当前位置:文档之家› 条件概率与事件的独立性练习题

条件概率与事件的独立性练习题

条件概率与事件的独立性练习题
条件概率与事件的独立性练习题

条件概率与事件的独立性练习题

1.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12

,且

是相互独立的,则灯泡甲亮的概率为( )

A.18

B.14

C.12

D.116

2、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有两次击中目标的概率

为( )

A.81125

B.54125

C.36125

D.27125

3、一学生通过英语听力测试的概率是21,他连续测试两次,那么其中恰好一次通过的概率

是() A. 41 B. 31 C.21 D.4

3 4.某人射击一次击中的概率为0.6,经过3次射击,此人至少有两次击中目标的概率为() A .12581 B .1255

4 C .12536 D .125

27 5、甲、乙两人进行乒乓球比赛,比赛规则为“3局2胜”,即以先赢2局者为胜.根据经验,每局比赛中甲获胜的概率为0.6,则本次比赛甲获胜的概率是 ( )

(A) 0.216 (B)0.36 (C)0.432 (D)0.648

6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格.

(1)分别求甲、乙两人考试合格的概率;

(2)求甲、乙两人至少有一人考试合格的概率.

7.2009年12月底,一考生参加某大学的自主招生考试,需进行书面测试,测试题中有4道题,每一道题能否正确做出是相互独立的,并且每一道题被该考生正确做出的概率都是34

. (1)求该考生首次做错一道题时,已正确做出了两道题的概率;

(2)若该考生至少正确作出3道题,才能通过书面测试这一关,求这名考生通过书面测试的概率.

新教材高中数学第5章统计与概率5.3.5随机事件的独立性课时23随机事件的独立性练习(含解析)新人教B版必修

新教材高中数学第5章统计与概率5.3.5随机事件的独立性课时23随机事件的独立性练习(含解析)新人教B 版必修第二册 知识点一 随机事件独立性的判定错误!未指定书签。 1.袋中有黑、白两种颜色的球,从中进行有放回地摸球,用A 1表示第一次摸得黑球,A 2 表示第二次摸得黑球,则A 1与A 2是( ) A .相互独立事件 B .不相互独立事件 C .互斥事件 D .对立事件 答案 A 解析 根据相互独立事件的概念可知,A 1与A 2相互独立,故A 1与A 2也相互独立. 2.从一副扑克牌(去掉大、小王,共52张)中任抽一张,记事件A 为“抽得K”,记事件 B 为“抽得草花”,记事件 C 为“抽得J”,判断下列每对事件是否相互独立?为什么? (1)A 与B ; (2)C 与A . 解 (1)解法一:事件A 与B 相互独立. 因为任抽一张,事件B 发生的概率为1 4,若事件A 发生 了,因为有4张K ,是草花K 的概率还是1 4 . 故A 的发生与否并不影响事件B 发生的概率,故事件A 与B 相互独立. 解法二:P (A )=452=113,P (B )=1352=1 4, 事件AB 即为“抽得草花K”,故P (AB )=1 52 . 从而有P (A )P (B )=P (AB ),因此事件A 与B 相互独立. (2)事件A 与C 不相互独立. 任抽一张,事件C 发生的概率为1 13.若事件A 发生了,则事件C 就没有发生,即事件A 的 发生影响了事件C 发生的概率,故二者不是相互独立事件. 知识点二 相互独立事件同时发生的概率错误!未指定书签。 3.如图所示,在两个转盘中,指针落在转盘每个数所在区域的机会均等,那么两个指针

条件概率与独立事件、二项分布练习题及答案

条件概率与独立事件、二项分布 1.(2012·广东汕头模拟)已知某射击运动员,每次击中目标的概率都是,则该射击运动员射击4次至少击中3次的概率为( ) A . B . 2 C . D . 2.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) 3.(2011·湖北高考)如图,用K 、A 1、A 2三类不同的元件连接成一个系统.当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作.已知K 、A 1、A 2正常工作的概率依次为、、,则系统正常工作的概率为( ) A . B . C . D . 4.(2011·辽宁高考)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) 5.(2012·山西模拟)抛掷一枚硬币,出现正反的概率都是12,构造数列{a n },使得a n = ? ???? 1 第n 次抛掷时出现正面,-1 第n 次抛掷时出现反面, 记S n =a 1+a 2+…+a n (n ∈N *),则S 4=2的概率为( ) 6.高三毕业时,甲、乙、丙等五位同学站成一排合影留念,已知甲、乙二人相邻,则甲、丙相邻的概率是( ) 7.某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为16 25,则该队员每次罚球的命中率为________. 8.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于________. 9.有一批种子的发芽率为,出芽后的幼苗成活率为,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.

