当前位置:文档之家› 概率论论文

概率论论文

概率论论文
概率论论文

201315102001 杨晓乐 13级国贸班

概率论及其应用

摘要

在日益发展的信息社会中,即使一般的劳动者,也必须具备基本的数学运算能力以及应用数学思想去观察和分析工作、生活乃至从事经济、政治活动的能力——存款、利息、股票、投资、保险、成本、利润、折扣、分期付款,以至文艺创作、心理分析、社会改革、哲学思辨等。随着科学技术的发展,概率论与数理统计在众多的学科(包括自然科学与社会科学)及生产实际部门中得到了越来越广泛的应用。特别是随着我国经济建设迅猛的发展,这方面的要求越来越多。首先我们就来介绍下什么是概率论。

关键词:概率生活中应用研究

一、概率论简介

研究随机现象数量规律的数学分支。随机现象是相对于决定性现象而言的。在一定条件下必然发生某一结果的现象称为决定性现象。例如在标准大气压下,纯水加热到100℃时水必然会沸腾等。随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象。每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,掷一枚硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于

1/2。又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性。大数定律及中心极限定理就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程。例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程。随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题。

二、概率论的发展

1、起源

概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡尔达诺开始研究掷骰子等赌博中的一些简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则是玩家连续掷 4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于现在

的赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用 2 个骰子连续掷 24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是 24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数学家帕斯卡,求助其对这种现象作出解释,这个问题的解决直接推动了概率论的产生。

2、发展

随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。

三、概率论的应用

1、概率论在经济方面的应用

概率论与数理统计是研究随机现象及其规律性的一门学科。作为经济数学的三大支柱之一,概率统计知识在当今信息社会里越来越重要。在经济和管理活动中,怎样使利润最大、风险最小;怎样由不确定因素得出相对可靠的结论等,只有运用概率统计的知识才能解决。如下就是具体内容

(1)数学期望在企业经营中的应用

在经济活动中,商业企业总是想方设法追逐更多的利润。为此,他们推出了各种名目繁多的活动,看似降低售价,让利于消费者,实质上还是为了提高利润。

某大型商场对某种原来售价2500元的家用电器进行“让利”促销活动,推出先使用后付款的方式。设该家用电器的使用寿命为X(单位:年),规定:

X≤1一台付款1500元13 一台付款3000元

已知寿命X服从参数为1/10的指数分布,请估算该商场在促销活动中销售一台该家电利润是降低了还是提高了?

为此,需求出在促销活动中该电器售价Y的数学期望E(Y).先求出寿命X落在各时间区间内的概率,因为寿命X服从参数为1/10的指数分布,所以其概率密度则Y的期望:元。由大数定律知,促销活动中该电器的平均售价约为2732元,每台电器利润提高了232元。

(2)参数估计在商品进货中的应用

在商品销售过程中,商品的进货量是一个很重要的因素。若商品进货过多,不但要占用大量资金,商店还要支付商品的保管费用;若进货过少,商品脱销,则商店的营业额减少,利润降低。对商店来说,控制好各商品的的进货量是至关重要的。

例:一商店采用科学管理的方法经营商店,它对某种商品前12个月的销售情况做了记录,数据如下:

月份 1 2 3 4 5 6 7 8 9 10 11 12

售出件数 5 7 7 6 4 5 3 6 6 9 10 5

问商店在本月初至少进货多少件才能以95%以上的概率保证这个月不脱销。

在实际中,我们总是认为商品的销售量是服从泊松分布的,故先求出参数.商品的月平均销售件数为:设商品每月销售X件,则,由参数估计的有关知识得。所以我们可以判断出X服从参数为6的泊松分布。假设商店在月初应进货n件,则n应是满足不等式的最小值。查泊松分布概率值表得:

故 n=10,即月初商店至少进货10件,才能以95%以上的概率保证这个月不脱销. (3)中心极限定理在保险业中的应用

大数定律和中心极限定理是近代保险业赖以建立的基础。一个保险公司的盈亏,我们通过学习中心极限定理的知识都可以做到估算和预测。下面以一保险业的实例来阐述大数定律和中心极限定理在保险业中的重要作用。

已知在某人寿保险公司有2500个人参加保险,在一年里这些人死亡的概率为

0.001 ,每人每年的头一天向保险公司交付保险费12元,死亡时家属可以从保险公司领取2000元保险金,求: (1)保险公司一年中获利不少于10000元的概率; (2)保险公司亏本的概率。

p= ,把考虑2500人在一年里是否解设一年中死亡的人数为X,死亡率为0.001

死亡看成2500重Bernoulli 试验,则

25000.001 2.5

np=?=,

np p

-=??=

(1)25000.0010.999 2.4975

?= ,付出2000X元,则根据中心极限定理得:

保险公司每年收入为25001230000

(1) 所求概率为:

P X

-≥=(02)

≤≤

P X

(30000200010000)

=

P≤≤

Φ--Φ-

=(1.58)(0.32)

Φ-Φ

=0.94290.6255

-

=0.3174

(2) 所求概率为:

P X>

<=(15)

P X

(300002000)

=

P>

≈0

经上述计算可知一个保险公司亏本的概率几乎为0,这也是保险公司乐于开展业务的一个原因。

四、概率论在日常生活中的应用

1、概率与选购方案的综合应用。

某电脑公司现有A,B,C三种型号的甲品牌电脑和D,E两种型号的乙

牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.

