当前位置:文档之家› 固体超强酸SO_4_2_TiO_2_SnO_2的制备_表征及催化合成D_L_丙交

固体超强酸SO_4_2_TiO_2_SnO_2的制备_表征及催化合成D_L_丙交

固体超强酸SO_4_2_TiO_2_SnO_2的制备_表征及催化合成D_L_丙交
固体超强酸SO_4_2_TiO_2_SnO_2的制备_表征及催化合成D_L_丙交

固体酸催化剂的分类以及研究近况

固体酸催化剂的分类以及研究近况 刘庆辉,詹宏昌,汤敏擘 (广东省安全科学技术研究所评价中心,广州510620) 摘 要:固体酸作为一种新型绿色环保型催化剂引起了人们的广泛关注。到目前为止,已经开发出固载化液体酸、简单氧化物、硫化物、金属盐、沸石固体酸、杂多酸固体酸、阳离子交换树脂、粘土矿、固体超强酸等九类固体酸。笔者在综合国内外的研究近况的基础上,提出了对固体酸催化剂研究的展望。 关键词:固体酸;催化剂;近况 Classif ication and R esearch Development of Solid Acid C atalyst L IU Qi ng2hui,ZHA N Hong2chang,TA N G M i ng2bo (Safety Assessment Center,Guangdong Institute of Safety Science&Technology,Guangzhou510620,China) Abstract:Recently,solid acids as new green catalysts have attracted considerable attention.By far,nine kinds of solid acids,such as solid2supported liquid acid,ordinary oxid,sulfide,salt,zeolite solid acid,cation ex2 change resin,clunch and solid superacid had been developed.The prospects for solid acids were proposed on the base of colligating recent domestic and abroad researching. K ey w ords:solid acids;catalyst;research development 固体酸是近年来研究与开发的一种新型酸催化剂,也是具有广泛的工业应用前景的环境友好的催化剂之一,因而对固体酸的研究具有十分重要的意义,成为当前催化研究的热点之一[1]。根据固体酸催化剂的特点进行分类,讨论了各种固体酸的研究近况,并在此基础上提出了对固体酸催化剂研究展望。1 固体酸催化剂的分类 1979年日本科学家Hino等人首次合成出SO42-/Fe2O3固体酸,引起了人们的广泛重视,人们便对固体酸进行了大量研究,并合成了一系列SO42-/WxOy固体酸体系催化剂。到目前为止,开发出的固体酸大致可分为九类[2],见表1。 表1 固体酸的分类 序号酸类型实例 1固载化液体酸HF/Al2O3,BF3/AI2O3,H3PO4/硅藻土 2氧化物简单:Al2O3,SiO2,B2O3,Nb2O5 复合:Al2O3-SiO2,Al2O3/B2O3 3硫化物CdS,ZnS 4金属盐磷酸盐:AlPO4,BPO4 硫酸盐:Fe2(SO4)3,Al2(SO4)3,CuSO4 5沸石分子筛ZSM-5沸石,X沸石,Y沸石,B沸石 丝光沸石,非沸石分子筛:AlPO SAPO系列 6杂多酸H3PW12O40,H4SiW12O40,H3PMo12O40 7阳离子交换树脂苯乙烯-二乙烯基苯共聚物Nafion-H 8天然粘土矿高岭土,膨润土,蒙脱土 9固体超强酸SO42-/ZrO2,WO3/ZrO2,MoO3/ZrO2,B2O3/ZrO2 作者简介:刘庆辉,男,湖南人,硕士研究生,2006年毕业于华南理工大学化工学院,师从博士生导师,彭峰教授,同年5月进入广东省安全科学技术研究所工作,主要从事于化工企业管理,安全评价,危险化学品从业单位安全标准化考评等工作。目前发表或接收的论文4篇,其中1篇被SCI(网络版)收录。

化学论文 固体超强酸概述

固体超强酸概述 摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。 关键词:固体超强酸;催化剂;应用 在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。 1 固体超强酸的性质和定义 超强酸是指比100%硫酸的酸强度还强的酸。其酸强度用Hammett指示剂的酸度函数H0表示。已知100%硫酸的H0=-11.93,凡是H0值小于-11.93的酸均称为超强酸,H0值越小,该超强酸的酸强度越强。 超强酸和通常的酸一样,有Bronsted型(B酸)和Lewis型(L酸)。把质子给予碱B:的HA是B酸,而从碱B:接受电子对的A是L酸。 B: +HA→ B: H+A+ (1)

固体催化剂表征技术论文

固体催化剂表征技术论文题目X射线衍射仪(XRD)在催化剂表 征中的应用 征技术中的应用 学院 专业 姓名 学号 指导教师

X射线衍射仪(XRD)在催化剂表征技术中的应用 摘要:本文简单介绍了X射线衍射仪的工作原理,并就其在催化剂研究中的表征技术,对其进行举例说明。 关键词:XRD;催化剂;衍射峰;谱图 一、XRD的工作原理 ⑴、光的衍射现象光是具有波粒二象性的,X射线也是一种光波,因此它也有波粒二象性。波有衍射现象,所以X射线也会发生衍射现象。 X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 ⑵、布拉格公式[1] 如果用X射线照射某 个晶体,其情况如图所示: 图中黑点表示晶体的晶格质点(原子、分子或离子)。当X射线刚好打在晶体最表面一层的质点上时,入射角为θ,会以同样的角度反射出去。当第二束X射线以同样的角度θ打击晶体时,最表面一层若没有质点和它相碰撞,而恰好打在晶体第二层质点上,也会以同样的角度反射出去。同理,其他X射线打在第三层、…等质点上,也是同样的现象。 这两束X射线的光程相差应为MB+NB。因此:MB=KBcos(90°‐θ) NB=KBcos(90°‐θ)