北师大数学选修课时分层作业2 条件概率与独立事件 含解析

课时分层作业(二) (建议用时:60分钟) [基础达标练] 一、选择题 1.两人打靶,甲击中的概率为0.8,乙击中的概率为0.7,若两人同时射击一目标,则它们都中靶的概率是() A.0.56B.0.48 C.0.75 D.0.6 A[设甲击中为事件A,乙击中为事件B. 因为A,B相互独立,则P(AB)=P(A)·P(B)=0.8×0.7=0.56.] 2.某人忘记了一个电话号码的最后一个数字,只好任意去试拨,他第一次失败、第二次成功的概率是() A.1 10 B. 2 10 C.8 10 D. 9 10 A[某人第一次失败,第二次成功的概率为P=9×1 10×9 = 1 10,所以选A.] 3.一袋中装有5只白球和3只黄球,在有放回地摸球中,用A1表示第一次摸得白球,A2表示第二次摸得白球,则事件A1与A2是() A.相互独立事件B.不相互独立事件 C.互斥事件D.对立事件 A[由题意可得A2表示“第二次摸到的不是白球”,即A2表示“第二次摸到的是黄球”,由于采用有放回地摸球,故每次是否摸到黄球或白球互不影响,故事件A1与A2是相互独立事件.] 4.如图所示,A,B,C表示3种开关,若在某段时间内它们正常工作的概率分别为0.9,0.8,0.7,那么系统的可靠性是()

A .0.504 B .0.994 C .0.496 D .0.06 B [系统可靠即A ,B , C 3种开关至少有一个能正常工作,则P =1-[1-P (A )][1-P (B )][1-P (C )] =1-(1-0.9)(1-0.8)(1-0.7) =1-0.1×0.2×0.3=0.994.] 5.2018年国庆节放假,甲去北京旅游的概率为1 3,乙,丙去北京旅游的概率分别为14,1 5.假定三人的行动相互之间没有影响,那么这段时间内至少有1个去北京旅游的概率为( ) A.5960 B.35 C.12 D.160 B [用A ,B , C 分别表示甲,乙,丙三人去北京旅游这一事件,三人均不去的概率为P (A B C )=P (A )·P (B )·P (C )=23×34×45=2 5,故至少有一人去北京旅游的概率为1-25=35.] 二、填空题 6.将两枚均匀的骰子各掷一次,已知点数不同,则有一个是6点的概率为________. 1 3 [设掷两枚骰子点数不同记为事件A ,有一个是6点记为事件B .则P (B |A )=2×530=13.] 7.明天上午李明要参加奥运志愿者活动,为了准时起床,他用甲、乙两个闹钟叫醒自己,假设甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是0.90,则两个闹钟至少有一个准时响的概率是________. 0.98 [设A =“两个闹钟至少有一个准时响”,

(完整版)条件概率独立事件习题

条件概率与独立事件习题课 1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则P(B|A)的值为() A . B . C . D . 2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=() A . B . C . D . 3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率() A . B . C . D . 4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为() A . B . C . D . 5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是. 二.解答题 6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示. (1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表: 年龄(岁)[15, 25) [25, 35) [35, 45) [45, 55) [55, 65) [65, 75] 频数510151055 赞成人数469634 (Ⅰ)完成被调查人员的频率分布直方图; (Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列

1.2.1条件概率与独立事件

条件概率 【问题导思】 一个家庭有两个孩子,假设男女出生率一样. (1)这个家庭一男一女的概率是多少? (2)预先知道这个家庭中至少有一个女孩,这个家庭一男一女的概率是多少?【提示】 (1)12,(2)2 3 . (1)概念:已知事件B 发生的条件下,A 发生的概率称为B 发生时A 发生的条件概率,记为P (A |B ). (2)公式:当P (B )>0时,P (A |B )= P AB P B .

独立事件 【问题导思】 在一次数学测试中,甲考满分,对乙考满分有影响吗? 【提示】 没有影响. (1)定义:对两个事件A ,B ,如果P (AB )=P (A )P (B ),则称A ,B 相互独立. (2)性质:如果A ,B 相互独立,则A 与B ,A 与B ,A 与B 也相互独立. (3)如果A 1,A 2,…,A n 相互独立,则有P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ). 应用 在100件产品中有95件合格品,5件不合格品,现从中不放回地 取两次,每次任取一件,试求: (1)第一次取到不合格品的概率; (2)在第一次取到不合格品后,第二次再次取到不合格品的概率. 【思路探究】 求解的关键是判断概率的类型.第一问是古典概型问题;第二问是条件概率问题. 【自主解答】 设“第一次取到不合格品”为事件A ,“第二次取到不合格品”为事件B . (1)P (A )=5 100 =0.05. (2)法一 第一次取走1件不合格品后,还剩下99件产品,其中有4件不合格品.于是第二次再次取到不合格品的概率为 4 99 ,这是一个条件概率,表示为P (B |A )=499 . 法二 根据条件概率的定义计算,需要先求出事件AB 的概率. P (AB )=5100×499,∴有P (B |A )=P AB P A =5100× 4995100 =499 . 1.注意抽取方式是“不放回”地抽取. 2.解答此类问题的关键是搞清在什么条件下,求什么事件发生的概率. 3.第二问的解法一是利用缩小样本空间的观点计算的,其公式为P (B |A )= n AB n A ,此法常应用于古典概型中的条件概率求法.

