当前位置:文档之家› Windows操作系统多核CPU内核线程管理方法

Windows操作系统多核CPU内核线程管理方法

Windows操作系统多核CPU内核线程管理方法
Windows操作系统多核CPU内核线程管理方法

Windows操作系统多核CPU内核线程管理方法

作者:李骥, 姜守达, 邹昕光, LI Ji, JIANG Shou-da, ZHOU Xi-guang

作者单位:哈尔滨工业大学,自动化测试与控制系,黑龙江,哈尔滨,150001

刊名:

自动化技术与应用

英文刊名:TECHNIQUES OF AUTOMATION AND APPLICATIONS

年,卷(期):2010,29(1)

参考文献(5条)

1.哈特;安娜;吴明军Windows系统编程

2.Intel Corporation IA-32 Intel Architecture Software Developer's Manual Volume 3:System Programming Guide

3.陈向群;马洪兵;王雷;林斌,王磊,张高Windows内核实验教程

4.Prasad Dabak;Milind Borate;Sandeep Phadke Undocumented Windows NT

5.张帆;史彩成Windows驱动开发技术详解

本文读者也读过(2条)

1.李辉.杨金才多核CPU综述[会议论文]-2006

2.王兰英.居锦武.WANG Lan-ying.JU Jing-wu Windows内核线程与用户线程共享缓冲区的实现[期刊论文]-内江师范学院学报2008,23(2)

本文链接:https://www.doczj.com/doc/8e15672032.html,/Periodical_hljzdhjsyyy201001008.aspx

实验2-2windows2000 线程同步

实验2 并发与调度 2.2 Windows 2000线程同步 (实验估计时间:120分钟) 背景知识 实验目的 工具/准备工作 实验内容与步骤 背景知识 Windows 2000提供的常用对象可分成三类:核心应用服务、线程同步和线程间通讯。其中,开发人员可以使用线程同步对象来协调线程和进程的工作,以使其共享信息并执行任务。此类对象包括互锁数据、临界段、事件、互斥体和信号等。 多线程编程中关键的一步是保护所有的共享资源,工具主要有互锁函数、临界段和互斥体等;另一个实质性部分是协调线程使其完成应用程序的任务,为此,可利用内核中的事件对象和信号。 在进程内或进程间实现线程同步的最方便的方法是使用事件对象,这一组内核对象允许一个线程对其受信状态进行直接控制 (见表4-1) 。 而互斥体则是另一个可命名且安全的内核对象,其主要目的是引导对共享资源的访问。拥有单一访问资源的线程创建互斥体,所有想要访问该资源的线程应该在实际执行操作之前获得互斥体,而在访问结束时立即释放互斥体,以允许下一个等待线程获得互斥体,然后接着进行下去。 与事件对象类似,互斥体容易创建、打开、使用并清除。利用CreateMutex() API 可创建互斥体,创建时还可以指定一个初始的拥有权标志,通过使用这个标志,只有当线程完成了资源的所有的初始化工作时,才允许创建线程释放互斥体。

为了获得互斥体,首先,想要访问调用的线程可使用OpenMutex() API来获得指向对象的句柄;然后,线程将这个句柄提供给一个等待函数。当内核将互斥体对象发送给等待线程时,就表明该线程获得了互斥体的拥有权。当线程获得拥有权时,线程控制了对共享资源的访问——必须设法尽快地放弃互斥体。放弃共享资源时需要在该对象上调用ReleaseMute() API。然后系统负责将互斥体拥有权传递给下一个等待着的线程(由到达时间决定顺序) 。 实验目的 在本实验中,通过对事件和互斥体对象的了解,来加深对Windows 2000线程同步的理解。 1) 回顾系统进程、线程的有关概念,加深对Windows 2000线程的理解。 2) 了解事件和互斥体对象。 3) 通过分析实验程序,了解管理事件对象的API。 4) 了解在进程中如何使用事件对象。 5) 了解在进程中如何使用互斥体对象。 6) 了解父进程创建子进程的程序设计方法。 工具/准备工作 在开始本实验之前,请回顾教科书的相关内容。 您需要做以下准备: 1) 一台运行Windows 2000 Professional操作系统的计算机。 2) 计算机中需安装Visual C++ 6.0专业版或企业版。 实验内容与步骤 1. 事件对象 2. 互斥体对象 1. 事件对象 清单2-1程序展示了如何在进程间使用事件。父进程启动时,利用CreateEvent() API创建一个命名的、可共享的事件和子进程,然后等待子进程向事件发出信号并终止父进程。在创建时,子进程通过OpenEvent() API打开事件对象,调用SetEvent() API使其转化为已接受信号状态。两个进程在发出信号之后几乎立即终止。 步骤1:登录进入Windows 2000 Professional。 步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。

