当前位置:文档之家› 用多重蒙特卡罗算法研究超细微颗粒物同时发生的凝并和破碎_赵海波

用多重蒙特卡罗算法研究超细微颗粒物同时发生的凝并和破碎_赵海波

用多重蒙特卡罗算法研究超细微颗粒物同时发生的凝并和破碎_赵海波
用多重蒙特卡罗算法研究超细微颗粒物同时发生的凝并和破碎_赵海波

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

蒙特卡罗算法的简单应用

一、蒙特卡洛算法 1、含义的理解 以概率和统计理论方法为基础的一种计算方法。也称统计模拟方法,是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法,它是将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。 2、算法实例 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi 。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S 中占的比例K=S1/S 就立即能得到S1,从而得到Pi 的值。怎样求出扇形面积在正方形面积中占的比例K 呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m 与所投点的总数n 的比m/n 作为k 的近似值。P 落在扇形内的充要条件是 221x y +≤ 。 已知:K= 1s s ,K ≈m n ,s=1,s1=4P i ,求Pi 。 由1 s m s n ≈,知s1≈*m s n =m n , 而s1=4P i ,则Pi=*4m n 程序: /* 利用蒙特卡洛算法近似求圆周率Pi*/ /*程序使用:VC++6.0 */ #include #include #include #define COUNT 800 /*循环取样次数,每次取样范围依次变大*/ void main() { double x,y; int num=0; int i; for(i=0;i

x=rand()*1.0/RAND_MAX;/*RAND_MAX=32767,包含在中*/ y=rand()*1.0/RAND_MAX; i f((x*x+y*y)<=1) num++; /*统计落在四分之一圆之内的点数*/ } printf("Pi值等于:%f\n",num*4.0/COUNT); printf("RAND_MAX=%d\n",RAND_MAX); 3、应用的范围 蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运 计算、量子热力学计算、空气动力学计算)等领域应用广泛。 4、参考书籍 [1]蒙特卡罗方法及其在粒子输运问题中的应用[2]蒙特卡罗方法引论

蒙特卡罗 算法

1、蒙特卡罗定位 足球机器人中自定位方法是由Fox提出的蒙特卡罗定位。这是一种概率方法,把足球机器人当前位置看成许多粒子的密度模型。每个粒子可以看成机器人在此位置定位的假设。在多数应用中,蒙特卡罗定位用在带有距离传感器的机器人设备上,如激光扫描声纳传感器。只有一些方法,视觉用于自定位。在足球机器人自定位有些不同,因为机器人占的面积相对比较小,但是机器人所在位置的面积必须相当准确的确定,以便允许同组不同机器人交流有关场地物体信息和遵守比赛规则。这种定位方法分为如下步骤,首先所有粒子按照一起那机器人的活动的运动模型移动。概率pi取决于在感知模型的基础上所有粒子在当前传感器上的读数。基于这些概率,就提出了所谓的重采样,将更多粒子移向很高概率的采样位置。概率平均分布的确定用来表示当前机器人的位置的最优估计。最后返回开始。 2、蒙塔卡罗 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。 工作过程 蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

WSN定位蒙特卡洛方法MCL的MATLAB

clear; clc; %初始化工作 Ns = 20; Nn = 200; Vmax = 20; Xrange = 200; Yrange = 200; tr = 50; step = 20; N = 20; Nf = 3; %采样盒子确定时,估计位置要扩大圆面积 ns_range = 200; %每个采样盒子的最大采样次数 for i = 1:Ns Xseed(1,i)=rand(1,1)*Xrange; Yseed(1,i)=rand(1,1)*Yrange; end for i = 1:Nn Xnode(1,i)=rand(1,1)*Xrange; Ynode(1,i)=rand(1,1)*Yrange; Xnode_g(1,i)=Xnode(1,i); %MCL估计位置,初始值设置为真实位置 Ynode_g(1,i)=Ynode(1,i); end %初始时刻的粒子群,for every node for i = 1:Nn for j = 1:N lx(i,j,1) = Xnode_g(1,i); ly(i,j,1) = Ynode_g(1,i); end end %figure(1); %plot(Xseed,Yseed,'bo',Xnode,Ynode,'k*'); %节点们开始运动,每次定位完成才开始下一次运动,这里假设这个定位过程耗时非常短%仿真步数 for k=2:step %新的时刻,节点们先运动一下,RWP模型 for i = 1:Ns r = rand(1,1)*Vmax; thita = rand(1,1)*2*pi; Xseed(k,i) = Xseed(k-1,i) + r*cos(thita);

