当前位置:文档之家› 2019-2020中考数学一模试题(附答案)

2019-2020中考数学一模试题(附答案)

2019-2020中考数学一模试题(附答案)

一、选择题

1.如图A ,B ,C 是

上的三个点,若

,则

等于( )

2019-2020中考数学一模试题(附答案)

A .50°

B .80°

C .100°

D .130°

2.二次函数y =x 2﹣6x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,则m 的值为( ) A .27

B .9

C .﹣7

D .﹣16

3.一元二次方程(1)(1)23x x x +-=+的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根

4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为

( ) A .24y x =- B .24y x =+

C .22y x =+

D .22y x =-

5.函数3

1

x y x +=-中自变量x 的取值范围是( ) A .x ≥-3

B .x ≥-3且1x ≠

C .1x ≠

D .3x ≠-且1x ≠

6.下列图形是轴对称图形的有( )

2019-2020中考数学一模试题(附答案)

A .2个

B .3个

C .4个

D .5个

7.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )

2019-2020中考数学一模试题(附答案)

A .6

B .8

C .10

D .12

8.不等式组

213

312

x

x

+

?

?

+≥-

?

的解集在数轴上表示正确的是()

A .

B .

C .

D .

9.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,

2019-2020中考数学一模试题(附答案)

捐款情况如下表所示,下列说法正确的是()

捐款数额10203050100

人数24531

2019-2020中考数学一模试题(附答案)

A.众数是100B.中位数是30C.极差是20D.平均数是30 10.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()

A.B.C.D.

11.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()

A.①②④B.①②⑤C.②③④D.③④⑤12.分式方程()()

3

1

112

x

x x x

-=

--+的解为()

A .1x =

B .2x =

C .1x =-

D .无解

二、填空题

13.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.

2019-2020中考数学一模试题(附答案)

14.如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,AC 与OB 交于点D (8,4),反比例函数y=的图象经过点D .若将菱形OABC 向左平移n 个单位,使点C

落在该反比例函数图象上,则n 的值为___.

15.如图,⊙O 的半径为6cm ,直线AB 是⊙O 的切线,切点为点B ,弦BC ∥AO ,若∠

A=30°,则劣弧?BC

的长为 cm .

16.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .

17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L 的影长BC 为5米,落在斜坡上的部分影长CD 为4米.测得斜CD 的坡度i =1:

.太阳光线与斜坡的夹角∠ADC =80°,则旗杆AB 的高度

_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,

=1.732)

2019-2020中考数学一模试题(附答案)

18.若关于x 的一元二次方程kx 2+2(k+1)x+k -1=0有两个实数根,则k 的取值范围是 19.正六边形的边长为8cm ,则它的面积为____cm 2. 20.分解因式:2x 2﹣18=_____.

三、解答题

21.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率. 22.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题: (1)这次调查的学生共有多少名;

(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数; (3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).

2019-2020中考数学一模试题(附答案)

23.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.

(1)求证:四边形ADCE 为矩形;

(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明

2019-2020中考数学一模试题(附答案)

24.某公司推出一款产品,经市场调查发现,该产品的日销售量y (个)与销售单价x (元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:

销售单价x (元) 85 95 105 115 日销售量y (个) 175 125 75 m 日销售利润w

875

1875

1875

875

(元)

(注:日销售利润=日销售量×(销售单价﹣成本单价))

(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;

(2)根据以上信息,填空:

该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;

(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?

25.计算:

(1)2(m﹣1)2﹣(2m+1)(m﹣1)

(2)(1﹣)

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.D

解析:D

【解析】

试题分析:根据圆周的度数为360°,可知优弧AC的度数为360°-100°=260°,然后根据同弧所对的圆周角等于它所对的圆心角的一半,可求得∠B=130°.

故选D

考点:圆周角定理

2.D

解析:D

【解析】

【分析】

先确定抛物线的对称轴为直线x=3,根据抛物线的对称性得到x=?2和x=8时,函数值相等,然后根据题意判断抛物线与x轴的交点坐标为(?2,0),(8,0),最后把

(?2,0)代入y=x2?6x+m可求得m的值.