所以光程差:MB+NB=2KB cos(90°‐θ)=2K B sinθ,设KB=d,即MB+NB=2dsinθ当光程差刚好为波长的整倍数时,这两个X射线的强度便会得到最大的加强,即nλ=2dsinθ n=0,1,2、… 这就是布拉格公式,θ称为布拉格角。 二、X射线衍射仪在催化剂研究中的应用实例 (1)高比表面积Cr2O3-α-AlF3催化剂的XRD表征[2] X射线粉末衍射(XRD)实验:在PANalytical公司的X′Pert PRO MPD型X射线衍射仪上进行。以Cu-Kα为射线源,管电压为40kV,管电流为40mA,扫描速率为0. 3(°)?min-1,扫描范围10°~90°(2θ)。 对每一步所制备的催化剂进行X射线衍射(XRD)技术表征研究如下: 图1.XRD patterns of samples represented in the synthesis procedure DF表示Cr2O3-γ-Al2O3与HF直接氟化 图1中,我们发现在填满碳模板(C@Cr2O3-γ-Al2O3)后,γ-Al2O3结晶相没有发生变化。当C@Cr2O3-γ-Al2O3氟化后,从谱图中可清楚地观察到α-AlF3的衍射

固体超强酸制备

探究思路:两个要求:“保证活性高作为前提,以使用次数作为重要比较指标” 其实,一个固定酯化反应采用不同的固体超强酸(均以该酯化反应作为探究优化制备条件)作为催化剂,所得到的酯化效率差别不会大,只要肯花功夫、时间探究便可达到,所以探究重点摆在对比固体超强酸的稳定性上即提高其使用寿命,而使用寿命以催化活性高作为前提(不同催化剂间催化效用相差不大下,尽管催化效率较差点,但使用次数好,这也算是好催化剂),但在催化效用有一定情况下,探究使用寿命才有意义,随意首先需要探究出优化的固体超强酸的制备条件和酯化条件。 借助微波酯化反应探究最佳活性的催化剂制备条件,然后以活性最佳的催化剂探究微波酯化反应条件。 微波辐射酯化反应——“微波辐射催化合成乙酸正丁酯”: 用微波辐射技术以乙酸和正丁醇为原料,S2O2-8/M X O Y型固体超强酸为催化剂的酯化反应,最佳的微波合成条件为:催化剂用量2。0 g,酸醇物质的量的比为1。0∶2。0,微波功率为595 W,微波辐射时间为30 min,产率84。1%。 主要试剂和仪器:冰醋酸(CP),正丁醇(AR),微波炉,阿贝折光仪(或红外光谱波峰测试)实验过程: 在100 mL圆底烧瓶中加入5。7 mL(0。1 mol·L-1)的冰醋酸和9。1 mL(0。1 mol·L-1)的正丁醇(最适宜的酸醇比为1。0∶2。0),加入2。0 g催化剂,然后将圆底烧瓶装好回流冷凝管和搅拌装置,置于微波炉内。在搅拌下先以65 W的功率加热1 min,再以最适宜的微波功率是595 W,一定反应时间加热回流时间30 min。反应完毕取出圆底烧瓶,待反应物稍冷,过滤出催化剂,粗产品经提纯、干燥、蒸馏,收集124~126℃的馏分。称重,计算产率。 在合成反应中,有些反应是可逆反应生成水,为了提高转化率,常用带水剂把水从反应体系中分离出来。可作带水剂的物质必须要与水水作用产生共沸物使得水更易被蒸出,且在水中的溶解度很小.它可以是反应物或者产物,例如如:环已烯合成是利用产物与水形成共沸物;乙酸异戊酯合成中,反应初期利用原料异戊醇与水形成二元共沸物或原料,产物和水形成三元共沸物,并用分水器分水,同时将原料送回反应体系,随着反应的进行,原料减少,则利用产物乙酸异戊酯与水形成 二元共沸物. 带水剂也可以是外加的。反应物及产物沸点比水高但反应又产生水的,外加第三组分,但第三组分必需是对反应物和产物不起反应的物质,通常加入的第三组分有石油醚,苯甲苯,环已烷,氯仿,四氯化碳等。 在250mL单口平底烧瓶中加入10mL正丁醇、6mL乙酸,再加入适量的三氯化铁作催化剂,放入微波炉内,装上回流冷凝管及分水器,在一定功率微波连续辐射后停止反应。冷却至室温,用饱和食盐水洗涤,分出有机层,水洗至中性,用无水硫酸镁干燥,蒸馏,收集124℃~126℃的馏分,