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

第二章 蒙特卡罗方法

第二章蒙特卡罗方法(又统称:统计试验方法) 在第一章我们看到了关于解决反问题在概率分布模型空间最普遍的方案,当它的概率分布唯一时,在模型空间是非常简单的,(例如,它仅有一个最大值),可以用分析技术来表示。 对于一般的概率分布,需要在模型空间上广泛的探索,除去维数较小的,因为这样不能系统概括,(根据位数空间大量的点群)设计好随机(或非随机)可以探索解决了许多复杂的问题,这些随机方法被洛斯阿拉莫斯团队开玩笑的叫 做“蒙特卡洛方法”,Metropplis抽样算法,现在已经建立被叫做“蒙特卡罗”。 2.1 介绍 几个世纪前蒙特卡罗(即随机的)方法就被用于计算,例如,可以用蒙特卡罗方法来估算π:对于一个普通的楼层,等同宽度W的钢带,抛出长为W/2的针, 这个针相交的凹槽,在地板上的概率等于1(勒克莱尔,乔治.路易伯爵布冯 [1907至88年])。以50为一系列做观察,做100次试验,在1850年由沃尔夫在苏黎世导致对3.1596±0.0524π的值。在数值方法中,针的行进被替换一个随机生成的数字,由计算机的代码一个域, 其中蒙特卡罗计算是平时对于数值计算大维空间积分:函数在一个普通的系统评价网格是不可能的(太多了点就被要求),并在蒙特卡罗采样功能可以提供的结果的估计值,连同误差的估计值(见附录6.9或了解更多详情,卡洛什和惠特洛克,1986)。对于反问题的解决方案采用蒙特卡罗方法是由开始Borok andYanovsk(1967)和出版社(1968,1971)。最近的Keilis-ava int是安德森和Seneta(1971,1972),罗斯曼(1985年,1985年b,rks erestingwo 1986)和J e n s e n 1的等(1998)。这本书,过参数,其中概率分布的透视空 D a h- 间是核心,我们面临着如何使用它们的问题。对“中心估计”的定义(如均值或中位数)的“分散的估计”(如协方差和矩阵)缺乏通用性,因为它是很容易找到的例子(如多模态分布在高维空间),其中这些估计不能有任何有趣的含义。当一个概率分布已被定义在低维空间(比方说,从一维到四维),我们可以直接表示关联概率密度。这是微不足道的一维或两维。它很容易在三维空间中,并且一些花样可以允许我们表示了四维概率分布。此外,事件A的概率可直接通过一个整体的,使用标准来评价(非随机的)数值方法。图2.1。的采样 ,概率密度使我们在计算中引入了概率理论(计算一个事件的概率使用估计某些时刻,等)简单的统计。

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.doczj.com/doc/8a18242361.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

第19章-蒙特卡罗法与自助法

? 陈强,《高级计量经济学及Stata 应用》课件,第二版,2014 年,高等教育出版社。 第 19 章蒙特卡罗法与自助法 19.1 蒙特卡罗法的思想与用途 通过计算机模拟从总体抽取大量随机样本的计算方法统称为“蒙特卡罗法”(Monte Carlo Methods,简记MC)。 例(计算圆周率π):在边长为1 的正方形中内接1单位圆。正方形面积为1,1 4圆面积为π 4。如知道1 4单位圆占 正方形面积的比例,就可计算π。

图19.1 计算圆周率 的随机实验 向这个正方形随机地射箭,落点在正方形上服从二维均匀分布。重复实验n 次,其中有m 次落在1 4圆内。 2

3 ? ? 根据大数定律,m n ?p ?→π 4,故π≈ 4m n 。 在计量中,常用 MC 来确定统计量的小样本性质。 【例】对于y i = x i 'β + εi (i = 1, , n ),对H 0 : R β = r 进行显著性水平 为 5%的大样本检验: W ≡ n (R β? - r )' ? R A var(β?)R '?-1 (R β? - r ) ?d ?→ χ 2 (m ) 其中β? 为 OLS 估计量,m 为线性约束个数。 渐近χ 2 分布只是真实分布的近似,故“5%”可能只是“名义显著 性水平”(nominal size),而非“真实显著性水平”(true or actual size),二者之差称为“显著性水平扭曲”(size distortion)。

可用MC 来确定“真实显著性水平”。 第一步,给定β的具体取值,以及x 与的概率分布。第二步,从x 与的分布中随机抽样,得到{x1, {ε 1, ε2 , , εn }。 x 2 , , x n }与 第三步,根据方程y i=x i'β +εi 计算{y1,y2 , , y n }。 第四步,对此样本进行OLS 估计,计算统计量W ,与χ2 (m)的5%临界值比较,确定是否拒绝原假设H0 : Rβ =r 。 第五步,大量重复第二至第四步,得到M 个随机样本(比如,M =1 000),进行M 次检验,则拒绝原假设的比例就是真实显著性 4

