当前位置:文档之家› 指数函数

指数函数

指数函数
指数函数

《指数函数》说课稿

四中

一、教材分析

?1、教材的地位和作用教材的地位和作用

函数是高中数学学习的重点和难点,函数的思想贯穿于整个高中数学之中。本节课是学生在已掌握了函数的一般性质和简单的指数运算的基础上,进一步研究指数函数,以及指数函数的图象与性质。它一方面可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后研究对数函数以及等比数列的性质打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

2、教学目标

(1)知识目标:理解指数函数的概念,掌握指数函数的图象和性质。

(2)能力目标:培养学生数形结合的意识,提高学生观察、分析、归纳的

思维能力。

(3)德育目标:对学生进行辩证唯物主义思想的教育,使学生学会认识事物的特殊性与一般性的关系,用联系的观点看问题。引导学生发现数学中的对称美、简洁美。

3、教学重难点

指数函数的图象是研究函数性质的直观工具,它清晰地刻画了指数函数的性质。因此确定在理解指数函数定义的基础上掌握指数函数的图象和由图象得出的性质为本节教学重点。

对于a>1和0

二、教法分析

为充分贯彻新课程理念,使教学过程真正成为学生学习过程,让学生体验数学发现和创造的历程,本节课拟采用直观教学法、启发发现法、课堂讨论法等教学方法。以多媒体演示为载体,启发学生观察思考,分析讨论为主,教师适当引导点拨,让学生始终处在教学活动的中心。

三、学法分析

?学生思维活跃,求知欲强,但在思维习惯上还有待教师引导

?从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题

四、教学过程

2.2指数函数地图像及性质

第一章 基本初等函数 2 指数函数的图像及性质 一、学习目标 1.理解指数函数的概念和意义. 2.能借助计算器或计算机画出指数函数的图象. 3.初步掌握指数函数的有关性质. 二、知识梳理 1.指数函数的定义 一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 2.指数函数的图象与性质 a >1 0<a <1 图象 性质 定义域R ,值域(0,+∞) 图象过定点(0,1),即x =0时,y =1 当x >0时,y >1; 当x <0时,0<y <1 当x >0时,0<y <1; 当x <0时,y >1 在R 上是增函数 在R 上是减函数 三、典型例题 知识点一 指数函数的概念 例1 给出下列函数: ①y =2·3x ;②y =3 x +1 ;③y =3x ;④y =x 3;⑤y =(-2)x .其中,指数函数的个数是( ) A .0 B .1 C .2 D .4 答案 B 解析 ①中,3x 的系数是2,故①不是指数函数;②中,y =3 x +1 的指数是x +1,不是自变量x ,故②不是 指数函数;③中,3x 的系数是1,幂的指数是自变量x ,且只有3x 一项,故③是指数函数;④中,y =x 3 的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2<0,不是指数函数. 规律方法 1.指数函数的解析式必须具有三个特征:(1)底数a 为大于0且不等于1的常数;(2)指数位置是自变量x ;(3)a x 的系数是1. 2.求指数函数的关键是求底数a ,并注意a 的限制条件. 跟踪演练1 若函数y =(4-3a )x 是指数函数,则实数a 的取值围为________. 答案 {a |a <4 3 ,且a ≠1}

指数函数典型例题详细解析汇报

实用标准 指数函数·例题解析 第一课时 【例1】(基础题)求下列函数的定义域与值域: (1)y 3 (2)y (3)y 1 2x ===-+---213321x x 解 (1)定义域为{x|x ∈R 且x ≠2}.值域{y|y >0且y ≠1}. (2)由2x+2-1≥0,得定义域{x|x ≥-2},值域为{|y|y ≥0}. (3)由3-3x-1≥0,得定义域是{x|x ≤2},∵0≤3-3x -1<3, ∴值域是≤<.0y 3 1.指数函数Y=ax (a>0且a ≠1)的定义域是R ,值域是(0,+∞) 2. 求定义域的几个原则:①含根式(被开方数不为负)②含分式,分母不为0③形如a0,(a ≠ 0) 3. 求函数的值域:①利用函数Y=ax 单调性②函数的有界性(x2≥0;ax>0)③换元法.如:y=4x+6×2x-8(1≤x ≤2) 先换元,再利用二次函数图象与性质(注意新元的范围)