(1) 写出所有选购方案(利用树状图或列表方法表示);

(2) 如果(1)中各种选购方案被选中的可能性相同,那么A型号电脑被

选中的概率是多少?

(3) 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有几台.

解:(1) 树状图如下

列表如下

有6种可能结果:(A,D),(A,E),(B,D),(B,E),(C,D),(C,E).

(2) 因为选中A型号电脑有2种方案,即(A,D)(A,E),所以A型号电脑被选中的概

1

率是

3

(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得??

?=+=+.100000

50006000,36y x y x 解得???=-=.116,80y x 经检验不符合题意,舍去;

当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得???=+=+.10000020006000,36y x y x 解得???==.29,7y x 所以希望中学购买了7台A 型号电脑.

2、概率与设计方案的的综合应用。

质检员为控制盒装饮料产品质量,需每天不定时的30次去检测生产线上的产品.若把从0时到24时的每十分钟作为一个时间段(共计144个时间段),请你设计一种随机抽取30个时间段的方法:使得任意一个时间段被抽取的机会均等,且同一时间段可以多次被抽取. (要求写出具体的操作步骤)

解:方案一:1、用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共

有144个编号。

2、在144个小物品(大小相同的小纸片或小球等)上标出1到144个数。

3、把这144个小物品用袋(箱)装好,并均匀混合。

4、每次从袋(箱)中摸出一个小物品,记下上面的数字后,将小物品返回袋中并均匀混合。

5、将上述步骤4重复30次,共得到30个数。

6、对得到的每一个数除以60转换成具体的时间。

方案二:1、用从1到144个数,将从0时到24时的每十分钟按时间顺序编号,共有

144个编号.

2、使计算器进入产生随机数的状态.

3、将1到144作为产生随机数的范围.

4、进行30次按键,记录下每次按键产生的随机数,共得到30个数.

5、对得到的每一个数除以60转换成具体的时间.

五、总述

概率论是专门处理随机现象的,其处理方法与其它数学学科很不一样,解决问题时更着重概念与思路,并且概率论具有非常强烈的直观意义,有利于理解与想象。

概率论在保险中的应

目录 摘要 (2) 关键字 (2) 一、简介 (2) 1.概率论的研究对象 (3) 2.概率论与保险的关系 (3) 二、随机变量及其分布与保险 (3) 三、数字特征与保险 (4) 四、大数法则与保险 (4) 1切比雪夫大数法则 (4) 2.贝努里大数法则 (5) 3.大数定律对风险转移的作用 (5) 4.大数定律在保险中的适用性 (5) 五、应用概率进行保险计算 (6) 六、总结 (7)

摘要:概率论与数理统计是研究随机现象统计规律的一门数学科学是对随机现象的统计规律进行的演绎和归纳的科学.随着社会的不断发展,概率论与数理统计的知识越来越重要.运用抽样数据进行推断已成为现代社会一种普遍适用并且强有力的思考方式.本文就概率论与数理统计的方法和思想,并就其在保险中的应用进行分析和讨论,从中可以看出在经济领域和日常生活中以概率方法和数理统计的思想解决问题的高效性,简捷性和实用性 关键词:概率论, 切比雪夫大数法则定理, 贝努里大数法则,大数定律 一、简介 1.概率论的研究对象 概率论是研究随机现象数量规律的数学分支.随机现象是相对于决定性现象而言的,在一定条件下必然发生某一结果的现象称为决定性现象.例如在标准大气压下,纯水加热到100度时水必然会沸腾等.随机现象则是指在基本条件不变的情况下,一系列试验或观察会得到不同结果的现象.每一次试验或观察前,不能肯定会出现哪种结果,呈现出偶然性.例如,掷一硬币,可能出现正面或反面,在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等.随机现象的实现和对它的观察称为随机试验.随机试验的每一可能结果称为一个基本事件,一个或一组基本事件统称随机事件,或简称事件.事件的概率则是衡量该事件发生的可能性的量度.虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律.例如,连续多次掷一均匀的硬币,出现正面的频率随着投掷次数的增加逐渐趋向于1/2.又如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且诸测量值大都落在此常数的附近,其分布状况呈现中间多,两头少及某程度的对称性.大数定律及中心极限定理就是描述和论证这些规律的.在实际生活中,人们往往还需要研究某一特定随机现象的演变情况随机过程.例如,微小粒子在液体中受周围分子的随机碰撞而形成不规则的运动(即布朗运动),这就是随机过程.随机过程的统计特性、计算与随机过程有关的某些事件的概率,特别是研究与随机过程样本轨道(即过程的一次实现)有关的问题,是现代概率论的主要课题.概率论与实际生活有着密切的联系,它在自然科学、技术科学、社会科学、军事和工农业生产中都有广泛的应用.