固体酸催化剂的研究进展

炭基固体酸催化剂的研究进展 摘要 酸催化反应在化工工业生产中广泛应用,目前工业上硫酸、盐酸等液体酸催化剂使用较普遍,液体酸存在一次性消耗大、对设备腐蚀严重、后处理困难,对环境污染较大等缺点。固体酸催化剂作为一种新型的环保材料,在化工生产中的应用变得越来越广泛,主要用于缩酮缩醛反应、水解反应、烷基化反应、酯化反应等。其中,炭基固体酸催化剂是近年来较为热门的研究课题,以葡萄糖、淀粉、蔗糖、纤维素作为原料在一定条件下制备新型固体酸催化剂。炭基固体酸催化剂酸量高、催化活性和选择性好、易回收再生使用和对设备腐蚀性小等优点。本文简单介绍生物质炭基固体酸催化剂的制备原料、分类及制备方法,分析其作为催化剂的作用机理,简述炭基固体酸催化剂的现状并展望其发展前景及方向。 (正文部分) 碳基固体磺酸作为一种新型的固体酸催化剂,具有催化活性高、酸密度大、后处理简单、价格低廉等优点。目前碳材料种类繁多且存储量巨大,其中木纤维原料作为碳材料的一种,是可再生能源,在环境、能源状况日渐恶化的今天具有重要利用价值。炭基固体酸催化剂指的是以炭材料为载体,在其表面上负载一些酸性基团或者固体酸,使其具备液体的B 酸及L 酸活性中心。由于炭材料具有疏水性的特点,使得反应后的分离操作变得简单且催化剂易于回收,其巨大的比表面积能够提高其催化活性,近年来,有关炭基固体酸的研究在国内外均有报道。 1.炭基固体酸分类 以炭基固体酸载体的不同可将其分为两类:一类为以碳材料为载体,在其表面键合上 -SO3H 基团的磺化碳固体酸;另一类为以活性炭为载体,在其表面负载上杂多阴离子的活性炭载杂多酸催化剂。 根据结构不同可以将磺化碳基固体酸分为普通碳基固体酸、多孔碳基固体酸和有序中孔碳基固体酸三种。普通碳基固体酸的孔道结构为大孔,比表面积一般小于5 m2/g,这种材料以无定型炭的形式存在,孔道无序排列;多孔碳基固体酸的孔道大部分都为中孔,比表面积可达到1000m2/g以上,孔道无序排列,孔径分布和比表面积的大小由制备方法决定;有序中孔碳基固体酸的孔道为中孔,比表面积一般高于400 m2/g,这些孔道以一定的形状有序排列,孔道形状、孔径大小和比表面积由模板剂类型和制备方法决定。 2.炭基固体酸原料及制备方法 2.1炭基固体酸催化剂的原料 炭基固体酸催化剂的原料与其他固体酸催化剂相比,成本较低、原料来源广泛。杂多酸

固体超强酸系列催化剂制备

1. 稀土固体超强酸S2O82- / Sb2O3 / La3+催化剂制备: 将8g SbC13溶于40mL乙醇和20mL苯的混合液中,搅拌充分溶解后得透明锑醇液,再向溶液中加入10mL异丙醇,使醇化反应进行得更彻底,然后加入少量阴离子表面活性剂,并滴加氨水,使之发生水解反应,得到胶状沉淀,低温化12h左右,多次洗涤至无Cl-检出。滤饼于110℃烘干后,研磨过100目筛。搅拌下将Sb2O3浸渍在一定浓度的(NH4)2S2O8溶液中lh,用量为每克Sb2O3用15mL(NH4)2S2O8溶液,抽滤,烘干,置于马弗炉中焙烧,得S2O82-/ Sb203催化剂。将Sb2O3浸渍在一定浓度的(NH4)2S2O8和一定浓度的La(NO3)3的混合液1h,抽滤、烘干置于马弗炉在不同的温度和时间下焙烧,得一系列S2O82-/ Sb2O3 / La3+固体超强酸催化剂,置于干燥器中备用。以代号表示不同制备条件下所得催化剂。 参考文献:稀土固体超强酸S2O82- / Sb2O3 / La3+的制备及催化性能研究 舒华1,连亨池2,闫鹏2,文胜2,郭海福2 (1.学院生化系,554300;2.学院化学化工学院,526061) 稀土,2008.12(29卷第6期) 2. 稀土固体超强酸SO42-/TiO2-La2O3制备: 将一定量La203溶于浓度为3.0 mol·L-1的稀盐酸中,配成La3+溶液,再按一定量比量取TiC14与La3+溶液混合,用NH4·H 0[ w(NH3)=12%]水解至溶液呈碱性,控制pH值在8~9,沉淀完全,静置24 h后进行抽滤,并用蒸馏水不断洗涤至沉淀无Cl-存在(用0.1 mol·L-1的AgNO3检验),于105℃烘干后研细.再将该粉末浸泡于浓度为0.8 mol·L-1的稀H2SO4中24 h,然后抽滤,放入干燥箱中在110℃烘干,于一定的温度下焙烧活化3 h,冷却后置于干燥器中备用。 参考文献:稀土改性固体超强酸催化剂SO42-/TiO2-La2 O3的制备及其催化性能 水金,黄永葵,白爱民,赘,聚堂

