当前位置:文档之家› 生物信息学复习总结

生物信息学复习总结

生物信息学复习总结
生物信息学复习总结

生物信息期末总结

1.生物信息学(Bioinformatics)定义:(第一章)★

生物信息学是一门交叉科学,它包含了生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,它综合运用数学、计算机科学和生物学的各种工具来阐明和理解大量数据所包含的生物学意义。

(或:)

生物信息学是运用计算机技术和信息技术开发新的算法和统计方法,对生物实验数据进行分析,确定数据所含的生物学意义,并开发新的数据分析工具以实现对各种信息的获取和管理的学科。(NSFC)

2. 科研机构及网络资源中心:

NCBI:美国国立卫生研究院NIH下属国立生物技术信息中心;

EMBnet:欧洲分子生物学网络;

EMBL-EBI:欧洲分子生物学实验室下属欧洲生物信息学研究所;

ExPASy:瑞士生物信息研究所SIB下属的蛋白质分析专家系统;(Expert

Protein Analysis System)

Bioinformatics Links Directory;

PDB (Protein Data Bank);

UniProt 数据库

3. 生物信息学的主要应用:

1.生物信息学数据库;2.序列分析;3.比较基因组学;4.表达分析;5.蛋白质结构预测;6.系统生物学;7.计算进化生物学与生物多样性。

4.什么是数据库:★1、定义:数据库是存储与管理数据的计算机文档、结构化记录形式的数据集合。

(记录record、字段field、值value)

2、生物信息数据库应满足5个方面的主要需求:

(1)时间性;(2)注释;(3)支撑数据;(4)数据质量;(5)集成性。

3、生物学数据库的类型:一级数据库和二级数据库。

库等;DDBJ核酸库和EMBL数据库、Genbank(国际著名的一级核酸数据库有.

蛋白质序列数据库有SWISS-PROT等;蛋白质结构库有PDB等。)

★4、一级数据库与二级数据库的区别:

1)一级数据库:

包括:a.基因组数据库----来自基因组作图;

b.核酸和蛋白质一级结构序列数据库;

c.生物大分子(主要是蛋白质)的三维空间结构数据库,(来自X-衍射和核磁共振结

构测定);

2)二级数据库:

是对原始生物分子数据进行整理、分类的结果,是在一级数据库、实验数据和理论分析的基础上针对特定的应用目标而建立的。

一般说来,一次数据库的数据量大,更新速度快,用户面广,通常需要高性能的计算机服务器、大容量的磁盘空间和专门的数据库管理系统支撑。

二次数据库的容量则小得多,更新速度也不像一次数据库那样快,也可以不用大型商业数据库软件支持,这类针对不同问题开发的二次数据库的最大特点是使用方便,特别适用于计算机使用经验不太丰富的生物学家。

5、一个数据库记录(entry)一般由两部分组成:

1)原始序列数据(sequence data);

2)描述这些数据生物学信息的注释(annotation):注释中包含的信息与相应的

序列数据同样重要和有应用价值。

6、数据的完整性和注释工作量:1)序列数据广,序列注释不够完整;

2)库数据面窄,序列注释全面.

7、数据库的动态更新:1)不断增加;2)不断修正.

5、几个大型数据库简介:

)拥有庞大的一级数椐库、大量工具软件和广泛的外联。SIB、EBI、(共点:NCBI1、NCBI():

NCBI是指美国国家生物技术信息中心(National Center for Biotechnology Information,NCBI),成立于1988年,其主要工作是开发以GenBank为代表的数据库,进行计算生物学研究,开发用于分析基因组数据的软件工具,发布生物医学信息。.

1)Entrez(集成化的数据库)()

Entrez是NCBI著名的用于提取序列信息的工具,它将科学文献、DNA和蛋白质序列数据库、蛋白质三维结构数据、种群研究数据以及全基因组组装数据整合成一个高度集成的系统。类似于EBI的SRS(见下文),是一个查询、提取和显示系统。The original version(原始版本)(1991) of Entrez had just 3 nods。

2)可查Protein、PubMed(生物医学文献数据库)、Nucleotide、Genome、Gene、Pathway等相关信息。

()2、EMBL-EBI为世界Nucleotide Sequence Data Library(now known as EMBL-Bank)EMBL。1980)上第一个核酸序列数据库(European Bioinformatics (欧洲分子生物学实验室下属欧洲生物信息学研究所核酸数据库提供了序列搜索的服务。通EMBL-EBI1992,英国)Institute, EBI,,我们可以用十几种不同的方法(如用SRS6(搜索引擎)过它的序列提取系统—是一个项目,Ensembl

关键字)搜索我们想要的序列。EBI还资助了Ensembl欧洲分子生物学用于对各类物种基因组进行生物信息学分析的非常完备的网站。、UniProt。Services、(实验室EMBL The European Molecular Biology Laboratory)等界面。、PDBeArrayExpress、Ensembl、InterPro https://www.doczj.com/doc/8a15457205.html,)3、SIB(。,30 March 1998 )瑞士生物信息研究所(Swiss Institue of Bioinformatics,SIB提供的蛋白质专

家SIB用于获取蛋白质序列和相关数据的最有用的资源之一就瑞士日内瓦SystemExpert (Protein Analysis ExPASySWISS-PROT分析系统:,。)大学专家蛋白质分析系统()、核酸序列数据库:6.