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.doczj.com/doc/8a18242361.html, Eric Haskin haskin@https://www.doczj.com/doc/8a18242361.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

用蒙特卡罗方法计算π值实验报告

本科生实验报告 实验课程蒙特卡罗模拟 学院名称核技术与自动化工程学院专业名称核技术及应用 学生姓名王明 学生学号2017020405 指导教师 邮箱511951451@https://www.doczj.com/doc/8a18242361.html, 实验成绩 二〇一七年九月二〇一八年一月

实验一、选择一种编程语言模拟出π的值 一、实验目的 1、理解并掌握蒙特卡罗模拟的基本原理; 2、运用蒙特卡洛思想解决实际问题; 3、分析总结蒙特卡洛解决问题的优缺点。 二、实验原理 用蒙特卡洛思想计算π的值分为如下几部: 第一步构建几何原理:构建单位圆外切正方形的几何图形。单位圆的面积为S0=π,正方形的面积S1=4; 第二步产生随机数进行打把:这里用MATLAB产生均匀随机数。分别生产均匀随机数(x,y)二维坐标。X,y的范围为-1到1.总共生成N个坐标(x,y).统计随机生成的坐标(x,y)在单位圆内的个数M。 第三步打把结构处理:根据S0/S1=M/N计算出π的值。因此π=4*M/N。 第四步改变N的值分析π的收敛性:总数1000开始打把,依次增长10倍到1百

万个计数。 三、实验内容 1、用matlab编写的实验代码,总计数率为1000。zfx_x=[1,-1,-1,1,1]; zfx_y=[1,1,-1,-1,1]; plot(zfx_x,zfx_y) axis([-3 3 -3 3]); hold on; r=1; theta=0:pi/100:2*pi; x=r*cos(theta); y=r*sin(theta); rho=r*sin(theta); figure(1) plot(x,y,'-') N=1000; mcnp_x=zeros(1,N); mcnp_y=zeros(1,N); M=0; for i=1:N x=2*(rand(1,1)-0.5); y=2*(rand(1,1)-0.5); if((x^2+y^2)<1) M=M+1; mcnp_x(i)=x; mcnp_y(i)=y; end end plot(mcnp_x,mcnp_y,'.') PI1=4*M/N; 2、用matlab绘制的图形

蒙特卡罗方法及应用实验讲义2016

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

(完整版)蒙特卡洛算法详讲

Monte Carlo 法 §8.1 概述 Monte Carlo 法不同于前面几章所介绍的确定性数值方法,它是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法。Monte Carlo 方法(MCM ),也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态[1]。它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段。运用该近似方法所获得的问题的解in spirit 更接近于物理实验结果,而不是经典数值计算结果。 普遍认为我们当前所应用的MC 技术,其发展约可追溯至1944年,尽管在早些时候仍有许多未解决的实例。MCM 的发展归功于核武器早期工作期间Los Alamos (美国国家实验室中子散射研究中心)的一批科学家。Los Alamos 小组的基础工作刺激了一次巨大的学科文化的迸发,并鼓励了MCM 在各种问题中的应用[2]-[4]。“Monte Carlo ”的名称取自于Monaco (摩纳哥)内以赌博娱乐而闻名的一座城市。 Monte Carlo 方法的应用有两种途径:仿真和取样。仿真是指提供实际随机现象的数学上的模仿的方法。一个典型的例子就是对中子进入反应堆屏障的运动进行仿真,用随机游动来模仿中子的锯齿形路径。取样是指通过研究少量的随机的子集来演绎大量元素的特性的方法。例如,)(x f 在b x a <<上的平均值可以通过间歇性随机选取的有限个数的点的平均值来进行估计。这就是数值积分的Monte Carlo 方法。MCM 已被成功地用于求解微分方程和积分方程,求解本征值,矩阵转置,以及尤其用于计算多重积分。 任何本质上属随机组员的过程或系统的仿真都需要一种产生或获得随机数的方法。这种仿真的例子在中子随机碰撞,数值统计,队列模型,战略游戏,以及其它竞赛活动中都会出现。Monte Carlo 计算方法需要有可得的、服从特定概率分布的、随机选取的数值序列。 §8.2 随机数和随机变量的产生 [5]-[10]全面的论述了产生随机数的各类方法。其中较为普遍应用的产生随机数的方法是选取一个函数)(x g ,使其将整数变换为随机数。以某种方法选取 0x ,并按照)(1k k x g x =+产生下一个随机数。最一般的方程)(x g 具有如下形式: m c ax x g mod )()(+= (8.1) 其中 =0x 初始值或种子(00>x ) =a 乘法器(0≥a ) =c 增值(0≥c ) =m 模数