环己酮催化缩合可能用到的催化剂总结

合成可能用催化剂总结: 1、硫酸氢钾,熔点197℃,暂时符合反应温度,弱酸性。还可考虑与三 氧化二铝同时应用,催化效果更加明显。 2、碳酸钠,400℃分解,弱碱性,符合温度及反应条件,且不腐蚀设备, 无污染。 3、固体超强碱,此为研究热点,有多种,如下: (1)Na|NaOHγ-AL2O3,反应温度190℃,符合气相催化温度要求,且活性高,重点考虑。 (2)Na-Na2CO3γ| AL2O3,查阅文献得到的超强碱,无法确定能否使用。 (3)CaO|ZrO2-La2O3固体碱,此碱可合成酯,考虑到反应与酮缩合有差异,待定。 (4)几种三氧化二铝固体超强碱,这些催化剂不是专门合成2-(1-环己烯基)环己酮的,但可以考虑,KF\γ-AL2O3,KNO3\ AL2O3, K2CO3\ AL2O3,Na-KOH\γ-AL2O3。 (5)另外所查几种固体碱催化剂,KOH/La203-Mg0,La203-ZrO2,Ca0/Zr02-La203,Na2Sn03,MgO-Sn02,Na-KOH-Mg0。 (6)还有分子筛型固体碱催化剂,2Na+02-/Al-MCM-41固体超强碱等。 4、固体超强酸,多种,如下: (1)SO42-\M X O Y,此催化剂催化缩酮反应反应温度在160℃,较符合。 (2)S042-/Ti02-Al-MCM-41型分子筛固体超强酸催化剂,5042"/Ti02-Sn02-Al-MCM-41分子筛型固体超强酸催化剂。 (3)纳米SO42-\SnO2固体超强酸,已有对缩酮反应的研究,温度较符合。 (4)铁系新型固体超强酸Fe203/S2082-/La 3+,目前已有其对环己酮缩乙二醇的合成研究,温度对本反应不太符合。 (5)几项专利,其一,SO42-/M x O y型固体超强酸具有无卤素离子,无污染无腐蚀,易与反应物分离,以及能在高温仍然保持活性 和稳定性等优点;其二,固体超强酸催化剂SO2 -4/TiO2 WO3 , 并以丁酸丁酯的合成作为探针反应,系统考察了WO3 的含 量、硫酸浸渍浓度、焙烧温度等制备条件对SO2 -4/TiO2 WO3 催化活性的影响;其三,用sol-gel法合成了纳米KF/Al2O3 超强碱催化剂,用均匀设计软件研究了其在Knoevenagel缩合 和Michael加成反应中的应用。

固体超强酸

固体超强酸 百科名片 固体酸克服了液体酸的缺点,具有容易与液相反应体系分离、不腐蚀设备、后处理简单、很少污染环境、选择性高等特点,可在较高温度范围内使用,扩大了热力学上可能进行的酸催化反应的应用范围。 目录 介绍 物质资料 载体的改性 引入稀土元素 失活机理 表征技术 物质特性 优势 介绍 物质资料 载体的改性 引入稀土元素 失活机理 表征技术 物质特性 优势 研究意义 展开 介绍 因为环境污染问题,在环保呼声日益高涨、强调可持续发展 固体超强酸 的今天,已是到了非解决不可的地步。自20世纪40年代以来,人们就在不断地寻找可以代替液体酸的固体酸,固体超强酸更是成为热门研究对象。固体酸克服了液体酸的缺点,具有容易与液相反应体系分离、不腐蚀设备、后处理简单、很少污染环境、选择性高等特点,可在较高温度范围内使用,扩大了热力学上可能进行的酸催化反应的应用范围。 物质资料 固体超强酸 酸催化反应涉及到烃类裂解、重整、异构等石油炼制过程,还涉及到烯烃水合、烯烃聚合、芳烃烷基

化、芳烃酰基化、醇酸酯化等石油化工和精细化工过程,可以说酸催化剂是这一 固体超强酸 系列重要工业的基础。在这些生产过程当中应用的酸催化剂主要还是液体酸,虽然其工艺已很成熟,但在发展中却给人类环境带来了危害,同时也存在着均相催化本身不可避免且无法克服的缺点,如易腐蚀设备,难以连续生产,选择性差,产物与催化剂难分离等原因。 从而从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。人们在不断开发新的固体酸催化剂和固体酸催化工艺的同时,也在不断地探讨固体酸的酸性形成的机理,探讨固体酸催化反应的机理。本文重点对固体超强酸改性、理论研究、表征技术、失活机理及应用领域进行综述,并指出了固体超强酸催化剂今后研究和开发的主要方向。 载体的改性 催化剂 固体超强酸催化剂 在单组分固体超强酸催化剂的应用中,人们发现主要活性组分s一在反应中较易流 分子式 失,特别是在较高温度条件下容易失活,这类单组分固体催化剂虽然有较好的起始催化活性,但单程寿命较短。通过对催化剂载体的改性,使催化剂能提供合适的比表面积、增加酸中心密度、酸种类型、增加抗毒物随着人们对固体超强酸不断深入研究,催化剂能力、提高机械强度等作用。目前改性研究的方向主要有:以金属氧化物zK)2、Ti02和Fe2Ch为母体,加入其他金属或氧化物,形成多组元固体超强酸;引入稀土元素改性;引入特定的分子筛及纳米级金属氧化物等。 引入其他金属或金属氧化物 固体超强酸催化剂的制备对金属氧化物有特殊要求。有些氧化物如MgO、 固体超强酸