1、国际上权威的核酸序列数据库:

(1)欧洲分子生物学实验室的EMBL;

(2)美国生物技术信息中心的GenBank;

(3)日本遗传研究所的DDBJ,();

这三个数据库是综合性的DNA和RNA序列数据库,每条记录代表一个单独、

连续、附有注释的DNA或RNA片段。三个数据库中的数据基本一致,仅在数

据格式上有所差别,对于特定的查询,三个数据库的响应结果一样。

2、INSDC国际核酸序列数据库协会:

1998年,GenBank、EMBL和DDBJ共同成立了国际核酸序列数据库协会(International Nucleotide Sequence Database Collaboration,INSDC),三大核酸数

据库之间每天将新测定或更新的数据进行交换共享,保证数据信息的完整与同步,每两个月更新一次版本。()

7、蛋白质序列数据库:

1)PIR(Protein Information Resource);()

2)SWISS-PROT;()

3)TrEMBL;() 是与SWISS-PROT相关的一个数据库。包含从EMBL核酸数据库中根据编码序列(CDS)翻译而得到的蛋白质序列,并且这些序列尚未集成到SWISS-PROT数据库中;

4)NCBI美国国家生物技术信息中心(National Center for Biotechnology Information,NCBI);

5)UniProt;通用蛋白质数据库()包括:(Swiss-Prot、TrEMBL、PIR)用户

可以通过文本查询数据库,可以利用BLAST程序搜索数据库,也可以直接通过FTP下载数据。

8、生物大分子结构数据库:

1)PDB(Protein Data Bank);()

2)MMDB(Molecular Modeling Database);()

9、其它生物分子数据库:

)人类基3 ;)GDB)基因组数据库(2 ;dbSNP)单碱基多态性数据库1.

因组数据库Ensembl;4)表达序列标记数据库dbEST;5)序列标记位点数据库dbSTS;6)面向基因聚类数据库UniGene;7)蛋白质结构分类数据库SCOP;8)蛋白质二级结构数据库DSSP;9)蛋白质同源序列比对数据库HSSP;10)OMIM(Online Mendelian Inheritance in Man),是关于人类基因和遗传疾病的分类数据库。。。

》》》Nucleic Acid Research《《《

附:1、NCBI和EBI使用的搜索引擎分别是什么?

答:NCBI使用的是Entrez,EBI使用的是SRS。

2、FASTA格式有哪些部分组成,以什么字符开始?

答:包含gi number,Database identifiers,Accession number,Locus name等部分,以>字符开始。

3、NCBI的WEB和离线序列提交软件是什么?

答:WEB提交工具:Bankit;离线提交:Sequin

4、系统生物学:

答:确定、分析和整合生物系统在遗传或环境扰动下所有内部元件间相互作用关系的一门学科。

10、序列数据的文件格式:(第二章)

格式主要有三种:

DNA/RNA/氨基酸代码的标识(B、Z);

GenBank数据格式;

FASTA 数据格式。

一、GBFF(GenBank flatfile)—GenBank平面文件格式:GenBank、EMBL、DDBJ每天都相互同步更新各自的数据库,那么它们是怎样交换数据的呢?这里引入GBFF(GenBank flat平面文件)格式。GBFF是GenBank 数据库的基本信息单位,是最为广泛使用的生物信息学序列格式之一。GBFF文

件分为三部分:a.头部包含整个记录的信息(描述符);b.第二部分包含了注释这一记录的特性;c.第三部分是核苷酸序列本身。

)”结尾。//(注:所有序列数据库记录都在最后一行以“

行:LOCUS1)GBFF,,,,,5028 bp)DNA linear(LOCUS

21-JUN-1999SCU49845PLN行:都起始于LOCUS所有GBFF现在唯一的作用是它在数据库中是独一):LOCUS是名称(SCU49845第一项:号码下,它仅

使用检索际意义。大多数情况无二的,已不再具有任何实LOCUS名称的要求;(accesession number)以满足对。除规定单条数据库记录的长度不能超过

350kb5028 bp):第二项是序列长度(的序列了;GenBank已经很少接受长度低于50bp历史原因外,:其序列必须是一种单一的分子类型;分子类型(DNA)第三项表明现在其作用仅限于在下载个字母组成。由3分类码GenBank(PLN):第四项是数据库时对数据库作简单的分类。:有时也仅表示数据首次公开日期。)是其最后修订日期(21-JUN-1999最后一项(definition)

DEFINITION行GBFF: 2)

(DEFINITION Saccharomyces cerevisiae TCP1-beta gene, partial cds; and Axl2p

(AXL2) and Rev7p (REV7) genes, complete cds.)