【例2】(基础题)指数函数y=a x,y=b x,y=c x,y=d x的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是 [ ] A.a<b<1<c<d B.a<b<1<d<c C.b<a<1<d<c D.c<d<1<a<b 解选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】(基础题)比较大小: (1)2(2)0.6 、、、、的大小关系是:. 2481632 35894 5 12--() (3)4.54.1________3.73.6 解(1)y 221()x ∵,,,,,函数=,>,该函数在-∞,+∞上是增函数,又<<<<,∴<<<<.22224282162133825491 2 28416212313525838949 3859=====

指数函数典型例题

典型例题 比较大小 例1、比较下列各组数的大小: (1)和 ; (2)和 ; (3)和 ; (4)和 , . 分析:当两个幂形数底数相同时,要比较这两个数的大小可根据它们的特征构造相应的指数函数,借助函数的单调性来比较大小. 解: (1)在上是减函数,又 ,故 < . (2) = ,由的单调性可得, >即 > . (3)由 >1而 <1,可知 > . (4)当时, < ,当时, > . 小结:此题中第(3)小题的两个数不能看成某个指数函数的两个函数值,此时可以借助一些特殊数如0或1来搭桥间接比较两个数的大小,而(2)小题则可以通过指数运算化为底数相同的两个幂,可构造指数函数来比较大小. 根据条件比较字母的大小 例1、比较下列各组数的大小: (1)若,比较与;

(2)若,比较与; (3)若,比较与; (4)若,且,比较a与b; (5)若,且,比较a与b. 分析:设均为正数,则,即比较两个正数的大小,可比较它们的商与1的大小.掌握指数函数的图象规律,还要掌握底的变化对图象形 状的影响.这主要有两方面:其一是对;对 .用语言叙述即在y轴右侧,底越大其图象越远离x轴;在y轴左侧,底越大,其图象越接近x轴.这部分内容即本题(2),(3)所说的内容.其二是当底均大于1时,底越大,其图象越接近y轴;当底均小于1时,底越小,其图象越接近y轴.一个便于记忆的方法是:若以离1远者为底,则其图象接近y轴.当然这是指底数均大于1或均小于1.这部分内容即本题(4)与(5). 解:(1)由,故,此时函数为减函数.由,故. (2)由,故.又,故.从而. (3)由,因,故.又,故.从而. (4)应有.因若,则.又,故,这样 .又因,故.从而,这与已知矛盾. (5)应有.因若,则.又,故,这样有 .又因,且,故.从而,这与已知 矛盾.

1、指数函数与对数函数对比分析总结---答案

指数函数与对数函数总结 一、[知识要点]: 1. 指数函数y=a x与对数函数y=a log x的比较: 定义图象 定义 域 值域 性质 奇 偶 性 单 调 性 过定 点 值的分布最值 y=a x (a>0且a≠1)叫指数函数 a>1 (- ∞,+ ∞) (0, +∞) 非 奇 非 偶 增 函 数(0, 1) 即a0 =1 x>0时 y>1; 00时 01 y= a log (a>0 且a≠ 1) 叫对 数函 数a>1O y x (0, +∞) (- ∞,+ ∞) 非 奇 非 偶 增 函 数 (1, 0) 即 log a1 =0 x>1时 y>0; 01时 y<0; 00 对称性函数y=ax 与y=a-x (a>0且a≠1)关于y轴对称;函数y=a x与y =log a x关于y=x对称 函数y=log a x与y=1log a x(a>0且a≠1)关于x轴对称 2. 记住常见指数函数的图形及相互关系以及常见对数函数的图形及相互关系 ①②