§2.2.2事件的独立性 (习题课)

学案49 §2.2.2事件的独立性 (习题课) 一、基础知识 1、相互独立的概念 2、相互独立的性质 3、相互独立事件与互斥事件的区别 二、习题 1、若A 与B 相互独立,则下面不相互独立的事件是( ) A. A 与A -- B.A 与B -- C. A -- 与B D. A -- 与B -- 2、设两个独立事件A 和B 都不发生的概率为 1 9 ,A 发生B 不发生的概率与B 发生A 不发生的概率相同则事件A 发生的概率P (A )是( ) A. 23 B. 13 C. 19 D 118 3、假设每一架飞机的引擎在飞行中出现故障率为1-P ,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可以成功飞行,若使4引擎飞机比2引擎飞机更安全,则P 的取值范围是( ) A . 2,13?? ??? B. 20,3?? ??? C. 1,13?? ??? D 10,4?? ??? 4、甲乙丙射击命中目标的概率分别为12、14、1 12 ,现在三人射击一个目标各一次,目标被击中的概率是( ) A. 196 B. 4796 C. 2132 D. 56 5、一袋中有3个红球、2个白球,另一袋中有2个红球、1个白球,从每袋中任取 一球,则至少取一白球的概率是 ( ) A 、 83 B 、53 C 、52 D 、5 1 6、在一段时间内,甲去某地的概率是14,乙去此地的概率是1 5 ,假定两人的行动相互之间没 有影响,那么在这段时间内至少有1人去此地的概率是( ) () A 320 () B 15 () C 25 () D 9 20 7、某商场经理根据以往经验知道,有40%的客户在结账时会使用信用卡,则连续三位顾客都使用信用卡的概率为 8、三个同学同时作一电学实验,成功的概率分别为1P ,2P ,3P ,则此实验在三人中恰有两个人成功的概率是 9、甲、乙射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,则2人中至少有一人射中的概率是 10、每门高射炮射击飞机的命中率为0.6,至少要 门高射炮独立的对飞机同时进行一次射击就可以使击中的概率超过0.98. 11、甲、乙两人同时应聘一个工作岗位,若甲、乙被应聘的概率分别为0.5和0.6两人被聘用是相互独立的,则甲、乙两人中最多有一人被聘用的概率 12、甲袋中有8个白球,4个红球;乙袋中有6个白球,6个红球,从每袋中任取一个球,问取得的球是同色的概率 13、甲.乙、丙三位同学完成六道数学自测题,他们及格的概率依次为 45、35、710 , 求:(1)三人中有且只有两人及格的概率; (2)三人中至少有一人不及格的概率。 14、甲、乙二射击运动员分别对一目标射击1次,甲射中的概率为0.8,乙射中的概率为0.9,求:(1)2人都射中目标的概率; (2)2人中恰有1人射中目标的概率; (3)2人至少有1人射中目标的概率; (4)2人至多有1人射中目标的概率?

04事件的相互独立性(教案)

2. 2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:4课时 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1 事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A 发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()P A . 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A )称为一个基本事件6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,, ,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥 11.对立事件:必然有一个发生的互斥事件.()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A 彼此互斥,那么 12()n P A A A ++ +=12()()()n P A P A P A +++

概率 2 条件概率与相互独立事件

概率 2 条件概率与相互独立事件 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P (AB ) P (A ) . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n (AB ) n (A ) . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 基础训练 1.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ). A.34 B.23 C.35 D.12 2.如图,用K 、A 1、A 2三类不同的元件连接成一个系统,当K 正常工作且A 1、A 2至少有一个正常工作时,系统正常工作,已知K 、A 1、A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( ). A .0.960 B .0.864 C .0.720 D .0.576

高中数学事件的独立性综合测试题(附答案)-精选教育文档

高中数学事件的独立性综合测试题(附答案)选修2-3 2.2.2 事件的独立性 一、选择题 1.种植两株不同的花卉,若它们的成活率分别为p和q,则恰有一株成活的概率为() A.p+q-2pq B.p+q-pq C.p+q D.pq [答案] A [解析] 恰有一株成活的概率为p(1-q)+(1-p)q=p+q -2pq,故选A. 2.打靶时,甲每打10次可中靶8次,乙每打10次可中靶7次,若两人同时射击,则他们同时中靶的概率是() A.1425 B.1225 C.34 D.35 [答案] A [解析] P甲=810=45,P乙=710,所以P=P甲P乙=1425. 3.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为14,从中任挑一儿童,这两项至少有一项合格的概率是() (假定体型与身体关节构造合格与否相互之间没有影响)

