当前位置:文档之家› 线性代数第三章答案

线性代数第三章答案

第三章 矩阵的初等变换与线性方程组

1. 把下列矩阵化为行最简形矩阵:

(1)????

?

??-34031302

1201; 解 ???

??

??-34

031302

1201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. ) ~???

?

?

?

?---62

03100

1201(下一步: r 2 ÷(-1), r 3÷(-2). ) ~???

?

?

??---31

03100

1201

(下一步: r 3- r 2.)

~???

??

??--00003100

1201(下一步: r 1-2 r 2.) ~????

?

?

?-00

03100

5001

(2)???

? ??----174034301320;

解 ???

?

??----174034301320(下一步: r 2?2+(-3)r 1, r 3+(-2)r 1. )

~????

??---3100310

01320(下一步: r 3+r 2, r 1+3r 2. ) ~????

??0000310010020(下一步: r 1÷2. )

~???

?

??000031005010.

(3)???

??

?

?---------124

33023221453334311;

解 ???

?

?

?

?---------124

3

30232214533

34311

(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )

~???

?? ??--------1010500663008840034

311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )

~???

?

?

??-----22

100221002210

034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. ) ~???

?

?

??---00000000002210

032011.

(4)???

?

?

?

?------34732038234202173132.

解 ???

?

?

??------34732038234202

173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )

~???

??

??-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )

~???

?

?

??--410

00410002020

111110(下一步: r 1?r 2, r 2?(-1), r 4-r 3. )

~???

??

?

?----000004100011110

20201(下一步: r 2+r 3. )

~???

?

? ?

?--000

00410003011020201.

2. 设????

??=???? ?????? ??987654321100010101100001010A , 求A .

解 ????

??100001010是初等矩阵E (12), 其逆矩阵就是其本身.

????

??100010101是初等矩阵E (12(1)), 其逆矩阵是

E (12(-1)) ???

?

??-=100010101.

???

?

??-???? ?????? ??=100010101987654321100001010A

???

? ??=???? ??-???? ??=287221254100010101987321654.

3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:

(1)???

?

??323513123;

解 ???? ??100010001323513123~???

? ??---101011001200410123

~???? ??----1012002110

102/102/3023~????

??----2/102/11002110102/922/7003 ~???

?

??----2/102/11002110

102/33/26/7001 故逆矩阵为?????? ??----210212112

33267.

(2)????

? ??-----1210232112201023.

解 ?????

??-----10

000100001

000

011210

232112201023 ~????

?

??----0010030110

00010012

20594012102321 ~???

??

??--------20104301100001001200110012102321

~???

?

? ??-------106124301100001001000110012102321

~????

??

?

?

?---------106

1

2

631110`10

22111

001000

010

0021 ~?

??

?

?

??-------106126

3111010421110

00

01000010

0001

故逆矩阵为???

?

? ??-------10612631110104211.

4. (1)设???? ??--=11312

2214A , ???

?

??--=132231B , 求X 使AX =B ; 解 因为

???? ??----=132231 113122214) ,(B A ???? ??--412315210 1000100

01 ~r ,

所以 ???

?

??--==-4123152101

B A X .

(2)设???

? ??---=43331212

0A , ??

?

??-=132321B , 求X 使XA =B .

解 考虑A T

X T

=B T

. 因为

???? ??----=134313231

221320) ,(T

T

B A ???

?

??---411007101042001 ~r , 所以 ???

?

??---==-4171

42)(1T

T T B A X , 从而 ?

?

?

??---==-4741121BA X .

5. 设???

?

??---=101110

011A , AX =2X +A , 求X . 解 原方程化为(A -2E )X =A . 因为

????

??---------=-101101110

110011011) ,2(A E A ????

??---01110010

1010110001~, 所以 ???

?

??---=-=-01110

1110)2(1

A E A X . 6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式? (举例

可以参考书上的)

解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.

例如, ???

?

??=010*********A , R (A )=3.

00

0是等于0的2阶子式, 0

100010

00是等于0的3阶子式.

7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?

解 R (A )≥R (B ) ≥ R (A )—1 .

这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.

8. 求作一个秩是4的方阵, 它的两个行向量是

(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).

解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:

?????

?

??-00

00001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.

9. 求下列矩阵的秩, 并求一个最高阶非零子式:

(1)???

?

??---4431121

12013; 解 ????

??---4431121

12013(下一步: r 1?r 2. ) ~???

?

??---4431201

31211(下一步: r 2-3r 1, r 3-r 1. )

~????

??----564056401211(下一步: r 3-r 2. )

~??

? ??---0000

56401

211,

矩阵的2秩为,

41

11

3-=-是一个最高阶非零子式. (2)???

?

??-------81507313

1213123; 解 ???

?

?

?

?-------81

50731312

13123(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~????

??------62733210791170

2

4431

(下一步: r 3-3r 2. )

~???

? ??----150

000

791170

2

4431

,

矩阵的秩是3,最高阶非零子式(看书上那个).

(3)???

?

?

??---02301085235703273812.

解 ???

?

?

?