概率论论文

概率论与数理统计总结(1-5章节) 第一章&第二章概率论引论& 条件概率 本章知识点: 1.随机事件及其运算(随机试验,随机事件与样本空间,事件之间的关系及其运算) 2.概率的定义、性质及其运算(频率,概率的统计定义,古典概率,概率的公理化定义,概率的性质) 3.条件概率及三个重要公式(乘法公式,全概率公式,贝叶斯公式) 4.事件的独立性及贝努里(Bernoulli)概型 理解重点: 1.理解随机事件的概念,了解样本空间的概念,掌握事件的关系与基本运算; 2.理解事件频率的概念,了解随机现象的统计规律性,理解概率的公理化定义和概率的其它性质; 3.理解古典概率的定义,掌握古典概率的计算,了解几何概率的定义及计算; 4.掌握概率的基本性质和应用这些性质进行概率计算; 5.理解条件概率的概念,熟练掌握条件概率的计算,熟练掌握乘法公式、全概率公式和贝叶斯公式以及应用这些公式进行概率计算; 6.理解事件的独立性概念,掌握应用事件独立性进行概率计算,理

解贝努利试验的概念,熟练掌握二项概率公式(贝努利概型)及其应用。 第一节随机事件 一、概率论序言 二、随机试验与随机事件 (一)随机试验 1.试验可在相同条件下重复进行; 2.每次试验的可能结果不止一个,而究竟会出现哪一个结果,在试验前不能准确地预言; 3.试验所有可能结果在试验前是明确(已知)的,而每次试验必有其中的一个结果出现,并且也仅有一个结果出现。 满足上述三个特性的试验,叫做随机试验,简称试验,并用字母E 等表示。 (二)随机事件 随机试验的结果称为随机事件,简称事件。 1.必然事件:在试验中一定出现的结果,记作Ω; 2.不可能事件:在试验中一定不会出现的结果,记作Φ; 3.随机事件:在试验中可能出现也可能不出现的结果,常用大写拉丁字母A、B、C…表示; 4.基本事件(样本点):试验最基本的结果,记作ω; 5.样本空间(基本事件空间):所有基本事件的集合,常用Ω表示;样本空间Ω中的元素是随机试验的可能结果。样本空间的任一子集称

概率论毕业论文外文翻译

Statistical hypothesis testing Adriana Albu,Loredana Ungureanu Politehnica University Timisoara,adrianaa@aut.utt.ro Politehnica University Timisoara,loredanau@aut.utt.ro Abstract In this article,we present a Bayesian statistical hypothesis testing inspection, testing theory and the process Mentioned hypothesis testing in the real world and the importance of, and successful test of the Notes. Key words Bayesian hypothesis testing; Bayesian inference;Test of significance Introduction A statistical hypothesis test is a method of making decisions using data, whether from a controlled experiment or an observational study (not controlled). In statistics, a result is called statistically significant if it is unlikely to have occurred by chance alone, according to a pre-determined threshold probability, the significance level. The phrase "test of significance" was coined by Ronald Fisher: "Critical tests of this kind may be called tests of significance, and when such tests are available we may discover whether a second sample is or is not significantly different from the first."[1] Hypothesis testing is sometimes called confirmatory data analysis, in contrast to exploratory data analysis. In frequency probability,these decisions are almost always made using null-hypothesis tests. These are tests that answer the question Assuming that the null hypothesis is true, what is the probability of observing a value for the test statistic that is at [] least as extreme as the value that was actually observed?) 2 More formally, they represent answers to the question, posed before undertaking an experiment,of what outcomes of the experiment would lead to rejection of the null hypothesis for a pre-specified probability of an incorrect rejection. One use of hypothesis testing is deciding whether experimental results contain enough information to cast doubt on conventional wisdom. Statistical hypothesis testing is a key technique of frequentist statistical inference. The Bayesian approach to hypothesis testing is to base rejection of the hypothesis on the posterior probability.[3][4]Other approaches to reaching a decision based on data are available via decision theory and optimal decisions. The critical region of a hypothesis test is the set of all outcomes which cause the null hypothesis to be rejected in favor of the alternative hypothesis. The critical region is usually denoted by the letter C. One-sample tests are appropriate when a sample is being compared to the population from a hypothesis. The population characteristics are known from theory or are calculated from the population.

概率论论文

概率论论文 【摘要】概率论是研究随机现象规律性的一个数学分支,它来源于实际生活,也解决了实际生活中的许多问题。小概率事件是概率论中的一个具有实用意义的原理,在我们的日常生活中已经有广泛的应用。本文重点讨论的内容有:小概率事件的含义、小概率原理以及用彩票阐述小概率事件在日常生活中的实际应用,给出几点彩票玩法建议,并使人们对生活中的小概率事件树立正确的认识。 【Abstract】Probability theory is a mathematics branch of random phenomena regularity study, it comes from the actual life, and also solves many problems in actual life. Probability of small probability events is a principle of practical significance in our daily life which has a wide application. What is mainly discussed in this paper is the meaning of small probability events, small probability principle and the actual application expounded by lottery,small probability events in daily life, and suggestions about lottery play helping people establish correct understanding of small probability events. 【关键词】小概率事件彩票二项分布泊松分布 【Keywords】Small probability events,Lottery, Binomial distribution, Poisson distribution 1 引言 随着彩票在全国乃至全球的火热发行,对有些人来说,博彩已成为生活的一部分,影响之大不言而喻。由“一夜暴富”心理导致的盲目购买彩票已经成了社会的一个大问题,因此,虽然现在买彩票的人越来越多,但其中真正理智买彩票的却不多。大家都想把彩票当钞票,要知道即开彩大奖是属于小概率事件。社会上各种彩票的方式,玩法不尽相同,但是万变不离其宗,都包含了共同的规律。在这样的背景下我研究“小概率事件在彩票中的应用”是大有意义的。 概率学是专门研究随机事件规律的科学,它在彩票的购买中起着重要的作用,是概率论中一个简单但又极其有用的原理,是统计学存在、发展的基础。小概率事件作为在统计推断的理论及应用中有着重要作用的一个基本原理——实际推断原理,即小概率事件在一次试验中实际上是几乎不发生的,我们可以把它看成是不可能事件,这是概率论应用中的一条最基本的原理。对于自然界中的