记录中所含的生物GenBankDEFINITION行:主要对LOCUS行的下一行为蛋白

质名称。若序列是/学意义做出总结。它的说明内容包括了来源物种、基因则标

明该序列是部若是一段编码区,非编码区,则包含对序列功能的简单描述;)。)

还是全序列(分序列(partial cdscomplete cds检索号行accession)行(G3)BFF:ACCESSION

)( ACCESSION U49845个数字5个字母加1是序列记录的惟一指针。通常由)accession检索号(.

(U12345)或由2个字母加6个数字(AF123456)组成。它在数据库中是惟一而且不变的。有时ACCESSION行中可能会出现多个检索号,可能是由于数据提交者提交了一条与原记录相关的新记录或新提交的记录覆盖了原有的旧记录。我们称第一个检索号为主检索号,其余的统称为二级检索号。

4)GBFF:VERSION行(version)版本号行

() GI:1293613VERSION U49845.1

VERSION行是版本号,格式为:检索号.版本号。版本号用于识别数据库中一条

单一的特定核苷酸序列。在数据库中,如某条序列数据发生了变化,即使是单碱基的改变它的版本号也将增加,而其检索号保持不变。

版本号系统与其后的GI(geninfo identifier)号系统是平行运行的。即当一条序

列改变后,它将被赋予一个新的GI号,其版本号也将增加。蛋白质的翻译发生任何变换,核酸序列都将被赋予一个新的GI号。

5)GBFF:KEYWORDS行(keywords)关键词行

(KEYWORDS .)

关键词行是用来描述序列的。如果该行没有任何内容,那么就只包含一个“.由于没有对照词汇表,故NCBI/GenBank拒绝接受关键词,它只存在于旧的记录中。

6)GBFF:OURCE行(source)来源行

(SOURCE Saccharomyces cerevisiae (baker's yeast) ORGANISM

Saccharomyces

cerevisiae Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes;

) Saccharomycetales; Saccharomycetaceae; Saccharomyces.对

来源行(SOURCE)没做特殊的规定,它通常包含序列来源生物的简称,有时也包含分子类型。在下面以NCBI的分类数据库为依据,指明物种的正式科学名称。

7)GBFF:REFERENCE 行reference参考文献行

(REFERENCE 1 (bases 1 to 5028) AUTHORS Torpey,L.E.,

Gibbs,P.E., Nelson,J.

and Lawrence,C.W. TITLE Cloning and sequence of REV7, a gene whose function is

required for DNA damage-induced mutagenesis in Saccharomyces cerevisiae

) JOURNAL Yeast 10 (11), 1503-1509 (1994) PUBMED 7871890

参考文献行将与该数据有关的参考文献均收录在内。将最先发表的文献列于in ”或“unpublished第一位。如果序列数据没有被相关文献报道,该行将出现“press”。最后将有一个可能的PUBMED指针。

8)GBFF:FEATURES 行(features)特性表行

(FEATURES Location/Qualifiers

CDS <1..206

/codon_start=3

/product=TCP1-beta

/protein_id=AAA98665.1

/db_xref=GI:1293614

/translation=SSIYNGISTSGLDLNNGTIADMRQLGIVESYKLKRA VVSSASEA

AEVLLRVDNIIRARPRTANRQHM

gene 687..3158

/gene=AXL2

...... )

特性表(features)描述基因和基因的产物以及与序列相关的生物学特性。特性

表提供一个参考词汇表以对合法的特性进行注释。这些特性包括:1、该序列是否执行一个生物学功能;2、它是否与一个生物学功能的表达相关;3、它是否与其它分子相互作用;4、它是否影响一条序列的复制;5、它是否与其他序列的重组相关;6、它是否是一条已识别的重复序列;7、它是否有二级或三级结构;8、它是否存在变异或者它是否被修订过。

特性表格式是按表单的方式设计的,分三个主要部分:

1)特性表关键词(feature),简要说明功能组;

2)特性位置(location),指明在特性表中的什么地方可以找到相关特性,在此可以包含操作符(operator)和功能性描述符(descriptor)以指明序列需经过怎样的处理才能得到相应的特性;

3)限定词(qualifier),相关特性的辅助信息,限定词组使用一组标准化的对照词汇表以利于计算机从中提取信息。

(这段序列可以解读为:该编码序列(CDS)起始于第1碱基,终止于第206碱基,它的产物是TCP1-beta ,基因名为“AXL2”。)

)origin(ORIGIN :GBFF)9.