3. 几个注意点 (1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。研究指数、对数函数问题,尽量化为同底,并注意对数问题中的定义域限制。 【典型例题】 例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1 A. a <b <1<c <d B. b <a <1<d <c C. 1<a <b <c <d D. a <b <1<d <c 剖析:可先分两类,即(3)(4)的底数一定大于1,(1)(2)的底数小于1,然后再从(3)(4)中比较c 、d 的大小,从(1)(2)中比较a 、b 的大小。 解法一:当指数函数底数大于1时,图象上升,且底数越大,图象向上越靠近于y 轴;当底数大于0小于1时,图象下降,底数越小,图象向右越靠近于x 轴.得b <a <1<d <c 。故选B 。 解法二:令x =1,由图知c 1>d 1>a 1>b 1,∴b <a <1<d <c 。 例2. 已知2x x +2 ≤(41 )x -2,求函数 y =2x -2-x 的值域。 解:∵2x x +2 ≤2-2(x -2),∴x 2+x ≤4-2x , 即x 2+3x -4≤0,得-4≤x ≤1。 又∵y =2x -2-x 是[-4,1]上的增函数, ∴2-4-24≤y ≤2-2-1。 故所求函数y 的值域是[-16255,23 ]。 例3. 要使函数y =1+2x +4x a 在x ∈(-∞,1)上y >0恒成立,求a 的取值范围。 解:由题意,得1+2x +4x a >0在x ∈(-∞,1)上恒成立, 即 a >-x x 421+在x ∈(-∞,1)上恒成立。 又∵-x x 421+=-(21)2x -(21 )x =-[(21)x +21]2+41 , 当 x ∈(-∞,1)时值域为(-∞,-43 ),

函数大小比较

㈠ 与幂函数αx y =有关的大小比较 ⑴ 两个幂函数的指数相同(底数为负数时须先化为正数),利用幂函数的单调性判定大小; ⑵ 两个幂函数的指数不同,能化为同指数的,利用幂函数的单调性判定大小,不能化为同指数的,利用中间数0来比较大小; 幂函数αx y =的性质: ⑴ 在),0(∞上,0>α时是增函数,0<α时是减函数: ⑵ 1>x 时,指数大的图象在上方,10<α时,图象过(0,0),(1,1),0<α时,图象过(1,1)。 ㈡ 与指数函数x a y =有关的大小比较 ⑴ 两个指数函数的底数相同指数不同时,利用指数函数的单调性判定大小; ⑵ 两个指数函数的底数不同指数相同时,可根据图象与底数的关系进行比较; ⑶ 两个指数函数的底数和指数都不同时,可引进第3个数(如0,1)分别与之比较,通过常数传递比较大小。 指数函数的性质: ⑴ 1>a 时,x a y =是增函数,10<a 时,a 越大图象上升越快,10<a 时,x y a log =是增函数,10<a 时,010,01?>y x y x ,10<?<<y x y x ; ⑶ x y a log =的图象过(1,0)点,),0(,∞∈∈x R y 。 对数的性质:N a a N a a a ===log ,1log ,01log ,零和负数没有对数。 对数运算公式: ⑴ N M MN a a a log log )(log += ⑵ N M N M a a a log log )(log -= ⑶ M n M a n a log log = ⑷ 换底公式:)1,0,1,0(,log log log ≠>≠>=c c a a a N N a a a ⑸ a b b a log 1log = ⑹ )1,0,1,0(,log log ≠>≠>=b b a a b n m M a m a n

指数函数及其性质

2.1.2 指数函数及其性质(一) 一、学习目标:了解指数函数模型的实际背景,理解指数函数的概念和意义,掌握指数函数 的图象和性质;本节课的重点是在理解指数函数定义的基础上掌握指数函数的图象和性质, 本节课的难点是弄清楚底数a对于指数函数图象和性质的影响。 二、问题引领: 1、指数函数的概念、图象和性质