多核与多线程技术的区别到底在哪里

多核与多线程技术的区别到底在哪里? 【导读】:毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。毫无疑问的,“多核”、“多线程”此二词已快成为当今处理器架构设计中的两大显学,如同历史战国时代以“儒”、“墨”两大派的显学,只不过当年两大治世思想学派是争得你死我亡,而多核、多线程则是相互兼容并蓄,今日几乎任何处理器都朝同时具有多核多线程的路线发展迈进。 虽然两词到处可见,但可有人知此二者的实际差异?在执行设计时又是以何者为重?到底是该多核优先还是多线程提前?关于此似乎大家都想进一步了解,本文以下试图对此进行个中差异的解说,并尽可能在不涉及实际复杂细节的情形下,让各位对两者的机制观念与差别性有所理解。 行程早于线程 若依据信息技术的发展历程,在软件程序执行时的再细分、再切割的小型化单位上,先是有行程(Process),之后才有线程(Thread),线程的单位比行程更小,一个行程内可以有多个线程,在一个行程下的各线程,都是共享同一个行程所建立的内存寻址资源及内存管理机制,包括执行权阶、内存空间、堆栈位置等,除此之外各个线程自身仅拥有少许因为执行之需的变量自属性,其余都依据与遵行行程所设立的规定。 相对的,程序与程序之间所用的就是不同的内存设定,包括分页、分段等起始地址的不同,执行权阶的不同,堆栈深度的不同等,一颗处理器若执行了A行程后要改去执行B行程,对此必须进行内存管理组态的搬迁、变更,而这个搬迁若是在处理器内还好,若是在高速缓存甚至是系统主存储器时,此种切换、转移程序对执行效能的损伤就非常大,因为完成搬迁、切换程序的相同时间,处理器早就可以执行数十到上千个指令。 两种路线的加速思维 所以,想避免此种切换的效率损耗,可以从两种角度去思考,第一种思考就是扩大到整体运算系统的层面来解决,在一部计算机内设计、配置更多颗的处理器,然后由同一个操作系统同时掌控及管理多颗处理器,并将要执行的程序的各个程序,一个程序喂(也称:发派)给一颗处理器去执行,如此多颗同时执行,每颗处理器执行一个程序,如此就可以加快整体的执行效率。 当然!这种加速方式必须有一个先决条件,即是操作系统在编译时就必须能管控、发挥及运用多行程技术,倘若以单行程的系统组态来编译,那么操作系统就无法管控服务器内一颗以上的处理器,如此就不用去谈论由操作系统负责让应用程序的程序进行同时的多颗同时性的执行派送。 即便操作系统支持多程序,而应用程序若依旧只支持单程序,那情形一样是白搭,操作

Windows多线程程序设计

Windows多线程程序设计- - 1、产生一个线程,只是个框架,没有具体实现。理解::CreateThread函数用法。 #include DWORD WINAPI ThreadFunc(LPVOID); int main() { HANDLE hThread; DWORD dwThreadID; hThread = ::CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(ThreadFunc), NULL, 0, &dwThreadID); ...; return 0; } DWORD WINAPI ThreadFunc(LPVOID lParam) { ...; return 0; } 2、一个真正运转的多线程程序,当你运行它的时候,你会发现(也可能会害怕),自己试试吧。说明了多线程程序是无法预测其行为的,每次运行都会有不同的结果。 #include #include using namespace std; DWORD WINAPI ThreadFunc(LPVOID); int main() { HANDLE hThread; DWORD dwThreadID; // 产生5个线程 for(int i=0; i<5; i++)

{ hThread = ::CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)(ThreadFunc), (LPVOID)&i, 0, &dwThreadID); if(dwThreadID) cout << "Thread launched: " << i << endl; } // 必须等待线程结束,以后我们用更好的处理方法 Sleep(5000); return 0; } DWORD WINAPI ThreadFunc(LPVOID lParam) { int n = (int)lParam; for(int i=0; i<3; i++) { cout << n <<","<< n <<","<< n << ","< } return 0; } 3、使用CloseHandle函数来结束线程,应该是“来结束核心对象的”,详细要参见windows 多线程程序设计一书。 修改上面的程序,我们只简单的修改if语句。 if(dwThreadID) { cout << "Thread launched: " << i << endl; CloseHandle(dwThreadID); } 4、GetExitCodeThread函数的用法和用途,它传回的是线程函数的返回值,所以不能用GetExitCodeThread的返回值来判断线程是否结束。 #include #include using namespace std;

多核处理器

多核处理器 多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片的速度会产生过多热量且无法带来相应的性能改善,先前的处理器产品就是如此。他们认识到,在先前产品中以那种速率,处理器产生的热量很快会超过太阳表面。即便是没有热量问题,其性价比也令人难以接受,速度稍快的处理器价格要高很多。 最新新闻 中国发布全球首款全系统多核高精度导航定位芯片 全球首款全系统多核高精度导航定位系统级芯片,13日在第六届中国卫星[2.10% 资金研报]学术年会期间对外发布。专家表示,这意味着国产芯片不仅具备国际竞争力,还从“跟踪者”跃升为“引领者”。...详情 内容来自 中文名多核处理器 定义集成两个或多个完整的计算引擎 第一颗通用型微处理器4004 技术优势采用了线程级并行编程 目录 1技术发展 2发展历程 3技术优势 4技术瓶颈 5技术原理 6技术关键 ?核结构研究 ?程序执行模型 ?Cache设计 ?核间通信技术 ?总线设计 ?操作系统设计 ?低功耗设计 ?存储器墙 ?可靠性及安全性设计 7技术意义 8技术种类 9技术应用 10应用 11英特尔 1技术发展 256线程的CPU 256线程的CPU 英特尔工程师们开发了多核芯片,使之满足“横向扩展”(而非“纵向扩充”)方法,从而提高性能。该架构实现了“分治法”战略。通过划分任务,线程应用能够充分利用多个执行内核,并可在特定的时间内执行更多任务。多核处理器是单枚芯片(也称为“硅核”),能够直