【详解】

解:∵抛物线的对称轴为直线x=,

∴x=?2和x=8时,函数值相等,

∵当?2<x <?1时,它的图象位于x 轴的下方;当8<x <9时,它的图象位于x 轴的上方,

∴抛物线与x 轴的交点坐标为(?2,0),(8,0),把(?2,0)代入y =x 2?6x +m 得4+12+m =0,解得m =?16. 故选:D . 【点睛】

本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.

3.A

解析:A 【解析】 【分析】

先化成一般式后,在求根的判别式,即可确定根的状况. 【详解】

解:原方程可化为:2240x x --=,

1a \=,2b =-,4c =-,

2(2)41(4)200∴?=--??-=>, ∴方程由两个不相等的实数根.

故选:A . 【点睛】

本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.

4.A

解析:A 【解析】

【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.

【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4, 故选A.

【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.

5.B

解析:B 【解析】

分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.

2019-2020中考数学一模试题(附答案)

≥0, ∴x+3≥0, ∴x ≥-3,

∵x-1≠0,

∴x≠1,

∴自变量x的取值范围是:x≥-3且x≠1.

故选B.

6.C

解析:C

【解析】

试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.

解:图(1)有一条对称轴,是轴对称图形,符合题意;

图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;

图(3)有二条对称轴,是轴对称图形,符合题意;

图(3)有五条对称轴,是轴对称图形,符合题意;

图(3)有一条对称轴,是轴对称图形,符合题意.

故轴对称图形有4个.

故选C.

考点:轴对称图形.

7.A

解析:A

【解析】

试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,

∴B(0,43),

∴OB=43,

在RT△AOB中,∠OAB=30°,

∴OA=3OB=3×43=12,

∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,

2019-2020中考数学一模试题(附答案)

∴PM=1

2 PA,

设P(x,0),∴PA=12-x,

∴⊙P的半径PM=1

2

PA=6-

1

2

x,

∵x 为整数,PM 为整数,

∴x 可以取0,2,4,6,8,10,6个数, ∴使得⊙P 成为整圆的点P 个数是6. 故选A .

考点:1.切线的性质;2.一次函数图象上点的坐标特征.

8.A

解析:A 【解析】 【分析】

先求出不等式组的解集,再在数轴上表示出来即可. 【详解】

213312x x +??

+≥-?

<①

② ∵解不等式①得:x <1, 解不等式②得:x≥-1, ∴不等式组的解集为-1≤x <1, 在数轴上表示为:,

故选A . 【点睛】

本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.

9.B

解析:B 【解析】

分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.

详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A 不正确; 该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B 正确; 该组数据的极差是100-10=90,故极差是90不是20,所以选项C 不正确; 该组数据的平均数是102204305503100100

245313

?+?+?+?+=++++不是30,所以选项D 不

正确. 故选B .

点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.

10.A

解析:A 【解析】

从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近, 故选A .

11.A

解析:A 【解析】 【分析】

由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0. 【详解】

①∵对称轴在y 轴右侧, ∴a 、b 异号, ∴ab <0,故正确;

②∵对称轴1,2b

x a

=-

= ∴2a+b=0;故正确; ③∵2a+b=0, ∴b=﹣2a ,

∵当x=﹣1时,y=a ﹣b+c <0, ∴a ﹣(﹣2a )+c=3a+c <0,故错误; ④根据图示知,当m=1时,有最大值; 当m≠1时,有am 2+bm+c≤a+b+c , 所以a+b≥m (am+b )(m 为实数). 故正确.

⑤如图,当﹣1<x <3时,y 不只是大于0. 故错误. 故选A . 【点睛】

本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定 抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项

系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴

左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛

物线与y 轴交点,抛物线与y 轴交于(0,c ).

12.D

解析:D 【解析】

分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

详解:去分母得:x2+2x﹣x2﹣x+2=3,解得:x=1,经检验x=1是增根,分式方程无解.

故选D.

点睛:本题考查了分式方程的解,始终注意分母不为0这个条件.

二、填空题

13.【解析】试题解析:∵四边形ABCD是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD=【点睛】此题考查了矩形的性质等边三角

解析:33

【解析】

试题解析:∵四边形ABCD是矩形,

∴OB=OD,OA=OC,AC=BD,

∴OA=OB,

∵AE垂直平分OB,

∴AB=AO,

∴OA=AB=OB=3,

∴BD=2OB=6,

∴AD=2222

-=-=.