概率论课程小论文

《概率论与数理统计》小论文概率与理性的发展 哈尔滨工业大学 2014年12月

《概率论与数理统计》课程小论文 概率与理性的发展 摘要概率论是一门研究事件发生的数学规律的学科。他起源于生活中的实际问题的思考,较传统的几何学等起步较晚,在伯努利、泊松等数学家的努力下,形成了现如今较为完备的理论体系。他与数理统计一起,在工程设计、自然科学、社会科学、军事等领域起着重要作用。而概率论提出后有很多人感感兴趣对其进行研究的原因之一是很多事件的主观上对概率的判 断与实际的理论概率有着很大的差异,于是有关概率的悖论有很多,也有很多与直觉相悖的概率问题,这也是概率的魅力之一。本文将从概率的发展、概率与感性的差异等方面出发对概率与感性和理性进行探讨。 关键词概率悖论直觉理性 一、概率的发展 概率论的初步发展起源于十七世纪中叶的法国。在那里出现了对赌博问题的研究,也正是对赌博问题的研究,推动了概率论的发展。最初的问题是从分赌金开始的。[1] 最初的问题大致是这样的:甲乙双方是竞技力量相当的对手,每人各拿出32枚金币,以争胜负。在竞争中,取胜一次,得一分。最先获得3分的人取得全部赎金64枚金币。可是,因某种缘故,竞争3次,赌博被迫终止。而此时,甲得2分,乙得1分,问赌金如何分配?很多问题的开端都是利益的纠纷,这也是一个例子,双方都会为自己的利益考虑而提出对这笔赌金的分法,而从直觉上看,很多理由似乎也是很有道理的。但是真相只有一个,到底理论上最公平的分法是怎样的?这个问题的当事人爱好赌博的德梅雷 向其好友著名的数学家帕斯卡请教,这个问题也受到了帕斯卡的关注。帕斯卡与其好友费尔马进行了三个月的书信往来讨论这个问题,最终得到了满意的答案:假设两赌徒中甲赢了两局,乙一局未赢,那么接下来可能出现的情况是:若甲再赢一局,得3分,将获全部赌金;若乙赢一局,出现2:1的局

概率论在生活中的应用 毕业论文

学号:1001114119概率论在生活中的应用 学院名称:数学与信息科学学院 专业名称:数学与应用数学 年级班别: 10级二班 姓名: 指导教师: 2014年3月

概率论在生活中的应用 摘要 概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越来越重要的作用。加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析,解决实际生活的问题,在数学活动中获得生活经验。这是当前数学课程改革的大势所趋。加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。人类认识到随机现象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生活素养。(宋体,小四,1.5倍行距) 关键词随机现象;条件概率;极限定理;古典概率 The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment. Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability

概率论小论文

浅谈概率论 专业:环境设计 姓名:zhou 学号:66626edfe 【摘要】:概率论与数理统计课程是我们哈工大学生学习的一门应用性很强的必修基础课程。通过近一个学期的学习,我对概率论也有了一些粗浅的认识,这篇文章将从概率论的历史和发展讲起,接着对二项分布、泊松分布和正态分布之间的关系进行一个简单的论述,然后将概率论的一些概念与以往学过的概念进行类比,最后对概率论在工科数学分析中的几个巧用进行说明,并附加了几个实例。 【关键词】:二项分布泊松分布正态分布类比级数广义积分

正文 1 概率论的起源和发展 概率论不仅是当代科学的重要数学基础之一,而且还是当代社会和人类日常生活最必需的知识之一。正如十九世纪法国著名数学家拉普拉斯所说:“对于生活中的大部分, 最重要的问题实际上只是概率问题。你可以说几乎我们所掌握的所有知识都是不确定的, 只有一小部分我们能确定地了解。甚至数学科学本身, 归纳法、类推法和发现真理的首要手段都是建立在概率论的基础之上的。因此,整个的人类知识系统是与这一理论相联系的。”然而, 饶有趣味的是, 这门被拉普拉斯称为“人类知识的最重要的一部分”的数学却直接地起源于一种相当独特的人类行为的探索: 人们对于机会性游戏的研究思考。所谓机会性游戏就是靠运气取胜一些游戏, 如赌博等。这种游戏不是哪一个民族的单独发明, 它几乎出现在世界各地的许多地方, 如埃及、印度、中国等。著名的希腊历史学家希罗多德在他的巨著《历史》中写道: 早在公元前1500年, 埃及人为了忘却饥饿的困扰, 经常聚集在一起掷骰子和紫云英,这是一种叫做“猎犬与胡狼”的游戏, 照一定规则,根据掷出各种不同的紫云英而移动筹码。大约从公元前1200年起, 人们把纯天然的骨骼(如脚上的距骨) 改进成了立方体的骰子。[1] 二十世纪以来, 概率论逐渐渗入到自然科学、社会科学、以及人们的日常生活等几乎无所不在的领域中去.无论在研究领域, 还是教育领域, 它愈来愈成为一门当今最重要的学科之一。于是, 对于概率论历史的研究也日益引起科学史学家们的重视。在概率论发展历史上, 十八、十九世纪之交法国最伟大的科学家之一拉普拉斯具有特殊的地位, 1812年拉普拉斯首次出版的《分析概率论》标志着概率论历史上的一个重要阶段--古典概率论的成熟。概率论发展到1901年, 中心极限定理终于被严格的证明了, 以后数学家正利用这一定理第一次科学地解释了为什么实际中遇到的许多随机变量近似服从以正态分布。到了20世纪的30年代, 人们开始研究随机过程, 著名的马尔可夫过程的理论在1931年才被奠定其地位。到了近代, 出现了理论概率及应用概率的分支, 及将概率论应用到不同范筹, 从而产生了不同学科。因此, 现代概率论已经成为一个非常庞大的数学分支。 2二项分布、泊松分布和正态分布之间的关系 2.1 二项分布、泊松分布之间的关系 定理1 泊松定理:在n重伯努利试验中,事件A在每次试验中发生的概率为 p n ,它与试验次数有关,如果 n lim0 n npλ →∞ =>,则对任意给定的k, 有