接插入单一的处理器插槽中,但操作系统会利用所有相关的资源,将每个执行内核作为分立的逻辑处理器。通过在两个执行内核之间划分任务,多核处理器可在特定的时钟周期内执行更多任务。多核架构能够使软件更出色地运行,并创建一个促进未来的软件编写更趋完善的架构。尽管认真的软件厂商还在探索全新的软件并发处理模式,但是,随着向多核处理器的移植,现有软件无需被修改就可支持多核平台。操作系统专为充分利用多个处理器而设计,且无需修改就可运行。为了充分利用多核技术,应用开发人员需要在程序设计中融入更多思路,但设计流程与对称多处理(SMP)系统的设计流程相同,并且现有的单线程应用也将继续运行。得益于线程技术的应用在多核处理器上运行时将显示出卓越的性能可扩充性。此类软件包括多媒体应用(内容创建、,以及本地和数据流回放)、工程和其他技术计算应用以及诸如应用服务器和数据库等中间非标轴承https://www.doczj.com/doc/8e15672032.html,层与后层服务器应用。多核技术能够使服务器并行处理任务,而在以前,这可能需要使用多个处理器,多核系统更易于扩充,并且能够在更纤巧的外形中融入更强大的处理性能,这种外形所用的功耗更低、计算功耗产生的热量更少。多核技术是处理器发展的必然。推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但是今天,这种规律性的东西却很难维持。多核的出现是技术发展和应用需求的必然产物。 2发展历程 1971年,英特尔推出的全球第一颗通用型微处理器4004,由2300个晶体管构成。当时,公司的联合创始人之一戈登摩尔(Gordon Moore),就提出后来被业界奉为信条的“摩尔定律”——每过18个月,芯片上可以集成的晶体管数目将增加一倍。 在一块芯片上集成的晶体管数目越多,意味着运算速度即主频就更快。今天英特尔的奔腾(Pentium)四至尊版840处理器,晶体管数量已经增加至2.5亿个,相比当年的4004增加了10万倍。其主频也从最初的740kHz(每秒钟可进行74万次运算),增长到现在的3.9GHz(每秒钟运算39亿次)以上。 当然,CPU主频的提高,或许在一定程度上也要归功于1975年进入这个领域的AMD公司的挑战。正是这样的“双雄会”,使得众多计算机用户有机会享受不断上演的“速度与激情”。一些仍不满足的发烧友甚至选择了自己超频,因为在玩很多游戏时,更快的速度可以带来额外的饕餮享受。 但到了2005年,当主频接近4GHz时,英特尔和AMD发现,速度也会遇到自己的极限:那就是单纯的主频提升,已经无法明显提升系统整体性能。 以英特尔发布的采用NetBurst架构的奔腾四CPU为例,它包括Willamette、Northwood和Prescott等三种采用不同核心的产品。利用冗长的运算流水线,即增加每个时钟周期同时执行的运算个数,就达到较高的主频。这三种处理器的最高频率,分别达到了2.0G、3.4G和3.8G。 按照当时的预测,奔腾四在该架构下,最终可以把主频提高到10GHz。但由于流水线过长,使得单位频率效能低下,加上由于缓存的增加和漏电流控制不利造成功耗大幅度增加,3.6GHz奔腾四芯片在性能上反而还不如早些时推出的3.4GHz产品。所以,Prescott产品系列只达到3.8G,就戛然而止。 英特尔上海公司一位工程师在接受记者采访时表示,Netburst微架构的好处在于方便提升频率,可以让产品的主频非常高。但性能提升并不明显,频率提高50%,性能提升可能微不

一个多线程的windows控制台应用程序

一个多线程的windows控制台应用程序 一、要求: 编写一个单进程、多线程的windows控制台应用程序。 二、平台: Window XP C# 三、内容: 每个进程都有分配给它的一个或多个线程。线程是一个程序的执行部分。 操作系统把极短的一段时间轮流分配给多个线程。时间段的长度依赖于操作系统和处理器。 每个进程都开始一个默认的线程,但是能从它的线程池中创建一个新的线程。 线程是允许进行并行计算的一个抽象概念:在一个线程完成计算任务的同时,另一个线程可以对图像进行更新,两个线程可同时处理同一个进程发出的两个网络请求。 如图所示,选择操作: 1、创建和启动一个线程。在一个进程中同时教和运行两个线程,并且可以不需要停止或者释放一个线程。 相关代码及其解释: public class Threading1:Object { public static void startup() { //创建一个线程数组 Thread[] threads=new Thread[2]; for(int count=0;count

public static void Count() { for(int count=1;count<=9;count++) Console.Write(count+" "); } } 输出结果: 这里通过new方法创建了两个线程,然后使用start()方法来启动线程,两个线程的作用是:两个线程同时从1数到9,并将结果打印出来。 运行上面的程序代码时,可能会在控制台上输出多种不同的结果。从123456789123456789到112233445566778899或121233445566778989在内的各种情况都是可能出现的,输出结果可能与操作系统的调度方式有关。 2、停止线程。当创建一个线程后,可以通过多种属性方法判断该线程是否处于活动状态,启动和停止一个线程等。相关代码及其解释: public class MyAlpha { //下面创建的方法是在线程启动的时候的时候调用 public void Beta() { while(true) { Console.WriteLine("MyAlpha.Beta is running in its own thread."); } } } public class Simple { public static int Stop() { Console.WriteLine("Thread Start/Stop/Join"); MyAlpha TestAlpha=new MyAlpha(); //创建一个线程对象 Thread MyThread=new Thread(new ThreadStart(TestAlpha.Beta)); //开起一个线程 MyThread.Start(); while(!MyThread.IsAlive);

