当前位置:文档之家› 数学:2.1《合情推理与演绎推理》测试1(新人教A版选修1—2)

数学:2.1《合情推理与演绎推理》测试1(新人教A版选修1—2)

数学:2.1《合情推理与演绎推理》测试1(新人教A版选修1—2)
数学:2.1《合情推理与演绎推理》测试1(新人教A版选修1—2)

合情推理与演绎推理测试题(选修1-2)

试卷满分150,其中第Ⅰ卷满分100分,第Ⅱ卷满分50分,考试时间120分钟

第Ⅰ卷(共100分)

一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有

1.n A.1845a a a a +<+

B. 1845a a a a +=+

C.1845a a a a +>+

D.1845a a a a =

2.下面使用类比推理正确的是 A.“若33a b ?=?,则a b =”类推出“若00a b ?=?,则a b =” B.“若()a b c ac bc +=+”类推出“()a b c ac bc ?=?”

C.“若()a b c ac bc +=+” 类推出“

a b a b

c c c

+=+ (c ≠0)” D.“

n n a a b =n (b )” 类推出“n n a a b +=+n

(b )” 3.有这样一段演绎推理是这样的“有些有理数是真分数,整数是有理数,则整数是真分数” 结论显然是错误的,是因为 A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 4.设)()(,sin )('

010x f x f x x f ==,'21()(),,f x f x ='1()()n n f x f x +=,

n ∈N ,则2007()f x = A.sin x

B.-sin x

C.cos x

D.-cos x

5.在十进制中0

1

2

3

2004410010010210=?+?+?+?,那么在5进制中数码2004折合成十进制为 A.29 B. 254 C. 602 D. 2004 6.函数21y ax =+的图像与直线y x =相切,则a = A.

18

B.

14

C.

12

D. 1

7.下面的四个不等式:①ca bc ab c b a ++≥++2

2

2

;②()411≤

-a a ;③2≥+a

b

b a ;④()()

()2

2222bd ac d c b a +≥+?+.其中不成立的有

A.1个

B.2个

C.3个

D.4个

8.抛物线24x y =上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为

A.2

B.3

C.4

D. 5 9.设 ()|1|||f x x x =--, 则1

[()]2

f f =

A. 12

-

B. 0

C.

12

D. 1

10.已知向量)3,5(-=→

x a , ),2(x b =→

,且→

⊥b a , 则由x 的值构成的集合是

A.{2,3}

B. {-1, 6}

C. {2}

D. {6} 11. 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线;已知直线b ?/平面α,直线a ≠

?平面α,直线b ∥平面α,则直线b ∥直线a ”的结论显然是错误的,

这是因为

A.大前提错误

B.小前提错误

C.推理形式错误

D.非以上错误 12.已知2()

(1),(1)1()2f x f x f f x +=

=+

*x N ∈(),猜想(f x )的表达式为 A.4()22x f x =+ B.2()1f x x =+ C.1()1f x x =+ D.2

()21

f x x =+

二.解答题:本大题共5小题,每小题8分,共40分. 13.证明:5,3,2不能为同一等差数列的三项.

14.在△ABC 中,C

B C

B A cos cos sin sin sin ++=

,判断△ABC 的形状.

15.已知:空间四边形ABCD 中,E ,F 分别为BC ,CD 的中点,判断直线EF 与平面ABD 的关系,并证明你的结论.

16.已知函数x x x f -+=)1ln(

)(,求)(x f 的最大值.

17.△ABC 三边长,,a b c 的倒数成等差数列,求证:角B 0

90<.

第Ⅱ卷(共50分)

三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。

18. 类比平面几何中的勾股定理:若直角三角形ABC 中的两边AB 、AC 互相垂直,则三角形三边长之间满足关系:2

2

2

BC AC AB =+。若三棱锥A-BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直,则三棱锥的侧面积与底面积之间满足的关系为 .

19.从22112343=++=2

,3+4+5+6+7=5中,可得到一般规律为 (用数学表达式表示)

20.函数y =f (x )在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是 .

21.设平面内有n条直线(3)n ≥,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n条直线交点的个数,则(4)f = ;

当n>4时,()f n = (用含n 的数学表达式表示)

四.解答题. (每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分) 22.在各项为正的数列{}n a 中,数列的前n 项和n S 满足???

?

??+=

n n n a a S 121 (1) 求321,,a a a ;(2) 由(1)猜想数列{}n a 的通项公式;(3) 求n S

23.自然状态下鱼类是一种可再生资源,为持续利用这一资源,需从宏观上考察其再生能力及捕捞强度对鱼群总量的影响,用n x 表示某鱼群在第n 年年初的总量,+

∈N n ,且1x >0.不考虑其它因素,设在第n 年内鱼群的繁殖量及捕捞量都与n x 成正比,死亡量与2

n x 成正比,这些比例系数依次为正常数c b a ,,. (Ⅰ)求1+n x 与n x 的关系式;

(Ⅱ)猜测:当且仅当1x ,c b a ,,满足什么条件时,每年年初鱼群的总量保持不变?(不要求证明)

24. 设函数)(sin )(R x x x x f ∈=.

(1)证明:Z k x k x f k x f ∈=-+,sin 2)()2(ππ;

(2)设0x 为)(x f 的一个极值点,证明2

40

2

01)]([x x x f +=.

五.解答题. (共8分.从下列题中选答1题,多选按所做的前1题记分) 25. 通过计算可得下列等式:

1121222+?=-

1222322+?=- 1323422+?=-

┅┅

12)1(22+?=-+n n n

将以上各式分别相加得:n n n +++++?=-+)321(21)1(2

2

即:2

)

1(321+=

++++n n n

类比上述求法:请你求出2

222321n ++++ 的值. 26. 直角三角形的两条直角边的和为a ,求斜边的高的最大值 27.已知))((R x x f ∈恒不为0,对于任意R x x ∈21, 等式()()??

?