概率论与数理统计在日常生活中的应用毕业论文

概率论与数理统计 在日常经济生活中的应用 摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文着眼于概率论与数理统计在我们生活中的应用,通过前半部分对概率论与数理统计的一些基本知识的介绍,包括概率的基本性质,随机变量的数字特征及其分布,贝叶斯公式,中心极限定理等,结合后半部分的事例分析讨论了概率论与数理统计在我们生活中的指导作用,可以说,概率论与数理统计是如今数学中最活跃,应用最广泛的学科之一。 关键词:概率论数理统计经济生活随机变量贝叶斯公式

§2.1 在中奖问题中的应用 集市上有一个人在设摊“摸彩”,只见他手拿一个黑色的袋子,内装大小.形状.质量完全相同的白球20只,且每一个球上都写有号码(1-20号)和1只红球,规定:每次只摸一只球。摸前交1元钱且在1--20内写一个号码,摸到红球奖5元,摸到号码数与你写的号码相同奖10元。 (1) 你认为该游戏对“摸彩”者有利吗?说明你的理由。 (2) 若一个“摸彩”者多次摸奖后,他平均每次将获利或损失多少元? 分析:(1)分别求出“摸彩”者获奖5元和获奖10元的概率,即可说明; (2)求出理论上的收益与损失,再比较即可解答. 20 (5+10)-1=-0.25<0,故每次平均损失0.25元. §2.2 在经济管理决策中的应用 某人有一笔资金,可投入三个项目:房产x 、地产 y 和商业z ,其收益和市场状态有关,若把未来市 场划分为好、中、差三个等级,其发生的概率分别为10.2p =,20.7p =, 30.1p = ,根据市场调研的情况可知不同等级状态下各种投资的年收益(万元) ,见下表: 请问:该投资者如何投资好? 解 我们先考察数学期望,可知 ()()110.230.730.1 4.0E x =?+?+-?=; ()()60.240.710.1 3.9E y =?+?+-?=; ()()100.220.720.1 3.2E z =?+?+-?=; 根据数学期望可知,投资房产的平均收益最大,可能选择房产,但投资也要考虑风 险,我们再来考虑它们的方差: ()()()()222 1140.2340.7340.115.4D x =-?+-?+--?=;

概率论结课论文

条件期望的性质和应用 1 条件期望的几种定义 1.1 条件分布角度出发的条件期望定义 从条件分布的角度出发,条件分布的数学期望称为条件期望。 由离散随机变量和连续随机变量条件分布的定义,引出条件期望的定义。 定义1 离散随机变量的条件期望 设二维离散随机变量(X,Y)的联合分布列为(),ij j i p P X x Y y ===, 1,2,,1,2,.i j =???=???,对一切使()10j j ij i P Y y p p +∞ ?====>∑的j y ,称 ()() |,(),1,2,j ij i i j i j j j P X x Y y p p P X x Y y i p P Y y ?====== = =???= 为给定j Y y =条件下X 的条件分布列。 此时条件分布函数为 () ()i i j i j i j x x x x F x y P X x Y y p ≤≤====∑∑; 同理,对一切使()1 0i i ij j P X x p p +∞ ?====>∑的i x ,称 ()()() j|i ,,1,2,j ij i j i i j P X x Y y p p P Y y X x j p P X x ? ====== = =???= 为给定i X x =条件下Y 的条件分布列。 此时条件分布函数为 ()()j j i j i j i y y y y F y x P Y y X x p ≤≤= === ∑∑。 故条件分布的数学期望(若存在)称为条件期望,定义如下 ()()i i i E X Y y x P X x Y y ====∑或()()j j j E Y X x y P Y y X x ====∑。 定义2 连续随机变量的条件期望 设二维连续随机变量(X,Y )的联合密度函数为(,)p x y ,边际密度函数为 ()X p x 和()Y p y 。 对一切使()Y p y >0的y ,给定Y y =条件下X 的条件分布函数和条件密度函数 分别为(,) ()()x Y p u y F x y du p y -∞ =? ,()()() ,Y p x y p x y p y =; 同理对一切使()X p x >0的x ,给定X=x 条件下Y 的条件分布函数和条件密度