多线程编程的原则及要点

2.4多线程编程的原则及要点: 随着多核CPU的出世,多核编程方面的问题将摆上了程序员的日程,有许多老的程序员以为早就有多CPU的机器,业界在多CPU机器上的编程已经积累了很多经验,多核CPU上的编程应该差不多,只要借鉴以前的多任务编程、并行编程和并行算法方面的经验就足够了。 但是,多核机器和以前的多CPU机器有很大的不同,以前的多CPU机器都是用在特定领域,比如服务器,或者一些可以进行大型并行计算的领域,这些领域很容易发挥出多CPU的优势,而现在多核机器则是应用到普通用户的各个层面,特别是客户端机器要使用多核CPU,而很多客户端软件要想发挥出多核的并行优势恐怕没有服务器和可以进行大型并行计算的特定领域简单。 多核CPU中,要很好地发挥出多个CPU的性能的话,必须保证分配到各个CPU上的任务有一个很好的负载平衡。否则一些CPU在运行,另外一些CPU处于空闲,无法发挥出多核CPU 的优势来。 要实现一个好的负载平衡通常有两种方案,一种是静态负载平衡,另外一种是动态负载平衡。 1、静态负载平衡 静态负载平衡中,需要人工将程序分割成多个可并行执行的部分,并且要保证分割成的各个部分能够均衡地分布到各个CPU上运行,也就是说工作量要在多个任务间进行均匀的分配,使得达到高的加速系数。 2、动态负载平衡 动态负载平衡是在程序的运行过程中来进行任务的分配达到负载平衡的目的。实际情况中存在许多不能由静态负载平衡解决的问题,比如一个大的循环中,循环的次数是由外部输入的,事先并不知道循环的次数,此时采用静态负载平衡划分策略就很难实现负载平衡。 动态负载平衡中对任务的调度一般是由系统来实现的,程序员通常只能选择动态平衡的调度策略,不能修改调度策略,由于实际任务中存在很多的不确定因素,调度算法无法做得很优,因此动态负载平衡有时可能达不到既定的负载平衡要求。 3、负载平衡的难题在那里? 负载平衡的难题并不在于负载平衡的程度要达到多少,因为即使在各个CPU上分配的任务执行时间存在一些差距,但是随着CPU核数的增多总能让总的执行时间下降,从而使加速系数随CPU核数的增加而增加。 负载平衡的困难之处在于程序中的可并行执行块很多要靠程序员来划分,当然CPU核数较少时,比如双核或4核,这种划分并不是很困难。但随着核数的增加,划分的粒度将变得越来越细,到了16核以上时,估计程序员要为如何划分任务而抓狂。比如一段顺序执行的代码,放到128核的CPU上运行,要手工划分成128 个任务,其划分的难度可想而知。

windows 并发的多线程的应用

(1)苹果香蕉问题 #include using namespace std; #include #include int k; HANDLE Apple_;HANDLE Banana_; CRITICAL_SECTION mmutex; DWORD WINAPI Son(LPVOID n) {//HANDLE Apple_; CRITICAL_SECTION mmutex; int i=1; OpenSemaphore(MUTEX_ALL_ACCESS,false,"Apple_"); while(1) { ::WaitForSingleObject(Apple_,INFINITE);//等苹果 cout<<"Son eats"<