?---0230108523570

32738

12(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )

~???

?? ??------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )

~???

??

??-02301140000160000

71210(下一步: r 2÷16r 4, r 3-16r 2. )

~???

??

??-023010000010000

71210

~???

?

?

?

?-0000

010********

02301,

矩阵的秩为3, 0700

230855

70≠=-是一个最高阶非零子式. (书后那个答案也可)

10. 设A 、B 都是m ?n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ). 证明 根据定理3, 必要性是成立的.

充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有

A ~D , D ~

B .

由等价关系的传递性, 有A ~B .

11. 设???

?

??----=32321321k k k A , 问k 为何值, 可使

(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.

解 ???? ??----=32321321k k k A ???

?

??+-----)2)(1(0011

011 ~k k k k k r . (1)当k =1时, R (A )=1;

(2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.

12. 求解下列齐次线性方程组:

(1)?????=+++=-++=-++0

2220202432143214321

x x x x x x x x x x x x ;

解 对系数矩阵A 进行初等行变换, 有

A =???? ??--212211121211~???

? ??---3/410013

1001

01, 于是 ???????==-==4

4434

24134334x x x x x x x x ,

故方程组的解为

?

?????? ??-=????? ??13433443

2

1k x x x x (k 为任意常数).

(2)?????=-++=--+=-++0

5105036302432143214321

x x x x x x x x x x x x ;

解 对系数矩阵A 进行初等行变换, 有

A =???? ??----5110531631121~???

? ??-000001001021,

于是 ?

????===+-=4

432

242102x x x x x x x x ,

故方程组的解为

?

???? ??+????? ??-=????? ??100100122143

2

1k k x x x x (k 1, k 2为任意常数).

(3)?

????=-+-=+-+=-++=+-+0

742063407230

5324321432143214321x x x x x x x x x x x x x x x x ;

解 对系数矩阵A 进行初等行变换, 有

A =????? ??-----7421631472135132~

????? ?

?10

0001000010

000

1,

于是 ?

????====0

00

4321x x x x ,

故方程组的解为

?

????====0

00

04321x x x x .

(4)?

????=++-=+-+=-+-=+-+0

3270161311402332075434321432143214321x x x x x x x x x x x x x x x x .

解 对系数矩阵A 进行初等行变换, 有

A =?????

?

?-----3127161311423

327543~???????

??-

-

0000

00001720171910171317301

,

于是 ???????==-=-=4

43

3

4324311720

17191713173x x x

x x x x x x x , 故方程组的解为

?

????

?

? ??--+???????

??=????? ??1017

2017

13011719

17

3214321k k x x x x (k 1, k 2为任意常数).

13. 求解下列非齐次线性方程组:

(1)?????=+=+-=-+8

3111021322421321321

x x x x x x x x ;

解 对增广矩阵B 进行初等行变换, 有

B =????

??--80311102132124~??? ??----6000

34111008331,

于是R (A )=2, 而R (B )=3, 故方程组无解.

(2)?

????-=+-=-+-=+-=++6

9413283542432z y x z y x z y x z y x ;

解 对增广矩阵B 进行初等行变换, 有

B =????? ??-----69141328354214132~

???

?

?

??--000000002110

1201,

于是 ???

??=+=--=z

z z y z x 212,

即 ????

??-+???? ??-=???

? ??021112k z y x (k 为任意常数).

(3)???

??=--+=+-+=+-+1

2222412w z y x w z y x w z y x ;

解 对增广矩阵B 进行初等行变换, 有

B =???? ??----11112212

2411112~???

?

??-00000010002/102/12/11, 于是 ????

???===++-=0

212121w z z y y z y x ,

即 ????

?

? ??+?????? ??+?????? ??-=?

??

?? ??00021010210012121

k k w z y x (k 1, k 2为任意常数). (4)???

??-=+-+=-+-=+-+2

534432312w z y x w z y x w z y x .

解 对增广矩阵B 进行初等行变换, 有

B =???? ??-----253414312311112

~??? ??----0000

07/57/97/5107/67/17/101,

于是 ?

??????==--=++=w

w z z w z y w z x 75

7975767171,

即 ?

?????

? ??-+??????? ??-+??????? ??=?

??

?? ??007

57610797101757121k k w z y x (k 1, k 2为任意常数).

14. 写出一个以

???

?

? ??-+????? ??-=1042013221c

c x 为通解的齐次线性方程组. 解 根据已知, 可得

?????

??-+????? ??-=????

? ??1042013221432

1c c x x

x x , 与此等价地可以写成

??????

?==+-=-=2

4

13212

2114322c x c x c c x c c x ,

或 ???+-=-=4

324

314322x x x x x x ,

或 ???=-+=+-0

430

22432431x x x x x x ,

这就是一个满足题目要求的齐次线性方程组.

15. λ取何值时, 非齐次线性方程组

???

??=++=++=++2

3213213211λ

λλλλx x x x x x x x x .

(1)有唯一解; (2)无解; (3)有无穷多个解?

解 ???

?

??=21111111λλλλλB

??

? ??+-+----2

2)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr

.