概率论论文10篇全面版

《概率论论文》 概率论论文(一): 《概率论与数理统计》论文 摘要 概率论的发展具有很长的历史,多位数学家对概率论的构成做出了巨大贡献。纵观其发展史,在实际生活中具有很强的应用好处。正是有了前人的努力,才有了现代的概率论体系。本文将从概率论的研究好处、定义,以及发展历程进行叙述。 概率论的发展与起源 1.1概率论的定义 概率论是研究随机现象数量规律的数学分支。随机现象是相对于决定性现象 而言的,随机现象是指在基本条件不变的状况下,一系列或观察会得到不同结果的现象。每一次实验或观察前,不能肯定会出现哪种结果,呈现出偶然性。例如,抛一枚硬币,可能会出现正面或者反面;在同一工艺条件下生产出的灯泡,其寿命长短参差不齐等等。随机现象的实现和对它的观察称为随机试验。随机试验的每一可能结果称为一个基本事件,一个或者一组基本事件统称为随机事件,或者简称为事件。事件的概率则是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下超多重复的随机实验却往往呈现出明显的数量规律。例如,连续多次抛一枚硬币,出现正面的频率随着抛次数的增加逐渐趋近于1/2;犹如,多次测量一物体的长度,其测量结果的平均值随着测量次数的增加,逐渐稳定于一常数,并且测量值大多落在此常数的附近,其分布状况呈现中间多,两头少及某种程度的对称性。大数定律和中心极限定律就是描述和论证这些规律的。在实际生活中,人们往往还需要研究某一特定随机现象的演变状况。例如,微小粒子在液体中受周围分子的随机碰撞而构成不规则的运动,即布朗运动,这就是随机过程。随机过程的统计特征、计算与随机过程有关的某些事件的概率,个性是研究 与随机过程样本轨道(及过程的一次实现)有关的问题,是现代概率论的主要课题。 在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和 统计理论两大部分的广义概率论已经成为一门应用十分广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1.2课题背景及研究的目的和好处 现代社会步调快,信息更新快,信息量大,如何从中选取分析最有效的信息 成为发展的先决条件,故概率统计学有着不可比拟的重要地位与作用。无论是在日常生活中,还是商业经济、科学研究,小到日常下雨,大到卫星发射,各种事物发展中都有概率统计的影子。在这个科技革新的时代,概率统计学必将发挥前所未有的重大影响,所以研究概率学具有十分重要的好处。

概率论论文

概率论与数理统计在日常生活中的应用 学院:通信工程学院 班级:电子信息工程152 学号:208150654 姓名:王鑫 学校:南京工程学院

目录 摘要 引言 第一章基本知识点 1.1概率论的基本概念 1.2随机变量及其分布 1.3多维随机变量及其分布 1.4随机变量的数字特征 1.5大数定律和中心极限定理 1.6样本及抽样分布 1.7参数估计 1.8假设检验 1.9方差分析与回归分析 第二章在日常生活中的应用 2.1经济保险问题中的应用 2.2在经济损失估计中的应用 2.3在求解最大经济利润中的应用 2.4在医学领域中的概率论思想 2.5金融领域中的概率论思想 第三章结语及参考文献

摘要:数学作为一门工具性学科在我们的日常生活以及科学研究中扮演着极其重要的角色。概率论与数理统计作为数学的一个重要组成部分,在生活中的应用也越来越广泛,近些年来,概率论与数理统计知识也越来越多的渗透到经济学,心理学,遗传学等学科中,另外在我们的日常生活之中,赌博,彩票,天气,体育赛事等都跟概率学有着十分密切的关系。本文通过实例讨论概率统计在经济保险,经济损失估计、最大经济利润求解、医学应用、金融应用等日常生活中的应用 关键词:概率统计经济领域医学领域金融领域生活 引言:概率论与数理统计是一门相当有用的数学分支学科,随着社会的发展,概率论与数理统计在生活中的应用越来越多,我们在学习过程中也了解到概率论与数理统计在疾病预测,彩票,抽样调查,评估,彩票,保险,以及在经济中的一些广泛的应用比如说经济损失估计、最大经济利润求解、经济保险等,下面我用一些实例谈谈一些常见的概率论与数理统计在生活中的应用问题

大学概率论-正态分布及标准化 论文

题目:浅谈正态分布及其标准化 院系:卓越学院 班级:经管班 姓名:郭佳妮 学号:15031206

目录 一.浅谈正态分布 (3) 1.正态分布的概率密度函数 (3) 数学期望 (4) 方差 (4) 2.正态分布的分布函数 (5) 3.正态分布的性质 (6) 二.正态分布的标准化 (7)

一.浅谈正态分布 如果影响该事件的因素有无穷多个,而每个因素的影响又是无穷小,那么这个事件就服从正态分布 例如:测量某零件的尺寸时,由于温度、湿度等众多因素的微小影响,使得测量结果出现误差,这种误差就服从正态分布 大误差出现的概率很小,经常出现的误差概率就高,就象一条钟型曲线,即正态分布曲线 从这条曲线可以看出正态分布曲线关于x=μ对称,并在x=μ取到最大值 1.正态分布的概率密度函数 记作X~N(μ,σ^2)

数学期望 μ为正态分布的E(x),即为数学期望,又称为均值 在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和。是最基本的数学特征之一。它反映随机变量平均取值的大小。 E(X) = X1*p(X1) + X2*p(X2) + …… + Xn*p(Xn) = X1*f1(X1) + X2*f2(X2)+ …… + Xn*fn(Xn) 性质 设C为一个常数,X和Y是两个随机变量。以下是数学期望的重要性质: 1.E(C)=C 2.E(CX)=CE(X) 证明 方差