操作系统对多核处理器的支持方法

随着多核处理器的发展,对软件开发有非常大的影响,而且核心的瓶颈在软件上。软件开发在多核环境下的核心是多线程开发。这个多线程不仅代表了软件实现上多线程,要求在硬件上也采用多线程技术。可以说多核提供了可以大幅提升性能的机制,多核软件就是可以真正利用这一特点的策略。只有与多核硬件相适应的软件,才能真正地发挥多核的性能。多核对软件的要求包括对多核操作系统的要求和对应用软件的要求。 多核操作系统的关注点在于进程的分配和调度。进程的分配将进程分配到合理的物理核上,因为不同的核在共享性和历史运行情况都是不同的。有的物理核能够共享二级cache,而有的却是独立的。如果将有数据共享的进程分配给有共享二级cache的核上,将大大提升性能;反之,就有可能影响性能。进程调度会涉及到比较广泛的问题,比如负载均衡、实时性等。 面向多核体系结构的操作系统调度目前多核软件的一个热点,其中研究的热点主要有下面几方面:程序的并行研究;多进程的时间相关性研究;任务的分配与调度;缓存的错误共享;一致性访问研究;进程间通信;多处理器核内部资源竞争等等。这些探讨相互独立又相互依赖。考虑一个系统的性能时必须将其中的几点同时加以考虑,有时候对一些点的优化会造成另一些点的性能下降,需要用程序进行性能优化评测,所以合适的多核系统软件方案正在形成过程中。 任务的分配是多核时代提出的新概念。在单核时代,没有核的任务分配的问题,一共只有一个核的资源可被使用。而在多核体系下,有多个核可以被使用。如果系统中有几个进程需要分配,是将他们均匀地分配到各个处理器核,还是一起分配到一个处理器核,或是按照一定的算法进行分配。并且这个分配还受底层系统结构的影响,系统是SMP构架还是CMP构架,在CMP构架中会共享二级缓存的核的数量,这是影响分配算法的因子。任务分配结束后,需要考虑任务调度。对于不同的核,每个处理器核可以有自己独立的调度算法来执行不同的任务(实时任务或者交互性任务),也可以使用一致的调度算法。此外,还可以考虑一个进程上一个时间运行在一个核上,下一个时间片是选择继续运行在这个核上,还是进行线程迁移;怎样直接调度实时任务和普通任务;系统的核资源是否要进行负载均衡等等。任务调度是目前研究的热点之一。 在单核处理器中,常见的调度策略有先到先服务(FCFS),最短作业调度(SJF),优先级调度(Priority-scheduling algorithm),轮转法调度(round-robin RR),多级队列调度(multilevel queue-schedule algorithm)等。例如在Linux操作系统中对实时任务采取FCFS和RR两种调度,普通任务调度采取优先级调度。 对于多核处理器系统的调度,目前还没有明确的标准与规范。由于系统有多个处理器核可用,必须进行负载分配,有可能为每个处理器核提供单独的队列。在这种情况下,一个具有空队列的处理器就会空闲,而另一个处理器会很忙。所以如何处理好负载均衡问题是这种调度策略的关键问题所在。为了解决这种情况,可以考虑共同就绪队列,所有处理器公用一个就绪队列。但是这无疑对进程上下文切换、锁的转换增加了执行时间,降低了性能。另外一种想法就是选择一个处理器来为其他处理器调度,因而创建了主从结构。有的系统将主从结构作进一步扩

多核处理器的优点和缺点

三、多核处理器的优点和缺点 从应用需求上去看,越来越多的用户在使用过程中都会涉及到多任务应用环境,日常应用中用到的非常典型的有两种应用模式。 一种应用模式是一个程序采用了线程级并行编程,那么这个程序在运行时可以把并行的线程同时交付给两个核心分别处理,因而程序运行速度得到极大提高。这类程序有的是为多路工作站或服务器设计的专业程序,例如专业图像处理程序、非线视频编缉程序、动画制作程序或科学计算程序等。对于这类程序,两个物理核心和两颗处理器基本上是等价的,所以,这些程序往往可以不作任何改动就直接运行在双核电脑上。 还有一些更常见的日常应用程序,例如、等,同样也是采用线程级并行编程,可以在运行时同时调用多个线程协同工作,所以在双核处理器上的运行速度也会得到较大提升。例如,打开浏览器上网。看似简单的一个操作,实际上浏览器进程会调用代码解析、播放、多媒体播放、、脚本解析等一系列线程,这些线程可以并行地被双核处理器处理,因而运行速度大大加快(实际上浏览器的运行还涉及到许多进程级的交互通信,这里不再详述)。由此可见,对于已经采用并行编程的软件,不管是专业软件,还是日常应用软件,在多核处理器上的运行速度都会大大提高。 日常应用中的另一种模式是同时运行多个程序。许多程序没有采用并行编程,例如一些文件压缩软件、部分游戏软件等等。对于这些单线程的程序,单独运行在多核处理器上与单独运行在同样参数的单核处理器上没有明显的差别。但是,由于日常使用的最最基本的程序——操作系统——是支持并行处理的,所以,当在多核处理器上同时运行多个单线程程序的时候,操作系统会把多个程序的指令分别发送给多个核心,从而使得同时完成多个程序的速度大大加快。 另外,虽然单一的单线程程序无法体现出多核处理器的优势,但是多核处理器依然为程序设计者提供了一个很好的平台,使得他们可以通过对原有的单线程序进行并行设计优化,以实现更好的程序运行效果。 上面介绍了多核心处理器在软件上面的应用,但游戏其实也是软件的一种,作为一种特殊的软件,对发展作出了较大的贡献。一些多线程游戏已经能够发挥出多核处理器的优势,对于单线程游戏,相信游戏厂商也将会改变编程策略,例如,一些游戏厂商正在对原来的一些单线程游戏进行优化,采用并行编程使得游戏运行得更快。有的游戏可以使用一个线程实现人物动画,而使用另一个线程来载入地图信息。或者使用一个线程来实现图像渲染中的矩阵运算,而使用另一个来实现更高的人工智能运算。如今,大量的支持多核心的游戏涌现出来,从而使得多核处理器的优势能得到进一步的发挥。 但布赖恩特直言不讳地指出,要想让多核完全发挥效力,需要硬件业和软件业更多革命性的更新。其中,可编程性是多核处理器面临的最大问题。一旦核心多过八个,就需要执行程序能够并行处理。尽管在并行计算上,人类已经探索了超过年,但编写、调试、优化并行处理程序的能力还非常弱。 易观国际分析师李也认为,“出于技术的挑战,双核甚至多核处理器被强加给了产业,而产业却并没有事先做好准备”。或许正是出于对这种失衡的担心,中国国家智能计算机中心主任孙凝辉告诉《财经》记者,“十年以后,多核这条道路可能就到头了”。在他看来,一味增加并行的处理单元是行不通的。并行计算机的发展历史表明,并行粒度超过以后,程序就很难写,能做到个以上的应用程