A.1320 B.15 C.14 D.25 [答案] D [解析] 设“儿童体型合格”为事件A,“身体关节构造合格”为事件B,则P(A)=15,P(B)=14.又A,B相互独立,则A,B也相互独立,则P(A B)=P(A)P(B)=4534=35,故至少有一项合格的概率为P=1-P(A B)=25,故选D. 4.(2019湖北理,4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A,B中至少有一件发生的概率是() A.512 B.12 C.712 D.34 [答案] C [解析] 由题意P(A)=12,P(B)=16,事件A、B中至少有一个发生的概率P=1-1256=712. 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p1,乙解决这个问题的概率是p2,那么恰好有1人解决这个问题的概率是() A.p1p2 B.p1(1-p2)+p2(1-p1) C.1-p1p2 D.1-(1-p1)(1-p2)

事件的相互独立性试题及答案

1 事件的互相独立性 1.若A 与B 相互独立,则下面不相互独立事件有( ) A.A 与A B.A 与B C.A 与B D A 与B 2.在某段时间内,甲地不下雨的概率为0.3,乙地不下雨的概率为0.4,假设在这段时间内两地是否下雨相互无影响,则这段时间内两地都下雨的概率是( ) A.0.12 B.0.88 C.0.28 D.0.42 3.甲、乙两人独立地解同一问题,甲解决这个问题的概率是P 1,乙解决这个问题的概率是P 2,那么恰好有1人解决这个问题的概率是( ) A.P 1P 2 B.P 1(1-P 2)+P 2(1-P 1) C.1-P 1P 2 D.1-(1-P 1)(1-P 2) 4.从应届高中生中选出飞行员,已知这批学生体型合格的概率为 31,视力合格的概率为61,其他几项标准合格的概率为5 1,从中任选一学生,则该生三项均合格的概率为(假设三项标准互不影响)( ) A.94 B.90 1 C.54 D. 95 5.一道数学竞赛试题,甲生解出它的概率为21,乙生解出它的概率为31,丙生解出它的概率为4 1,由甲、乙、丙三人独立解答此题只有一人解出的概率为____________. 6.一出租车司机从饭店到火车站途中有六个交通岗,假设他在各交通岗遇到红灯这一事件是相互独立的,并且概率都是3 1,那么这位司机遇到红灯前,已经通过了两个交通岗的概率是_______________. 7.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分考核都“合格”则该课程考核“合格”.甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9.所有考核是否合格相互之间没有影响. (1)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (2)求这三人该课程考核都合格的概率(结果保留三位小数).

条件概率知识点、例题、练习题

条件概率专题 一、知识点 ①只须将无条件概率P(B)替换为条件概率P(B A),即可类比套用概率满足 的三条公理及其它性质 ②在古典概型中--- P(B A) P( AB) (AB) P(A) (A) ③在几何概型中--- P(B A) P( AB) (AB) P(A) (A) 事件AB包括的基本事件(样本点)数事件A包括的基本事件(样本点)数 区域AB的几何度量(长度,面积,体积等) 区域A的几何度量(长度,面积,体积等) 条件概率及全概率公式 .对任意两个事件A B,是否恒有P(A) > P(A| B). 答:不是?有人以为附加了一个B已发生的条件,就必然缩小了样本空间,也就缩小了概率,从而就一定有P(A) > P(A| B), 这种猜测是错误的?事实上, 可能P(A) > P(A| B),也可能P(A) < P(A|B),下面举例说明. 在0,1,…,9这十个数字中,任意抽取一个数字,令 A={抽到一数字是3的倍数}; B={抽到一数字是偶 数}; B2={抽到一数字大于8},那么 P(A)=3/10, P(A| B i)=1/5, P(AB)=1. 因此有P(A) > P(A| B i), P(A) v P(AB). .以下两个定义是否是等价的? 定义1. 若事件A、B满足P(A^=P(A)P(B), 则称A、B相互独立. 定义2.若事件A、B满足P(A|B)=P(A)或P(B|A)=P(B),则称A、B相互独立?答:不是的?因为条件概率的定义为 P(A B)=P(AB?/ P(B)或P(B| A)=P(A^/ P(A) 自然要求P(A)丰0, P(B)丰0,而定义1不存在这个附加条件,也就是说,P(AB=P(A)P(B)对于P(A)=0或P(B)=0也是成立的.事实上,若P(A)=0 由0W P(AB) < P(A)=0 可知P(AB=0 故P(AB=P(A)P(B). 因此定义1与定义2不等价,更确切地说由定义2可推出定义1, 但定义1 不能推出定义2,因此一般采用定义1更一般化. . 对任意事件 A 、B, 是否都有P(AB < P(A < P(A+B) < P(A)+P(B). 答:是的.由于P(A+B)=P(A)+P(B)- P(AB (*)