2、指数函数图象分布图: 如图,,,,A B C D 分别为指数函数 ,,,x x x x y a y b y c y d ====的图象,则,,,a b c d 与 0、1的大小关系为01a b c d <<<<<。 三、典例剖析: 例题1:已知指数函数()(0>=a a x f x 且)1≠a 的图象经过点()2,π,求()()()012f f f -、、的值。 分析:要求()()()012f f f -、、的值,我们需要先求出指数函数()x a x f =的解析式,也就是要先求a 的值。根据函数图象过点()2,π这一条件,可以求得底数a 的值。 解: ()x a x f =的图象经过点()2,π, ()2f π∴= 即2 a π=,解得1 2 a π= ()2x f x π∴=,即:()( )()10 12 1 01,12f f f ππππ -====-== 。 点评:求函数解析式的典型方法是待定系数法,求指数函数需要待定的系数只有一个a ,只需要一个已知条件,就可以确定一个指数函数。 例题2:1、设1111333b a ???? <<< ? ????? ,求,,a b a a a b 的大小关系。 2、 比较235 4 0.5,1.2,1的大小。 分析:利用指数函数的单调性和特殊点比较大小。 解:1、因为函数13x y ?? = ??? 在R 上为减函数,又由1111333b a ????<<< ? ?????, 所以得:01a b <<<, 因为当01a <<时,函数x y a =为减函数,又a b <, 所以a b a a >,因为函数x y a =与x y b =在R 上同为减函数且当0x >时, 随着x 的增大,函数x y a =比函数x y b =减小的快,所以a a a b <, 即b a a a a b <<。

二次函数和指数对数函数

二次函数及指对数运算 1.已知二次函数()f x 满足(1)()2f x f x x +-=,且(0)1f =. (1)求()f x 的解析式; (2)求函数()y f x =在区间[1,1]-上的值域; (3)当[1,1]x ∈-时,不等式()2f x x m >+恒成立,求实数m 的范围. 2.如图,已知二次函数y=x 2 +bx+c 过点A (1,0),C (0,﹣3) (1)求此二次函数的解析式; (2)在抛物线上存在一点P 使△ABP 的面积为10,求点P 的坐标. 3.已知函数f (x )=x 2 +2ax+2,x ∈[﹣5,5]. (1)当a=﹣1时,求函数的最大值和最小值; (2)求实数a 的取值范围,使y=f (x )在区间[﹣5,5]上是单调函数.

4.计算: 23 log 2 22 8273lg 2lg 52lg2lg5log 9log 3238ππ- ??++?+?++ ??? . 5.计算:(1)()()1 22 3 02 9279.6 1.548--???? ---+ ? ????? ; (2)2 021lg 5lg 2()(21)log 83 -+--+-+ 6.已知函数()()2log 3f x x =-. (1)求()()516f f -的值; (2)求()f x 的定义域; (3)若()0f x ≤,求x 的取值集合. 7.(Ⅰ)设 ()()()()24142x f x x f x x ?+

指数函数与对数函数对比分析总结---答案

指数函数与对数函数总结 一、 [知识要点]: x a log x 定义 图象 定义域 值域 性质 奇偶性 单 调 性 过定 点 值的分布 最值 y =a x (a>0且a ≠1) 叫指数函数 a>1 (-∞,+ ∞) (0,+∞) 非奇 非偶 增 函数 (0,1) 即a 0 =1 x>0时y>1;00时01 y = a log (a>0且a ≠1) 叫对数函数 a>1O y x (0,+∞) (- ∞,+∞) 非奇 非偶 增 函数 (1,0) 即 log a 1=0 x>1时 y>0; 01时 y<0; 00 对称性 函数y =ax 与y =a -x (a>0且a ≠1)关于y 轴对称;函数y =a x 与y =log a x 关于y =x 对称 函数y =log a x 与y =1log a x (a>0且a ≠1)关于x 轴对称 2. ① ② 3. 几个注意点 (1)函数y =a x 与对数函数y =log a x (a>0,a ≠1)互为反函数,从概念、图象、性质去理解它们的区别和联系;(2)比较几个数的大小是对数函数性质应用的常见题型。在具体比较时,可以首先将它们与零比较,分出正负;正数通常可再与1比较分出大于1还是小于1,然后在各类中间两两相比较;(3)在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用。研究指数、对数函数问题,尽量化为同底,并注意对数问题中的定义域限制。 【典型例题】 例1. (1)下图是指数函数(1)y =a x ,(2)y =b x ,(3)y =c x ,(4)y =d x 的图象,则a 、b 、c 、d 与1的大小关系是( )