Windows下多线程同步机制

多线程同步机制 Critical section(临界区)用来实现“排他性占有”。适用范围是单一进程的各线程之间。它是: ·一个局部性对象,不是一个核心对象。 ·快速而有效率。 ·不能够同时有一个以上的critical section被等待。 ·无法侦测是否已被某个线程放弃。 Mutex Mutex是一个核心对象,可以在不同的线程之间实现“排他性占有”,甚至几十那些现成分属不同进程。它是: ·一个核心对象。 ·如果拥有mutex的那个线程结束,则会产生一个“abandoned”错误信息。 ·可以使用Wait…()等待一个mutex。 ·可以具名,因此可以被其他进程开启。 ·只能被拥有它的那个线程释放(released)。 Semaphore Semaphore被用来追踪有限的资源。它是: ·一个核心对象。 ·没有拥有者。 ·可以具名,因此可以被其他进程开启。 ·可以被任何一个线程释放(released)。 Ev ent Object Ev ent object通常使用于overlapped I/O,或用来设计某些自定义的同步对象。它是: ·一个核心对象。 ·完全在程序掌控之下。 ·适用于设计新的同步对象。 · “要求苏醒”的请求并不会被储存起来,可能会遗失掉。 ·可以具名,因此可以被其他进程开启。 Interlocked Variable 如果Interlocked…()函数被使用于所谓的spin-lock,那么他们只是一种同步机制。所谓spin-lock是一种busy loop,被预期在极短时间内执行,所以有最小的额外负担(overhead)。系统核心偶尔会使用他们。除此之外,interlocked variables主要用于引用技术。他们:·允许对4字节的数值有些基本的同步操作,不需动用到critical section或mutex之类。 ·在SMP(Symmetric Multi-Processors)操作系统中亦可有效运作。 ///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////

在Windows下创建进程和线程的API

利用API在Windows下创建进程和线程 前言: 谈到在Windows创建线程的例子,在网上的很多的参考都是基于MFC的。其实,就操作系统实验这个前提而言,大可不必去碰那个大型的MFC的框架。在Windows命令控制台下可创建进程及线程,做些简单的进程及线程的测试程序。 1、实验准备: 要实验的Windows下的多线程实验,应做如下准备: a) 在新建中选”Win32 Console Application”的An empty project b) 选”工程”的”设置”选项,在”设置”中选择“C/C++”标签,在”Project Option”中,将”MLd”参数改成“MTd”(如图1)。 图1 选项 以上两步对实验成功至关重要,否则,即是代码无误,在连接时同样会出现问题。 2、Windows下进程的创建: Windows的进程和线程模型被描述成”多进程,基于单进程的多线程”。 在创建一个线程时,Windows会做大量的工作---创建一个新的地址空间,为进程分配资源以及创建一个基线程。

CreateProcess函数的原型如下: 虽然有很多参数,不过在现阶段的实验级别,大多数参数只要用默认值即可。 下面要做的关于Windows使用进程的实验,在Linux系统下,可以使用类似: execve(char* cmdName ,char* cmdArgu)的语句从一个程序中去执行其它的程序。 而如果在Windows下,当使用CreateProcess去执行相应的功能时,只要去改变cmdLine中的容即可,其它的参数使用默认值,具体见代码1: 代码1执行的功能是从命令行中启动这个名叫的launch的测试程序,在launch后面应加上保存有需要打开程序路径的文件名: 如在命令行中键入: >launch set.txt 而set.txt中的容为: C:\\WINDOWS\\SYSTEM32\\CALC.EXE C:\\WINDOWS\\SYSTEM32\\NOTEPAD.EXE NEW.TXT C:\\WINDOWS\\SYSTEM32\\CHARMAP.EXE 路径的前半部分为”C:\\WINDOWS\\”,这当然要视你的Windows系统的类型以及系统盘的存放位置而定。如果是NT或2000的机器,则应使用WINNT. /*测试程序1: 示例如使用进程的launch程序(启动程序),通过在命令行中加载相应的命令文件,去按照命令文件中指定的程序路径打开相应的程序去执行*/