??-????

??+=+222212121x x f x x f x f x f 恒成立.求证:)(x f 是偶函数. 28.已知ΔABC 的三条边分别为a b c ,,求证:11a b c

a b c

+>+++

合情推理与演绎推理测试题答案(选修1-2)

一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的;请将答案直接填入下列表格内.)

二小题13.证明:假设2、3、5为同一等差数列的三项,则存在整数m,n 满足

3=2+md ① 5=2+nd ②

①?n-②?m 得:3n-5m=2(n-m)

两边平方得: 3n 2

+5m 2

-215mn=2(n-m)2

左边为无理数,右边为有理数,且有理数≠无理数 所以,假设不正确。即 2、3、5不能为同一等差数列的三项 14. ?ABC 是直角三角形; 因为sinA=

C

B C

B cos cos sin sin ++

据正、余弦定理得 :(b+c )(a 2

-b 2

-c 2

)=0; 又因为a,b,c 为?ABC 的三边,所以 b+c ≠0

所以 a 2=b 2+c 2

即?ABC 为直角三角形.

15.平行; 提示:连接BD ,因为E ,F 分别为BC ,CD 的中点, EF ∥BD. 16.提示:用求导的方法可求得)(x f 的最大值为0

17.证明:222cos 2a c b B ac +-=≥222ac b ac -=212b ac -=211()b b

b a

c a c -=-

++ ,,a b c 为△ABC 三边,a c ∴+b >,1b

a c

∴-

+0>cos B ∴0> ∴B 090<. 三.填空题.本大题共4小题,每空4分,共16分,把答案填在题中横线上。

18. 2

222AD B ACD ABC BCD S S S S ????++= .

19. 2(1)(2)......(32)(21)n n n n n ++++++-=-

20. f(2.5)>f(1)>f(3.5) 21. 5; 1

2

(n+1)(n-2).

四.解答题. (每题13分,共26分.选答两题,多选则去掉一个得分最低的题后计算总分) 22.(1)23,12,1321-=-=

=a a a ;

(2)1--=n n a n ;(3)n S n =. 23.解(I )从第n 年初到第n+1年初,鱼群的繁殖量为ax n ,被捕捞量为b x n ,死亡量为

221,,*.(*)n n n n n n cx x x ax bx cx n N +-=--∈因此 1(1),*.(**)n n n x x a b cx n N +=-+-∈即

(II )若每年年初鱼群总量保持不变,则x n 恒等于x 1, n ∈N*,从而由(*)式得

..0*,,0)(11c

b

a x cx

b a N n cx b a x n n -==--∈--即所以恒等于 因为x 1>0,所以a >b. 猜测:当且仅当a >b ,且c

b

a x -=

1时,每年年初鱼群的总量保持不变. 24. 证明:1)(2)()22f x k f x x k x k x x πππ+-=++()sin()-sin

=

2x k x x x π+()sin -sin =2k x πsin 2) ()sin cos f x x x x '=+

0000()sin cos 0f x x x x '=+= ① 又2200sin cos 1x x += ②

由①②知2

0sin x =202

01x x + 所以2422220000002200[()]sin 11x x f x x x x x x ===

++ 五.解答题. (共8分.从下列题中选答1题,多选按所做的前1题记分) 25.[解] 11313122

3

3

+?+?=- 12323232

3

3

+?+?=-

1333334233+?+?=- ┅┅

133)1(233+?+?=-+n n n n

n n n n ++++?+++++?=-+)321(3)321(31)1(222233

所以: ]2

131)1[(3132132

2

2

2

n n

n n n +---+=++++ )12)(1(6

1

++=

n n n

26.

4

a 27.简证:令12x x =,则有()01f =,再令12x x x =-=即可 28.证明:设(),(0,)1x

f x x x

=

∈+∞+ 设12,x x 是(0,)+∞上的任意两个实数,且210x x >≥,

1212

121212()()11(1)(1)

x x x x f x f x x x x x --=

-=

++++ 因为210x x >≥,所以12()()f x f x <。所以()1x

f x x

=+在(0,)+∞上是增函数。 由0a b c +>>知()()f a b f c +>

11a b c

a b c

+>+++.

人教版高中高二文科数学选修1-2测试题教学教材

高二数学(文)选修1-2测试题(60分钟) 满分:100分 考试时间:2018年3月 姓名: 班级: 得分: 附:1.22 (),()()()() n ad bc K n a b c d a b a c b c b d -= =+++++++ 2.“X 与Y 有关系”的可信程度表: P (K 2≥k ) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001 k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828 一、 单项选择题(每题4分,共40分。每题只有一个选项正确,将答案填在下表中) 1、下列说法不正确的是( ) A .程序图通常有一个“起点”,一个“终点” B .程序框图是流程图的一种 C .结构图一般由构成系统的若干要素和表达各要素之间关系的连线(或方向箭头)构成 D .流程图与结构图是解决同一个问题的两种不同的方法 2. 给出下列关系:其中具有相关关系的是( ) ①考试号与考生考试成绩; ②勤能补拙; ③水稻产量与气候; ④正方形的边长与正方形的面积。 A .①②③ B .①③④ C .②③ D .①③ 3、黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中的白色地面砖有( ). A .4n -2块 B .4n +2块 C .3n +3块 D .3n -3块 4、如图是一商场某一个时间制订销售计划时的局部结构图,则直 接影响“计划” 要素有( ) A .1个 B .2个 C .3个 D .4个 5、用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,反设正确的是( )。 A.假设三内角都不大于60度; B. 假设三内角都大于60度; C. 假设三内角至多有一个大于60度; D. 假设三内角至多有两个大于60度。 6、在复平面内,复数 103i i +的共轭复数应对应点的坐标为( ) A . (1,3) B .(1,-3) C .(-1,3) D .(3 ,-1) 7、已知两个分类变量X 和Y ,由他们的观测数据计算得到K 2的观测值范围是3.841 D .101?A ≥ 二、填空题:(每小题4分,共16分) 11、对于一组数据的两个线性模型,其R 2分别为0.85和0.25,若从 中选取一个拟合效果好的函数模型,应选 (选填“前者” 或“后者”) 12、2006 )11( i i -+=___________ 13、若三角形内切圆半径为r ,三边长为a,b,c 则三角形的面积12 S r a b c =++();利用类比思想:若四 面体内切球半径为R ,四个面的面积为124S S S 3,,S ,;则四面体的体积V= 14、 把“函数y=2x+5的图像是一条直线”改写成三段论形式: 题号 1 2 3 4 5 6 7 8 9 10 答案 ???∑∑∑∑n n i i i i i=1 i=1 n n 2 2 2i i i=1 i=1 (x -x)(y -y) x -nxy b == , (x -x)x -nx a =y -bx y 开始 ① 是 否 S =0 A =1 S =S +A A =A +2 输出x 结束