(1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解. (2)要使方程组无解, 必须R (A )

(3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2=0. 因此当λ=1时, 方程组有无穷多个解.

16. 非齐次线性方程组

???

??=-+=+--=++-2

3213213212222λ

λx x x x x x x x x 当λ取何值时有解?并求出它的解.

解 ???? ??----=22111212112λλB ~?

???

? ??+-----)2)(1(000)1(32110121λλλλ.

要使方程组有解, 必须(1-λ)(λ+2)=0, 即λ=1, λ=-2. 当λ=1时,

???? ??----=1211112

12112

B ~???

? ??--000001101101, 方程组解为

???=+=3

23

11x x x x 或?????==+=3

332311x x x x x x ,

即 ????

??+???? ??=???

? ??001111321k x x x (k 为任意常数).

当λ=-2时,

???? ??-----=4211212

12112

B ~???

? ??--000021102101, 方程组解为

???+=+=22323

1x x x x 或?????=+=+=33323122x

x x x x x ,

即 ????

??+???? ??=???

? ??022111321k x x x (k 为任意常数).

17. 设???

??--=-+--=--+=-+-1

)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .

问λ为何值时, 此方程组有唯一解、无解或有无穷多解? 并在有无穷多解时求解.

解 B =???

? ??---------154224521222λλλλ

~???

?

??---------)4)(1()10)(1(0011102452λλλλλλλ

λ. 要使方程组有唯一解, 必须R (A )=R (B )=3, 即必须 (1-λ)(10-λ)≠0,

所以当λ≠1且λ≠10时, 方程组有唯一解. 要使方程组无解, 必须R (A )

要使方程组有无穷多解, 必须R (A )=R (B )<3, 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)=0,

所以当λ=1时, 方程组有无穷多解.此时,增广矩阵为

B ~???

?

??-0000000

01221, 方程组的解为

?????==++-=3322321

1x

x x x x x x ,

或 ???? ??+???? ??+???? ??-=???

? ??00110201221321k k x x x (k 1, k 2为任意常数).

18. 证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T , 使A =ab T . 证明 必要性. 由R (A )=1知A 的标准形为

)0 , ,0 ,1(001000000

001?????

??

? ?????=?????

?

??

????????????????????, 即存在可逆矩阵P 和Q , 使

)0 , ,0 ,1(001???????? ?????=PAQ , 或11)0 , ,0 ,1(001--???????

? ?????=Q P A . 令????

? ?????=-0011P a , b T =(1, 0, ???, 0)Q -1, 则a 是非零列向量, b T 是非零行向量, 且A =ab T . 充分性. 因为a 与b T

是都是非零向量, 所以A 是非零矩阵, 从而R (A )≥1. 因为

1≤R (A )=R (ab T )≤min{R (a ), R (b T )}=min{1, 1}=1, 所以R (A )=1.

19. 设A 为m ?n 矩阵, 证明

(1)方程AX =E m 有解的充分必要条件是R (A )=m ; 证明 由定理7, 方程AX =E m 有解的充分必要条件是

R (A )=R (A , E m ),

而| E m |是矩阵(A , E m )的最高阶非零子式, 故R (A )=R (A , E m )=m . 因此, 方程AX =E m 有解的充分必要条件是R (A )=m .

(2)方程Y A =E n 有解的充分必要条件是R (A )=n .

证明 注意, 方程YA =E n 有解的充分必要条件是A T Y T =E n 有解. 由(1) A T Y T =E n 有解的充分必要条件是R (A T )=n . 因此,方程Y A =E n 有解的充分必要条件是R (A )=R (A T )=n .

20. 设A 为m ?n 矩阵, 证明: 若AX =AY , 且R (A )=n , 则X =Y .

证明 由AX =AY , 得A (X -Y )=O . 因为R (A )=n , 由定理9, 方程A (X -Y )=O 只有零解, 即X -Y =O , 也就是X =Y .

线性代数第五章(答案)

第五章 相似矩阵及二次型 一、 是非题(正确打√,错误打×) 1.若线性无关向量组r αα,,1 用施密特法正交化为r ββ,,1 则对任何),1(r k k ≤≤向量组k αα,,1 与向量组r ββ,,1 等价. ( √ ) 2. 若向量组r αα,,1 两两正交,则r αα,,1 线性无关. ( √ ) 3.n 阶正交阵A 的n 个行(列)向量构成向量空间n R 的一个规范正交基. ( √ ) 4.若A 和B 都是正交阵,则AB 也是正交阵. ( √ ) 5.若A 是正交阵, Ax y =,则x y =. ( √ ) 6.若112???=n n n n x x A ,则2是n n A ?的一个特征值. ( × ) 7.方阵A 的特征向量只能对应唯一的特征值,反之亦成立. ( × ) 8.n 阶矩阵A 在复数范围内有n 个不同的特征值. ( × ) 9. 矩阵A 有零特征值的充要条件是0=A . ( √ ) 10.若λ是A 的特征值,则)(λf 是)(A f 的特征值(其中)(λf 是λ的多项式). ( √ ) 11.设1λ和)(212λλλ≠是A 的特征值, 1x 和2x 为对应特征向量,则21x x +也是A 的特征向量. ( × ) 12. T A 与A 的特征值相同. ( √ ) 13.n 阶矩阵A 有n 个不同特征值是A 与对角矩阵相似的充分必要条件. ( × )