催化原理总结

第一章 1.催化反应的三个特征 2.催化反应三种分类 催化剂两种分类 3.固体催化剂四种组成 助催化剂四种结构和载体的五种作用 催化剂的微观结构 4.催化反应性能的三个标准 5.多相催化反应的七个步骤 第二章 物理吸附和化学吸附的区别 物理吸附和化学吸附位能曲线 解离吸附和谛合吸附的概念 化学吸附态(H2,O2,CO,烯烃,炔烃) 吸附等温线(五种) Langmuir吸附等温方程推导(单分子,多分子)BET方程推导催化剂比表面 测定比表面的方法(N2吸附) 催化剂密度(真密度,假密度,比孔容,孔隙率,平均孔半径,孔径分布) 扩散(Kundsen扩散) 第三章 3.1酸碱催化剂的应用和分类(了解) 3.2酸碱定义及酸碱中心的形成 L酸和B酸定义; 单元氧化物L酸吸水转化为B酸 Tababe二元氧化物酸中心形成机理(Ti6Si4) 3.3固体酸性质及其测定 H0的定义(H0=pKa+log(CB/CBH+) TPD法和IR法测定酸中心 固体超强酸(H0<-10.6) 3.4 酸碱催化作用及其催化机理 特殊酸碱催化(反应的速控步) Bronsted规则ka=GaKaα 碳正离子的形成和反应规律 酸中心类型与活性选择性的关系 3.5 沸石分子筛 四个结构;四个类型分子筛 沸石分子筛酸中心形成的四种机理 沸石分子筛的择型催化作用及影响因素 催化裂化与热裂化的区别 第四章

4.1 金属催化剂的应用及特性(具有d带电子的元素) 4.2 金属催化剂的化学吸附 以d电子解释金属催化剂的吸附热 (未结合d电子数越大,吸附热大,强吸附Fe; 未结合d电子数少,吸附热小,弱吸附Pt) 2.电子逸出功,电离势概念;两者与化学吸附的关系 3.化学吸附和催化活性的关系 (中等强度的吸附)88页图4-2 4.3金属催化剂电子因素与催化作用的关系 能带理论(金属原子紧密堆积,原子轨道重叠, 分立的电子能级扩展为能带) d带空穴(可以由磁距测得) d带空穴需要适应反应电子数目的转移 价键理论;金属原子的共价键由杂化轨道构成 d%:d轨道占有杂化轨道的比例( Ni,30%d2SP3;70%,d3SP2) d%越大,d带空穴越少; d%增大,吸附热变小,吸附强度变低。 4.4金属催化剂晶体结构与催化作用的关系 晶格,晶格参数和晶面的概念 晶体对催化作用的影响 几何角度:吸附位,键长和键角 能量角度:q=s/2 晶格缺陷引起催化活性变化(了解) 4.5负载型催化剂 分散度的概念;分散度与晶粒大小的关系 结构敏感反应(C-C,C-O)结构非敏感反应(C-H) 金属与载体的相互作用(实验证明的思路) 溢流现象及其应用 4.6合金催化剂 几何效应和电子效应对催化反应活性的影响。 (Ni-Cu和Pd-Au) 4.7金属催化剂催化作用的典型剖析 合成氨催化剂的助剂(Al2O3,K2O,CaO等) Ag为乙烯环氧化反应催化剂的机理 催化重整反应对双功能催化剂的要求 第五章 1.过渡金属氧化物催化剂的结构类型,应用及其特点 2.导体、半导体、绝缘体的能带结构和类型 3.半导体、n型半导体、P型半导体形成 4.杂质对半导体催化剂费米能级Ef、逸出功、和电导率的影响 5.杂质对半导体催化剂的影响 6.半导体催化剂化学吸附与催化作用 A)受电子气体吸附 n型半导体上吸附

(推荐)固体酸催化剂

固体酸催化剂 酸碱催化剂中的一类重要催化剂,催化功能来源于固体表面上存在的具有催化活性的酸性部位,称酸中心。它们多数为非过渡元素的氧化物或混合氧化物,其催化性能不同于含过渡元素的氧化物催化剂。这类催化剂广泛应用于离子型机理的催化反应,种类很多(见表)。此外,还有润载型固体酸催化剂,是将液体酸附载于固体载体上而形成的,如固体磷酸催化剂。 中文名固体酸催化剂 功能来源催化活性的酸性部位特点一类重要催化剂 性质酸中心、酸强度和酸度 与固体酸的催化行为有重要关系的性质是酸中心、酸强度和酸度。 ①表面上的酸中心可分为B-酸与L-酸(见酸碱催化剂),有时还同时存在碱中心。可用下式示意地表示氧化铝表面上的酸中心的生成: 红外光谱研究表明,800℃焙烧过的γ-Al2O3表面可有五种类型的羟基,对应于五种酸强度不等的酸中心。混合氧化物表面出现酸中心,多数是由于组分氧化物的金属离子具有不同的化合价或不同的配位数形成的。 SiO2-Al2O3的酸中心模型 (见图)有多种模式。 ②酸强度,可用哈梅特酸强度函数 0来表示固体酸的酸强度,其值愈小,表示酸强度越高。③酸度,用单位重量或单位表面积上酸中心的数目或毫摩尔数来表示,又称酸度。 2应用 在同一固体表面上通常有多种酸强度不同的酸中心,而且数量不同,故酸强度分布也是重要性质之一。由某些固体酸的酸强度范围,可知SiO2-Al2O3、 B2O3-Al2O3等均有强酸性,其酸强度相当于浓度为90%以上的硫酸水溶液的酸强度。不同的催化反应对催化剂的酸强度常有一定的要求,例如在金属硫酸盐上进行醛类聚合、丙烯聚合、三聚乙醛解聚、丙烯水合,有效催化剂的酸强度范围分别为0≤3.3, 0≤1.5,0≤-3,-3< 0<+1.5。在同类型的催化剂上进行同一反应时, 催化活性与催化剂的酸度有关,例如在SiO2-Al2O3上异丙苯裂解,催化活性与催化剂的酸度有近似的线性关系。固体催化剂绝大多数为多孔物质,