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试 (一) 时间:120分钟 总分:150分 一、选择题(每小题5分,共60分) 1.函数f (x )=x ·sin x 的导数为( ) A .f ′(x )=2x ·sin x +x ·cos x B .f ′(x )=2x ·sin x -x ·cos x C .f ′(x )=sin x 2x +x ·cos x D .f ′(x )=sin x 2x -x ·cos x 2.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b =1 B .a =-1,b =1 C .a =1,b =-1 D .a =-1,b =-1 3.设f (x )=x ln x ,若f ′(x 0)=2,则x 0=( ) A .e 2 B .e C.ln22 D .ln2 4.已知f (x )=x 2+2xf ′(1),则f ′(0)等于( ) A .0 B .-4 C .-2 D .2 5.图中由函数y =f (x )的图象与x 轴围成的 阴影部分的面积,用定积分可表示为( ) A. ???-3 3f (x )d x B.??13f (x )d x +??1-3f (x )d x C. ???-31f (x )d x D. ???-3 1f (x )d x -??13f (x )d x 6.如图是函数y =f (x )的导函数的图象,给出下面四个判断:

①f(x)在区间[-2,-1]上是增函数; ②x=-1是f(x)的极小值点; ③f(x)在区间[-1,2]上是增函数,在区间[2,4]上是减函数; ④x=2是f(x)的极小值点. 其中,所有正确判断的序号是() A.①②B.②③C.③④D.①②③④ 7.对任意的x∈R,函数f(x)=x3+ax2+7ax不存在极值点的充要条件是() A.0≤a≤21 B.a=0或a=7 C.a<0或a>21 D.a=0或a=21 8.某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q=8 300-170P-P2,则最大毛利润为(毛利润=销售收入-进货支出)() A.30元B.60元C.28 000元D.23 000元 9.函数f(x)=-x e x(a

高中数学选修1-2综合测试题(附答案)

高中新课标数学选修(1-2)综合测试题 一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。) 1.独立性检验,适用于检查______变量之间的关系 ( ) A.线性 B.非线性 C.解释与预报 D.分类 2.样本点),(,),,(),,(2211n n y x y x y x 的样本中心与回归直线a x b y ??? 的关系( ) A.在直线上 B.在直线左上方 C. 在直线右下方 D.在直线外 3.复平面上矩形ABCD 的四个顶点中,C B A 、、所对应的复数分别为i 32 、i 23 、 i 32 , 则D 点对应的复数是 ( ) A.i 32 B.i 23 C.i 32 D.i 23 4.在复数集C 内分解因式5422 x x 等于 ( ) A.)31)(31(i x i x B.)322)(322(i x i x C.)1)(1(2i x i x D.)1)(1(2i x i x 5.已知数列 ,11,22,5,2,则52是这个数列的 ( ) A.第6项 B.第7项 C.第19项 D.第11项 6.用数学归纳法证明)5,(22 n N n n n 成立时,第二步归纳假设正确写法是( ) A.假设k n 时命题成立 B.假设)( N k k n 时命题成立 C.假设)5( n k n 时命题成立 D.假设)5( n k n 时命题成立 7.2020 )1() 1(i i 的值为 ( ) A.0 B.1024 C.1024 D.10241 8.确定结论“X 与Y 有关系”的可信度为5.99℅时,则随即变量2 k 的观测值k 必须( ) A.大于828.10 B.小于829.7 C.小于635.6 D.大于706.2 9.已知复数z 满足||z z ,则z 的实部 ( ) A.不小于0 B.不大于0 C.大于0 D.小于0 10.下面说法正确的有 ( ) (1)演绎推理是由一般到特殊的推理; (2)演绎推理得到的结论一定是正确的; (3)演绎推理一般模式是“三段论”形式; (4)演绎推理的结论的正误与大前提、小前提和推理形式有关。 A.1个 B.2个 C.3个 D.4个 11.命题“对于任意角 2cos sin cos ,4 4 ”的证明:

最新人教A版高中数学选修2-1测试题全套及答案

最新人教A版高中数学选修2-1测试题全套及答案 案场各岗位服务流程 销售大厅服务岗: 1、销售大厅服务岗岗位职责: 1)为来访客户提供全程的休息区域及饮品; 2)保持销售区域台面整洁; 3)及时补足销售大厅物资,如糖果或杂志等; 4)收集客户意见、建议及现场问题点; 2、销售大厅服务岗工作及服务流程 阶段工作及服务流程 班前阶段1)自检仪容仪表以饱满的精神面貌进入工作区域 2)检查使用工具及销售大厅物资情况,异常情况及时登记并报告上级。 班中工作程序服务 流程 行为 规范 迎接 指引 递阅 资料 上饮品 (糕点) 添加茶水 工作 要求 1)眼神关注客人,当客人距3米距离 时,应主动跨出自己的位置迎宾,然后 侯客迎询问客户送客户