人教A版(2019)数学必修(第二册):10.2 事件的相互独立性 教案

事件的相互独立性 【教学过程】 一、问题导入 预习教材内容,思考以下问题: 1.事件的相互独立性的定义是什么? 2.相互独立事件有哪些性质? 3.相互独立事件与互斥事件有什么区别? 二、基础知识 1.相互独立的概念 设A ,B 为两个事件,若P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. 2.相互独立的性质 若事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立. ■名师点拨 (1)必然事件Ω,不可能事件?都与任意事件相互独立. (2)事件A ,B 相互独立的充要条件是P (AB )=P (A )·P (B ). 三、合作探究 1.相互独立事件的判断 一个家庭中有若干个小孩,假定生男孩和生女孩是等可能的,令A ={一个家庭中既 有男孩又有女孩},B ={一个家庭中最多有一个女孩}.对下述两种情形,讨论A 与B 的独立性:

(1)家庭中有两个小孩; (2)家庭中有三个小孩. 【解】(1)有两个小孩的家庭,男孩、女孩的可能情形为Ω={(男,男),(男,女),(女,男),(女,女)}, 它有4个基本事件,由等可能性知概率都为1 4. 这时A={(男,女),(女,男)}, B={(男,男),(男,女),(女,男)},AB={(男,女),(女,男)}, 于是P(A)=1 2,P(B)= 3 4,P(AB)= 1 2. 由此可知P(AB)≠P(A)P(B), 所以事件A,B不相互独立. (2)有三个小孩的家庭,小孩为男孩、女孩的所有可能情形为Ω={(男,男,男),(男,男,女),(男,女,男),(男,女,女),(女,男,男),(女,男,女),(女,女,男),(女,女,女)}. 由等可能性知这8个基本事件的概率均为1 8,这时A中含有6个基本事件,B中含有4个 基本事件,AB中含有3个基本事件. 于是P(A)=6 8= 3 4,P(B)= 4 8= 1 2,P(AB)= 3 8, 显然有P(AB)=3 8=P(A)P(B)成立. 从而事件A与B是相互独立的. 判断两个事件是否相互独立的两种方法 (1)根据问题的实质,直观上看一事件的发生是否影响另一事件发生的概率来判断,若没有影响,则两个事件就是相互独立事件; (2)定义法:通过式子P(AB)=P(A)P(B)来判断两个事件是否独立,若上式成立,则事件A,B相互独立,这是定量判断. 2.相互独立事件同时发生的概率 王敏某天乘火车从重庆到上海去办事,若当天从重庆到上海的三列火车正点到达的概率分别为0.8,0.7,0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;

事件的独立性练习题

事件的独立性练习题

————————————————————————————————作者:————————————————————————————————日期:

巩固与提高(事件的独立性) A 组 一、选择题 1、若A 与B 相互独立,则下面不相互独立的事件是(A ) A. A 与A -- B.A 与B -- C. A -- 与B D. A --与B -- 2、抛掷一颗骰子一次,记A 表示事件:出现偶数点,B 表示事件:出现3点或 6点,则事件A 与B 的关系。(B ) A 、相互互斥事件 B 、相互独立事件 C 、既相互互斥事件又相互独立事件 D 、既不互斥事件又不独立事件 3、在下列命题中为假命题的是(B ) A. 概率为0的事件与任何事件都是互相独立的 B. 互斥的两个事件一定不是相互独立的,同样互相独立的两个事件也一 定不是互斥的 C. 必然事件与不可能事件是相互独立的 D. 概率为1的事件与任何事件都是相互独立的 4、甲乙丙射击命中目标的概率分别为12、14、112 ,现在三人射击一个目标各一次,目标被设计中的概率是(C ) A. 196 B. 4796 C. 2132 D. 56 3、填空题 5、某商场经理根据以往经验知道,有40%的客户在结账时会使用信用卡,则 连续三位顾客都使用信用卡的概率为 0.064 6、三个同学同时作一电学实验,成功的概率分别为1P ,2P ,3P ,则此实验在三人中恰有两个人成功的概率是 ()()()123132231111PP P PP P P P P -+-+- 7、甲、乙射击运动员分别对一目标射击一次,甲射中的概率为0.8,乙射中的概率为0.9,则2人中至少有一人射中的概率是 0.98 三、解答题 8、甲.乙、丙三位同学完成六道数学自测题,他们及格的概率依次为45、35、710 ,求: (1) 三人中有且只有两人及格的概率; (2) 三人中至少有一人不及格的概率。 解:设甲.乙、丙答题及格分别为事件A 、B 、C ,则A 、B 、C 相互 独立。 (1) 三人中有且只有2人及格的概率为