固体超强酸

摘要 论述了固体超强酸的研究及运用进展情况。采用寻找最佳配比制备ZrO2包覆的SO42-/ SnO2固体超强酸,讨论了ZrO2与硫酸铵的最佳物质的量比,硫酸铵与SnC l4 最佳摩尔比,煅烧温度,固体超强酸的最佳使用量对其催化性能的影响。实验结果表明,以ZrO2:(NH4)SO4摩尔比为100:6,(NH4)2SO4:SnCl4=1:2时所制备的ZrO2包覆的SO42-/ SnO2固体超强酸,在400摄氏度煅烧 取固体超强酸0.8g原料无水乙醇(20ml)与冰乙酸(10g)进行酯化反应(反应温度为65°c),为较优工艺条件,在此条件制得的乙酸乙酯的酯化率为61.75%。 [关键词]包覆固体超强酸制备催化合成乙酸乙酯 Abstract

Discussed the research and application advanced of solid superacid catalyst in details.By looking for the best ratio of ZrO2-coated SO42-preparation/SnO2 solid superacids, discusses ZrO2 and ammonium sulfate best amount of substance than, ammonium sulphate and SnC l4 best molar ratio, burning temperature, solid superacids best usage on its catalytic performance impact. Experimental results show that to ZrO2: (NH4) SO4 molar ratio of 100: 6, (NH4) SO4: SnCl4 = 1: 2, the preparation of ZrO2-SO42-/SnO2 solid superacids, calcination of the 400 degrees Celsius ,Take solid superacids 0.8g raw ethanol (20ml) and glacial acetic acid (10g) esterification reaction temperature of 65 (°C), for greater technological conditions, conditions in the final of ethyl acetate ester rate of 61.75%. Key words:coating solid superacid catalyst synthesis acetic ether

固体酸催化剂

辽宁石油化工大学设计(论文) 题目固体酸催化剂的研究进展 学院化学化工与环境学部 专业班级研2016 姓名张健 学号01201608170432 2016 年11 月6日

摘要 固体酸催化剂具有对多种化学反应有较高活性与选择性、回收重复利用和效率较高等优点,作为绿色环境友好型催化材料备受人们关注。以往单纯追求眼前效益、不顾对环境所造成的危害的做法近年来越来越受到人们的批判。随着环保意识的增强,以及“绿色化学”的提出,越来越多的学者致力于开发效益兼顾环境、促使化学工业转向开发可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化剂领域中得到了广泛的研究及应用。相比液体酸催化剂而言,固体酸催化剂具有广泛的工业应用前景,是一种无毒、不易腐蚀设备、可循环使用、环境友好型新型催化剂。本文着重介绍固体酸催化剂以及发展前景。 关键词:固体酸催化剂;活性;选择性;环保

1 绪论 1.1固体酸催化剂 固体酸催化剂是一种性能独特的酸性催化剂,它的出现使酸催化反应迈入了新的时代。首先固体酸催化剂的使用在一定程度上缓解和避免了均相反应所带来的不利因素的出现,其次由于其使用温度范围广,适用于700~800 K 进行的反应,这就将研究对象扩大到热力学上可进行的反应范围内。基于此,从19 世纪40年代开始,化学工作者们从未间断过对固体酸的研究。目前,已有大量应用于酸催化反应的固体酸[1-2],见表1。 1.2 几类重要的固体酸催化剂 1.2.1 负载型催化剂 负载试剂于无机载体中即成负载试剂催化剂亦称负载型催化剂。1989 年负载试剂催化剂就已经实现了工业化,取得了良好的经济和环境效益,引领催化研究进入了崭新的阶段。采用一定的方法(如下表2)将活性物质固定在载体上即制成了负载型催化剂,按照负载物质的性质不同,可将其分为负载碱型催化剂、负载酸型催化剂和负载氧化物型催化剂。在负载型催化剂中,催化活性高于载体活性和试剂活性的简单组合,可以理解为,在负载过程中活性物质与载体的共同作用强化了催化作用,进而表现出高的催化活性与环境友好性。 1.2.2 蒙脱土负载试剂固体酸催化剂 蒙脱土又称微晶高岭石,是由两层Si—O 四面体和一层Al-O八面体,组成的层状硅酸盐晶体,有一定的微孔结构。蒙脱土很早就应用在有机反应中,但是涉及其对负载Lewis

