数0.75μ=,释放滑块时弹簧的弹性势能为1J ,重力加速度g 取210/m s ,cos370.8=o ,sin 370.6=o ,不考虑滑块在水平面和传送带衔接处的能量损失。求: (1)滑块到达B 时的速度大小及滑块在传送带上的运动时间 (2)滑块在水平面上克服摩擦所做的功 【答案】(1)1s (2)0.68J 【解析】 【详解】 解:(1)滑块恰能从C 点抛出,在C 点处所受弹力为零,可得:2 v mgcos θm r = 解得: v 0.8m /s = 对滑块在传送带上的分析可知:mgsin θμmgcos θ= 故滑块在传送带上做匀速直线运动,故滑块到达B 时的速度为:v 0.8m /s = 滑块在传送带上运动时间:L t v = 解得:t 1s = (2)滑块从K 至B 的过程,由动能定理可知:2f 1 W W mv 2 -=弹 根据功能关系有: p W E =弹 解得:f W 0.68J = 3.如图所示,传送带的倾角θ=37°,上、下两个轮子间的距离L=3m ,传送带以v 0=2m/s 的速度沿顺时针方向匀速运动.一质量m=2kg 的小物块从传送带中点处以v 1=1m/s 的初速度沿传送带向下滑动.已知小物块可视为质点,与传送带间的动摩擦因数μ=0.8,小物块在传送带上滑动会留下滑痕,传送带两个轮子的大小忽略不计,sin37°=0.6,cos37°=0.8,重力加速度g 取10m/s 2.求

相关主题
文本预览
相关文档 最新文档