条件概率独立事件习题

1.抛掷红、蓝两颗骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两颗骰子的点数之和大于8”则P(B|A)的值为() A.B.C.D. 2.从1~9这9个正整数中任取2个不同的数,事件A为“取到的2个数之和为偶数”,事件B为“取到的2个数均为偶数”,则P(B|A)=() A.B.C.D. 3.10件产品中有5件次品,从中不放回的抽取2次,每次抽1件,已知第一次抽出的是次品,则第二次抽出的是正品的概率() A.B.C.D. 4.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和P,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则P值为()A.B.C.D. 5.若甲以10发8中,乙以10发6中,丙以10发7中的命中率打靶,三人各射击一次,则三人中只有一人命中的概率是. 二.解答题 6.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],…,(510,515],由此得到样本的频率分布直方图,如图所示. (1)根据频率分布直方图,求重量超过505克的产品数量. (2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列. (3)从流水线上任取5件产品,求恰有2件产品合格的重量超过505克的概率.(删)7.2013年12月21日上午10时,省会首次启动重污染天气Ⅱ级应急响应,正式实施机动车车尾号限行,当天某报社为了解公众对“车辆限行”的态度,随机抽查了50人,将调查情况进行整理后制成下表: 年龄(岁)[15, 25) [25, 35) [35, 45) [45, 55) [55, 65) [65, 75] 频数510151055 赞成人数469634 (Ⅰ)完成被调查人员的频率分布直方图; (Ⅱ)若从年龄在[15,25),[25,35)的被调查者中各随机选取两人进行进行追踪调查,记选中的4人中不赞成“车辆限行”的人数为ξ,求随机变量ξ的分布列 8.盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P; (2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x 1 ,x 2 ,x 3 , 随机变量X表示x 1 ,x 2 ,x 3 中的最大数,求X的概率分布.

事件的相互独立性的教案

事件的相互独立性的教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2.2.2事件的相互独立性 一、教学目标: 1、知识与技能: ①理解事件独立性的概念 ②相互独立事件同时发生的概率公式 2、过程与方法: 通过实例探究事件独立性的过程,学会判断事件相 互独立性的方法。 3、情感态度价值观:通过本节的学习,体会数学来源于实践又服务于 实践,发现数学的应用意识。 二、教学重点:件事相互独立性的概念 三、教学难点:相互独立事件同时发生的概率公式 四,教学过程: 1、复习回顾:(1)条件概率 (2)条件概率计算公式 (3)互斥事件及和事件的概率计算公式 2、思考探究: 三张奖券只有一张可以中奖,现分别由三名同学有放回地抽取,事件A 为“第一位同学没有抽到中奖奖券”,事件B 为“最后一名同学抽到中奖奖券”。 事件A 的发生会影响事件B 发生的概率吗? 分析:事件A 的发生不会影响事件B 发生的概率。于是: 3、事件的相互独立性 设A ,B 为两个事件,如果 P(AB)=P(A)P(B),则称事件A 与事件B 相互独立。 即事件A (或B )是否发生,对事件B (或A )发生的概率没有影响,这样两个事件叫做相互独立事件。 注:①如果A 与B 相互独立,那么A 与B ,B 与A ,A 与B 都是相互独立的。(举例说明) ②推广:如果事件12,,...n A A A 相互独立,那么 1212(...)()()...()n n P A A A P A P A P A = (|)()P B A P B =()()(|)P AB P A P B A =()()() P AB P A P B ∴=

(完整版)随机变量及其分布列与独立性检验练习题附答案

数学学科自习卷(二) 一、选择题 1.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率()P A B ,()P B A 分别是( ) A.6091,12 B.12,6091 C.518,6091 D.91216,12 2.设随机变量ξ服从正态分布()3,4N ,若()()232P a P a ξξ<-=>+,则a 的值为 A .73 B .53 C .5 D .3 3.已知随机变量ξ~)2,3(2N ,若23ξη=+,则D η= A . 0 B . 1 C . 2 D . 4 4.同时拋掷5枚均匀的硬币80次,设5枚硬币正好出现2枚正面向上,3枚反面向上的次数为ξ,则ξ的数学期望是( ) A .20 B .25 C. 30 D .40 5. 甲乙两人进行乒乓球比赛, 约定每局胜者得1分, 负者得0分, 比赛进行到有一人比对方多2分或打满6局时停止, 设甲在每局中获胜的概率为 23,乙在每局中获胜的概率为13 ,且各局胜负相互独立, 则比赛停止时已打局数ξ的期望()E ξ为( ) A .24181 B .26681 C .27481 D .670243 6.现在有10张奖券,8张2元的,2张5元的,某人从中随机无放回地抽取3张奖券,则此人得奖金额的数学期望为( ) A .6 B .395 C .415 D .9 7.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b ,不得分的概率为c ,,,(0,1)a b c ∈,且无其它得分情况,已知他投篮一次得分的数学期望为1,则ab 的最大值为 ( ) A .148 B .124 C .112 D .16 8.位于数轴原点的一只电子兔沿着数轴按下列规则移动:电子兔每次移动一个单位,移动的方向向左或向右,并且向左移动的概率为 23,向右移动的概率为13,则电子兔移动五次后位于点(1,0)-的概率是 ( ) A .4243 B .8243 C .40243 D .80243