必修一:指数与指数函数

指数与指数函数 级级: 姓名: 学号: 得分: 一、选择题(每题5分,共40分) 1.(369a )4(639a )4等于( ) (A )a 16 (B )a 8 (C )a 4 (D )a 2 2.下列函数中,定义域为R 的是( ) (A )y=5x -21 (B )y=(3 1)1-x (C )y=1)2 1 (-x (D )y=x 21- 3.已知01,b <0 B .a >1,b >0 C .00 D .0a a 且)的图象经过二、三、四象限,则一定有 A.10<b B.1>a 且0>b C.10<a 且0

y A.a <b <1<c <d B.b <a <1<d <c C.1<a <b <c <d D.a <b <1<d <c 二、填空题(每题5分,共30分) 10.已知函数()14x f x a -=+的图像恒过定点P ,则点P 的坐标是___________ 11.方程96370x x -?-=的解是_________ 12.指数函数x a x f )1()(2-=是减函数,则实数a 的取值范围是 . 13.函数221x x y a a =+-(0>a 且1≠a )在区间]1,1[-上的最大值为14,a 的值是 14.计算:412121325.0320625.0])32.0()02.0()008.0()9 45()833[(÷?÷+---_______________ 15.若()10x f x =,则()3f =———————— 三、解答题(16/17/19题各5分,18题15分,共30分) 16.设关于x 的方程02 41=--+b x x 有实数解,求实数b 的取值范围。),1[+∞- 17.设0a 522-+x x . 18.已知2()()1 x x a f x a a a -=-- (0>a 且1≠a ). (1)判断)(x f 的奇偶性;(2)讨论)(x f 的单调性;(3)当]1,1[-∈x 时,b x f ≥)(恒成立,求b 的取值范围。 19.若函数4323x x y =-+的值域为[]1,7,试确定x 的取值范围。

《指数函数比较大小》专题

《指数函数比较大小》专题 2014年()月()日班级:姓名 每道错题做三遍。第一遍:讲评时;第二遍:一周后;第三遍:考试前。 【类型一】比较大小 1.比较下列各组数中两个值的大小: (1) 30.8,30.7;(2) 0.75-0.1,0.750.1;(3) 1.012.7,1.013.5;(4) 0.993.3,0.994.5. 2. (1)已知3x≥30.5,求实数x的取值范围;(2)已知0.2x<25,求实数x的取值范围. 3.已知下列不等式,比较m、n的大小. (1)2m<2n; (2)0.2m>0.2n; (3)a ma n(a>1).

4.比较下列各组数中两个值的大小: (21)32和(21)31 (21)32和 (51)32 (21)31和 (5 1)32 5.将下列各数排列起来 (21)31,(21)32,(5 1)32 6.已知a>b,ab 0≠下列不等式①a 2>b 2, ②2a >2b , ③b a 11<, ④a 31>b 31 ,⑤(31)a <(31)b 中恒成立的有( )A.1个 B.2个 C.3个 D.4个 7.若a 23

指数函数及其性质教案

指数函数及其性质教案 课题:指数函数及其性质(第1课时) 教材:普通高中课程标准试验教科书人教社A版,数学必修1 教学内容:第二章,基本初等函数(I),指数函数及其性质 教学目标 知识目标:理解指数函数的概念,初步掌握指数函数的图像和性质 能力目标:通过定义的引入,图像特征的观察,培养学生的探索发现能力,在学习过程中体会从具体到一般及数形结合的方法 情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。 | 教学重点﹑难点 重点:指数函数的概念和图像 难点:用数形结合的方法从具体到一般地探索﹑概括指数函数的性质 教学流程设计 (一)指数函数概念的构建 1.探究:本节问题2中函数的解析式与问题1中函数的解析式有什么共同特征 师生活动:教师提出问题引导学生把对应关系概括到的形式,学生思考归纳概括共同特征 2.给出指数函数的概念 一般地,函数叫做指数函数,其中是自变量,函数的定义域是 & 3.剖析概念 (1)规定底数大于零且不等于1的理由: 如果=0, 如果等等时,在实数范围内实数值不存在 如果是一个常量,对它就没有研究的必要 (2)形式上的严格性 指数函数是形式定义的函数,就像初中所学的一次函数﹑反比例函数都是形式定义的概念,因此把握指数函数的形式非常重要。在指数函数的定义表达式中,前的系数必须是1,自变量在指数的位置上,否则,不是指数函数,比如等,都不是指数函数 (二)指数函数的图像及性质 ) 1.提出问题:同学们能类比前面讨论函数性质时的思路,提出研究指数函数性质的方法吗 师生活动:教师引导学生回顾需要研究函数的那些性质,讨论研究指数函数性质的方法,强调数形结合,强调函数图像在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透概括能力的培养,学生独立思考,提出研究指数函数性质的基本思路 2.画出函数的图像 师生活动:学生用描点法独立画图,教师课堂巡视,个别辅导,展示画的较好的学生的图像