注意事项 15度鞠躬微笑问候:“您好!欢迎光临!”2)在客人前方1-2米距离领位,指引请客人向休息区,在客人入座后问客人对座位是否满意:“您好!请问坐这儿可以吗?”得到同意后为客人拉椅入座“好的,请入座!” 3)若客人无置业顾问陪同,可询问:请问您有专属的置业顾问吗?,为客人取阅项目资料,并礼貌的告知请客人稍等,置业顾问会很快过来介绍,同时请置业顾问关注该客人; 4)问候的起始语应为“先生-小姐-女士早上好,这里是XX销售中心,这边请”5)问候时间段为8:30-11:30 早上好11:30-14:30 中午好 14:30-18:00下午好 6)关注客人物品,如物品较多,则主动询问是否需要帮助(如拾到物品须两名人员在场方能打开,提示客人注意贵重物品); 7)在满座位的情况下,须先向客人致歉,在请其到沙盘区进行观摩稍作等

待; 阶段工作及服务流程 班中工作程序工作 要求 注意 事项 饮料(糕点服务) 1)在所有饮料(糕点)服务中必须使用 托盘; 2)所有饮料服务均已“对不起,打扰一 下,请问您需要什么饮品”为起始; 3)服务方向:从客人的右面服务; 4)当客人的饮料杯中只剩三分之一时, 必须询问客人是否需要再添一杯,在二 次服务中特别注意瓶口绝对不可以与 客人使用的杯子接触; 5)在客人再次需要饮料时必须更换杯 子; 下班程 序1)检查使用的工具及销售案场物资情况,异常情况及时记录并报告上级领导; 2)填写物资领用申请表并整理客户意见;3)参加班后总结会; 4)积极配合销售人员的接待工作,如果下班时间已经到,必须待客人离开后下班;

高中数学 选修2-1《常用逻辑用语》单元测试题(整理含答案)

高中数学选修2-1《常用逻辑用语》单元测试题 时间:90分钟满分:120分 第Ⅰ卷(选择题,共50分) 一、选择题:本大题共10小题,每小题5分,共50分. 1.命题“存在x0∈R,2x0≤0”的否定是() A.不存在x0∈R,2x0>0 B.存在x0∈R,2x0≥0 C.对任意的x∈R,2x≤0 D.对任意的x∈R,2x>0 2.“(2x-1)x=0”是“x=0”的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 3.与命题“能被6整除的整数,一定能被3整除”等价的命题是() A.能被3整除的整数,一定能被6整除 B.不能被3整除的整数,一定不能被6整除 C.不能被6整除的整数,一定不能被3整除 D.不能被6整除的整数,不一定能被3整除 4.若向量a=(x,3)(x∈R),则“x=4是|a|=5”的() A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 5.已知命题p:?x∈R,2x<3x;命题q:?x∈R,x3=1-x2,则下列命题中为真命题的是() A.p∧q B.綈p∧q C.p∧綈q D.綈p∧綈q 6.在三角形ABC中,∠A>∠B,给出下列命题: ①sin∠A>sin∠B;②cos2∠A<cos2∠B;③tan ∠A 2>tan ∠B 2. 其中正确的命题个数是() A.0个B.1个

C .2个 D .3个 7.下面说法正确的是( ) A .命题“?x 0∈R ,使得x 20+x 0+1≥0”的否定是“?x ∈R ,使得x 2 +x +1≥0” B .实数x >y 是x 2>y 2成立的充要条件 C .设p ,q 为简单命题,若“p ∨q ”为假命题,则“綈p ∧綈q ”也为假命题 D .命题“若α=0,则cos α=1”的逆否命题为真命题 8.已知命题p :?x 0∈R ,使tan x 0=1,命题q :?x ∈R ,x 2>0.下面结论正确的是( ) A .命题“p ∧q ”是真命题 B .命题“p ∧綈q ”是假命题 C .命题“綈p ∨q ”是真命题 D .命题“綈p ∧綈q ”是假命题 9.下列结论错误的是( ) A .命题“若log 2(x 2-2x -1)=1,则x =-1”的逆否命题是“若x ≠-1,则log 2(x 2-2x -1)≠1” B .设α,β∈? ???? -π2,π2,则“α<β”是“tan α<tan β”的充要条件 C .若“(綈p )∧q ”是假命题,则“p ∨q ”为假命题 D .“?α∈R ,使sin 2α+cos 2α≥1”为真命题 10.给出下列三个命题: ①若a ≥b >-1,则 a 1+a ≥ b 1+b ;②若正整数m 和n 满足m ≤n ,则mn -m 2≤n 2;③设P (x 1,y 1)是圆O 1:x 2+y 2=9上的任意一点,圆O 2以Q (a ,b )为圆心,且半径为1.当(a -x 1)2+(b -y 1)2=1时,圆O 1与圆O 2相切. 其中假命题的个数为( ) A .0个 B .1个 C .2个 D .3个 第Ⅱ卷(非选择题,共70分) 二、填空题:本大题共4小题,每小题5分,共20分. 11.给出命题:“若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限”.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是__________.

2021年新人教版高二文科数学选修11测试题及答案

选修1-1参考答案2011.1 命题: 吴晓英(区教研室) 检测:马晶(区教研室) 一、选择题:本大题共10小题,每小题6分,共60分。 1. D.(教材习题改) 2. B . 3.A .(教材例题改) 4. A.(教材复习题改) 5. B.(西关中学牛占林供题改) 6. A.(西关中学牛占林供题改) 7. B.(十二厂中学王海燕供题改) 8. C. 9. A .(实验中学秦天武供题改) 10.C.(实验中学秦天武供题改) 二、填空题:本大题共6小题,每小题5分,共30分。 11.2 x y =或2 8y x =-(十二厂中学司秦霞供题改); 12.45; 13.π; 14.1(教材复习题改) 15.1e +; 16.2cm 三、解答题:本大题共4小题,共60分。 17. (本小题满分15分)(教材例题改) 解:(Ⅰ)该命题是全称命题,(2分) 该命题的否定是:存在末尾数是偶数的数,不能被4整除;(2分) 该命题的否定是真命题. (1分) (Ⅱ)该命题是全称命题,(2分) 该命题的否定是:存在实数,x 使得2 230x x --≥;(2分) 该命题的否定是真命题. (1分) (Ⅲ)该命题是特称命题,(2分) 该命题的否定是:方程2 560x x --=的两个根都不是奇数;(2分) 该命题的否定是假命题. (1分) 18. (本小题满分15分)(教材复习题改) 解:设双曲线的方程为 22 221x y a b -= (3分) 椭圆 22 1259 x y +=的半焦距4c ==,离心率为45,(6分) 两个焦点为(4,0)和(-4,0) (9分) ∴双曲线的两个焦点为(4,0)和(-4,0),离心率144 255 e =-= ∴ 4 2c a a == ∴2a = (12分) ∴22212b c a =-= (14分) ∴双曲线的方程为 22 1412 x y -= (15分) 19.(本小题满分15分) 解:(Ⅰ)∵2 ()32f x x ax b '=-++ (2分)

高二数学选修2-1测试题及答案

姓名:___________ 班级:___________ 一、选择题 1.“1x ≠”是“2320x x -+≠”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 2.若p q Λ是假命题,则( ) A.p 是真命题,q 是假命题 B.p 、q 均为假命题 C.p 、q 至少有一个是假命题 D.p 、q 至少有一个是真命题 3.1F ,2F 是距离为6的两定点,动点M 满足∣1MF ∣+∣2MF ∣=6,则M 点的轨迹是 ( ) A.椭圆 B.直线 C.线段 D.圆 4. 双曲线 22 1169 x y -=的渐近线方程为( ) A. x y 916± = B. x y 169±= C. x y 43±= D. x y 3 4±= 5.中心在原点的双曲线,一个焦点为, ,则双曲线的方程是( ) A . B . C . D . 6.已知正方形ABCD 的顶点 ,A B 为椭圆的焦点,顶点,C D 在椭圆上,则此椭圆的离心率为( ) A 1 B 1 D .27.椭圆 14222=+a y x 与双曲线12 2 2=-y a x 有相同的焦点,则a 的值为( ) A .1 B .2 C .2 D .3 8.与双曲线14 22 =-x y 有共同的渐近线,且过点(2,2)的双曲线标准方程为( ) (A ) 11232 2=-x y (B ) 112322=-y x (C )18222=-x y (D )18 22 2=-y x 9.已知A (-1,-2,6),B (1,2,-6)O 为坐标原点,则向量,OA OB 与的夹角是 ( ) A .0 B . 2 π C .π D .32π (0F 122 12x y -=22 12y x -=221x =221y =

(完整版)高中数学选修2-2第一章导数测试题

选修2-2第一章单元测试(一) 时间:120分钟总分:150分 一、选择题(每小题5分,共60分) 1 .函数f(x)= x sinx 的导数为( A. f ‘ (x) = 2 x sinx + . x cosx 2. 若曲线y = x 2 + ax + b 在点(0, b)处的切线方程是x — y +1 = 0, 则() A . a = 1, b = 1 B . a =— 1, b = 1 C . a = 1, b =— 1 D . a =— 1, b =— 1 3. 设 f(x) = xlnx ,若 f ‘(x o )= 2,则 x 0 =( ) In2 A . e 2 B . e C^^ D . ln2 4. 已知 f(x) = x 2 + 2xf ‘ (1),贝S f ‘ (0)等于( ) B . f ‘ (x) = 2 x sinx — x cosx , sinx 厂 C . f (x)= 2 x + x cosx D . f ‘ sinx 厂 (x)= 2 x — x cosx 1 -3 -3

6. 如图是函数y= f(x)的导函数的图象,给出下面四个判断:

①f(x)在区间[—2,—1]上是增函数; ②x=—1是f(x)的极小值点; ③f(x)在区间[—1,2]上是增函数,在区间[2,4]上是减函数; ④x= 2是f(x)的极小值点. 其中,所有正确判断的序号是() A .①② B .②③C.③④ D .①②③④ 7. 对任意的x€ R,函数f(x) = x3+ ax2+ 7ax不存在极值点的充要条件是() A. O w a w 21 B. a= 0 或a = 7 C. a<0 或a>21 D. a= 0 或a= 21 8某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为P元,销售量为Q,则销量Q(单位:件)与零售价P(单位:元)有如下关系:Q= 8 300—170P—P2,则最大毛利润为(毛利润 =销售收入—进货支出)() A . 30 元B. 60 元C. 28 000元D. 23 000 元 x 9. 函数f(x) = —g(a

高二数学选修1-2、4-4测试题(文科)

高二数学选修1-2、4-4测试题(文科) 一、选择题 1.设i 为虚数单位,则复数 5-i 1+i =( ) A .-2-3i B .-2+3i C .2-3i D .2+3i 2.已知x 与y 之间的一组数据: 则y 与x 的线性回归方程为 +=a x b y 必过点( ) A .(2,2) B. (1.5 ,4) C.(1.5 ,0) D.(1,2) 3.用反证法证明命题“220,0(a b a a +=∈若则、b 全为、b R)”,其反设正确的是( ) A. 0a b 、至少有一个为 B. 0a b 、至少有一个不为 C. 0a b 、全不为 D. 0a b 、中只有一个为 4.若复数i a a a z )3()32(2++-+=为纯虚数(i 为虚数单位),则实数a 的值是( ) A .3- B .3-或1 C .3 或1- D .1 5.设有一个回归方程为y=2-3x ,变量x 增加1个单位时,则y 平均( ) A.增加2个单位 B.减少2个单位 C.增加3个单位 D.减少3个单位 6.设点P 对应的复数为i 33+-,以原点为极点,实轴正半轴为极轴建立极坐标系, 则点P 的极坐标可能为( ) A. (3, π43) B. (3,π45) C. (23,π43) D. (23,π4 5 ) 7. 极坐标系中,以(9,3 π )为圆心,9为半径的圆的极坐标方程为( ) A. )(θπ ρ-3 cos 18= B. )( θπ ρ-3 cos 18-= C. )( θπ ρ-3 sin 18= D. )( θπ ρ-3 cos 9= 8. 曲线?? ?==θ θsin 4cos 5y x (θ为参数)的焦距是 ( ) A.3 B.6 C. 8 D. 10 9.在同一坐标系中,将曲线x y 3sin 2=变为曲线' sin 'y x =的伸缩变换是( )