BD AB

6333

【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.【解析】试题分析根据菱形的性质得出CD=ADBC∥OA根据D(84)和反比例函数的图象经过点D求出k=32C点的纵坐标是2×4=8求出C的坐标即可得出答案∵四边形ABCO是菱形∴CD=ADBC∥OA

解析:【解析】

试题分析根据菱形的性质得出CD=AD,BC∥OA,根据D (8,4)和反比例函数的图象经过点D求出k=32,C点的纵坐标是2×4=8,求出C的坐标,即可得出答案.

∵四边形ABCO是菱形,∴CD=AD,BC∥OA,

∵D (8,4),反比例函数的图象经过点D,

∴k=32,C点的纵坐标是2×4=8,∴,

把y=8代入得:x=4,∴n=4﹣2=2,

∴向左平移2个单位长度,反比例函数能过C点,

故答案为2.

15.【解析】根据切线的性质可得出OB⊥AB从而求出∠BOA的度数利用弦

BC∥AO及OB=OC可得出∠BOC的度数代入弧长公式即可得出∵直线AB是⊙O 的切线∴OB⊥AB(切线的性质)又∵∠A=30°∴∠B

解析:2π.

【解析】

根据切线的性质可得出OB⊥AB,从而求出∠BOA的度数,利用弦BC∥AO,及OB=OC可得出∠BOC的度数,代入弧长公式即可得出

∵直线AB是⊙O的切线,∴OB⊥AB(切线的性质).

又∵∠A=30°,∴∠BOA=60°(直角三角形两锐角互余).

∵弦BC∥AO,∴∠CBO=∠BOA=60°(两直线平行,内错角相等).

又∵OB=OC,∴△OBC是等边三角形(等边三角形的判定).

∴∠BOC=60°(等边三角形的每个内角等于60°).

又∵⊙O的半径为6cm,∴劣弧?BC的长=606

=2

180

π

π

??

(cm).

16.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式

解析:3.

【解析】

试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.

考点:概率公式.

17.2m【解析】【分析】延长AD交BC的延长线于点E作DF⊥CE于点F解直角三角形求出EFCF即可解决问题【详解】延长AD交BC的延长线于点E作DF⊥CE于点F在△DCF中∵CD=4mDF:CF=1:3

解析:2m.

【解析】

【分析】

延长AD交BC的延长线于点E,作DF⊥CE于点F.解直角三角形求出EF,CF,即可解决问题.

【详解】

延长AD交BC的延长线于点E,作DF⊥CE于点F.

在△DCF中,∵CD=4m,DF:CF=1:,

∴tan∠DCF=,

∴∠DCF=30°,∠CDF=60°.

∴DF=2(m),CF=2(m),

在Rt△DEF中,因为∠DEF=50°,

所以EF=≈1.67(m)

∴BE=EF+FC+CB=1.67+2+5≈10.13(m),

∴AB=BE?tan50°≈12.2(m),

2019-2020中考数学一模试题(附答案)

故答案为12.2m.

【点睛】

本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.

18.k≥-13且k≠0【解析】试题解析:∵a=kb=2(k+1)c=k-1∴△=4(k+1)2-4×k×(k-1)=3k+1≥0解得:k≥-13∵原方程是一元二次方程∴k≠0考点:根的判别式

解析:k≥,且k≠0

【解析】

试题解析:∵a=k,b=2(k+1),c=k-1,

∴△=4(k+1)2-4×k×(k-1)=3k+1≥0,

解得:k≥-,

∵原方程是一元二次方程,

∴k≠0.

考点:根的判别式.

19.【解析】【分析】【详解】如图所示正六边形ABCD中连接OCOD过O作OE⊥CD;∵此多边形是正六边形∴∠COD=60°;∵OC=OD∴△COD是等边三角形∴OE=CE?tan60°=cm∴S△OCD

3

【解析】

【分析】

【详解】

如图所示,正六边形ABCD中,连接OC、OD,过O作OE⊥CD;

∵此多边形是正六边形,

∴∠COD=60°;

∵OC=OD,

∴△COD是等边三角形,

∴OE=CE?tan60°=8

343

2

?=cm,

∴S△OCD=1

2

CD?OE=

1

2

×8×43=163cm2.

∴S正六边形=6S△OCD=6×163=963cm2.