知识讲解_指数函数及其性质_基础

指数函数及其性质 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>? ?≤??x x 时,a 恒等于,时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释: (1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1)

① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1,a a a a ?-+=?>≠? 且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断; (2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x . 举一反三: 【变式1】指出下列函数哪些是指数函数? (1)4x y =;(2)4 y x =;(3)4x y =-;(4)(4)x y =-; (5)1 (21)(1)2 x y a a a =-> ≠且;(6)4x y -=.

2.2指数函数的图像与性质

第一章基本初等函数 2指数函数的图像及性质 一、学习目标 1.理解指数函数的概念和意义. 2.能借助计算器或计算机画出指数函数的图象. 3.初步掌握指数函数的有关性质. 二、知识梳理 1.指数函数的定义 一般地,函数y= a x( a> 0,且 a≠ 1)叫做指数函数,其中x 是自变量,函数的定义域是R . 2.指数函数的图象与性质 a>1 0< a< 1 图象 定义域 R,值域 (0,+∞ ) 图象过定点 (0,1),即 x= 0 时, y= 1 性质当 x> 0 时, y>1;当 x> 0 时, 0< y< 1; 当 x<0 时, 0<y< 1 当 x< 0 时, y> 1 在 R 上是增函数在 R 上是减函数 三、典型例题 知识点一指数函数的概念 例 1 给出下列函数: ① y=2·3x ;② y= 3 x+ 1 x 3 x .其中,指数函数的个数是 ( ) ;③ y= 3 ;④ y= x ;⑤ y= (- 2) A . 0 B . 1 C. 2 D. 4 答案 B 解析①中, 3x的系数是 2,故①不是指数函 数;②中,y=3x+ 1 的指数是 x+ 1,不是自变量 x,故 ②不是 指数函数;③中,3x的系数 是 1,幂的指数是自 变量 x,且只 有 3x一项,故③是指数函数;④ 中, y= x3 的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2< 0,不是指数函 数. 规律方法1.指数函数的解析式必须具有三个特 征: (1)底数 a 为大于 0 且不等 于 1 的常数; (2)指数位 置是 自变量 x; (3)a x的系数 是 1. 2.求指数函数的关键是求 底数a,并注意 a 的限制条件.

指数与指数函数(教案)

指数与指数函数 一、知识讲解 考点1 根式的概念 (1)定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称为a 的n 次方根.即, 若a x n =,则x 称a 的n 次方根(* ∈>N n n 且1). ①当n 为奇数时,n a 的次方根记作 n a ; ②当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . (2)性质:①a a n n =)(;②当n 为奇数时,a a n n =; ③当n 为偶数时,?? ?<-≥==) 0() 0(||a a a a a a n n . 考点2 幂的有关概念 (1)规定:①)(* ∈???=N n a a a a n ; ②)0(10≠=a a ,

③∈= -p a a p p (1 Q ) ④m a a a n m n m ,0(>=、*∈N n ,且)1>n (2)性质:①r a a a a s r s r ,0(>=?+、∈s Q ), ②r a a a s r s r ,0()(>=?、∈s Q ), ③∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 考点3 指数函数 定义:函数)1,0(≠>=a a a y x 且叫做指数函数. a > 1 0<a <1 二、例题精析 【例题1】 求下列各式的值: (1)2 1100;(2)3 28; (3)2 39-;(4)4 381 -.

【解析】(1)2110010=)10(=2 12. (2)3284=2=)2(=23 23. (3)2 3 9-271 =3 =) 3(=3 2 32--. (4)4 381 -27 1= 3=) 3(=34 34--. 【例题2】 用分数指数幂的形式表示下列各式(>0) (1)a a 3 ; (2)322a a ·; (3)3 a a · 【解析】(1). (2)3 2 2a a ·3 83 2+ 23 2 2 ===a a a a . (3)3 a a ·3 23 43 1 ===a a aa . 【例题3】 计算:25.02121325.0320625.0÷])32.0(×)02.0(÷)008.0(+)9 4 5()833[(----. 【解析】 原式=4 1 32 21 32 )10000 625(]102450)81000()949()278[(÷?÷+- 92 2)2917(21]10 24251253794[=?+-=÷??+-=. 【例题4】 化简: .)2(248533233 23 233 2 3 134a a a a a b a a ab b b a a ???-÷++-- a 117333 2 2 2 a a a a a + =?==

指数函数对数函数比较大小题型总结

1、 已知0707..m n >,则m n 、的关系是( ) A 、 10>>>m n B 、 10>>>n m C 、 m n > D 、 m n < 2、三个数a b c =-==(.)(.).030320203,,,则a b c 、、的关系是( ) A 、 a b c << B 、 a c b << C 、 b a c << D 、 b c a << 3、三个数6l o g ,7.0,67.067.0的大小顺序是 ( ) A 、60.70.70.7log 66<< B 、60.70.70.76log 6<< B 、0.760.7log 660.7<< D 、60.70.7log 60.76<< 4 、 设 1.5 . 90 . 48 12 314 ,8 , 2y y y -??== = ??? ,则 ( ) A 、312y y y >> B 、213y y y >> C 、132y y y >> D 、 123y y y >> 5、当10<> B 、a a a a a a >> C 、a a a a a a >> D 、a a a a a a >> 6.设y 1=40.9,y 2=80.48,y 3=(1 2)-1.5,则( )

A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 7.设13<(13)b <(1 3)a <1,则( ) A .a a b >c B .a 0,且a ≠1). 12.设y 1=40.9,y 2=80.48,y 3=(1 2)-1.5,则( ) A .y 3>y 1>y 2 B .y 2>y 1>y 3 C .y 1>y 2>y 3 D .y 1>y 3>y 2 1.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c 2.设a =lge ,b =(lg e)2,c =lg e ,则( ) A .a >b >c B .a >c >b C .c >a >b D .c >b >a 3.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b 4.设a =log 1312,b =log 13 23,c =log 34 3,则a ,b ,c 的大小关系是( )

二次函数与幂函数,指数与指数函数专题

函数第3节 二次函数与幂函数 1. (2013浙江文7)已知,,a b c ∈R ,函数()2 f x ax bx c =++.若()()()041f f f =>,则 ( ). A. 0a >,40a b += B. 0a <,40a b += C. 0a >,20a b += D. 0a <,20a b += 2(2014北京文8)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用 率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2 p at bt c =++ (a ,b ,c 是常数),如图所示记录了三次实验的数据.根据上述函数模型和实验数据,可 以得到最佳加工时间为( ) A.3.50分钟 B.3.75分钟 C.4.00分钟 D.4.25分钟 函数第4节 指数与指数函数 1.(优质专题四川文8)某食品的保鲜时间y (单位:小时)与储藏温度x (单位:C )满足函数 关系e kx b y += (e = 2.718 为自然对数的底数,,k b 为常数).若该食品在0C 的保鲜时间 是192h 小时,在22C 的保鲜时间是48h ,则该食品在33C 的保鲜时间是( ). A. 16h B. 20h C. 24h D. 21h 2.(优质专题江苏7)不等式2 24x x -<的解集为 . 3.(优质专题山东文3)设0.60.6a =, 1.50.6b =,0.61.5c =,则a b c ,,的大小关系是( ). A. a b c << B. a c b << C. b a c << D. b c a << 4.(优质专题全国丙文7)已知4 3 2a =,23 3b =,13 25c =,则( ). A.b a c << B.a b c << C.b c a << D.c a b << 5.(优质专题山东文10)若函数()e x f x (e 2.71828 =是自然对数的底数)在()f x 的定义域上 单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为( ). A.()2x f x -= B.()2 f x x = C.()-3 x f x = D. ()cos f x x =