数学选修2-1测试题

选修2-1 第Ⅰ卷(选择题 共60分) 一、选择题:(共12小题,每小题5分,共60分)在下列各小题的四个选项中,只有一项是符合题目要 求的.请将选项前的字母填入下表相应的空格内. 1.给出命题:p :31>,q :4{2,3}∈,则在下列三个命题:“p 且q ” “p 或q ” “非p ”中,真命题 的个数为( ) A .0 B .3 C .2 D .1 2.若椭圆的两焦点为(-2,0)和(2,0),且椭圆过点) 23,25(-,则椭圆方程是( ) A .1482 2=+x y B .16 102 2=+x y C .18 42 2=+x y D .16 10 2 2 =+ y x 3.“m =-2”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) A .充分必要条件 B .充分而不必要条件 C .必要而不充分条件 D .既不充分也不必要条件 4.给出下列三个命题:①若1->≥b a ,则 b b a a +≥ +11;②若正整数m 和n 满足n m ≤,则2 )(n m n m ≤-; ③设),(11y x P 为圆9:221=+y x O 上任一点,圆O 2以),(b a Q 为圆心且半径为1.当1)()(2121=-+-y b x a 时,圆O 1与圆O 2相切;其中假命题的个数为( ) A .0 B .1 C .2 D .3 5.双曲线19 42 2 -=-y x 的渐近线方程是( ) A .x y 23±= B .x y 32±= C .x y 49 ±= D .x y 9 4± = 6.已知M (-2,0),N (2,0),|PM|-|PN|=4,则动点P 的轨迹是( ) A .双曲线 B .双曲线左支 C .一条射线 D .双曲线右支 7.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是 ( ) A .(0,+∞) B .(0,2) C .(1,+∞) D .(0,1) 8.已知向量)5,3,2(-=a 与向量),,4(y x b -=平行,则x,y 的值分别是( ) A .6和-10 B .–6和10 C .–6和-10 D .6和10 9.已知ABCD 是平行四边形,且A (4,1,3),B (2,-5,1),C (3,7,-5),则顶点D 的坐标为( ) A .(1,1,-7) B .(5,3,1) C .(-3,1,5) D .(5,13,-3) 10346 5 x y --=表示的曲线为( ) A .抛物线 B .椭圆 C .双曲线 D .圆 11.已知双曲线方程为14 2 2 =- y x , 过)1,2(-P 的直线L 与双曲线只有一个公共点,则直线L 的条数共有( ) A .4条 B .3条 C .2条 D .1条 12.有4个命题:(1)没有男生爱踢足球;(2)所有男生都不爱踢足球;(3)至少有一个男生不爱踢足球; (4)所有女生都爱踢足球;其中是命题“所有男生都爱踢足球”的否定是( ) A .(1) B .(2) C .(3) D .(4)

高中数学选修2-3测试题

模块学习评价 (时间:120分钟,满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设集合A={a,b,c,d,e},B?A,已知a∈B,且B中含有3个元素,则集合B有() A.A26个B.C24个C.A33个D.C35个 【解析】∵A={a,b,c,d,e},B?A,a∈B,且B中含有3个元素,则B中另外两个元素是从b,c,d,e四个元素中选出的,故满足题意的集合B有C24个. 【答案】 B 2.(2014·四川高考)在x(1+x)6的展开式中,含x3项的系数为() A.30 B.20 C.15 D.10 【解析】根据二项式定理先写出其展开式的通项公式,然后求出相应的系数. 因为(1+x)6的展开式的第(r+1)项为T r+1=C r6x r,x(1+x)6的展开式中含x3的项为C26x3=15x3,所以系数为15. 【答案】 C 3.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为() A.24 B.48

C.72 D.120 【解析】A参加时有C34·A12·A33=48种,A不参加时有A44=24种,共72种. 【答案】 C 4.在研究吸烟与患肺癌的关系中,通过收集数据、整理分析数据得“吸烟与患肺癌有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的,下列说法中正确的是() A.100个吸烟者中至少有99人患有肺癌 B.1个人吸烟,那么这个人有99%的概率患有肺癌 C.在100个吸烟者中一定有患肺癌的人 D.在100个吸烟者中可能一个患肺癌的人也没有 【答案】 D 5.李老师乘车到学校,途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.5,则他上班途中遇见红灯次数的数学期望是() A.0.4 B.1.5 C.0.43D.0.6 【解析】遇到红灯的次数服从二项分布X~B(3,0.5). ∴E(X)=3×0.5=1.5. 【答案】 B 6.甲、乙两人从4门课程中各选修2门.则甲、乙所选的课程中至少有1门不相同的选法共有() A.6种B.12种 C.30种D.36种