2019-2020中考数学一模试题(附答案)

考点:正多边形和圆

20.2(x+3)(x﹣3)【解析】【分析】原式提取2再利用平方差公式分解即可【详解】原式=2(x2﹣9)=2(x+3)(x﹣3)故答案为:2(x+3)(x﹣3)【点睛】此题考查了提公因式法与公式法的综合

解析:2(x+3)(x﹣3)

【解析】

【分析】

原式提取2,再利用平方差公式分解即可.

【详解】

原式=2(x2﹣9)=2(x+3)(x﹣3),

故答案为:2(x+3)(x﹣3)

【点睛】

此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题

21.4

9

【解析】

【分析】

首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.

【详解】

解:画树状图得:

2019-2020中考数学一模试题(附答案)

∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,

∴两次两次抽取的卡片上数字之和是奇数的概率为4

9

【点睛】

本题考查列表法与树状图法.

22.(1)280名;(2)补图见解析;108°;(3)0.1.

【解析】

【分析】

(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;

(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;

(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.

【详解】

解:(1)56÷20%=280(名),

答:这次调查的学生共有280名;

(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),

补全条形统计图,如图所示,

2019-2020中考数学一模试题(附答案)

根据题意得:84÷280=30%,360°×30%=108°,

答:“进取”所对应的圆心角是108°;

(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:

A B C D E

A(A,B)(A,C)(A,D)(A,E)

B(B,A)(B,C)(B,D)(B,E)

C(C,A)(C,B)(C,D)(C,E)

D(D,A)(D,B)(D,C)(D,E)

E(E,A)(E,B)(E,C)(E,D)

用树状图为:

2019-2020中考数学一模试题(附答案)

共20种情况,恰好选到“C”和“E”有2种, ∴恰好选到“进取”和“感恩”两个主题的概率是0.1. 23.(1)见解析 (2) 1

2

AD BC =,理由见解析. 【解析】 【分析】

(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得

AD DC =,结合等腰三角形的性质可以得到答案. 【详解】

(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC , ∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE , ∴∠DAE=∠DAC+∠CAE=

1

2

×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°, ∴四边形ADCE 为矩形. (2)当1

2

AD BC =

时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=

1

2

AD BC =

Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当1

2

AD BC =时,四边形ADCE 是一个正方形. 【点睛】

本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.

24.(1)25;(2)80,100,2000;(3)该产品的成本单价应不超过65元. 【解析】

分析:(1)根据题意和表格中的数据可以求得y 关于x 的函数解析式; (2)根据题意可以列出相应的方程,从而可以求得生产成本和w 的最大值; (3)根据题意可以列出相应的不等式,从而可以取得科技创新后的成本. 详解;(1)设y 关于x 的函数解析式为y=kx+b ,

8517595125k b k b +??

+?==,得5

600k b ==-???

, 即y 关于x 的函数解析式是y=-5x+600, 当x=115时,y=-5×115+600=25, 即m 的值是25; (2)设成本为a 元/个,

当x=85时,875=175×(85-a ),得a=80,

w=(-5x+600)(x-80)=-5x 2+1000x-48000=-5(x-100)2+2000, ∴当x=100时,w 取得最大值,此时w=2000, (3)设科技创新后成本为b 元, 当x=90时,

(-5×90+600)(90-b )≥3750, 解得,b≤65,

答:该产品的成本单价应不超过65元.

点睛:本题考查二次函数的应用、一元二次方程的应用、不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数和数形结合的思想解答. 25.(1)﹣3m+3;(2)

【解析】 【分析】

(1)先根据完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)先计算括号内分式的减法,将除法转化为乘法,再约分即可得. 【详解】

(1)原式=2(m 2﹣2m+1)﹣(2m 2﹣2m+m ﹣1) =2m 2﹣4m+2﹣2m 2+2m ﹣m+1 =﹣3m+3; (2)原式=(﹣

)÷

【点睛】

本题主要考查分式和整式的混合运算,熟练掌握分式与整式的混合运算顺序和运算法则是解题关键.

下载文档原格式(Word原格式,共16页)
相关文档
  • 中考数学一模试题

  • 年中考数学一模试题

  • 河南中考数学一模试卷

  • 中考数学模拟试题一

  • 中考数学模拟试题

  • 中考数学一模试卷

相关文档推荐: