当前位置:文档之家› 7 第七讲 平行四边形的判定

7 第七讲 平行四边形的判定

7 第七讲 平行四边形的判定
7 第七讲 平行四边形的判定

第七讲平行四边形的判定

一、【基础知识精讲】

1.平行四边形的判定方法:①两组对边分别平行

②两组对边分别相等

③一组对边平行且相等

的四边形是平行四边形

④两组对角分别相等

⑤对角线互相平分

2.平行四边形性质的运用:①直接运用平行四边形性质解决某些问题,如求角的度数,线段的长度,

证明角相等或互补,证明线段相等或倍分等.

②判别一个四边形为平行四边形,从而得到两直线平行.

③先判别—个四边形是平行四边形,然后再用平行四边形的特征去解决

某些问题.

二、【例题精讲】

例1.(1)根据下列条件,不能判别四边形是平行四边形的是( )

A.一组对边平行且相等的四边形 B.两组对角分别相等的四边形

C.对角线相等的四边形 D.对角线互相平分的四边形

(2)下列条件中不能确定四边形ABCD是平行四边形的是()

A.AB=CD,AD∥BC B.AB=CD,AB∥CD

C.AB∥CD,AD∥BC D.AB=CD,AD=BC

例2.已知:如图,□ABCD中,点E、F在对角线上,且AE=CF.求证:四边形BEDF是平行四边形.

例3.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC 的中点,求证:四边形EGFH是平行四边形.

O

C D

B A

三、【同步练习】 A 组

1.如图,四边形ABCD ,AC 、BD 相交于点O ,若OA=OC,OB=OD, 则四边形ABCD 是 ,根据是 .

2.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )

A .88°,108°,88°

B .88°,104°,108°

C .88°,92°,92°

D .88°,92°,88°

3.如图,过□ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的□AEMG 的面积1S 与□HCFM 的面积2S 的大小关系是( ) A.1S >2S B..1S <2S C.1S =2S D.21S =2S 4.如图,四边形ABCD 中,AD=BC ,DE ⊥AC ,BF ⊥AC ,垂足分别是E 、F ,AF=CE .求证:四边形ABCD 是平

行四边形.

5.已知如图:在□ABCD 中,延长AB 到E ,延长CD 到F ,使BE=DF ,则线段AC 与EF 是否互相平分?说明理由.

6.如图,在□ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK=CM 、BL=DN ,求证:四边形KLMN 为平行四边形.

7.如图,在□ABCD 中,点E 、F 在对角线AC 上,并且OE=OF . (1)OA 与OC ,OB 与OD 相等吗? (2)四边形BFDE 是平行四边形吗?

(3)若点E ,F 在OA ,OC 的中点上,你能解决上述问题吗?

1S

2S

E

F

A

D

C

B

B 组

1.在□ABCD 中,∠ABC=750

,AF ⊥BC 于F ,AF 交BD 于E ,若DE=2AB ,则∠AED 等于( )

A 、600

B 、650

C 、700

D 、750

2.如图,在□ABCD 中,AB=3,BC=5,对角线AC ,BD 相交于点O ,则OA 的取值范围是( ) A.3<OA <

5 B.2<OA <8 C.1<OA <4 D.3<OA <8

C

【解析】【解析】

∵平行四边形ABCD 中,AB=3cm ,BC=5cm ,

∴OA=OC=AC ,2cm <AC <8cm ,

∴1cm <OA <4cm . 故选C

3.如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 做BE 的 平行线与线段ED 的延长线交于点F ,连接

AE ,CF. (1)求证:AF=CE

(2)若AC=EF ,证明AF ⊥AE

3、如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线一点,过点A 作BE 的平行线与线段ED 的

延长线交于点F ,连接AE 、CF . (1)求证:AF=CE ;

(2)如果AC=EF ,且∠ACB=135°,试判断四边形AFCE 是什么样的四边形,并证明你的结论.

(1)证明:∵AF∥EC,

∴∠DFA=∠DEC,∠DAF=∠DCE,

∵D是AC的中点,

∴DA=DC,

∴△DAF≌△DCE,

∴AF=CE;

(2)解:四边形AFCE是正方形.理由如下:

∵AF∥EC,AF=CE,

∴四边形AFCE是平行四边形,

又∵AC=EF,

∴平行四边形AFCE是矩形,

∴∠FCE=∠CFA=90°,

而∠ACB=135°,

∴∠FCA=135°-90°=45°,

∴∠FAC=45°,

∴FC=FA,

∴矩形AFCE是正方形.

已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段E D的延长线交于点F,连接AE,CF。

(1)求证:AF=CE;

(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论。

解:(1)证明:在△ADF和△CDE中,∵AF∥BE,

∴∠FAD=∠ECD

又∵D是AC的中点,

∴AD=CD

∵∠ADF=∠CDE,

∴△ADF≌△CDE

∴AF=CE。

(2)若AC=EF,则四边形AFCE是矩形

证明:由(1)知:AF=CE,AF∥CE,

∴四边形AFCE是平行四边形

又∵AC=EF,

∴平行四边形AFCE是矩形。

4.如图,□ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q,.四边形MQNP是平行四边形吗?为什么?

解:四边形MQNP是平行四边形.

∵四边形ABCD是平行四边形,

∴AD∥BC,AD=BC,

∵M、N分别为AD、BC的中点,

∴MD∥BN,MD=BN,AM=CN,AM∥CN,

∴四边形BNDM与四边形ANCM是平行四边形,

∴AN∥CM,BM∥DN,

∴四边形MQNP是平行四边形.

5.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,BO=DO.求证:四边形ABCD是平

行四边形.

5、已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.

求证:四边形ABCD是平行四边形.

先根据AB∥CD可知∠ABO=∠CDO,再由BO=DO,∠AOB=∠DOC即可得出△ABO

≌△CDO,故可得出AB=CD,进而可得出结论.

证明:∵AB∥CD,

∴∠ABO=∠CDO,

在△ABO与△CDO中,

∵,

∴△ABO≌△CDO,

∴AB=CD,

∴四边形ABCD是平行四边形.

6.已知,如图,在□ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.

(1)求证:△AEM≌△CFN;

(2)求证:四边形BMDN是平行四边形.

分析

(1)先根据平行四边形的性质可得出AD∥BC,∠DAB=∠BCD,再根据平行线的性质及补角的性质得出∠E=∠F,∠EAM=∠FCN,从而利用ASA可作出证明;

(2)根据平行四边形的性质及(1)的结论可得BM DN,则由有一组对边平行且相等的四边形是平行四边形即可证明.证明:(1)四边形ABCD是平行四边形,

∴∠DAB=∠BCD,

∴∠EAM=∠FCN,

又∵AD∥BC,

∴∠E=∠F.

∵在△AEM与△CFN中,

∴△AEM≌△CFN(ASA);

(2)∵四边形ABCD是平行四边形,

∴AB CD,

又由(1)得AM=CN,

∴BM DN,

∴四边形BMDN是平行四边形.

7.在□ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连接CE,CP,已知∠A=60°. (1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值;

(2)是探究当△CPE≌△CPB时,□ABCD的两边AB与BC应满足什么关系?

在ABCD中,P是AB边上的任意一点,过P点作PE⊥AB,交AD于E,连结CE,CP.已知∠A=60°;

(1)若BC=8,AB=6,当AP的长为多少时,△CPE的面积最大,并求出面积的最大值.

(2)试探究当△CPE≌△CPB时,ABCD的两边AB与BC应满足什么关系?

(1)AP的长为5时,△CPE的面积最大,最大面积是。

(2)当△CPE≌△CPB时,BC与AB满足的关系为BC=AB。

【解析】

分析:(1)延长PE交CD的延长线于F,设AP=x,△CPE的面积为y,由四边形ABCD为平行四边形,利用平行四边形的对边相等得到AB=DC,AD=BC,在直角三角形APE中,根据∠A的度数求出∠PEA的度数为30度,利用直角三角形中30度所对的直角边等于斜边的一半表示出AE与PE,由AD﹣AE表示出DE,再利用对顶角相等得到∠DEF为30度,利用30度所对的直角边等于斜边的一半表示出DF,由两直线平行内错角相等得到∠F为直角,表示出三角形CPE的面积,得出y与x的函数解析式,利用二次函数的性质即可得到三角形CPE面积的最大值,以及此时AP的长。

(2)由△CPE≌△CPB,利用全等三角形的对应边相等,对应角相等得到BC=CE,∠B=∠PEC=120°,进而得出∠ECD=∠CED,利用等角对等边得到ED=CD,即三角形ECD为等腰三角形,过D作DM垂直于CE,∠ECD=30°,利用锐角三角形函数定义表示出cos30°,得出CM与CD的关系,进而得出CE与CD的关系,即可确定出AB与BC满足的关系。【解析】

(1)延长PE交CD的延长线于F,

设AP=x,△CPE的面积为y,

∵四边形ABCD为平行四边形,

∴AB=DC=6,AD=BC=8,。

∵Rt△APE中,∠A=60°,

∴∠PEA=30°。

∴AE=2x,PE=。

在Rt△DEF中,∠DEF=∠PEA=30°,DE=AD﹣AE=8﹣2x,∴DF=DE=4﹣x。

∵AB∥CD,PF⊥AB,∴PF⊥CD。

∴S△CPE=PE?CF。

∴。

∵,∴当x=5时,y有最大值。

∴AP的长为5时,△CPE的面积最大,最大面积是。

(2)当△CPE≌△CPB时,有BC=CE,∠B=∠PEC=120°,

∴∠CED=180°﹣∠AEP﹣∠PEC=30°。

∵∠ADC=120°,∴∠ECD=∠CED=180°﹣120°﹣30°=30°。

∴DE=CD,即△EDC是等腰三角形。

过D作DM⊥CE于M,则CM=CE。

在Rt△CMD中,∠ECD=30°,∴。

∴CM= CD。∴CE=CD。

∵BC=CE,AB=CD,∴BC=AB。

∴当△CPE≌△CPB时,BC与AB满足的关系为BC=AB。

8.在□ABCD中,∠BAD的角平分线交直线BC于点E,交直线DC的延长线于点F.

(1)在图①中证明CE=CF;

(2)若∠ABC=90°,G是EF的中点(如图②),直接写出∠BDG的度数;

(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB,DG(如图③),求∠BDG的度数.

图①图②图③

在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC的延长线于点F,以EC、CF为邻边作平行四边形ECFG.

(1)如图1,证明平行四边形ECFG为菱形;

(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;

(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.

(1)平行四边形的性质可得AD∥BC,AB∥CD,再根据平行线的性质证明∠CEF=∠CFE,根据等角对等边可得CE=CF,再有条件四边形ECFG是平行四边形,可得四边形ECFG为菱形;

(2)首先证明四边形ECFG为正方形,再证明△BME≌△DMC可得DM=BM,∠DMC=∠BME,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到∠BDM的度数;

(3)延长AB、FG交于H,连接HD,求证平行四边形AHFD为菱形,得出△ADH,△DHF为全等的等边三角形,证明△BHD ≌△GFD,即可得出答案.

【解析】

(1)证明:∵AF平分∠BAD,

∴∠BAF=∠DAF,

∵四边形ABCD是平行四边形,

∴AD∥BC,AB∥CD,

∴∠DAF=∠CEF,∠BAF=∠CFE,

∴∠CEF=∠CFE,

∴CE=CF,

又∵四边形ECFG是平行四边形,

∴四边形ECFG为菱形.

(2)如图,连接BM,MC,

∵∠ABC=90°,四边形ABCD是平行四边形,

∴四边形ABCD是矩形,

又由(1)可知四边形ECFG为菱形,

∠ECF=90°,

∴四边形ECFG为正方形.

∵∠BAF=∠DAF,

∴BE=AB=DC,

∵M为EF中点,

∴∠CEM=∠ECM=45°,

∴∠BEM=∠DCM=135°,

在△BME和△DMC中,

∵,

∴△BME≌△DMC(SAS),

∴MB=MD,

∠DMC=∠BME.

∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,

∴△BMD是等腰直角三角形,

∴∠BDM=45°;

(3)∠BDG=60°,

延长AB、FG交于H,连接HD.

∵AD∥GF,AB∥DF,

∴四边形AHFD为平行四边形,

∵∠ABC=120°,AF平分∠BAD,

∴∠DAF=30°,∠ADC=120°,∠DFA=30°,

∴△DAF为等腰三角形,

∴AD=DF,

∴平行四边形AHFD为菱形,

∴△ADH,△DHF为全等的等边三角形,

∴DH=DF,∠BHD=∠GFD=60°,

∵FG=CE,CE=CF,CF=BH,

∴BH=GF,

在△BHD与△GFD中,

∵,

∴△BHD≌△GFD(SAS),

∴∠BDH=∠GDF

∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.

5、在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。(1)在图1中说明CE=CF;

(2)若∠ACB=90°,G是EF的中点(如图2),求∠BDG的度数。

解(1)∵ABCD是平行四边形

∴AD∥BC,AB∥CD,

∴∠1=∠2,∠3=∠F,

∵AF平分∠BAD,

∴∠1=∠3,

∴∠2=∠F,

∴CE=CF;

(2)连结CG,BG,

∵ABCD是平行四边形

∴AD∥BC,AB∥CD

∴∠ABC=∠BAC=∠BCD=∠BCF=90°∵AF平分∠BAD

∴∠1=∠3=45°,

∴∠4=45°

∴∠5=135°,AB=BE,

∵CE=CF

∴ΔCEF是等腰直角三角形

∵G为EF中点

∴∠6=∠7=45°,CG=EG,

∴∠DCG=135°

∵AB=CD=BE

∴ΔBEG≌ΔDCG(SAS)

∴∠8=∠9,BG=DG,

∵∠9+∠10=90°

∴∠8+∠10=90°

D C

B

A ∴ΔBGD 为等腰直角三角形 ∴∠BDG=45°。

作业

1.如图,四边形ABCD 为□,将AB 、CD 分别五等分,将BC 、AD 分别四等分,并进行分割,如果□ABCD 的面积为S ,则分割后形成的小平行四边形面积为 .

2.如图,已知在四边形ABFC 中ACB ∠=90BC ,?的垂直平分线EF 交BC 于点D,交AB 于点E,且CF=AE. (1)试探究,四边形BECF 是什么特殊的四边形并证明之; (2)若四边形BECF 的面积是62

cm 且BC+AC=105cm 时,求AB.

如图,已知在四边形ABFC

中∠ACB=90°,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF=AE . (1)试探究,四边形BECF 是什么特殊的四边形并证明之; (2)若四边形BECF 的面积是6cm 2且BC+AC=

cm 时.求AB .

解:(1)四边形BECF 是菱形. 证明:EF 垂直平分BC ,

∵BF=FC,BE=EC,

∴∠1=∠2,∴∠ACB=90°,

∴∠1+∠4=90°,∠3+∠2=90°,

∴∠3=∠4,EC=AE,

∴BE=AE,∴CF=AE,∴BE=EC=CF=BF,∴四边形BECF是菱形.

(2)由(1)可知四边形AEFC为平行四边形,

∴EF=AC,根据菱形的面积公式可知:BC×AC=6×2=12(cm)2,又BC+AC=cm,(BC+AC)2﹣2BC×AC=BC2+AC2=105﹣2×12=81(cm)2,

∴AB=2BE=2×=9cm.

如图,已知:在四边形ABFC中,=90的垂直平分线EF交BC于点D,交AB于点E,且CF=AE

(1)试探究,四边形BECF是什么特殊的四边形;

(2)当的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.

(特别提醒:表示角最好用数字)

(1)四边形BECF是菱形,证明见解析(2)当∠A=45。时,菱形BESF是正方形,证明见解析

【解析】(1)四边形BECF是菱形。

证明:EF垂直平分BC,

∴BF=FC,BE=EC,∴∠1=∠2

∵∠ACB=90°

∴∠1+∠4=90°

∠3+∠2=90°

∴∠3=∠4

∴EC=AE

∴BE=AE

∵CF=AE

∴BE=EC=CF=BF

∴四边形BECF是菱形

(2)当∠A=45。时,菱形BESF是正方形

证明:∵∠A=45。, ∠ACB=90。

∴∠1=45。

∴∠EBF=2∠A=90。

∴菱形BECF是正方形

(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC,又因为CF=BE,BE=EC=BF=FC,根据四边相等的四边形是菱形,所以四边形BECF是菱形;

(2)由菱形的性质知,对角线平分一组对角,即当∠ABC=45°时,∠EBF=90°,有菱形为正方形,根据直角三角形中两个角锐角互余得,∠A=45度;

2. 如图,已知:在四边形ABFC中,=90的垂直平分线EF交BC于点D,交AB于点E,且CF=AE

(1)试探究,四边形BECF是什么特殊的四边形;

(2)当的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.

答案(1)四边形BECF是菱形。

证明:EF垂直平分BC,

∴BF=FC,BE=EC,∴∠1=∠2

∵∠ACB=90°∴∠1+∠4=90°,∠3+∠2=90°

∴∠3=∠4 ∴EC=AE ∴BE=AE

∵CF=AE ∴BE=EC=CF=BF

∴四边形BECF是菱形

(2)当∠A=45。时,菱形BESF是正方形

证明:∵∠A=45。, ∠ACB=90。∴∠1=45。∴∠EBF=2∠A=90。

∴菱形BECF是正方形。

3.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D 点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?

分析:若四边形PDCQ或四边形APQB是平行四边形,那么QD=CQ或AP=BQ或PD=BQ,根据这个结论列出方程就

可以求出时间.

【解析】

解:设P,Q同时出发t秒后四边形PDCQ或四边形APQB是平行四边形,根据已知得到AP=t,PD=24-t,CQ=2t,BQ=30-2t.

(1)若四边形PDCQ是平行四边形,则PD=CQ,∴24-t=2t,∴t=8,∴8秒后四边形PDCQ是平行四边形;

(2)若四边形APQB是平行四边形,则AP=BQ,∴t=30-2t,∴t=10,∴10秒后四边形APQB是平行四边形.

∴出发后10秒或8秒其中一个是平行四边形.

4.(培优)如图,已知□ABCD,AD=a,BE∥AC,DE交AC的延长线于F点,交BE于E点.

(1)求证:DF=FE;

(2)若AC=2CF,∠ADC=60°,AC⊥DC,求BE的长;

(3)在(2)的条件下,求四边形ABED的面积.

解:(1)证明:延长DC交BE于点M,

∵BE∥AC,AB∥DC,

∴四边形ABMC是平行四边形,

∴CM=AB=DC,C为DM的中点,BE∥AC,DF=FE;

(2)由(2)得CF是△DME的中位线,故ME=2CF,

又∵AC=2CF,四边形ABMC是平行四边形,

∴BE=2BM=2ME=2AC,

又∵AC⊥DC,

∴在Rt△ADC中利用勾股定理得AC=,

∴BE=;

(3)可将四边形ABED的面积分为两部分,梯形ABMD和三角形DME,

在Rt△ADC中利用勾股定理得DC=,由CF是△DME的中位线得CM=DC=,四边形ABMC是平行四边形得AM ∴梯形ABMD面积为:;

由AC⊥DC和BE∥AC可证得三角形DME是直角三角形,其面积为:,

∴四边形ABED的面积为。

5.提出问题:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个,

点G、H是BC的n等分点中最中间2个,(其中n为奇数),连接EG、FH,

那么S四边形EFHG与S四边形ABCD之间有什么关系呢?

探究发现:为了解决这个问题,我们可以先从一些简单的、特殊的情形入手:

(1)如图②:四边形ABCD中,点E、F是AD的3等分点,点G、H是BC的3等分点,

连接EG、FH,那么S四边形EFHG与S四边形ABCD之间有什么关系呢?

如图③,连接EH、BE、DH,

因为△EGH与△EBH高相等,底的比是1:2,所以S△EGH=S△EBH

因为△EFH与△DEH高相等,底的比是1:2, 所以S△EFH=S△DEH

所以S△EGH+S△EFH=S△EBH+S△DEH即S四边形EFHG=S四边形EBHD

连接BD,

因为△DBE与△ABD高相等,底的比是2:3,所以S△DBE=S△ABD

因为△BDH与△BCD高相等,底的比是2:3,所以S△BD H=S△BCD

所以S△DBE+S△BDH=S△ABD+S△BCD=(S△ABD+S△BCD)=S四边形ABCD ,即S四边形EBHD=S四边形ABCD

所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD

(1)如图④:四边形ABCD中,点E、F是AD的5等分点中最中间2个,

点G、H是BC的5等分点中最中间2个,连接EG、FH,

猜想:S四边形EFHG与S四边形ABCD之间有什么关系呢

验证你的猜想:

(2)问题解决:如图①,在四边形ABCD中,点E、F是AD的n等分点中最中间2个, 点G、H是BC的n等分点中最中间2个,连接EG、FH,(其中n为奇数)

那么S四边形EFHG与S四边形ABCD之间的关系为:(不必写出求解过程)答案

(1)S四边形EFHG=S四边形ABCD,证明见解析;

(2)S四边形EFHG=S四边形ABCD.

试题分析:仿照上面的探究思路,类比求解.

试题解析:(1)四边形ABCD中,点E、F是AD的5等分点中最中间2个, 点G、H是BC的5等分点中最中间2个,连接EG、FH,S四边形EFHG=S四边形ABCD,如图④:连接EH、BE、DH,

因为△EGH与△EBH高相等,底的比是1:3, 所以S△EGH=S△EBH

因为△EFH与△DEH高相等,底的比是1:3,所以S△EFH=S△DEH

所以S△EGH+S△EFH=S△EBH+S△DEH ,即S四边形EFHG=S四边形EBHD

连接BD,

因为△DBE与△ABD高相等,底的比是3:5,所以S△DBE=S△ABD

因为△BDH与△BCD高相等,底的比是3:5,所以S△BDH=S△BCD

所以S△DBE+S△BDH=S△ABD+S△BCD=(S△ABD+S△BCD)=S四边形ABCD

即S四边形EBHD=S四边形ABCD

所以S四边形EFHG=S四边形EBHD=×S四边形ABCD=S四边形ABCD.

(2)在四边形ABCD中,点E、F是AD的n等分点中最中间2个,点G、H是BC的n等分点中最中间2个,

连接EG、FH,(其中n为奇数)那么S四边形EFHG=S四边形ABCD.

[试题资料]三角形的分割(1)

立新小学有块植物园地,生物小组的同学们在上面种植花草.一次他们想把这块三角形的园地分成

面积相等的两部分,以便种植两种不同的花籽进行试验.怎么分呢?他们请数学小组的同学们帮忙,呵,数学小组的同学们马上就给他们提出了下面的3种方案,见图1,其中D、E、F分别是AB、

BC、AC边的中点.同学们,你们明白这样分的道理吗?下面我们就一起来研究一下这个问题.

在图1(a)中,线段CD把三角形ABC分成了两个部分,即三角形ADC和三角形BCD.

因为D是AB的中点,所以AD=DB.过C点作CM垂直AB(如图2),则CM是三角形ADC的高,也是三角形DBC的高.根据三角形的面积公式,有:

三角形ADC的面积=AD×CM÷2

三角形DBC的面积=DB×CM÷2

人教版八年级下册:18.2特殊的平行四边形同步练习卷 含答案解析

人教版八年级下册:18.2特殊的平行四边形同步练习卷一.选择题(共10小题) 1.下列性质中,矩形不一定具有的是() A.对角线相等 B.对角线互相平分 C.4个内角相等 D.一条对角线平分一组对角 2.如图,菱形ABCD中,∠D=130°,则∠1=() A.30°B.25°C.20°D.15° 3.如图,已知△ABC中,AD是BC边上的中线,则下列结论不一定正确的是() A.B.BD=CD C.D. 4.如图所示,在平行四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定平行四边形ABCD为矩形的是() A.∠ABC=90°B.AC=BD C.AD=AB D.∠BAD=∠ADC 5.如图,在四边形ABCD中,对角线AC,BD相交于点O,且OA=OC,OB=OD.若要使四边形ABCD为菱形,则可以添加的条件是()

A.AC=BD B.AB⊥BC C.∠AOB=60°D.AC⊥BD 6.如图,四边形ABCD的对角线相交于点O,且点O是BD的中点,若AB=AD=5,BD =8,∠ABD=∠CDB,则四边形ABCD的面积为() A.40B.24C.20D.15 7.如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是() A.22.5°B.30°C.45°D.67.5° 8.如图,在矩形COED中,点D的坐标是(1,3),则CE的长是() A.3B.C.D.4 9.已知四边形ABCD是平行四边形,再从四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是() ①AB=BC, ②∠ABC=90?, ③AC=BD, ④AC⊥BD A.选①②B.选①③C.选②③D.选②④ 10.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()

初中数学特殊平行四边形的证明及详细答案模板

初中数学特殊平行四边形的证明 一.解答题(共30小题) 1.(2015?泰安模拟)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于 D,交AB于E,F在DE上,并且AF=CE. (1)求证:四边形ACEF是平行四边形; (2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论. 2.(2015?福建模拟)已知:如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF. 求证:四边形BCFE是菱形. 3.(2015?深圳一模)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD 交AB于E. (1)求证:四边形AECD是菱形; (2)若点E是AB的中点,试判断△ABC的形状,并说明理由. 4.(2015?济南模拟)如图,四边形ABCD是矩形,点E是边AD的中点.

求证:EB=EC. 5.(2015?临淄区校级模拟)如图所示,在矩形ABCD中,DE⊥AC于点E,设∠ADE=α,且cosα=,AB=4,则AC的长为多少? 6.(2015春?宿城区校级月考)如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.求证:BD=BE. 7.(2014?雅安)如图:在?ABCD中,AC为其对角线,过点D作AC的平行线与BC 的延长线交于E. (1)求证:△ABC≌△DCE; (2)若AC=BC,求证:四边形ACED为菱形. 8.(2014?贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC. (1)求证:四边形ADCF是菱形;

判定平行四边形的五种方法

判别平行四边形的基本方法如何判别一个四边形是平行四边形呢?下面举例予以说明. 一、运用“两条对角线互相平分的四边形是平行四边形”判别 例1 如图1,在平行四边形ABCD中,E、F在对角线AC 上,且AE=CF,试说明四边形DEBF是平行四边形.分析:由于已知条件与对角线有关,故考虑运用“两条对角线互相平分的四边形是平行四边形”进行判别.为此,需连接BD. 解:连接BD交AC于点O. 因为四边形ABCD是平行四边形, 所以AO=CO,BO=DO. 又AE=CF, 所以AO-AE=CO-CF,即EO=FO. 所以四边形DEBF是平行四边形. 二、运用“两组对边分别相等的四边形是平行四边形”判别 例2如图2,是由九根完全一样的小木棒搭成的图形,请你指出图中所有的平行四边形,并说明理由. 分析:设每根木棒的长为1个单位长度,则图中各四边形的边长便可求得,故应考虑运用“两组对边分别相等的四边形是平行四边形”进行判别. 解:设每根木棒的长为1个单位长度,则AF=BC=1,AB=FC =1, 所以四边形ABCF是平行四边形. 同样可知四边形FCDE、四边形ACDF都是平行四四边形. 因为AE=DB=2,AB=DE=1,所以四边形ABDE也是平行四边形. 三、运用“一组对边平行且相等的四边形是平行四边形”判别 例3 如图3,E、F是四边形ABCD的对角线AC上的两点,AE=CF,DF=BE,DF∥BE,试说明四边形ABCD是平行四边形. 分析: 题目给出的条件都不能直接判别四边形ABCD是平行四边形,但仔细观察可知,由已知条件可得△ADF≌△CBE,由此就可得到判别平行四边形所需的“一组对边平行且相等” 的条件. 解:因为DF∥BE,所以∠AFD=∠CEB. 因为AE=CF,所以AE+EF=CF+EF,即AF=CE.又DF =图1 图2 A B C D E F 图3

中考数学平行四边形的判定经典题型精编

平行四边形的判定 一、【基础知识精讲】 1.平行四边形的判定方法: ① 两组对边分别平行 ② 两组对边分别相等 ③ 一组对边平行且相等 ④ 两组对角分别相等 ⑤ 对角线互相平分 2.平行四边形性质的运用: ① 直接运用平行四边形性质解决某些问题,如求角的度数, 线段的长度,证明角相等或互补,证明线段相等或倍分等. ② 判别一个四边形为平行四边形,从而得到两直线平行. ③ 先判别—个四边形是平行四边形,然后再用平行四边形的特征去解决某些问题. 二、【例题精讲】 例1.(1)根据下列条件,不能判别四边形是平行四边形的是( ) A .一组对边平行且相等的四边形 B .两组对角分别相等的四边形 C .对角线相等的四边形 D .对角线互相平分的四边形 (2)下列条件中不能确定四边形ABCD 是平行四边形的是( ) A .AB=CD ,AD ∥BC B .AB=CD ,AB ∥CD C .AB ∥C D ,AD ∥BC D .AB=CD ,AD=BC 例2.已知:如图,□ABCD 中,点E 、F 在对角线上,且AE =CF . 求证:四边形BEDF 是平行四边形. 的四边形是平行四边形

例3.如图,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F , G 是OA 的中点,H 是OC 的中点,求证:四边形EGFH 是平行四边形. 三、【同步练习】 A 组 1.如图,四边形ABCD ,AC 、BD 相交于点O , 若OA=OC,OB=OD,则四边形ABCD 是______, 根据是_____________________ . 2.在图中,AC=BD , AB=CD=EF ,CE=DF , 图中有哪些互相平行的线段? 3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( ) A .88°,108°,88° B .88°,104°,108° C .88°,92°,92° D .88°,92°,88° 4.如图,四边形ABCD 中,AD=BC ,DE ⊥AC ,BF ⊥AC ,垂足分别是E 、F ,AF=CE . 求证:四边形ABCD 是平行四边形. D

人教版八年级数学特殊的平行四边形同步测试题测试题

数学:特殊的平行四边形同步测试题(人教新课标八年级下) 一、填空题(每题3分,共30分) 1.用一把刻度尺来判定一个零件是矩形的方法是. 2.如果边长分别为4cm和5cm的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm. 3.(08贵阳市)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为cm2. A D B C 4.如图1,DE∥BC,DF∥AC,EF∥AB,图中共有_______个平行四边形. 5.若四边形ABCD是平行四边形,请补充条件 (写一个即可),使四边形ABCD是菱形. 6.在平行四边形ABCD中,已知对角线AC和BD相交于点△O,ABO的周长为17,AB=6,那么对角线AC+BD= ⒎以正方形ABCD的边BC为边做等边△BCE,则∠AED的度数 为. 8.延长正方形ABCD的边AB到E,使BE=AC,则∠E=° 9.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内一点,且PB=PD =2,那么AP的长为. 10.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形ABCD是平行四边形,那么点D 的坐标是. 二、选择题(每题3分,共30分) 11.如图4在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=() A.110°B.30°C.50°D.70° 12.菱形具有而矩形不具有的性质是() A.对角相等B.四边相等 C.对角线互相平分D.四角相等

(6) 13.平行四边形ABCD中,对角线AC、BD交于点O, 点E是BC的中点.若OE=3cm,则AB的长为() A.3cm B.6cm C.9cm D.12cm 14.已知:如图,在矩形ABCD中,E、F、G、H分别为边 AB、BC、CD、DA的中点.若AB=2,AD=4, 则图中阴影部分的面积为() A.8B.6C.4D.3 A H D E G B F C 15.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形() A.①③⑤B.②③⑤C.①②③D.①③④⑤ 16.如图是一块电脑主板的示意图,每一转角处都是 直角,数据如图所示(单位:mm),则该主板的周长 是() A.88mm B.96mm C.80mm D.84mm 17、(08甘肃省白银市)如图,把矩形ABCD沿EF对折后使两部分重合,若∠1=50,则∠AEF=() A.110°B.115° C.120°D.130°

《平行四边形的性质与判定》典型例题

《平行四边形的性质》典型例题 例1一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度? 例2已知:如图,ABCD的周长为60cm,对角线AC、BD相交于点O,?的周长多8cm,求这个平行四边形各边的长. ?的周长比BOC AOB 例3 已知:如图,在ABCD中,BD AC、交于点O,过O点作EF交AB、CD于E、F,那么OE、OF是否相等,说明理由.

例4 已知:如图,ABCD的周长是cm 36,由钝角顶点D向AB,BC引两条高DE,DF,且cm =.求这个平行四边形的面积. 5 DF3 4 =,cm DE3 例5 如图,已知:ABCD中,BC EAF, ∠60 AE⊥于E,CD = AF⊥于F,若?FD3 =. =,cm BE2 cm 求:AB、BC的长和ABCD的面积.

《平行四边形的判定》典型例题 例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED是平行四边形. 例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF和BE相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由. 例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC 的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD.

例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF,BE,CF分别交CF,AE于H,G. 求证:EG=FH. 例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF, ∠BAC=∠DCA. 求证:四边形ABCD是平行四边形.

八年级数学下册特殊的平行四边形同步测试题及答案

八年级数学下册特殊的平行四边形同步测试题 一、填空题(每题3分,共30分) 1.用一把刻度尺来判定一个零件是矩形的方法 是 . 2.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm . 3.如图,正方形A B C D 的边长为4cm ,则图中阴影部分的面积为 cm 2. 4.从平行四边形的一个锐角的顶点做两条高线,如果这两条高线的夹角是135°,这个平行四边形的锐角的度数是 . 5若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形. 6.,在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD = ⒎以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 . 8.延长正方形ABCD 的边AB 到E ,使BE =AC ,则∠E = ° 9.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD = 2那么AP 的长为 . 10.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5), B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形 ABCD 是平行四边形,那么点D 的坐标是 . 二、选择题(每题3分,共30分) 11.如图4在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( ) A .110° B .30° C .50° D .70° 12.菱形具有而矩形不具有的性质是 ( ) A .对角相等 B .四边相等 C .对角线互相平分 D .四角相等 13.平行四边形ABCD 中,对角线AC 、BD 交于点O , 点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( ) A .3 cm B .6 cm C .9 cm D .12 cm 14.已知:如图,在矩形ABCD 中,E 、F 、G 、H 分别为边 AB 、BC 、CD 、DA 的中点.若AB =2,AD =4, 则图中阴影部分的面积为 ( ) A .8 B .6 C .4 D .3 15.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形 ( ) A .①③⑤ B .②③⑤ C .①②③ D .①③④⑤ 16.如图是一块电脑主板的示意图,每一转角处都是 直角,数据如图所示(单位:mm),则该主板的周长 是 ( ) A .88 mm B .96 mm C .80 mm D .84 mm 17、如图,把矩形A B C D 沿E F 对折后使两部分重合,若150∠= ,则A E F ∠=( ) A .110° B .115° (6) E A F D C B H G

《平行四边形的判定》典型例题

《平行四边形的判定》典型例题 例1如图,△DAB、△EBC、△FAC都是等边三角形,试说明四边形AFED 是平行四边形. 例2如图,E、F分别是ABCD边AD和BC上的点,并且AE=CF,AF 和BE相交于G,CE和DF相交于H、EF与GH是否互相平分,请说明理由. 例3如图,在平行四边形ABCD中,A1、A2、A3、A4和B1、B2、B3、B4分别是AB和DC的五等分点,C1、C2和D1、D2分别是AD和BC的三等分点,若四边形C1A4D2B1的面积为1,求S平行四边形ABCD. 例4已知:如图,E,F分别为ABCD的边CD,AB上一点,AE∥CF, BE,CF分别交CF,AE于H,G. 求证:EG=FH.

例5如图,已知:四边形ABCD中,AE⊥BD,CF⊥BD,E,F为垂足,且AE=CF,∠BAC=DCA. 求证:四边形ABCD是平行四边形.

参考答案 例1分析要证四边形AFED是平行四边形,应观察:两组对边是否相等、两组对角是否相等,或一组对边是否平行且相等、对角线是否相互平分.但在本题中没有对角线,也没有明显的对角之间的关系,因此可以先考虑去证明四边形AFED的对边是否相等. 事实上,AD=AB=BD,EF是否能等于这三条边中的一条呢?可以看到 ,∴EF=AB=BD.同理DE=AC=AF,因此,所要证的四边形AFED 是平行四边形. 证明,∴, 且,∴,∴ 又,同理.∴AFED是平行四边形. 例2分析若EF、GH互相平分,那么四边形EGFH应是平行四边形.观察已知条件,可以证明四边形EGFH是平行四边形. 证明是平行四边形,∴ 又,∴,且 ∴四边形AECF是平行四边形,∴,∴ 又四边形EDFB是平行四边形,∴,∴ 在四边形GEHF中,, ∴四边形GEHF是平行四边形,∴EF和GH互相平分. 说明:本题中多次使用了平行四边形的性质:对边平行且相等以及平行四边形的判断方法:对边平行且相等的四边形是平行四边形.通过解题应熟悉平行四边形的性质及判别. 例3 分析平行四边形ABCD被和分别成15个相等的小平行四边形。 而是4个小平行四边形面积的一半,是2个小平行四边形面积的一半。

人教版八年级下册 第十八章 平行四边形 18.2 特殊的平行四边形 同步练习题

特殊的平行四边形同步练习 一.选择题(共12小题) 1.下列说法中,错误的是() A.有一组邻边相等的平行四边形是菱形 B.两条对角线互相垂直且平分的四边形是菱形 C.对角线相等的平行四边形是矩形 D.有一组邻边相等的菱形是正方形 2.如图,在平面直角坐标系中,菱形OABC的顶点O、A在x轴上,且O、C的坐标分别是(0,0),(3,4),则顶点B的坐标是() A.(5,3) B.(8,3) C.(8,4) D.(9,4) 3.如图,在矩形ABCD中,AB=6,BC=8,AE⊥BD于F,则线段AF的长是() A.6 B.5 C.4.8 D.4 4.如图,在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF ∥AB,分别交AB,AC于E,F两点,下列条件能判 定四边形AEDF是菱形的是()

B.AD为BC边上的中线 C.AD=BD D.AD平分∠BAC 5.如图,在正方形ABCD和正方形CEFG中,点E在边BC上的延长线上,点G在CD上,若AB=2,则线段DF的最小值为() A.1B.C.D.2 6.如图,在长方形ABCD中AB=DC=4,AD=BC=5.延长BC到E,使CE=2,连接DE.动点P 从点B出发,以每秒2个单位的速度沿BC-CD-DA向终点A运动,设点P运动的时间为t秒,存在这样的t,使△DCP和△DCE全等,求出t的值.() A.t=0.5 B.t=1.5 C. D. 7.如图,矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAD交BC于点E,∠CAE=15°,则∠AOE的度数为() A.120° B.135° C.145°

初中数学判定平行四边形的五种常用方法

判定平行四边形的五种常用方法 名师点金:判定平行四边形的方法通常有五种,即定义和四种判定定理,选择判定方法时,一定要结合题目的条件,选择恰当的方法,从而简化解题过程. 利用两组对边分别平行判定平行四边形 1.如图,在?ABCD中,E,F分别为AD,BC上的点,且BF=DE,连接AF,CE,BE,DF,AF与BE相交于M点,DF与CE相交于N点.求证:四边形FMEN为平行四边形. (第1题) 利用两组对边分别相等判定平行四边形 2.如图,已知△ABD,△BCE,△ACF都是等边三角形. 求证:四边形ADEF是平行四边形. (第2题) 利用一组对边平行且相等判定平行四边形 3.如图,在△ABC中,∠ACB=90°,点E为AB上一点,连接CE,过点E作ED⊥BC于点D,在DE的延长线上取一点F,使AF=CE.求证:四边形ACEF是平行四边形. (第3题)

利用两组对角分别相等判定平行四边形 4.如图,在?ABCD中,BE平分∠ABC,交AD于点E,DF平分∠ADC,交BC于点F,那么四边形BFDE是平行四边形吗?请说明理由. (第4题) 利用对角线互相平分判定平行四边形 5.【中考·哈尔滨】如图①,?ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH. (1)求证:四边形EGFH是平行四边形; (2)如图②,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图②中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外). (第5题)

答案 1. 证明:∵四边形ABCD 是平行四边形,DE =BF ,∴DE 平行且等于BF . ∴四边形BFDE 为平行四边形. ∴BE ∥DF .同理,AF ∥CE . ∴四边形FMEN 为平行四边形. 2.证明:∵△ABD ,△BCE ,△ACF 都是等边三角形, ∴BA =BD =AD ,BC =BE ,AF =AC ,∠DBA =∠EBC =60°. ∴∠EBC -∠EBA =∠DBA -∠EBA , 即∠ABC =∠DBE . ∴△ABC ≌△DBE .∴AF =AC =DE . 同理,可证△ABC ≌△FEC , ∴AD =AB =EF . ∴四边形ADEF 是平行四边形. 3.证明:过A 作AM ⊥DF 于M . ∵∠ACB =90°,ED ⊥BC , ∴DF ∥AC .∴AM =DC . 在Rt △AMF 和Rt △CDE 中, ? ????AM =CD ,AF =CE , ∴Rt △AMF ≌Rt △CDE . ∴∠F =∠CED .∴AF ∥CE . 又∵AF =CE , ∴四边形ACEF 是平行四边形. 4.解:四边形BFDE 是平行四边形.理由:在?ABCD 中,∠ABC =∠CDA ,∠A =∠C . ∵BE 平分∠ABC ,DF 平分∠ADC , ∴∠ABE =∠CBE =12∠ABC ,∠CDF =∠ADF =12 ∠ADC .∴∠ABE =∠CBE =∠CDF =∠ADF .∵∠DFB =∠C +∠CDF ,∠BED =∠ABE +∠A ,∴∠DFB =∠BED .∴四边形BFDE 是平行四边形. 5.(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠EAO =∠FCO . ∵O 是AC 的中点,∴OA =OC . 在△OAE 与△OCF 中, ?????∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF , ∴△OAE ≌△OCF ,∴OE =OF . 同理OG =OH , ∴四边形EGFH 是平行四边形. (2)解:与四边形AGHD 面积相等的平行四边形有?GBCH ,?ABFE ,?EFCD ,?EGFH .

【精品】初中数学八年级下册《平行四边形的判定》拔高练习

《平行四边形的判定》拔高练习 一、选择题(本大题共5小题,共25.0分) 1.(5分)如图,在四边形ABCD中,AB∥CD,添加下列条件,不能判定四边形ABCD是平行四边形的是() A.AB=CD B.BC∥AD C.∠A=∠C D.BC=AD 2.(5分)如图,小津不慎将一块平行四边形玻璃打碎成如图所示的四块,为了能从商店配到一块与原来相同的玻璃,他带了其中两块玻璃去商店,其编号应该是() A.①②B.②④C.③④D.①③ 3.(5分)下面给出的四边形ABCD中,∠A、∠B、∠C、∠D的度数之比,其中能判定四边形ABCD是平行四边形的条件是() A.3:4:3:4B.3:3:4:4C.2:3:4:5D.3:4:4:3 4.(5分)下列条件不能判断四边形是平行四边形的是()A.两组对边分别相等 B.一组对边平行且相等 C.一组对边平行,另一组对边相等 D.对角线互相平分 5.(5分)如图,能判定四边形ABCD是平行四边形的是() A.AD∥BC,AB=CD B.∠A=∠B,∠C=∠D C.∠A=∠C,∠B=∠D D.AB=AD,CB=CD

二、填空题(本大题共5小题,共25.0分) 6.(5分)如图,平行四边形ABCD中,AC为对角线,已知点E、F在AC上,添加一个条件,可使四边形BFDE为平行四边形. 7.(5分)如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC 的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒1个单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为秒时,以点A、P,Q,E为顶点的四边形是平行四边形. 8.(5分)如图,在边长为1的正方形网格中,A、B两点在小方格的顶点上.若点C、D也在小方格的顶点上,这四点恰好是面积为2的一个平行四边形的四个顶点,则这样的平行四边形有个. 9.(5分)小明做了一个平行四边形的纸板,但他不确定纸板形状是否标准,小聪用刻度尺量了这个四边形的四条边长,然后说这个纸板是标准的平行四边形,小聪的依据是. 10.(5分)如图,在?ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为10,AB=4,那么对角线AC+BD=.

人教版八年级下册数学 18.2特殊的平行四边形 同步练习(解析版)

18.2特殊的平行四边形同步练习 一.选择题(共10小题) 1.菱形具有而一般平行四边形不具有的性质是() A.对边相等B.对角相等 C.对角线互相平分D.对角线互相垂直 选D 2.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为() A.4 B.8 C.10 D.12 解:∵四边形ABCD为矩形, ∴OA=OC,OB=OD,且AC=BD, ∴OA=OB=OC=OD=2, ∵CE∥BD,DE∥AC, ∴四边形DECO为平行四边形, ∵OD=OC, ∴四边形DECO为菱形, ∴OD=DE=EC=OC=2, 则四边形OCED的周长为2+2+2+2=8, 故选B 3.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()

A.1:B.1:2 C.2:3 D.4:9 解:设大正方形的边长为x,根据图形可得: ∵=, ∴=, ∴=, ∴S1=S正方形ABCD, ∴S1=x2, ∵=, ∴=, ∴S2=S正方形ABCD, ∴S2=x2, ∴S1:S2=x2:x2=4:9; 故选D. 4.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()

A.(3,1)B.(3,)C.(3,)D.(3,2) 解:如图,作点D关于直线AB的对称点H,连接CH与AB的交点为E,此时△CDE的周长最小. ∵D(,0),A(3,0), ∴H(,0), ∴直线CH解析式为y=﹣x+4, ∴x=3时,y=, ∴点E坐标(3,) 故选:B. 5.如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF ⊥DE,垂足为点F,在下列结论中,不一定正确的是() A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF

特殊的平行四边形的证明

特殊的平行四边形的证明 --矩形(复习课)教学设计 知识清单 一.矩形的性质: 四个角相等(都是90。) 对角线相等 推论:直角三角形斜边上的中线等于斜边的一半 二.矩形的判定: 1、“平行四边形”+“一个角为直角”=“矩形” 2、“平行四边形” +“对角线相等”=“矩形” 3、“四边形”+“三个角是直角”=“矩形” 练习题: 1、下列性质中,矩形具备而一般平行四边形不具备的是( ) A.内角和为360° B.对边平行且相等 C.对角线相等 D.对角相等 2、如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则矩形的对角线AC的长是( ) A.2 B.4 C.2 D.4 3、如图,在平行四边形ABCD中,对角线AC,BD相交于点O,且OA=OB. (1)求证:四边形ABCD是矩形; (2)若AD=4,∠AOD=60°,求AB的长. 4、如图,在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落 在AD边的F点上,求DF和AE的值。

5、在平行四边形ABCD,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF. (1)求证:四边形BFDE是矩形; (2)若AD=DF,求证:AF平分∠BAD 6、(变式一)在平行四边形ABCD,过点D作DE⊥AB于点E,点F在边CD上,CF=AE,连接AF,BF. (1)求证:四边形BFDE是矩形; (2)若AF平分∠BAD,求证:DF=BC 7、(变式二)如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F. (1)求证:OE =OF; (2)若CE =12,CF =5,求OC的长; (3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由. 8、如图所示,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q 从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).当t= 时,四边形APQD也为矩形.

平行四边形的判定教学设计 (1)

《平行四边形的判定》教学设计 柴沟堡二中 张彦春 教学目标: 知识与技能:1、运用类比的方法,通过学生的合作探究,得出平行四边形的判定方法。 2、理解平行四边形形的判定方法,并学会简单运用。 过程与方法:1、通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培 养学生的动手能力、合情推理能力;使学生学会将平行四边形的问题转化为三角形的问题, 渗透化归意识。 2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展学生 的逻辑思维能力和推理论证的表达能力;通过对平行四边形判定方法的探究,提高学生解决 问题的能力。 情感、态度与价值观: 通过对平行四边形判定方法的探究和运用,使学生感受数学思考过程中的合理 性、数学证明的严谨性,认识事物的相互联系、相互转化,学会用辩证的观点分析事物。 重点难点 重点 平行四边形判定方法的探究、运用以及平行四边形的性质和判定的结合运用。 难点 对平行四边形判定方法的证明以及平行四边形的性质和判定的综合运用。 学情分析: 经过近两年的初中学习,学生推理意识与能力有所加强。在知识储备上,学生已经学习了平 行四边形的性质,对命题与逆命题、定理与逆定理已经有了初步认识。 教学过程: 一、复习、引入新课 复习: 问题(多媒体展示问题) 1、平行四边形的定义是什么?它有什么作用? 2、平行四边形的性质有哪些?(从三个方面:边、角、对角线,两个角度:文字语言、符 号语言回答) 引入新课 我们知道了平行四边形的性质,那么,有哪些方法可以判断一个四边形是平行四边形呢? 二、新课 活动一: 1、教师明确平行四边形的第一种判定方法——根据定义。 平行四边形判定定理 1 两组对边分别平行的四边形是平行四边形。 2、学生结合图形,用符号语言表述这一定理。 符号语言: ∵AB ∥CD ,AD ∥BC (已知) ∴四边形ABCD 是平行四边形(两组对边分别平行的四边形 是平行四边形。) 活动二: 1、探究1:如图,将两长两短的四条线段首尾顺次连接,拼成一个四边形,使等长的线段 成为对边,转动这个四边形,使它形状改变。在图形变化过程中,它一直是一个什么四边形? (如图) A B C D A B C D

人教版八年级下册18.2特殊的平行四边形同步练习题(word无答案)

18.2特殊的平行四边形专题练习 1.下列命题中,真命题是() A.对角线互相平分且相等的四边形是矩形 B.对角线互相垂直且相等的四边形是矩形 C.对角线互相平分且相等的四边形是菱形 D.对角线互相垂直且相等的四边形是菱形 2.平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是() A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD 3.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是一个学习小组拟定的方案,其中正确的是() A.测量对角线是否相互平分 B.测量两组对边是否分别相等 C.测量对角线是否相等 D.测量其中三个角是否都为直角 4.如图,公路AC,BC互相垂直,公路AB的中点M与点C被湖隔开.若测得AM的长为1.2km,则M,C两点间的距离为() A.0.5km B.0.6km C.0.9km D.1.2km 5.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,

则EP+FP的最小值为() A.1 B.2 C.3 D.4 6.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF ⊥AC于F,M为EF中点,则AM的最小值为() A.B.C.D. 7.如图,矩形ABCD的对角线相交于O所成的钝角∠AOD=120°,AB=2cm, (1)求对角线AC的长. (2)求矩形ABCD的面积. 8.在一块宽20m、长32m的矩形空地上,修筑宽相等的三条小路(两条纵向,一条横向,纵向与横向垂直),剩下的部分建成面积为570m2花坛,问小路的宽应是多少?9.如图所示,O为矩形ABCD的对角线的交点,DE∥AC,CE∥BD. (1)试判断四边形OCED的形状,并说明理由; (2)若AB=10,BC=12,求四边形OCED的面积.

北师大版九年级上学期第一章《特殊的平行四边形》证明题集锦

北师大版九年级上学期 第一章 平行四边形及特殊的平行四边形证明题集锦 1.(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC . 求∠AEB 的大小;(2)如图2,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小. , ^ 2.如图1,四边形ABCD 是正方形,G 是CD 边上的一个动点(点G 与C 、D 不重合),以CG 为一边在正方形ABCD 外作正方形CEFG ,连结BG ,DE .我们探究下列图中线段BG 、线段DE 的长度关系及所在直线的位置关系:长度关系及所在直线的位置关系;(1)①猜想如图1中线段BG 、线段DE 的②将图1中的正方形CEFG 绕着点C 按顺时针(或逆时针)方向旋转任意角度α,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断. @ | (2)将原题中正方形改为矩形(如图4—6),且AB=a ,BC=b ,CE=ka , CG=kb (a ≠b ,k >0), B A O D ; C E 图2 C B O D 图1 [ A E 图1 图2 图3

第(1)题①中得到的结论哪些成立,哪些不成立若成立,以图5为例简要说明理由.(3)在第 (2)题图5中,连结DG 、BE ,且a =3,b =2,k =1 2 ,求22BE DG 的值. : ; 3.如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . ? 解答下列问题:(1)如果AB=AC ,∠BAC=90o.①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关系为 .②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么(2)如果AB ≠AC ,∠BAC ≠90o,点D 在线段BC 上运动.试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)画出相应图形,并说明理由.(画图不写作法)CF 相交于点P ,求线段CP 长的最大值. { 4.已知:如图,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作正三角形△ACM 和△BCN , A B C D E F 图甲 图乙 F E D C B A F E D C B A 图丙

平行四边形判定方法.

平行四边形的判定 【知识要点】 同学们都知道,平行四边形具有对边平行且相等,对角相等,对角线互相平分等性质, 并且我们得到了平行四边形的五种判定方法: ①定义法:两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形. ③一组对边平行且相等的四边形是平行四边形. ④对角线互相平分的四边形是平行四边形. ⑤两组对角分别相等的四边形是平行四边形. 【能力解读】 1. 掌握平行四边形的判定方法,会利用平行四边形的性质和判定进行有关线段的证明和角 的计算。 2. 将平行四边形转化成三角形来研究,深入理解平行四边形的性质和判定。 3. 平行四边形的性质和判定是中考命题的热点,特别是平行四边形的判定多与其他知识点 结合命题,以平行四边形为基架而精心设计的的中考题更是璀璨夺目,精彩四射。 【平行四边形判定方法的选择】 判定平行四边形的五种方法各有妙用,我们应仔细观察题目所给出的条件,仔细选择合 适于题目的判定方法进行解答。在解题时,如何有针对性的选择使用这些方法呢?这里列表 例1(条件开放题)如图1,四边形ABCD 中,BC AD =, 要使四边形ABCD 为平行四边形,还需补充的一个条件是 . 课标剖析:熟练地掌握平行四边形的判定方法是解题的关键。 解:答案不唯一,如:(1)AB CD =(2)AD BC ∥(3) ?=∠+∠180B A ,(4) ?=∠+∠180D C . 例2.(结论开放题)如图2,在□ABCD 中,两条对角线相交于点O ,点E 、F 、G 、H 分别 是OA 、OB 、OC 、OD 的中点,以图中的任意四点(即点A 、B 、C 、D 、 E 、 F 、 G 、 H 、O 中的任意四点)为顶点画两种不同的平行四边形. 课标剖析::根据平行四边形的判定方法④解答. 【解】第一种:可画为□EFGH 第二种:可画为□DEBG (或画为□AHCF ) 分析:□ABCD 可得OA=OC ,OB=OD ,又因为点E 、F 、G 、H 分别是OA 、OB 、OC 、OD D 2 D C 图1

平行四边形的判定典型题备课讲稿

平行四边形的判定 例题1:BD 是平行四边形ABCD 的对角线,点E 、F 在BD 上,要使四边形AECF 是平行四边形,还需要添加的一个条件是_________ 练习:1、如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。 求证:四边形BFDE 是平行四边形。 2.如图所示,在平行四边形ABCD 中,P 1、P 2是对角线BD 的三等分点,求证:?四边形AP 1CP 2是平行四边形. 3、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O , 那么请说明AM=DC 且AM ∥DC 例题2:(2013?镇江)如图,AB∥CD,AB=CD ,点E 、F 在BC 上,且BE=CF . (1)求证:△ABE≌△DCF; (2)试证明:以A 、F 、D 、E 为顶点的四边形是平行四边形. O A B D

练习:1、11、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、 H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形 2.(2012?惠城区模拟)如图,D 是AB 上的一点,DF 与AC 相交于E ,DE=EF ,CF∥BA. 求证:四边形ADCF 是平行四边形. 3、已知:如图所示,平行四边形ABCD 的对角线AC 、BD?相交于点 O ,EF 经过点O 并且分别和AB 、CD 相交于点E 、F ,又知G 、H 分别为OA 、OC 的中点. 求证:四边形EHFG 是平行四边形. 例题3:、如图4.4-17,等边三角形ABC 的边长为a ,P 为△ABC 内一点,且PD ∥AB ,PE ∥BC ,PF ∥AC ,那么,PD+PE+PF 的值为一个定值.这个定值是多少?请你说出这个定值的来历. H G F E O A B C D H G F E O A B C D H G F E O A B C D H G F E O A B C D

人教版八年级数学下册 18.2 特殊的平行四边形习题课 同步导学(带答案)

18.2 特殊的平行四边形习题课 学习目标 1.矩形的性质与判定; 2.菱形的性质与判定; 3.正方形的性质与判定; 4.直角三角形斜边上的中线等于斜边的一半. 一、变式训练 1.下面性质中,菱形不一定具有的是(A) A.对角线相等 B.四条边相等 C.是轴对称图形 D.对角线垂直 2.下列命题中,真命题是(B) A.两条对角线相等的四边形是矩形 B.两条对角线互相垂直的平行四边形是菱形 C.两条对角线互相垂直且相等的四边形是正方形 D.四边相等的四边形是正方形 3.如图,四边形ABCD是正方形,两条对角线相交于点O,OA=4,则 ∠AOB=90°,∠OAB=45°,BD=8,AB=42,正方形的周长是 162,面积是32. 4.(2016·岳阳)如图,在矩形ABCD中,点F在边BC上,且BE=CF, EF⊥DF.求证:BF=CD.

证明:∵四边形ABCD是矩形 ∴∠B=∠C=90°, ∴∠BEF+∠EFB=90°, ∵EF⊥DF, ∴∠BFE+∠DFC=90°, ∴∠BEF=∠DFC, 又∵BE=CF, ∴△BEF≌△CFD, ∴BF=CD. 5.正方形具有而矩形也具有的性质是(D) A.四条边相等 B.对角线互相垂直平分 C.对角线平分一组对角 D.对角线相等 6.在平行四边形、菱形、矩形、正方形中,能够找到一点,使该点到各边距离相等的图形是(A) A.菱形和正方形 B.菱形和矩形 C.矩形和正方形 D.平行四边形和菱形 7.如图,在菱形ABCD中,AB=5,AC=8,则菱形的面积是24.

8.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上, 且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为 点G,H,折痕分别与边BC,AD相交于点E,F.判断四边形CEGF 的形状,并证明你的结论; 解:∵四边形ABCD是矩形. 证明:∴AD∥BC, ∴∠GFE=∠FEC, ∵图形翻折后点G与点C重合,EF为折线, ∴∠GEF=∠FEC,∴∠GFE=∠FEG,∴GF=GE, ∵图形翻折后BC与GE完全重合,∴GE=EC, ∴GF=EC,∴四边形CEGF为平行四边形, ∴四边形CEGF为菱形. 二、基础训练 9.若菱形两条对角线的长分别是6和8,则这个菱形的周长为(A) A.20 B.16 C.12 D.24 10.(2016·攀枝花)下列说法正确的是(B)

相关主题
文本预览
相关文档 最新文档