2019年北师大版数学选修1-2练习(第1章)条件概率与独立事件(含答案)

2019年北师大版精品数学资料 条件概率与独立事件 同步练习 【选择题】 1、一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,第一次 取后不放回.则若已知第一只是好的,第二只也是好的概率为( ) A .53 B .52 C .95 D .3 1 2、袋中有2个白球,3个黑球,从中依次取出2个,则取出两个都是白球的概率 ( ) A .53 B .101 C .31 D .5 2 3、某射手命中目标的概率为P ,则在三次射击中至少有1次未命中目标的概率为 ( ) A .P 3 B .(1-P)3 C .1-P 3 D .1-(1-P)3 4、设某种产品分两道独立工序生产,第一道工序的次品率为10%,第二道工序的 次品率为3%,生产这种产品只要有一道工序出次品就将生产次品,则该产品的次品率是( ). A .0.873 B .0.13 C .0.127 D .0.03 5、甲、乙、丙三人独立地去译一个密码,分别译出的概率为51,31,4 1,则此密码能译出的概率是 ( ) A . 60 1 B .5 2 C .5 3 D . 60 59 6、一射手对同一目标独立地进行四次射击,已知至少命中一次的概率为 81 80 ,则此射手的命中率为 ( ) A .3 1 B .4 1 C .3 2 D .5 2 7、n 件产品中含有m 件次品,现逐个进行检查,直至次品全部被查出为止.若第 n-1次查出m-1件次品的概率为r ,则第n 次查出最后一件次品的概率为( ) A .1 B .r-1 C .r D .r +1 8、对同一目标进行三次射击,第一、二、三次射击命中目标的概率分别为0.4, 0.5和0.7,则三次射击中恰有一次命中目标的概率是 ( ) A .0.36 B .0.64 C .0.74 D .0.63 【填空题】 9、某人把6把钥匙,其中仅有一把钥匙可以打开房门,则前3次试插成功的概率 为 __. 10、甲乙两地都位于长江下游,根据一百多年的气象记录,知道甲乙两地一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问:

事件的相互独立性教案

§2.2.2事件的相互独立性 教学目标: 知识与技能:理解两个事件相互独立的概念。 过程与方法:能进行一些与事件独立有关的概率的计算。 情感、态度与价值观:通过对实例的分析,会进行简单的应用。 教学重点:独立事件同时发生的概率 教学难点:有关独立事件发生的概率计算 授课类型:新授课 课时安排:2课时 教学过程: 一、复习引入: 1事件的定义:随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m 总是接近某个常数,在它附近摆动,这时就把这个常数叫 n 做事件A的概率,记作() P A. 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率; 4.概率的性质:必然事件的概率为1,不可能事件的概率为0,随机事件的概率为0()1 ≤≤,必然事件和不可能事件看作随机事件的两 P A 个极端情形 5基本事件:一次试验连同其中可能出现的每一个结果(事件A)称

为一个基本事件 6.等可能性事件:如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每个基本事件的概率都是1n ,这种事件叫等可能性事件 7.等可能性事件的概率:如果一次试验中可能出现的结果有n 个,而且所有结果都是等可能的,如果事件A 包含m 个结果,那么事件A 的概率()m P A n = 8.等可能性事件的概率公式及一般求解方法 9.事件的和的意义:对于事件A 和事件B 是可以进行加法运算的 10 互斥事件:不可能同时发生的两个事件.()()()P A B P A P B +=+ 一般地:如果事件12,,,n A A A L 中的任何两个都是互斥的,那么就 说事件12,,,n A A A L 彼此互斥 11.对立事件:必然有一个发生的互斥事件. ()1()1()P A A P A P A +=?=- 12.互斥事件的概率的求法:如果事件12,,,n A A A L 彼此互斥,那么 12()n P A A A +++L =12()()()n P A P A P A +++L 探究: (1)甲、乙两人各掷一枚硬币,都是正面朝上的概率是多少? 事件A :甲掷一枚硬币,正面朝上;事件B :乙掷一枚硬币,正面朝上 (2)甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少?