3.1.2(一)指数函数学生版

1 / 1 3.1.2 指数函数(一) 一、基础过关 1.下列以x 为自变量的函数中,是指数函数的是 ( ) A .y =(-4)x B .y =πx C .y =-4x D .y =a x +2 (a>0且a≠1) 2.函数f(x)=(a 2-3a +3)a x 是指数函数,则有 ( ) A .a =1或a =2 B .a =1 C .a =2 D .a>0且a≠1 3.函数y =21 x 的值域是 ( ) A .(0,+∞) B .(0,1) C .(0,1)∪(1,+∞) D .(1,+∞) 4.如果某林区森林木材蓄积量每年平均比上一年增长11.3%,经过x 年可以增长到原来的y 倍,则函数y =f(x)的 图象大致为 ( ) 5.函数f(x)=a x 的图象经过点(2,4),则f(-3)的值为____________. 6.函数y =8-23-x (x≥0)的值域是________. 7.比较下列各组数中两个值的大小: (1)0.2-1.5和0.2-1.7 ; (2)(14)13和(14)23; (3)2-1.5和30.2. 8.判断下列函数在(-∞,+∞)内是增函数,还是减函数. (1)y =4x ; (2)y =????14x ; (3)y =2x 3. 二、能力提升 9.设函数f(x)=? ???? 2x , x<0, , x>0. 若f(x)是奇函数,则g(2)的值是 ( ) A .-1 4 B .-4 C.14 D .4 10.函数y =a |x| (a>1)的图象是 ( ) 11.若f(x)=???? ? a x ,-a 2+ , 是R 上的单调递增函数,则实数a 的取值范围为________. 12.求函数y =????12x2-2x +2 (0≤x≤3)的值域. 三、探究与拓展 13.当a >1时,判断函数y =a x +1 a x - 1 是奇函数.

指数函数及其性质

§2.1.2指数函数及其性质(2个课时) 班级 姓名 教学目标 :1、理解指数函数的概念、图象和性质。 2、利用图象来探索、掌握函数的性质,增强分析问题,解 决问题的能力。 教学重点: 指数函数的概念、图象和性质 教学难点:利用指数函数的图象概括出指数函数的性质。 学习过程 一、复习 1. 根式的概念;n = ; 当n = ; 当n = ={ 。 分数指数幂的意义:m n a = ,m n a - = 。 2.0的正分数指数幂 ,0的负分数指数幂 。 3.整数指数幂的运算性质对于有理数指数幂 。 二、新课导学 1:归纳:指数函数的定义 阅读教材48P 问题1,问题2,观察这两个函数解析式有何共同特征? 一般地,函数y = x a (a 0,且a 1)叫做指数函数, 其中x 是 .函数的定义域是 。 讨论: 下列函数中,哪些是指数函数? (1) (2) (3) (4) (5) (6) (7) (8) 2、探索:指数函数的图象 请同学们完成函数y=x 2 、y=x ? ? ? ??21的表格中空白处并用描点法画出图象: x y 4=4x y =x y 4-=x y )4(-=x y π =2 4x y =x x y =x a y )12(-= )12 1 (≠>a a 且

观察、思考:(1)这两个函数的图象有什么关系?能否由函数2x y=的图 象得到函数1 2x y ?? = ? ?? 的图象? (2)观察函数y=x2、y= x ? ? ? ? ? 2 1的图象,它们有哪些共同特征? 尝试:①图象都分布在象限,与轴相交,位于x轴 的; ②(底数2大于1)当1 a>时,第一象限的点的纵坐标都大于;第二象限的点的纵坐标都大于且小于;从左向右图象逐渐。 ③(底数1 2大于0又小于1)当01 a <<时,第一象限的点的纵坐标都大 于且小于; 第二象限的点的纵坐标都大于;从左向右图象逐渐。3、概括:指数函数y = x a(01) a a >≠ 且的性质 考察:指数函数y = x a(01) a a >≠ 且的奇偶性 4、学习课本 56 P例6 、57P例7 例8 三、练习:教材 58 P2、3

相关主题
文本预览