σ^2为正态分布的方差,(variance)是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。 性质 1.设C是常数,则D(C)=0 2.设X是随机变量,C是常数,则有 3.D(X+C)=D(X) 3.D(X+C)=E((X+C-E(X+C))^2)=E((X-E(X))^2)=D(X) 2.正态分布的分布函数

哈工大概率论小论文

哈工大概率论小论文 篇一:哈工大概率论小论文概率论课程小论文计算机科学与技术学院信息安全专业一班(1303201) 姓名:宫庆红学号:1130320103 概率论中用到的几种数学思想作为数学中的一个重要分支,概率论同时用到了其他几种数学思想。本文着重从数学归纳法、集合论和微积分等几个方面进行简单的讨论。一.概率论中的数学归纳法思想在概率问题中常会遇到一些与试验次数无关的重要结论, 这些结论在使用数学归纳法来证明时, 常常需要配合使用全概率公式, 从而使概率论中的数学归纳法具有自己的特色。例l 设有冷个罐子, 在每一个罐子中各有m 个白球与k 个黑球, 从第一个罐子中任取一球放入第二个罐子中, 并依次类推。求从最后一个罐子中取出一个白球的概率。分析: 先探索规律, 设n =2 令H1=“ 从第一个罐子中取出一个球, 是白球” H2=“ 从第二个罐子中取出一个球, 是白球” 显然P(H1)=m m?k,所求之概率 P(HL)=P(H1)P(H2|H1)+P(H1’)P(H2|H1) =mm?1kmm???? m?km?k?1m?km?k?1m?k 这恰与n=1时的结论是一样的,于是可以预见,不管n为什么自然数,所求的概率都应是m。 m?k上述预测的正确性是很容易用大家所熟知的数学归纳法来证明的。事实上,另Hi=“从i个罐子中去除一个球,是白球”(i=1,2,……n)设当n=t时,结论成立,即P(Ht)=m m?k 则当n=t+1时,有P(Ht+1)=P(Ht)P(Ht+1|Ht)+P(Ht’)P(Ht+1|Ht’) mm?1kmm???? m?km?k?1m?km?k?1m?k k于是,结论P(Hn)=对任意自然数n都是成立的。 m?k = 不难看出,在这里数学归纳法之所以能顺利进行,那是由于在知道从第t个罐中取出的球的颜色(比如是白球)之后,第t+1罐的新总体成分就完全清楚了。(相当于从第t罐取出的是白球,这时新的第t+1罐中就有m+1个白球,k个黑球)所以相应的条件概率P(Ht+1|Ht)=m?1m(或P(Ht|Ht’)=)也就随之而得了。m?k?1m?k?1 二.概率论中的微积分思想在我们现阶段所学习的概率论课程中,微积分是重要的基础。如何正确、巧妙地运用微积分方法和技巧是值得重视的问题。现在,简单归纳一些问题来说明微积分方法在概率论中有着广泛的应用。幂级数方法例1 设随机变量ξ服从参数为(r,p)的负二项分布,(r≧1,0 p 1),即P{ξ=m}=Cm?1pr?1rqm?r,m=r,r+1,……q=1-p, 求E(ξ).解这道题的解题过程中要用到公式 1 (1?x)??Cmxr?1 m?r?rm?r。 ?1n这个公式是有??x(0?x?1)

概率论小论文Word版

概率论论文 浅谈敏感性问题调查与全概率公式的应用 学院专业: 班级: 学号:

姓名:Rabbit 联系方式: 浅谈敏感性问题调查与全概率公式的应用 Rabbit 英才学院自动化 摘要:敏感性问题在常见的各种调查中存在很大比重。然而,直接的敏感性问题提问由于极有可能导致受访者难堪而难以得到准确回答,进而严重影响了调查效果。而借助随机回答法和不相关问题模型,可以极大减少由于受访者主观因素导致的非抽样误差,进而得到关于敏感性问题问题的小误差统计结果。 关键词:敏感性问题随即回答法不相关问题模型全概率公式误差分析 引言:你考试是否作过弊吗?你是否违反过学校纪律?当被问及这些敏感问题时,许多人会然拒绝回答或者编造答案。然而,这样便难以得出准确的统计结果,也就难以根据所得数据进行分析,得出相关结论。 随机回答法给出了一种使被问人放心的方法,访问者并不知道被问者所回答的内容。不相关问题模型则在一定程度上减缓了受访者对询问者的敌意,更有助于得到诚实回答。随即回答法的本质则是全概率公式的应用。

一、随机回答法 1、随机化回答法与Warner模型 沃纳在1965年提出的随机化回答技术,基于“愈少泄漏问题的答案实质,愈能较好合作”的思想,通过巧妙设计的间题形式对被调查者的隐私和秘密加以保护,引导被问者的答案仅仅提供概率意义下的信息。通过这些信息完成调查,再用这种方法对总体的比例进行估计的模型,通称为沃纳模型。 假定我们想要估计总体中属于团体A 2、概率推导 数字12,除此以外,小球没有其它的区别。访问者从 被问者从混合均匀的一桶球中随便地选取一个,记下球上的数字,数字不要让访问者看见。被问者面前有两个问题: 问题1 问题2 他要求按照所选的数字回答相应的问题。虽然,访问者仅仅获得了“是”和“不是”的 下列的记号: 1 1的牌的概率。 2的牌的概率。