人教新课标版数学高二-人教选修2-3练习2-2-2事件的独立性

选修2-3 2.2.2 一、选择题 3.从某地区的儿童中挑选体操学员,已知儿童体型合格的概率为15,身体关节构造合格的概率为1 4,从中任挑一儿童,这两项至少有一项合格的概率是( ) (假定体型与身体关节构造合格与否相互之间没有影响) A.13 20 B.15 C.14 D.25 [答案] D [解析] 设“儿童体型合格”为事件A ,“身体关节构造合格”为事件B ,则P (A )=15,P (B )=1 4.又A ,B 相互独立,则A ,B 也相互独立,则P (A B )=P (A )P (B )=45×34=3 5,故至少有一项合格的概率为P =1-P (A B )=2 5,故选D. 4.(2010·湖北理,4)投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是( ) A.5 12 B.12 C.7 12 D.34 [答案] C

[解析] 由题意P (A )=12,P (B )=1 6,事件A 、B 中至少有一个发生的概率P =1-12×56=7 12. 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( ) A .p 1p 2 B .p 1(1-p 2)+p 2(1-p 1) C .1-p 1p 2 D .1-(1-p 1)(1-p 2) [答案] B [解析] 设甲解决问题为事件A ,乙解决问题为事件B ,则恰有一人解决为事件A B +A B ,由题设P (A )=p 1,P (B )=p 2,∴P (A B +A B )=P (A B )+P (A B )=P (A )·P (B )+P (A )·P (B ) =(1-p 1)p 2+p 1(1-p 2). 6.从甲袋内摸出1个白球的概率为1 3,从乙袋内摸出1个白球的概率是12,从两个袋内各摸1个球,那么概率为5 6的事件是( ) A .2个球都是白球 B .2个球都不是白球 C .2个球不都是白球 D .2个球中恰好有1个白球 [答案] C [解析] 从甲袋内摸出白球与从乙袋内摸出白球两事件相互独

条件概率知识点、例题、练习题(1)

条 件概率专题 一、知识点 ① 只须将无条件概率()P B 替换为条件概率)(A B P ,即可类比套用概率满足的三条公理及其它性质 ② 在古典概型中 --- ③ 在几何概型中 --- 条件概率及全概率公式 3.1.对任意两个事件A 、B , 是否恒有P (A )≥P (A |B ). 答:不是. 有人以为附加了一个B 已发生的条件, 就必然缩小了样本空间, 也就缩小了概率, 从而就一定有P (A )≥P (A |B ), 这种猜测是错误的. 事实上,可能P (A )≥P (A |B ), 也可能 P (A )≤P (A |B ), 下面举例说明. 在0,1,…,9这十个数字中, 任意抽取一个数字,令 A ={抽到一数字是3的倍数}; B 1={抽到一数字是偶数}; B 2={抽到一数字大于8}, 那么 P (A )=3/10, P (A |B 1)=1/5, P (A |B 2)=1. 因此有 P (A )>P (A |B 1), P (A )< P (A |B 2). 3.2.以下两个定义是否是等价的. 定义1. 若事件A 、B 满足P (AB )=P (A )P (B ), 则称A 、B 相互独立. 定义2. 若事件A 、B 满足P (A |B )=P (A )或P (B |A )=P (B ), 则称A 、B 相互独立. 答:不是的.因为条件概率的定义为 P (A |B )=P (AB )/P (B ) 或 P (B |A )=P (AB )/P (A ) 自然要求P (A )≠0, P (B )≠0, 而定义1不存在这个附加条件, 也就是说,P (AB )=P (A )P (B )对于P (A )=0或P (B )=0也是成立的. 事实上, 若P (A )=0由0≤P (AB )≤P (A )=0可知P (AB )=0故 P (AB )=P (A )P (B ). 因此定义1与定义2不等价, 更确切地说由定义2可推出定义1, 但定义1不能推出定义2, 因此一般采用定义1更一般化. 3.3.对任意事件A 、B , 是否都有 P (AB )≤P (A )≤P (A +B )≤P (A )+P (B ). 答:是的.由于 P (A +B )=P (A )+P (B )-P (AB ) (*) 因为 P (AB )≥0, 故 P (A +B )≤P (A )+P (B ). 由P (AB )=P (A )P (B |A ), 因为0≤P (B |A )≤1,故 P (AB )≤P (A ); 同理P (AB )≤P (B ), 从而 P (B )-P (AB )≥0, 由(*)知 P (A +B )≥P (A ). 原命题得证. 3.4.在引入条件概率的讨论中, 曾出现过三个概率: P (A |B ), P (B |A ), P (AB ). 从事件的角度去考察, 在A 、B 相容的情况下, 它们都是下图中标有阴影的部分, 然而从概率计算的角度看, 它们却是不同的. 这究竟是为什么?

相关主题
文本预览
相关文档 最新文档