14.若有可逆矩阵P ,使n 阶矩阵A ,B 满足: B PAP =-1,则A 与B 有相同的特征值. ( √ ) 15.两个对角矩阵的对角元素相同,仅排列位置不同,则这两个对角矩阵相似. ( √ ) 16.设n 阶矩阵A ,B 均与对角阵相似且有相同的特征值,则A 与B 相似. ( √ ) 17.实对称矩阵A 的非零特征值的个数等于它的秩. ( √ ) 18. 若k ααα,,,21 线性无关且都是A 的特征向量,则将它们先正交化,再单位化后仍为A 的特征向量. ( √ ) 19.实对称阵A 与对角阵Λ相似Λ=-AP P 1,这里P 必须是正交阵 。 ( × ) 20.已知A 为n 阶矩阵,x 为n 维列向量,如果A 不对称,则Ax x T 不是二次型. ( √ ) 21.任一实对称矩阵合同于一对角矩阵。 ( √ ) 22.二次型 Ax x x x x f T n =),,,(21 在正交变换Py x =下一定化为 标准型. ( × ) 23.任给二次型 Ax x x x x f T n =),,,(21 ,总有正交变换Py x =,使f 化 为规范型。 ( × )

(完整版)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A |=5,则|A*|=__125____,|2A |=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

线性代数上机作业题答案

线性代数机算与应用作业题 学号: 姓名: 成绩: 一、机算题 1.利用函数rand 和函数round 构造一个5×5的随机正整数矩阵A 和B 。 (1)计算A +B ,A -B 和6A (2)计算()T AB ,T T B A 和()100 AB (3)计算行列式A ,B 和AB (4)若矩阵A 和B 可逆,计算1 A -和1 B - (5)计算矩阵A 和矩阵B 的秩。 解 输入: A=round(rand(5)*10) B=round(rand(5)*10) 结果为: A = 2 4 1 6 3 2 2 3 7 4 4 9 4 2 5 3 10 6 1 1 9 4 3 3 3 B = 8 6 5 4 9 0 2 2 4 8 9 5 5 10 1 7 10 6 0 3 5 5 7 9 3 (1)输入: A+B 结果为:

ans= 10 10 6 10 12 2 4 5 11 12 13 14 9 12 6 10 20 12 1 4 14 9 10 12 6 输入: A-B 结果为: ans = -6 -2 -4 2 -6 2 0 1 3 -4 -5 4 -1 -8 4 -4 0 0 1 -2 4 -1 -4 -6 0 输入: 6*A 结果为: ans = 12 24 6 36 18 12 12 18 42 24 24 54 24 12 30 18 60 36 6 6 54 24 18 18 18 (2)输入: (A*B)' 结果为: ans = 82 112 107 90 135 100 121 107 83 122

80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: B'*A' 结果为: ans = 82 112 107 90 135 100 121 107 83 122 80 99 105 78 107 61 82 137 121 109 78 70 133 119 134 输入: (A*B)^100 结果为: ans = 1.0e+270 * 1.6293 1.6526 1.4494 1.5620 1.6399 1.9374 1.9651 1.7234 1.8573 1.9499 2.4156 2.4501 2.1488 2.3158 2.4313 2.0137 2.0425 1.7913 1.9305 2.0268 2.4655 2.5008 2.1932 2.3636 2.4815 (3)输入: D=det(A) 结果为: D = 5121 输入: D=det(B) 结果为:

线性代数第五章 课后习题及解答

第五章课后习题及解答 1. 求下列矩阵的特征值和特征向量: (1) ;1332??? ? ??-- 解:,0731332 2=--=--=-λλλλλA I 2 373,237321-=+=λλ ,00133637123712137 1??? ? ??→→???? ??=-++- A I λ 所以,0)(1=-x A I λ的基础解系为:.)371,6(T - 因此,A 的属于1λ的所有特征向量为:).0()371,6(11≠-k k T ,001336371237123712??? ? ??→→???? ??-=---+ A I λ 所以,0)(2=-x A I λ的基础解系为:.)371,6(T +

因此,A 的属于2λ的所有特征向量为:).0()371,6(22≠+k k T (2) ;211102113???? ? ??-- 解:2)2)(1(2 111211 3--==------=-λλλλ λλ A I 所以,特征值为:11=λ(单根),22=λ(二重根) ???? ? ??-→→????? ??------=-0001100011111121121 A I λ 所以,0)(1=-x A I λ的基础解系为:.)1,1,0(T 因此,A 的属于1λ的所有特征向量为:).0()1,1,0(11≠k k T ???? ? ??-→→????? ??-----=-0001000110111221112 A I λ 所以,0)(2=-x A I λ的基础解系为:.)0,1,1(T 因此,A 的属于2λ的所有特征向量为:).0()0,1,1(22≠k k T

居于马线性代数第一章答案

1、2222 0a ab a b ab ab ab b =?-?= 2、 22cos sin cos cos (sin )sin cos sin 1sin cos αααααααααα-=?--?=+= 3、 222()()22()2a bi b a bi a bi ab a b ab a b a a bi +=+--=+-=-- 4、3 24 2 123*1*(3)2*(2)*5(4)*4*23*(2)*22*4*(3)(4)*1*5423--=-+-+--------- 5、123 4 561*5*92*6*73*4*81*6*82*4*93*5*7789=++--- 6、2 21 4 1 12*1*1012*(1)*2021*4*1992*(1)*1992*4*1011*1*202202199101-=+-+---- 7、22 22 343222222 11101(1)(1)(1)01001w w w w w w w w w w w w w w w w w w +?---=-=-++=-?--第2行第1行()第3行第1行() 8、33222321 21*2*3322663 x x x x x x x x x x x x x =++---=-+ 9、 1430004 004 00431(1)04342560432432 4321 +-=-=-按第行展开 10、公式: 解: 10100 00 10 010 02000020 10(1)10 080000 800900009 10 +-?按第行展开

11、 31 111111********* 00311*(2)811110020411 1 1 1 2 ----=-=------第行第行第行第行第行第行 12、该行列式中各行元素之和均为10,所以吧第2,3,4列加到第1列,然后再把第1列后三个元素化为零,再对第1列展开,即 13、 5 04211111111210 1121112102 1 143247412041200324153 1 1 11 5 42 0153 ----- =- =----=----------第,行交换 14、先将第1行与第5行对换,第3行与第4行对换(反号两次,其值不变) 根据课本20页公式(1.21),原式012 11 2003*41203 022 = -=-=-() 15、 12 00340012132*160013 345 1 00 5 1-= =---()()=32 16、1234512345 123678910678910 21 3567810*220000********* 0100002400024 01011 00013 -=-=-=-第,行对换 17、根据课本20页公式(1.22) 18、100 12 01*2*33!123 A ===, 所以 3*5*(1)||||3!5!0 A A B B =-=- 19、证: 20、111111112111110 031111100 411 1 1 10 0x x x x x y x y y x y ++----= -+-----第行第行左第行第行第行第行

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数练习册第五章题目及答案(本)复习进程

第五章 相似矩阵与二次型 §5-1 方阵的特征值与特征向量 一、填空题 1.已知四阶方阵A 的特征值为0,1,1,2,则||A E λ-= 2(1)(2)λλλ-- 2.设0是矩阵??? ? ? ??=a 01020101A 的特征值,则=a 1 3.已知三阶方阵A 的特征值为1,-1,2,则2 32B A A =-的特征值为 1,5,8 ;||A = -2 ;A 的对角元之和为 2 . 4.若0是方阵A 的特征值,则A 不可逆。 5. A 是n 阶方阵,||A d =,则*AA 的特征值是,,,d d d ???(共n 个) 二、选择题 1.设1λ,2λ为n 阶矩阵A 的特征值,1ξ,2ξ分别是A 的属于特征值1λ,2λ的特征向量,则( D ) (A )当1λ=2λ时,1ξ,2ξ必成比例 (B )当1λ=2λ时,1ξ,2ξ必不成比例 (C )当1λ≠2λ时,1ξ,2ξ必成比例 (D )当1λ≠2λ时,1ξ,2ξ必不成比例 2.设a=2是可逆矩阵A 的一个特征值,则1 A -有一个特征值等于 ( C ) A 、2; B 、-2; C 、 12; D 、-1 2 ; 3.零为方阵A 的特征值是A 不可逆的( B ) A 、充分条件; B 、充要条件; C 、必要条件; D 、无关条件;

三、求下列矩阵的特征值和特征向量 1.1221A ?? = ??? 解:A 的特征多项式为12(3)(1)2 1A E λλλλλ --==-+- 故A 的特征值为123,1λλ==-. 当13λ=时,解方程()30A E x -=. 由221132200r A E --???? -= ? ?-???? : 得基础解系111p ?? = ??? ,故1(0)kp k ≠是13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ???? += ? ????? : 得基础解系211p -?? = ??? ,故2(0)kP k ≠是21λ=-的全部特征向量. 2.100020012B ?? ?= ? ??? 解:B 的特征多项式为 2100020(1)(2)0 1 2B E λ λλλλλ --= -=--- 故B 的特征值为1231,2λλλ===. 当11λ=时,解方程()0B E x -=. 由000010010001011000r B E ???? ? ? -= ? ? ? ????? :

线性代数第四版答案

第一章行列式 1利用对角线法则计算下列三阶行列式 (1) 解 2(4)30(1)(1)118 0132(1)81(4)(1) 2481644 (2) 解 acb bac cba bbb aaa ccc 3abc a3b3c3 (3) 解 bc2ca2ab2ac2ba2cb2

(a b)(b c)(c a) (4) 解 x(x y)y yx(x y)(x y)yx y3(x y)3x3 3xy(x y)y33x2y x3y3x3 2(x3y3) 2按自然数从小到大为标准次序求下列各排列的逆序数 (1)1 2 3 4 解逆序数为0 (2)4 1 3 2 解逆序数为441 43 42 32 (3)3 4 2 1 解逆序数为5 3 2 3 1 4 2 4 1, 2 1 (4)2 4 1 3 解逆序数为3 2 1 4 1 4 3 (5)1 3 (2n1) 2 4 (2n) 解逆序数为 3 2 (1个) 5 2 5 4(2个)

7 2 7 4 7 6(3个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) (6)1 3 (2n1) (2n) (2n2) 2 解逆序数为n(n1) 3 2(1个) 5 2 5 4 (2个) (2n1)2(2n1)4(2n1)6 (2n1)(2n2) (n1个) 4 2(1个) 6 2 6 4(2个) (2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个) 3写出四阶行列式中含有因子a11a23的项 解含因子a11a23的项的一般形式为 (1)t a11a23a3r a4s 其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是 (1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44 (1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a42 4计算下列各行列式

线性代数机械工业出版社第一章答案

线性代数第一章行列式 一、填空题 1.排列631254的逆序数τ(631254)= 8 . 解: τ(631254)=5+2+1=8 2.行列式2 13132 3 21= -18 . 解:D=1?3?2+2×1×3+2×1×3-3?3?3-1?1?1-2?2?2=-18 3、4阶行列式中含1224a a 且带正号的项为_______ 答案:12243341a a a a 分析:4阶行列式中含1224a a 的项有12243341a a a a 和12243143a a a a 而 12243341a a a a 的系数:() (1234)(2431) 41(1)1ττ+-=-= 1224314 a a a a 的系数:()(1234)(2413) 31(1)1ττ+-=-=- 因此,符合条件的项是12243341a a a a 4、2 2 2 111a a b b c c (,,a b c 互不相等)=_______ 答案:()()()b a c a c b --- 分析:2 22 111a a b b c c =222222 ()()()bc ab a c b c ac ba b a c a c b ++---=--- 5.行列式 1 13 6 104 204 710501 λ --中元素λ的代数余子式的值为 42 解析: 元素λ的代数余子式的值为6 42 071 01-3 41+-?)(=(-1) ×7×6×(-1)=42 6.设3 1-2031 2 22 3=D ,则代数余子式之和232221A A A ++=0

解析:232221A A A ++=1×21A +1×22A +1×23A =3 121112 22 -=0 二、 单项选择题 1、设x x x x x x f 1111231 11 2 12)(-= ,则x 3 的系数为(C ) A. 1 B. 0 C. -1 D. 2 解: x 3 的系数为 ) () ()(1-21341234 +=-1 2、 设333231232221 131211 a a a a a a a a a =m ≠0,则33 3231312322 212113 121111423423423a a a a a a a a a a a a ---=(B ) A.12m B. -12m C.24m D. -24m 解:3332 31 232221 131211 a a a a a a a a a )4(2-?j →33 32 31 23222113 12114-4-4-a a a a a a a a a =-4m 212j j +?→33 32 3131 23222121 13 1211114-24-24-2a a a a a a a a a a a a =-4m 31?j →33 32 3131 23222121 13 121111 4-234-234-23a a a a a a a a a a a a =-12m 3.行列式 k-12 2k-1 ≠0的充分必要条件是(C ) (A.)k ≠-1 (B)k ≠3 (C)k ≠-1且k ≠3(D)k ≠-1或k ≠3 因为原式=(k-1)(k-1)-4≠0 所以k-1≠2且k-1≠-2 所以k ≠-1且k ≠3 所以答案为C 4.行列式 0000 00 a b c d e f g h 中元素g 的代数余子式的值为(B ) (A )bcf-bde (B)bde-bcf (C)acf-ade (D)ade-acf

线性代数试题及答案。。

第一部分选择题(共28分) 一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出的四个选项中只有 一个是符合题目要求的,请将其代码填在题后的括号内。错选或未选均无分。 1.设行列式a a a a 1112 2122 =m, a a a a 1311 2321 =n,则行列式 a a a a a a 111213 212223 + + 等于() A. m+n B. -(m+n) C. n-m D. m-n 2.设矩阵A= 100 020 003 ? ? ? ? ? ? ? ,则A-1等于() A. 1 3 00 1 2 001 ? ? ? ? ? ? ? ? ? ? B. 100 1 2 00 1 3 ? ? ? ? ? ? ? ? ? ? C. 1 3 00 010 00 1 2 ? ? ? ? ? ? ? ?? D. 1 2 00 1 3 001 ? ? ? ? ? ? ? ? ? ? 3.设矩阵A= 312 101 214 - - - ? ? ? ? ? ? ? ,A*是A的伴随矩阵,则A *中位于(1,2)的元素是() A. –6 B. 6 C. 2 D. –2 4.设A是方阵,如有矩阵关系式AB=AC,则必有() A. A =0 B. B≠C时A=0 C. A≠0时B=C D. |A|≠0时B=C 5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于() A. 1 B. 2 C. 3 D. 4 6.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则() A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0 B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0 C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0 D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+ λsαs=0和μ1β1+μ2β2+…+μsβs=0 7.设矩阵A的秩为r,则A中() A.所有r-1阶子式都不为0 B.所有r-1阶子式全为0 C.至少有一个r阶子式不等于0 D.所有r阶子式都不为0 8.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是() A.η1+η2是Ax=0的一个解 B.1 2η1+1 2 η2是Ax=b的一个解 C.η1-η2是Ax=0的一个解 D.2η1-η2是Ax=b的一个解 9.设n阶方阵A不可逆,则必有()

线性代数第五章答案

第五章 相似矩阵及二次型 1. 试用施密特法把下列向量组正交化: (1)??? ? ??=931421111) , ,(321a a a ; 解 根据施密特正交化方法, ??? ? ??==11111a b , ??? ? ?? -=-=101] ,[],[1112122b b b a b a b , ? ?? ? ??-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b . (2)??? ? ? ??---=011101110111) , ,(321a a a . 解 根据施密特正交化方法, ??? ? ? ??-==110111a b , ? ???? ??-=-=123131],[],[1112122b b b a b a b , ? ??? ? ??-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b .

2. 下列矩阵是不是正交阵: (1)?????? ? ??-- -1 21312112131211; 解 此矩阵的第一个行向量非单位向量, 故不是正交阵. (2)???? ?? ? ??---- --979494949198949891. 解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵. 3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为 H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为 H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵. 4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T , (AB )T (AB )=B T A T AB =B -1A -1AB =E ,

线性代数第四版同济大学课后习题答案04

第四章 向量组的线性相关性 1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3. 解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T =(1-0, 1-1, 0-1)T =(1, 0, -1)T . 3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T . 2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1, 3)T , a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T . 解 由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得 )523(6 1 321a a a a -+= ])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61 T T T --+= =(1, 2, 3, 4)T . 3. 已知向量组 A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ; B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明 由 ????? ??-=3121 23111012421301 402230) ,(B A ??? ? ? ??-------971820751610402230 421301 ~r ???? ? ? ?------531400251552000751610 421301 ~r ??? ? ? ? ?-----000000531400751610 421301 ~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.

北大版 线性代数第一章部分课后答案详解

习题1.2: 1 .写出四阶行列式中 11121314212223243132333441 42 43 44 a a a a a a a a a a a a a a a a 含有因子1123a a 的项 解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有() () 13241τ-11233244a a a a 或() () 13421τ-11233442a a a a ,即含有因子1123a a 的项 为11233244a a a a 和11233442a a a a 2. 用行列式的定义证明111213141521 22232425 31 3241425152 000000000 a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。故所有因式都为0.原命题得证.。 3.求下列行列式的值: (1)01000020;0001000 n n -L L M M M O M L L (2)00100200100000 n n -L L M O M O M L L ; 解:(1)0100 0020 0001 000 n n -L L M M M O M L L =()()23411n τ-L 123n ????L =()1 1!n n --

线性代数复习题带参考答案(2)

线性代数考试题库及答案 第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数10 3 23211112)(x x x x x f ----=中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 734111113263478 ----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 40 3 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

线性代数第五章作业参考答案(唐明)

第五章作业参考答案 5-2试证:()()()1231,1,0,2,1,3,3,1,2T T T ααα=-== 是3R 的一组基,并求向量()()125,0,7,9,8,13T T v v ==--- 在这组基之下的坐标。 证明:要证123,,ααα 线性无关,即证满足方程1122330k k k ααα++= 的123,,k k k 只能均是0.联立方程得 1231232 32300320k k k k k k k k ++=?? -++=??+=? 计算此方程系数的行列式123 1116003 2 -=-≠ 故该方程只有零解,即1230k k k ===,因此,123,,ααα 是3R 的一组基 设1v 在这组基下的坐标为()123,,x x x ,2v 在这组基下的坐标为()123,,y y y ,由已知得 ()()1111232 212323 3,,,,,x y v x v y x y αααααα???? ? ? == ? ? ? ? ???? 代入易解得112233233,312x y x y x y ???????? ? ? ? ?==- ? ? ? ? ? ? ? ?--????????即为1v ,2v 在这组基下的坐标。 5-5设()()()1,2,1,1,2,3,1,1,1,1,2,2T T T αβγ=-=-=--- ,求: (1 ),,,αβαγ 及,,αβγ 的范数;(2)与,,αβγ 都正交的所有向量。 解(1 ),1223111(1)6αβ=?+?-?+?-= ()()(),112112 121 αγ=?-+?--?-+?= α= = β== γ= = (2)设与,,αβγ 都正交的向量为()1234,,,T x x x x x =,则 123412341234,20 ,230,220x x x x x x x x x x x x x x x αβγ?=+-+=??=++-=??=---+=?? 解得1 43243334 4 5533x x x x x x x x x x =-?? =-+?? =??=? 令340,1x x ==得()()1234,,,5,3,0,1x x x x =- 令341,0x x ==得()()1234,,,5,3,1,0x x x x =-

线性代数习题参考答案

第一章 行列式 §1 行列式的概念 1. 填空 (1) 排列6427531的逆序数为 ,该排列为 排列。 (2) i = ,j = 时, 排列1274i 56j 9为偶排列。 (3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的 n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构 成一个n 元排列。若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。 (4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含 324314516625a a a a a a 的项的符号为 。 2. 用行列式的定义计算下列行列式的值 (1) 11 222332 33 000 a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。 (2) 12,121,21,11,12 ,100000 0n n n n n n n n n n n n nn a a a a a a a a a a ------L L M M M M L L 解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。 3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。 证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。对于任意奇排 列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2 多,则此行列式为0,为什么? 5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少? (提示:利用3题的结果) 6. 利用对角线法则计算下列三阶行列式 (1)2 011 411 8 3 --- (2)2 2 2 1 11a b c a b c

昆明理工大学 线性代数 第4章 习题册答案

1 习题4.1(线性方程组解的结构) 一、下列齐次线性方程组是否有非零解? 分析:n 阶方阵A ,AX=0有非零解0()A R A n ?=?<;仅有零解0()A R A n ?≠?= (1)1234123412341 23442020372031260 x x x x x x x x x x x x x x x x -+-=?? --+=??++-=??--+=? ; 解:1142111231 7 21 312 6 A ----= ---21 3241 31142005404540 2 16 8 r r r r r r ---=-------21 054054544544004016 8 2 16 8 2 16 8 r r -= ---=-=-≠-------- 仅有零解。 (2)12451234123453020426340 x x x x x x x x x x x x x +--=?? -+-=?? -++-=? . 分析:n 元齐次线性方程组有非零解()R A n ?≤;仅有零解()R A n ?= 解:()35R A n ≤<=,有非零解(即有无穷多解)。 二、求齐次线性方程组12341234123420 363051050 x x x x x x x x x x x x ++-=?? +--=?? ++-=?的一个基础解系。 解:32 21 12 31 412351 21101 2110120103 61300 04000 0100 510 1 5000 4 000 00r r r r r r r r r A --------=--→-→--?? ???? ?? ???? ????????????? ?? ??? 所以原方程组等价于1243 20 0x x x x +-=??=?(24,x x 可取任意实数) 原方程组的通解为1 122 1342 20x k k x k x x k =-+??=??=??=?(12,k k R ∈)

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001000 ( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 1 10000 0100100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 003232 1 1112)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若21 3332 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 222123 21 12 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若573411111 3263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23500101 1 110403--= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

《线性代数》习题集(含答案)

《线性代数》习题集(含答案) 第一章 【1】填空题 (1) 二阶行列式 2 a ab b b =___________。 (2) 二阶行列式 cos sin sin cos αααα-=___________。 (3) 二阶行列式2a bi b a a bi +-=___________。 (4) 三阶行列式x y z z x y y z x =___________。 (5) 三阶行列式 a b c c a b c a b b c a +++=___________。 答案:1.ab(a-b);2.1;3.()2 a b -;4.3 3 3 3x y z xyz ++-;5.4abc 。 【2】选择题 (1)若行列式12 5 1 3225x -=0,则x=()。 A -3; B -2; C 2; D 3。 (2)若行列式11 1 1011x x x =,则x=()。 A -1 , B 0 ,; C 1 ,; D 2 ,。 (3)三阶行列式2 31503 2012985 2 3 -=()。 A -70; B -63; C 70; D 82。

(4A 44 a b -;B () 2 2 2a b -;C 44b a -;D 44 a b 。 (5)n 阶行列式 0100002 000 1 000 n n -=()。 A 0; B n !; C (-1)·n !; D () 1 1!n n +-?。 答案:1.D ;2.C ;3.A ;4.B ;5.D 。 【3】证明 33()by az bz ax bx ay x y z bx ay by az bz ax a b z x y bz ax bx ay by az y z x ++++++=++++ 答案:提示利用行列式性质将左边行列式“拆项”成八个三阶行列式之和,即得结果。 【4】计算下列9级排列的逆序数,从而确定他们的奇偶性: (1)134782695;(2)217986354;(3)987654321。 答案:(1)τ(134782695)=10,此排列为偶排列。 (2)τ(217986354)=18,此排列为偶排列。 (3)τ(987654321)=36,此排列为偶排列。 【5】计算下列的逆序数: (1)135 (2n-1)246 (2n );(2)246 (2n )135 (2n-1)。 答案:(1) 12n (n-1);(2)1 2 n (n+1) 【6】确定六阶行列式中,下列各项的符号: (1)152332445166a a a a a a ;(2)215316426534a a a a a a ;(3)615243342516a a a a a a 答案:(1)正号;(2)负号。 【7】根据定义计算下列各行列式: (1)00001 00020 0030004000 50000 ;(2) 11 14 2223323341 44 000 00 a a a a a a a a ;(3)00010 20 0100 000 n n -;

相关主题
文本预览
相关文档 最新文档