固体酸催化剂研究近况综述

试卷( A 卷) 专业: 课程代码: 19060071 学号: 姓名: 作文题(任选一题,写一篇综述论文,每题 100 分) 自拟题目,写一篇关于工业上绿色环保催化剂进展的综述论文 [能力层次: 综合运用和创见 ];[难易度: 较难 ] 要求: 1、查阅文献至少在20篇以上,并且外文文献引用2篇以上; 2、论文字数3000字以上; 3、论文格式严格按照综述论文要求书写; 绿色固体酸催化剂研究近况综述 摘 要:催化剂的研究和发展是现代化学工业的核心问题之一,现代化学工业的巨大成就是同使用催化剂联系在一起的。目前90%以上的化工产品,是借助催化剂生产出来的。工业催化的发展是紧随化学工业的演变而发展的。 催化剂和催化技术的研究与应用,对国名经济的许多重要部门是至关重要的。但就化工工艺过程来说,催化剂的应用可以具体概括为以下几个方面:更新原料路线,采用更廉价的原料;革新工艺流程,促进工艺过程的开发;缓和工艺操作条件,达到节能降耗的目的;开发新产品,提高产品收率,改善产品的质量;消除环境污染或开发从原来到产品的整个化工品过程,对资源的有效利用以及污染控制的环境友好的“绿色催化工艺”等。 引言:固体酸催化剂因其具有对多种化学反应有较高活性与选择性、回收重复利用效率较高等优点,已作为绿色环境友好型催化材料备受人们关注。本文主要综述了近年来国内外对各类型固体超强酸、杂多酸固体酸、离子交换树脂的研究近况,并提出了对今后固体酸催化剂发展的展望。 关键词:固体酸;催化剂 【正文】以往单纯追求眼前效益、罔顾环境所造成的危害近年来逐渐得到人们的重视。随着环保意识的增强,以及绿色化学的提出,越来越多的学者致力于开发效益兼顾环境、使化学工业促可持续发展的新型催化剂。催化剂在工业化生产上起着加速反应进行和提高产率的重要作用,其中酸催化剂在催化领域中得到了广

催化剂表征技术

催化剂的表征技术;即特性的描述。采用现代科学手段与现代分析仪器,对一种物 质进行物理化学鉴定、鉴别等一系列特性及特征的描述。表征用Characterization 来表示。 4.1 电镜技术4.2 X射线衍射4.3 全自动比表面及孔隙度分析仪 4.4 X射线光电子谱(XPS)4.5 热分析技术4.6 激光拉曼技术4.7 程序升温分析技术4.8 红外吸附4.1 电镜技术 电镜技术主要用于测量材料的颗粒度、粒径及分散性,可观察到样品表面的微细形态结构。 第一代光学显微镜 它使人类“看”到了致病的细菌、微生物和微米级的微小物体,对社会的发展起了巨大的促进作用,至今仍是主要的显微工具。 第二代电子显微镜 20世纪三十年代早期卢斯卡(E. Ruska)发明了电子显微镜。使人类能“看”到病毒等亚微米的物体,它与光学显微镜一起成了微电子技术的基本工具。 第三代扫描探针显微镜(纳米显微镜) 1981年比尼格和罗勒尔发明了扫描隧道显微镜(STM),使人类观察到单个原子。1985年比尼格发明了具有原子分辨率、可适用于非导电样品的原子力显微镜(AFM)。STM与AFM 一起构建了扫描探针显微镜(SPM)系列。 使用SPM不仅能观察单个原子或分子,还能操纵单个原子或分子,人们称SPM是纳米世界的“眼”和“手”。比尼格、罗勒尔和卢斯卡分享了1986年的诺贝尔物理奖。 SEM (Scanning Electronic Microscopy) TEM (Transmission Electron Microscope) STM (Scanning Tunnelling Microscope) AFM (Atomic Force Microscope)

固体超强酸催化剂

论文题目摘要 本文简单介绍了固体超强酸的发展、研究方向、及存在的问题。并采用沉淀-浸渍法制备SO 4/ZrO 2固体超强酸,分别以氧氯化锆和氨水为锆源和沉淀剂,110℃干燥后经硫酸浸渍、干燥和焙烧制得催化剂。同时考察不同焙烧温度对催化剂性能的影响。在最优的条件下用正交设计法考察锆源(Zr(NO 3)4·5H 2O,ZrOCl 2·8H 2O )、沉淀剂(氨水、 乙胺)和硫酸化试剂(硫酸、硫酸铵)对催化剂性能的影响,并通过乙酸和正丁醇的酯化反应的酯化率检测所制备的SO 4/ZrO 2催化剂的催化效果。结果表明采用硫酸浸渍液浓度为0.5mol/L ,焙烧温度为550℃时所制备的催化剂在正丁醇和乙酸的物质的量比为1.3及不添加任何带水剂的密闭条件下酯化效果最好,酯化率为52.5%。正交设计实验中锆源、沉淀剂、硫酸化试剂的极差分析结果分别为1.54%,2.27%,5.11%,此结果说明硫酸化试剂对催化剂的影响最大,其次是沉淀剂,锆源的影响最小,同时表明以Zr(NO 3)4·5H 2O 为锆源、乙胺为沉淀剂、硫酸为硫酸化试剂是催化剂的最佳制备方案。 关键词:SO 4/ZrO 2 ;固体超强酸;正交实验设计;乙酸丁酯

目录 第1章. 前言 (4) 第1.1节固体超强酸催化剂的发展前景 (4) 第1.2节固体超强酸目前存在的问题 (4) 第1.3节固体超强酸的研究方向 (5) 第1.4节本课题的研究意义及方案 (5) 第2章. 实验理论 (6) 第2.1节固体超强酸的酸度定义 (6) 第2.2节固体超强酸的合成方法 (6) 第2.3节催化剂合成原理 (7) 第2.4节催化剂酸性中心结构 (7) 第2.5节酸性中心形成机理 (8) 第2.6节催化剂失活机理 (9) 第2.7节催化剂酯化反应机理 (9) 第2.8节酯化反应原理 (10) 第3章.实验部分 (11) 第3.1节主要仪器与设备 (11) 第3.1.1节主要仪器 (11) 第3.1.2节主要设备 (11) 第3.2节主要试剂与配制 (11) 第3.2.1节主要试剂 (11) 第3.2.2节主要试剂配制 (12) 第3.3节实验内容 (12) 第3.3.1节催化剂的制备 (12) 第3.3.2节酯化反应 (13) 第3.3.3节酯化率的测定 (13) 第3.4节正交实验设计 (14) 第3.4.1节正交实验设计概念 (14) 第3.4.2节本实验正交设计方案 (14) 第3.4.3节实验步骤 (16)