多核处理器1

多核处理器 摘要: 多核处理器也称为片上多处理器(chip multi-processor,CMP),或单芯片多处理器。自1996年美国斯坦福大学首次提出片上多处理器(CMP)思想和首个多核结构原型,到2001年mM推出第一个商用多核处理器POWER4,再到2005年Intel和AMD多核处理器的大规模应用,最后到现在多核成为市场主流,多核处理器经历了十几年的发展。在这个过程中,多核处理器的应用范围已覆盖了多媒体计算、嵌入式设备、个人计算机、商用服务器和高性能计算机等众多领域,多核技术及其相关研究也迅速发展,比如多核结构设计方法、片上互连技术、可重构技术、下一代众核技术等。然而,多核处理器的技术并未成熟,多核的潜力尚未完全挖掘,仍然存在许多待研究的问题。 二.什么是多核处理器 2.1什么是多核处理器 多核处理器是指在一枚处理器中集成两个或多个完整的计算引擎(内核)。多核技术的开发源于工程师们认识到,仅仅提高单核芯片的速度会产生过多热量且无法带来相应的性能改善,先前的处理器产品就是如此。他们认识到,在先前产品中以那种速率,处理器产生的热量很快会超过太阳表面。即便是没有热量问题,其性价比也令人难以接受,速度稍快的处理器价格要高很多。英特尔工程师们开发了多核芯片,使之满足横向扩展(而非纵向扩充)方法,从而提高性能。该架构实现了分治法战略。通过划分任务,线程应用能够充分利用多个执行内核,并可在特定的时间内执行更多任务。多核处理器是单枚芯片(也称为硅核),能够直接插入单一的处理器插槽中,但操作系统会利用所有相关的资源,将每个执行内核作为分立的逻辑处理器。通过在两个执行内核之间划分任务,多核处理器可在特定的时钟周期内执行更多任务。多核架构能够使软件更出色地运行,并创建一个促进未来的软件编写更趋完善的架构。尽管认真的软件厂商还在探索全新的软件并发处理模式,但是,随着向多核处理器的移植,现有软件无需被修改就可支持多核平台。操作系统专为充分利用多个处理器而设计,且无需修改就可运行。为了充分利用多核技术,应用开发人员需要在程序设计中融入更多思路,但设计流程与对称多处理(SMP)系统的设计流程相同,并且现有的单线程应用也将继续运行。得益于线程技术的应用在多核处理器上运行时将显示出卓越的性能可扩充性。此类软件包括多媒体应用(内容创建、编辑,以及本地和数据流回放)、工程和其他技术计算应用以及诸如应用服务器和数据库等中间层与后层服务器应用。多核技术能够使服务器并行处理任务,而在以前,这可能需要使用多个处理器,多核系统更易于扩充,并且能够在更纤巧的外形中融入更强大的处理性能,这种外形所用的功耗更低、计算功耗产生的热量更少。多核技术是处理器发展的必然。推动微处理器性能不断提高的因素主要有两个:半导体工艺技术的飞速进步和体系结构的不断发展。半导体工艺技术的每一次进步都为微处理器体系结构的研究提出了新的问题,开辟了新的领域;体系结构的进展又在半导体工艺技术发展的基础上进一步提高了微处理器的性能。这两个因素是相互影响,相互促进的。一般说来,工艺和电路技术的发展使得处理器性能提高约20倍,体系结构的发展使得处理器性能提高约4倍,编译技术的发展使得处理器性能提高约1.4倍。但是今天,这种规律性的东西却很难维

Windows多线程及消息队列

1.所谓的worker线程,是指完全不牵扯到图形用户界面(GUI),纯粹做运算的线程。 2.微软的多线程模型: Win32说明文件一再强调线程分为GUI线程和worker线程两种。GUI线程负责建造窗口以及处理主消息循环。Worker负责执行纯粹的运算工作,如重新计算或重新编页等,这些运算工作会导致主线程的消息队列失去反应。一般而言,GUI线程绝不会去做那些不能够马上完成的工作。 GUI线程的定义是:拥有消息队列的线程。任何一个特定窗口的消息总是被产生这一窗口的线程抓到并处理。所有对此窗口的改变也都应该由该线程完成。 如果worker线程也产生了一个窗口,那么就会有一个消息队列随之被产生出来并且附着到此线程身上,于是worker线程摇身一变成了GUI线程。这里的意思是:worker线程不能够产生窗口、对话框、消息框,或任何其他与UI有关的东西。 如果一个worker线程需要输入或输出错误信息,它应该授权给UI线程来做,并且将结果通知给worker线程。 消息队列是一个链表,只有在必要的时候,才有元素产生出来。具体的关于消息队列的数据结构,可以参考相关的windows文档。 3.在Win32中,每一个线程有它自己专属的消息队列。这并不意味着每一个窗口有它自己的消息队列,因为一个线程可以产生许多窗口。如果一个线程停止回应,或是它忙于一段耗时的计算工作,那么由它产生的窗口统统都会停止回应,但系统中的其他窗口还会继续正常工作。 以下是一个非常基本的规则,用来管理Win32中的线程、消息、窗口的互动: 所有传送给某一窗口之消息,将由产生该窗口之线程负责处理。 比方说,使用SetWindowText来更新一个Edit框的内容,其实就是发出了一个WM_SETTEXT 消息给edit窗口函数。推而广之,每一个控件都是一个窗口,都拥有自己的窗口函数。 对窗口所作的一切事情基本上都会被该窗口的窗口函数处理,并因此被产生该窗口的线程处理。当需要发送一个消息时,Windows会自动计算出哪一个线程应该接收到消息(以便确定该消息实体应该挂在在哪一个线程的消息队列中)。同时,windows还会确定线程应该如何被告知有这么一个消息进来。一共有四种可能: (1)如果属于同一线程,使用SendMessage传递消息,则直接调用窗口函数。 (2)如果属于同一线程,使用PostMessage传递消息,则把消息放在消息队列中然后立即返回。(3)如果不属于同一线程,使用SendMessage传递消息,则切换到新线程中并调用窗口函数。在该窗口函数结束之前,SendMessage不会返回。 (4)PostMessage立刻返回,消息则被放到另一线程的消息队列中。 当我send一个消息给另一线程掌握的窗口时,系统必须做一次context switch,切换到另一线程去,调用该窗口函数,然后再做一次contex t switch切换回来,相对一般的函数调用而言,期间的额外负担较大。如果在MDI中,为每个子窗口分配一个线程,那么该子窗口的所有资源——包括画刷,DC,调色板等等都属于线程的资源。此时为线程做context switch时会代价很大。