蒙特卡洛算法简介

算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 编辑本段背景知识 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。摘自《细数二十世纪最伟大的十种算法》CSDN JUL Y译 编辑本段算法描述 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(x)max,很简单的,你可以求出y=c,x=a,x=b及x轴围成的矩形面积,然后利用随机产生大量在这个矩形范围之内的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。 编辑本段问题描述 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。P落在扇形内的充要条件是x^2+y^2<=1。

蒙特卡罗法

第3章蒙特卡罗法3.1蒙特卡罗法的基本原理 3.1.1蒙特卡罗法的基本过程 3.1.2蒙特卡罗法的基本问题 1. 蒙特卡罗法的收敛性

2 计算机辅助绘图基础(第4版) 2. 蒙特卡罗法的误差 3. 蒙特卡罗法的费用 3.1.3蒙特卡罗法的特点 1. 收敛速度与问题维数无关 2. 受问题条件限制的影响不大 3. 不必进行离散化处理 4. 蒙特卡罗法是一种直接解决问题的方法 5. 误差容易确定

计算机辅助绘图基础(第4版) 3 6. 蒙特卡罗法的缺点 3.1.4蒙特卡罗法待研究的若干问题 1. 随机数 2. 已知分布的随机抽样 3. 非归一问题的随机抽样 4. 蒙特卡罗法的基本技巧 5. 蒙特卡罗法的并行化计算方法 3.1.5随机变量的基本规律 1. 随机变量 2. 数学期望值 3. 方差 4. 特征函数 5. 中心极限定理

4 计算机辅助绘图基础(第4版) 6. 分布函数的基本性质 7. 随机变量序列的收敛性 图3.1几种收敛的关系3.1.6大数定律及中心极限定理的一般形式 1. 大数定律 2. 中心极限定理 3.1.7 4个常见的中心极限定理 1. 勒维·林德伯格(Lévy Lindeberg)中心极限定理

计算机辅助绘图基础(第4版) 5 2. 棣莫弗·拉普拉斯(De Moivre Laplace)中心极限定理 3. 李雅普诺夫(Ляпунов)中心极限定理 4. 林德伯格(Lindeberg)中心极限定理 3.1.8几种常见的概率模型和分布 1. 贝努利概型——二项分布 2. 泊松(Poisson)分布 3. 均匀分布

蒙特卡洛方法及其在风险评估中的应用

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失,以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

蒙特卡罗算法

蒙特卡罗算法 蒙特卡罗法(Monte Carlo method)是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系,用电子计算机实现统计模拟或抽样,以获得问题的近似解,故又称统计模拟法或统计试验法。 蒙特卡罗是摩纳哥的一个城市,以赌博闻名于世界。蒙特卡罗法借用这一城市的名称是为了象征性地表明该方法的概率统计的特点。 蒙特卡罗法作为一种计算方法,是由S.M.乌拉姆和J.冯·诺伊曼在20世纪40年代中叶为研制核武器的需要而首先提出来的。在此之前,该方法的基本思想实际上早已被统计学家所采用了。例如,早在17世纪,人们就知道了依频数来决定概率的方法。 20世纪40年代中叶,出现了电子计算机,使得用数学方法模拟大量的试验成为可能。另外,随着科学技术的不断发展,出现了越来越多的复杂而困难的问题,用通常的解析方法或数值方法都很难加以解决。蒙特卡罗法就是在这些情况下,作为一种可行的而且是不可缺少的计算方法被提出和迅速发展起来的。 基本原理考虑一个射击运动员的射击成绩 G。令x表示弹着点到靶心的距离,g(x)表示得分,而?(x)表示该运动员的弹着点的分布密度,则。 另一方面,如果该运动员进行了实弹射击,弹着点依次为X1,X2,…,XN,则平均得分为 。 很明显,弿N是G 的一个近似估计。蒙特卡罗法正是用弿N作为G 的近似估计。 假设 x不是一维空间的点,而是一个S 维空间的点(x1,x2,…,xs),则上述积分变为 。 蒙特卡罗法计算此积分是用 作为G 的近似估计,式中(X1n,X2n,…,Xsn)是由?(x1,x2,…,xs)中抽取的第n 个样本点。同上述一维积分比较,相同点是,都以某随机变量的N 个独立抽样值的算术平均作为近似估计;不同点仅仅是,决定随机量的样本点不同,一个是一维空间的点,另一个是S 维空间的点。由上式可见,决定近似估计弿N好坏的仅仅是随机变量g(x)或g(x1,x2,…,xs)的分布情况,而与它们是由怎样的样本点对应过来的无关。换言之,如果随机变量g(x)和g(x1,x2,…,xs)具有相同分布,在不计抽样,不计