固体超强酸概述

固体超强酸概述 超强酸是比100%的H2S04还强的酸,其Ho<-11.93。许多重要的工业催化反应都属于酸催化反应,而固体酸和液体酸相比,具有活性和选择性高、无腐蚀性、无污染以及与催化反应产物易分离等特点,被广泛地用于石油炼制和有机合成工业。常用的固体酸催化剂有分子筛、离子交换树脂、层柱粘土等,它们的酸强度一般低于Ho= —12.0,对需要强酸的反应存在一定的局限性。20世纪60年代初,Olah等发现的HS03F-HF、HF-SbP5等液体魔酸,虽然其酸强度非常高,Ho高达—20.0以上,甚至甲烷在这种液体超强酸中都能质子化,但因其具有强腐蚀性和毒性,以及催化剂处理过程中会产生“三废’’等问题,难以在生产实际中应用。20世纪70年代初开始有人试图将液体超强酸如SbP5、HS03F-SbF5和HF-SbP5等负载到石墨、A1203和树脂等载体上,但仍不能解决催化剂分散、毒性和“三废’’等问题,未能工业应用。1979年Arata等首次报道了无卤素型SO42-/MxOy固体超强酸体系,发现某些用稀硫酸或硫酸盐浸渍的金属氧化物经高温焙烧,可形成酸强度高于100%硫酸104倍的固体超强酸。后来Arata等又将钨酸盐和钼酸盐浸渍Zr02制得WO3/Zr02、M003/Zr02固体超强酸,其酸强度虽比SO42-/Zr02稍低,但仍比100%硫酸高几百倍。1990年Hollstein等发现Fe、Mn和Zr的混合氧化物硫酸根制备的超强酸催化剂正丁烷异构化活性比SO42-/Zr02高1000倍以上。这类固体超强酸易于制备和保存,特别是它与液体超强酸和含卤素的固体超强酸相比,具有不腐蚀反应装置、不污染环境、可在高达500℃下使用等特点,引起人们的广泛重视。 固体超强酸主要有下列几类:(Ⅰ)负载型固体超强酸,主要是指把液体超强酸负载于金属氧化物等载体上的一类。如HF-SbF5-AIF3/固体多孔材料、sbP3-Pt/石墨、SbP3-HF /F-A1203、SbF5-FSO3H/石墨等。(Ⅱ)混合无机盐类,由无机盐复配而成的固体超强酸。如AICl3-CuCl2、MCl3-Ti2(SO4)3、A1C13-Fe2(S04)3等。(Ⅲ)氟代磺酸化离子交换树脂(Nation-H) (Ⅳ)硫酸根离子酸性金属氧化物SO42-/MxOy超强酸,如SO42-/Zr02、SO42-/Ti02、SO42-/Fe203等。(V)负载金属氧化物的固体超强酸,如W03/Zr02、M003/Zr02等。 在上述各类超强酸中,(Ⅰ)—(Ⅲ)类均含有卤素,在加工和处理中存在着“三废”污染等问题。(Ⅳ)、(V)类超强酸不含有卤原子,不会污染环境,可在高温下重复使用,制法简便。本节着重对这两类超强酸进行介绍。 MxOy型固体超强酸 (1)固体超强酸的制备 SO42-/MxOy型固体超强酸一般采用浓氨水中和金属盐溶液,得到无定形氢氧化物,然后再用稀硫酸或硫酸铵溶液浸渍、烘干和焙烧制得。然而,金属盐原料、沉淀剂、浸渍剂不同对制备的氧化物、超强酸的表面性质影响很大,制备环境如焙烧温度、沉淀温度、金属盐溶液浓度、pH、加料顺序、陈化时间及SO42-浸渍浓度也很重要。如何改善制备条件获得高质量、高酸性的固体超强酸是该类材料研究的最基本的问题。 (A) 金属氧化物的选择:

固体超酸及其应用研究进展

固体超酸及其应用研究进展 摘要:目前已制备的超酸种类繁多, 它具有极强的酸性和高介电常数, 在化学合成工业中是一种良好的催化剂。本文对超强酸的定义、酸度的测定进行了简单介绍。固体超强酸是近年来发展的一种新型催化材料,进一步综述了固体超强酸的分类、制备方法,例举了一些学者制备的新的固体超强酸催化剂。重点是介绍固体超强酸催化剂在有机化学反应中的应用。指出了固体超强酸的优点和一些不足。最后指出了今后固体超强酸催化剂的发展方向。 关键词:超酸;固体超酸;催化剂;应用;发展 Abstract: The acid has been prepared over a wide range, it has a very strong acid and high dielectric constant, it is a good catalyst in the chemical synthesis industry.In this paper, the definition of super acid, acidity determination for a brief introduction. Solid superacid is a new type of catalytic material in recent years.the classification of solid superacids and preparation methods are described.New solid superacid catalysts are introduced. solid superacid catalysts are applied in organic reactions which is the key in the article.Pointing out the advantages of solid superacids and some shortcomings. Finally,development trends of solid superacid catalysts are put forward. Key words:Superacid; solid superacid; catalyst; application; development

相关主题
相关文档 最新文档