浅谈多核CPU、多线程与并行计算

0.前言 最近发觉自己博客转帖的太多,于是决定自己写一个原创的。笔者用过MPI 和C#线程池,参加过比赛,有所感受,将近一年来,对多线程编程兴趣一直不减,一直有所关注,决定写篇文章,算是对知识的总结吧。有说的不对的地方,欢迎各位大哥们指正:) 1.CPU发展趋势 核心数目依旧会越来越多,依据摩尔定律,由于单个核心性能提升有着严重的瓶颈问题,普通的桌面PC有望在2017年末2018年初达到24核心(或者16核32线程),我们如何来面对这突如其来的核心数目的增加?编程也要与时俱进。笔者斗胆预测,CPU各个核心之间的片内总线将会采用4路组相连:),因为全相连太过复杂,单总线又不够给力。而且应该是非对称多核处理器,可能其中会混杂几个DSP处理器或流处理器。 2.多线程与并行计算的区别 (1)多线程的作用不只是用作并行计算,他还有很多很有益的作用。 还在单核时代,多线程就有很广泛的应用,这时候多线程大多用于降低阻塞(意思是类似于 while(1) { if(flag==1) break;

sleep(1); } 这样的代码)带来的CPU资源闲置,注意这里没有浪费CPU资源,去掉sleep(1)就是纯浪费了。 阻塞在什么时候发生呢?一般是等待IO操作(磁盘,数据库,网络等等)。此时如果单线程,CPU会干转不干实事(与本程序无关的事情都算不干实事,因为执行其他程序对我来说没意义),效率低下(针对这个程序而言),例如一个IO操作要耗时10毫秒,CPU就会被阻塞接近10毫秒,这是何等的浪费啊!要知道CPU是数着纳秒过日子的。 所以这种耗时的IO操作就用一个线程Thread去代为执行,创建这个线程的函数(代码)部分不会被IO操作阻塞,继续干这个程序中其他的事情,而不是干等待(或者去执行其他程序)。 同样在这个单核时代,多线程的这个消除阻塞的作用还可以叫做“并发”,这和并行是有着本质的不同的。并发是“伪并行”,看似并行,而实际上还是一个CPU在执行一切事物,只是切换的太快,我们没法察觉罢了。例如基于UI 的程序(俗话说就是图形界面),如果你点一个按钮触发的事件需要执行10秒钟,那么这个程序就会假死,因为程序在忙着执行,没空搭理用户的其他操作;而如果你把这个按钮触发的函数赋给一个线程,然后启动线程去执行,那么程序就不会假死,继续响应用户的其他操作。但是,随之而来的就是线程的互斥和同步、死锁等问题,详细见有关文献。 现在是多核时代了,这种线程的互斥和同步问题是更加严峻的,单核时代大都算并发,多核时代真的就大为不同,为什么呢?具体细节请参考有关文献。我

一分钟看懂CPU多发射超标量、多线程、多核之概念和区别

【闲来无事、做做科普、反正也算是marketing job;教你一分钟看懂CPU多发射超标量/多线程/多核之概念和区别】最近在多个场合大肆宣扬多核多线程,收到对多线程表示不解的问题n多,苦思多日,终得一形象生动的模型,你肯定懂的。 因为是比喻和科普、过于严谨的技术控请勿吐槽。 处理器性能提高之公开秘笈:超标量、多线程、多核。 用于说明的生活模型:高速公路及收费站。 简单CPU的原型:单车道马路 + 单收费闸口,车辆只能一辆辆排队通过,并行度为1。 为了提高通行能力同时积极创收,相关部门运用世界顶尖CPU设计理念,对高速公路系统进行了如下拓宽改造: (1)增加车道(图示为3条车道); (2)增加收费通道(图示为2个通道);

(3)每个收费通道放置多个收费员(图示每条通道有a和b两个收费窗口)。 其中(1)+(3)组合手段就是所谓的超标量结构,该图示为双发射超标量。超标量指有多个车道,双发射是指有a和b两位收费员可以同时发卡,把两辆车送到不同车道上去。 手段(2)就是多线程的模型了,原有车道不变、只增加收费通道,这样多个车流来的时候可以同时发卡放行。 从这个比喻来看多线程显然是个非常直观和有用的办法,但为什么在CPU世界中似乎有点模糊难懂的感觉呢?那是因为CPU的指令流喜欢一个挨一个、一列纵队龟速前进,这样的话单通道多收费员还起点作用、多通道就形同虚设了。收费员1.a和1.b会累死,而2.a和2.b则能够睡觉。因此把车流进行整队就很重要——这就是并行编程,即要设法把一列纵队排列成多列纵队。 至于多核的概念,那就简单粗暴很多了,直接在这条马路边上进行征地拆迁、新修一条一模一样的高速公路便是,牛吧。现在大家手机里面的多核,就是并排几条“单收费通道+多车道”的马路,车流稀少、路况不错,不过相关部门表示因为道路利用率底下、经济效益欠佳、回收投资压力巨大。 无论多核还是多线程,都有一个同样的问题需要解决,就是要把车流整成多列纵队,这样多条马路和多个收费通道的并行度才能发挥作用。

相关主题
文本预览
相关文档 最新文档