北师大版高二文科数学选修1-1测试题及答案

选修1-1 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至6页。考试结束后. 只将第Ⅱ卷和答题卡一并交回。 参考公式:1()x x ααα-'=(α为实数); (s i n )c o s x x '=; (cos )sin x x '=-; ()x x e e '=;1(ln )x x '= 第Ⅰ卷(选择题 共60分) 注意事项: 1.答第Ⅰ卷前,考生务必将姓名、准考号、考试科目用铅笔涂写在答题卡上。 2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上。 一、选择题:本大题共10小题,每小题6分,共60分。在每小题给出的四 个选项中,只有一项是符合题目要求的。 1. 命题“若A B =,则cos cos A B =”的否命题是 A. 若A B =,则cos cos A B ≠ B. 若cos cos A B =,则A B = C. 若cos cos A B ≠,则A B ≠ D. 若A B ≠,则cos cos A B ≠ 2. “直线l 与平面α平行”是“直线l 与平面α内无数条直线都平行”的( )条件 A .充要 B .充分非必要 C .必要非充分 D .既非充分又非必要 3.已知命题p :23<,q :23>,对由p 、q 构成的“p 或q ”、“p 且q ”、“ ?p ”形式的命题,给出以下判断: ①“p 或q ”为真命题; ②“p 或q ”为假命题; ③“p 且q ”为真命题; ④“p 且q ”为假命题; ⑤“?p ”为真命题; ⑥“?p ”为假命题. 其中正确的判断是 A .①④⑥ B. ①③⑥ C. ②④⑥ D .②③⑤ 4.“512απ= ”是“221 cos sin 2 αα-=-”的 A.充分不必要条件 B. 必要不充分条件 C.充要条件 D. 既不充分又不必要条件 5.若方程 22 113 x y k k +=--表示双曲线,则实数k 的取值范围是 A.1k < B. 13k << C. 3k > D. 1k <或3k >

最新人教A版高中数学选修2-1测试题全套含答案

最新人教A版高中数学选修2-1测试题全套及答案第一章常用逻辑用语 (本栏目内容,在学生用书中以独立形式分册装订) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列语句中,不能成为命题的是() A.指数函数是增函数吗?B.2 012>2 013 C.若a⊥b,则a·b=0 D.存在实数x0,使得x0<0 解析:疑问句不能判断真假,因此不是命题.D是命题,且是个特称命题. 答案: A 2.已知命题:“若x≥0,y≥0,则xy≥0”,则原命题、逆命题、否命题、逆否命题这四个命题中,真命题的个数是() A.1个B.2个 C.3个D.4个 解析:原命题是真命题,逆否命题为真命题,逆命题为“若xy≥0,则x≥0,y≥0”是假命题,则否命题为假命题. 答案: B 3.设a∈R,则“a=1”是“直线l1:ax+2y-1=0与直线l2:x+2y+4=0平行”的() A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 解析:先求出两直线平行的条件,再判断与a=1的关系. 若l1∥l2,则2a-2=0,∴a=1.故a=1是l1∥l2的充要条件. 答案: C 4.命题p:x+y≠3,命题q:x≠1且y≠2,那么命题p是命题q的() A.充分条件B.必要条件 C.充要条件D.既不充分也不必要条件 解析:p q,且q p.所以选D. 答案: D 5.下列命题中是全称命题并且是真命题的是() A.每个二次函数的图象与x轴都有两个不同的交点 B.对任意非正数c,若a≤b+c,则a≤b

C .存在一个菱形不是平行四边形 D .存在一个实数x 使不等式x 2-3x +7<0成立 解析: A ,B 为全称命题,但A 为假命题;B 是真命题. 答案: B 6.下列命题是真命题的是( ) A .“若x =0,则xy =0”的逆命题 B .“若x =0,则xy =0”的否命题 C .若x >1,则x >2 D .“若x =2,则(x -2)(x -1)=0”的逆否命题 解析: A 中逆命题为:若xy =0,则x =0,错误;选项B 中,否命题为:若x ≠0,则xy ≠0,错误;选项C 中,若x >1,则x >2,显然不正确;D 选项中,因为原命题正确,所以逆否命题正确. 答案: D 7.有下列命题:①2012年10月1日是国庆节,又是中秋节;②9的倍数一定是3的倍数;③方程x 2=1的解是x =±1.其中使用逻辑联结词的命题有( ) A .1个 B .2个 C .3个 D .0个 解析: ①中有“且”;②中没有;③中有“或”. 答案: B 8.已知命题p :任意x ∈R ,使x 2-x +1 4<0,命题q :存在x ∈R ,使sin x +cos x =2, 则下列判断正确的是( ) A .p 是真命题 B .q 是假命题 C .?p 是假命题 D .?q 是假命题 解析: ∵任意x ∈R ,x 2-x +1 4=????x -122≥0恒成立, ∴命题p 假,?p 真; 又sin x +cos x =2sin ????x +π4,当sin ????x +π 4=1时, sin x +cos x =2, ∴q 真,?q 假. 答案: D 9.给定下列命题: ①“x >1”是“x >2”的充分不必要条件; ②“若sin α≠12,则α≠π 6 ”;

人教版 高中数学 选修2-2:本册综合测试试卷含答案

人教版高中数学精品资料 本册综合测试 (时间:120分钟,满分:150分) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.1+2i (1-i )2=( ) A .-1-1 2i B .-1+1 2i C .1+1 2i D .1-1 2i 解析 1+2i (1-i )2=1+2i -2i =(1+2i )i -2i ·i =-1+1 2i . 答案 B 2.若f(x)=e x ,则lim Δx →0 f (1-2Δx )-f (1)Δx =( ) A .e B .-e C .2e D .-2e 解析 ∵f(x)=e x ,∴f ′(x)=e x ,f ′(1)=e . ∴lim Δx →0 f (1-2Δx )-f (1)Δx =-2lim Δx →0 f (1-2Δx )-f (1)-2Δx =-2f ′(1)=-2e . 答案 D 3.已知数列2,5,11,20,x,47,…合情推出x 的值为( ) A .29 B .31 C .32 D .33