蒙特卡洛方法与定积分计算

蒙特卡洛方法与定积分计算 By 邓一硕 @ 2010/03/08 关键词:Monte-Carlo, 定积分, 模拟, 蒙特卡洛分类:统计计算 作者信息:来自中央财经大学;统计学专业。 版权声明:本文版权归原作者所有,未经许可不得转载。原文可能随时需要修改纰漏,全文复制转载会带来不必要的误导,若您想推荐给朋友阅读,敬请以负责的态度提供原文链接;点此查看如何在学术刊物中引用本文 本文讲述一下蒙特卡洛模拟方法与定积分计算,首先从一个题目开始:设,用蒙特卡洛模拟法求定积分的值。 随机投点法 设服从正方形上的均匀分布,则可知分别服从[0,1]上的均匀分布,且相互独立。记事件,则的概率为 即定积分的值就是事件出现的频率。同时,由伯努利大数定律,我们可以用重复试验中出现的频率作为的估计值。即将看成是正方形 内的随机投点,用随机点落在区域中的频率作为定积分的近似值。这种方法就叫随机投点法,具体做法如下: 图1 随机投点法示意图 1、首先产生服从上的均匀分布的个随机数(为随机投点个数,可以取很大,如)并将其配对。 2、对这对数据,记录满足不等式的个数,这就是事件发生的频数,由此可得事件发生的频率,则。 举一实例,譬如要计算,模拟次数时,R代码如下:n=10^4;

x=runif(n); y=runif(n); f=function(x) { exp(-x^2/2)/sqrt(2*pi) } mu_n=sum(y

蒙特卡罗法方法的应用 【开题报告】

开题报告 信息与计算科学 蒙特卡罗法方法的应用  一、综述本课题国内外研究动态, 说明选题的依据和意义 1773年法国G.-L.L.von布丰曾通过随机投针试验来确定圆周率的近似值, 这就是应用这个方法的最早例子. 蒙特卡罗是摩纳哥著名赌城, 1945年J.von诺伊曼等人用它来命名此法, 沿用至今. 数字计算机的发展为大规模的随机试验提供了有效工具, 遂使蒙特卡罗法得到广泛应用. 在连续系统和离散事件系统的仿真中, 通常构造一个和系统特性相近似的概率模型, 并对它进行随机试验, 因此蒙特卡罗法也是系统仿真方法之一. 随着现代计算机技术的发展,蒙特卡罗方法已经在自然科学研究中发挥了重要的作用. 鉴于的重要性, 使得蒙特卡罗方法不仅在传统的应用领域如核物理、统计物理、分子动力学等领域得到广泛的应用, 而且还在诸如经济学、人口学、医学等领域得到了推广和发展. 统计物理学中蒙特卡罗方法是用随机抽样的计算机模拟来研究平衡或非平衡热动力学系统的模型. 蒙特卡罗的抽样有两种: 简单抽样和重要性抽样. Metropolis方法就是最早的一种重要性抽样方法. 后来人们对此方法进行了一系列的改进, 衍生出诸如Swenden-Wang方法、Wolff方法等团簇算法, 随着人们对蒙特卡罗方法认识的进一步加深,新的更有效的方法必将越来越多的出现. 以蒙特卡罗法模拟晶粒生长过程的研究进展为例, 自20世纪40年代中期, 由于科学技术的发展和电子计算机的发明, 23法作为一种独立的方法被提出来, 并且在核武器的研制中首先得到了应用. 直到80年代初由美国EXXON研究组开发出二维算法后, 很快引起重视并应用于再结晶、多晶材料的晶粒长大、有序-无序畴转变等多种金属学和物理学仿真过程. 1983年, Anderson提出一个新型的MC程序, 将其应用于二维的晶粒长大动力学模拟, 后来又将MC法应用于模拟晶粒生长的尺寸分布、拓扑学和局部动力学的研究. 1992年, Anderson使用蒙特卡罗法结合晶粒间的相互作用能, 模拟晶粒边界能量和点缺陷浓度的最小值来驱动的微观结构的进化, 模拟结果与试验值复合很好. 此后, 蒙特卡罗法在材料领域中得到了迅速的发展. 1994年, Paillard等人应用MC技术

相关主题
相关文档 最新文档