概率论在生活中的应用 毕业论文

概率论在生活中的应用毕业论文河南师范大学 学号: 1001114119 本科毕业论文 概率论在生活中的应用 学院名称: 数学与信息科学学院 专业名称: 数学与应用数学 年级班别: 10级二班 姓名: 指导教师: 2014年3月 概率论在生活中的应用 摘要 概率论作为数学的一个重要部分,在现实生活中的应用越来越广泛,同样也发挥着越 来越重要的作用。加强数学的应用性,让学生学用数学的知识和思维方法去看待,分析, 解决实际生活的问题,在数学活动中获得生活经验。这是当前数学课程改革的大势所趋。 加强应用概率的意识,不仅是学习的需要,更是工作生活必不可少的。人类认识到随机现 象的存在是很早的,但书上讲得都是理论知识,我们不仅仅要学习好理论知识,应用理论

来实践才是重中之重。学好概率论,并应用概率知识解决现实问题已是我们必要的一种生 活素养。(宋体,小四,1.5倍行距) 关键词随机现象;条件概率;极限定理;古典概率 The applyment of the theory of probability in daily life Abstract Probability theory as an important part of mathematics,in the life of the sue more and more widely, also play an increasingly important role. Strengthen mathematics applied, lets the student with mathematical knowledge andmathematical thinking method to treat, analysis, solve practical life in mathematics activity, gain life experience. This is the current trend of curriculum reform. Strengthen the consciousness of the application of probability, not only learning, but working life is indispensable. People realize the existence of random phenomenon is early, but telling the theory knowledge, we should not only study the theory knowledge well, the application of theory to practice is more important. Learn probability theory, and using probability knowledge to solve realiticl problems is already a life we necessary accomplishment. Keywords Random phenomenon; Conditional probability; Limit theorem. The classical probability 1 前言

概率论论文

概率论在生活中的应用 摘要:概率论是研究随机现象统计规律的科学,是近代数学的一个重要组成部分。本文通过对概率论在生活中的应用进行探讨,感受和体会概率方法与思想在解决问题中的高效性、简洁性和实用性。 关键词:概率论;数学;应用 (一)概率论的介绍 概率论与数理统计是研究随机现象及其规律性的一门数学学科。研究随机变量的规律性有其独特的思想方法,它不是寻求出现每一现象的一切物理因素,不能用研究确定性现象的方法来研究随机变量,而是承认在所研究的问题中存在有一些人们不能认识或者根本不知道的随机因素作用下,发生了随机现象。这样,人们既可以通过试验来观察随机现象,揭示其规律性,做出决策,也可以根据实际问题的具体情况找出随机变量的规律,做出决策。 概率论是基于给出随机现象的数学模型,并用数学语言来描述它们,然后研究其基本规律,透过表面的偶然性,找出其内在规律性,建立随机现象与数学其他分支的桥梁,使得人们可以利用已成熟的数学工具和方法来研究随机现象,进而也为其他数学分支和其他新兴学科提供了解决问题的新思路和新方法。它不仅在科学技术,工农业生产和经济管理等研究中发挥着重要作用,而且在我们的生活中也经常发生,并对我们的生活产生影响。 (二)概率论的应用举例 下面举几个在生活中的应用的例子并进行一些分析讨论,从中可以看出概率论的思想在解决问题中的高效性、简洁性和实用性。 (1)在大学英语四级考试中,题型有听力、语法结构、阅读理解、填空、写作等。除写作15分外, 其余85道题是单项选择题, 每道题有A、B、C、D四个选项,这种情况使个别学生产生碰运气和侥幸心理, 那么靠运气能通过四级英语考试吗? 分析:在日常生活中我们总希望自己的运气能好一些,因此其中碰运气的也大有人在,就像考生面临考试一样,这其中固然有真才实学者,但也不乏抱着侥幸心理的滥竽充数者。那么, 对于一场像大学英语四级这样正规的考试仅凭运气能通过吗?我们可以通过概率的计算来解决这一问题。根据伯努利定理:设伯努利试验中事件A发生的概率为p(0<p<1),则在n重伯努利试验中事件A恰好发生m次的概率为: (m=0,1,2,…,n) 这样假设不考虑写作15分,及格按60分算,则85道题必须答对51道题以上,可以看成85重贝努利试验。经过计算概率非常小, 相当于1 000亿个靠运气的考生中仅有0.874人能通过。所以靠运气通过考试是不可能的。 (2)如一对朋友间采用民主集中制讨论后决定,双方的快乐频率是80%,他们这样在一起快乐吗? 分析:我们根据概率知识可以知道,100天内有70-90天时快乐的频率是服从均值np=80,方差np(1-p)=16的正态分布。可以记为N(80,16)。将其标准化,可以得到p{70<X<90}=0.987,也就是说,基本上可以保证100天内两个人有70-90天的快乐,这就可以了。同时利用同样的方法可以算出,希望100天中有80天以上是快乐的概率是0.5,可以预测,要求的时间比80 多,概率会更加小。也就是说再好的朋友,也不要指望相处的每天都快乐,那是小概率事件,乃至是不可能事件。磕磕碰碰实在正常不过,因此双方应该用一种理智的心态看待双方关系,不要因为一次不愉快就否定一切,那是不符合规律的,必然会受到自然规律的惩罚。

相关主题
文本预览
相关文档 最新文档