解析 观察前几项知,5=2+3, 11=5+2×3,20=11+3×3, x =20+4×3=32,47=32+5×3. 答案 C 4.函数y =f(x)在区间[a ,b]上的最大值是M ,最小值是m ,若m =M ,则f ′(x)( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 答案 A 5.已知函数f(x)=-x 3+ax 2-x -1在(-∞,+∞)上是单调函数,则实数a 的取值范围是( ) A .(-∞,- 3 ]∪[3,+∞) B .[-3, 3 ] C .(-∞,- 3 )∪(3,+∞) D .(-3, 3 ) 解析 f ′(x)=-3x 2+2ax -1, 若f(x)在(-∞,+∞)上为单调函数只有f ′(x)≤0, ∴Δ=(2a)2-4(-3)(-1)≤0, 解得-3≤a ≤ 3. 答案 B 6.用数学归纳法证明不等式1+12+13+…+1 2n -11) 时,第一步应验证不等式( ) A .1+1 2<2 B .1+12+1 3<2 C .1+12+1 3<3 D .1+12+13+1 4<3

高二数学文科选修1-2测试题及答案

2007年增城市高二数学文科(选修1-2)测试题 第Ⅰ卷选择题共50分 一、选择题(本大题共10小题,每题5分,共50分,每小题给出的4个选项中,只有一选项是符合题目要求的) 参考公式 1.在画两个变量的散点图时,下面哪个叙述是正确的( ) A 预报变量在x 轴上,解释变量在y 轴上 B 解释变量在x 轴上,预报变量在y 轴上 C 可以选择两个变量中任意一个变量在x 轴上 D 可以选择两个变量中任意一个变量在y 轴上 2.数列2,5,11,20,,47,x …中的x 等于( ) A 28 B 32 C 33 D 27 3.复数 2 5 -i 的共轭复数是( ) A i +2 B i -2 C -i -2 D 2 - i 4.下面框图属于( ) A 流程图 B 结构图 C 程序框图 D 工序流程图 5.设,,a b c 大于0,则3个数:1a b + ,1b c +,1 c a +的值( ) A 都大于2 B 至少有一个不大于2 C 都小于2 D 至少有一个不小于2 6.当 13 2 <

8.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问题中,y 的预报最大取值是10,则x 的最大取值不能超过( ) A 16 B 17 C 15 D 12 9.根据右边程序框图,当输入10时,输出的是( ) A 12 B 19 C 14.1 D -30 10.把正整数按下图所示的规律排序,则从2003到2005的箭头方向依次为 ( ) 第Ⅱ卷非选择题(共100分) 二、填空题(本大题共5个小题,每小题4分,共20分,把答案填在答题卡的横线上) 11.在复平面内,平行四边形ABCD 的三个顶点A 、B 、C 对应的复数分别是 1+3i,-i,2+i,则点D 对应的复数为_________。 12.在研究身高和体重的关系时,求得相关指数≈2 R ___________,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。 13.对于一组数据的两个函数模型,其残差平方和分别为153.4 和200,若从中选取一个拟合程度较好的函数模型,应选残差平方和为_______的那个. 14.从22 2 576543,3432,11=++++=++=中得出的一般性结论是_____________。 15.设计算法,输出1000以内能被3和5整除的所有正整数,已知算法流程图如右图,请填写空余部分:① _________ ;②__________。 三、解答题:(本大题共 6 小题,共 80分。解答应写出文字说明、证明过程或演算步骤。) 16(本小题满分12分)某班主任对全班50名学生进行了作业量多少的调查, 喜欢玩电脑游戏的同学认为作业多的有18人,认为作业不多的有9人,不喜欢玩电脑游戏的同学认为作业多的有8人,认为作业不多的有15人,则认为喜欢玩电脑游戏与认为作业量的多少有关系的把握大约是多少? 第(15)题图

高中数学选修2-2测试题

高中数学选修2-2综合测试题一 一、选择题(共8题,每题5分) 1、复数(2)z i i =+在复平面内的对应点在( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 2、定积分 11 01dx x +?的值为( ) A 、1 B 、ln2 C 、 122- D 、11ln 222 - 3、某班一天上午安排语、数、外、体四门课,其中体育课不能排在第一、第四节,则不同排法的种数为 ( ) A 、24 B 、22 C 、20 D 、12 4 、已知14a b c =+==则a ,b ,c 的大小关系为( ) A 、a>b>c B 、c>a>b C 、c>b>a D 、b>c>a 5 、曲线3 2y x =-+上的任意一点P 处切线的斜率的取值范围是( ) A 、)+∞ B 、()3 +∞ C 、()+∞ D 、[)+∞ 6、已知数列{}n a 满足12a =,23a =,21||n n n a a a ++=-,则2009a =( ) A 、1 B 、2 C 、3 D 、0 7、函数()ln f x x x =的大致图像为( ) 8、ABCD-A 1B 1C 1D 1是单位正方体,黑白两只蚂蚁从点A 出发沿棱 向前爬行,每爬完一条棱称为“爬完一段”.白蚂蚁爬行的路线是AA 1→A 1D 1,…,黑蚂蚁爬行的路线是AB →BB 1,…,它们都遵循如下规则:所爬行的第i +2段与第i 段所在直线必须是异面直线(i ∈N *),设黑白蚂蚁都爬完2007段后各自停止在正方体的某个顶点处,则此时黑白蚂蚁的距离是( ) A B 、1 C 、0 D C D A 1

高中数学选修1-1测试题与答案

数学试题(选修1-1) 一.选择题(本大题共12小题,每小题3分,共36分) 1. “2 1sin =A ”是“?=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 2. 已知椭圆116 252 2=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .7 3.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( ) A .116922=+y x B .116 252 2=+y x C .1162522=+y x 或125 162 2=+y x D .以上都不对 4.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在32 10x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 5.双曲线12 102 2=-y x 的焦距为( B ) A .22 B .24 C .32 D .34 6. 设x x x f ln )(=,若2)(0='x f ,则=0x ( ) A . 2e B . e C . ln 22 D .ln 2 6. 若抛物线22y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 7.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( ) A B C .12 D .13 8..函数344+-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0

相关主题
文本预览
相关文档 最新文档