(ORIGIN

1 gatcctccat atacaacggt atctccacct caggtttaga tctcaacaac ggaaccattg

61 ccgacatgag acagttaggt atcgtcgaga gttacaagct aaaacgagca gtagtcagct

......

4981 tgccatgact cagattctaa ttttaagcta ttcaatttct ctttgatc )

在GBFF文件的最后,以类似于FASTA格式的方式给出了所记录的序列。

二、 FASTA 数据格式(FASTA format):

Accession numbers are labels for sequences(检索号)

资料库:、RefSeq11参考序列数据库)NCBI Reference Sequence Database(

序的序列再做详细整理的non-redundent 资料库是NCBI将GenBank RefSeq几乎完全相同,但因为是完全不同的独立列资料库,它的序列格式和GenBank(检索号)格式和NumberRefSeq的Accession 资料库,为与GenBank 区别,尽管如此,该数据库所收集的参考序列一直在不断地被修改中,GenBank的不同。仍是目前最可信赖的序列数据库。NCBI RefSeq只中一个基因的索引号可能有上百个,但对应一个基因的RefSeqGenBank 有一个。()旨在提供一个全面的、集成的、冗余,好的(RefSeq)参考序列数据库NCBI是医学、功能和多样性RefSeq注释组序列,包括基因组DNA、转录和蛋白质。突变和多它们提供一个稳定的参考基因组注释、基因识别和表征,研究的基础;),表达研究和比较分析。记录

特别是态性分析(RefSeqGene<:

数据库检索实例>e.g.

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

生物信息学考试试卷修订稿

生物信息学考试试卷 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、名词解释(每小题4分,共20分) 1、生物信息学 广义:生命科学中的信息科学。生物体系和过程中信息的存贮、传递和表达;细胞、组织、器官的生理、病理、药理过程的中各种生物信息。 狭义:生物分子信息的获取、存贮、分析和利用。 2、人类基因组计划 人类基因组计划准备用15年时间,投入30亿美元,完成人类全部24条染色体的3×109脱氧核苷酸对(bp)的序列测定,主要任务包括作图(遗传图谱、物理图谱的建立及转录图谱的绘制)、测序和基因识别。其中还包括模式生物(如大肠杆菌、酵母、线虫、小鼠等)基因组的作图和测序,以及信息系统的建立。作图和测序是基本的任务,在此基础上解读和破译生物体生老病死以及和疾病相关的遗传信息。 3、蛋白质的一级结构 蛋白质的一级结构是指多肽链中氨基酸的序列 4、基因 基因--有遗传效应的DNA片断,是控制生物性状的基本遗传单位。 5、中心法则 是指遗传信息从传递给,再从RNA传递给,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。 6 、DNA序列比较 序列比较的根本任务是:(1)发现序列之间的相似性;(2)辨别序列之间的差异 目的: 相似序列相似的结构,相似的功能 判别序列之间的同源性 推测序列之间的进化关系 7、一级数据库 数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类整理和注释 8、基因识别 基因识别,是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因,也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。 9、系统发生学 系统发生学(phylogenetics)——研究物种之间的进化关系。 10、基因芯片 基因芯片(gene chip),又称DNA微阵列(microarray),是由大量cDNA或寡核苷酸探针密集排列所形成的探针阵列,其工作的基本原理是通过杂交检测信息。

生物信息学分析实践

水稻瘤矮病毒(RGDV)外层衣壳蛋白 P8的同源模建 高芳銮(Raindy) 同源模建(homology modeling) ,也叫比较模建(Compatative modeling),其前提是一个或多个同源蛋白质的结构已知,当两个蛋白质的序列同源性高于35%,一般情况下认为它们的三维结构基本相同;序列同源性低于30%的蛋白质难以得到理想的结构模型。同源模建是目前最为成功且实用的蛋白质结构预测方法, SWISS-MODEL 是由SwissProt 提供的目前最著名的蛋白质三级结构预测服务器,创建于1993年,面向全世界的生物化学与分子生物学研究工作者提供免费的自动模建服务。SWISS-MODEL 服务器提供的同源模建有两种工作模式:首选模式(First Approach mode)和 项目模式(Project mode)。 本实例以RGDV P8蛋白为研究对象采用首选模式进行同源模建。 图1 SWISS-MODEL 的主界面 操作流程如下: 1.选择模式 单击左侧的“MENU ”菜单下方的“First Approach mode ”,右侧窗口自动SWISS-MODEL 工作窗口,在相应文本框中分别输入的E-mail 、项目标题、待模建的蛋白质序列,SWISS-MODEL 支持以FASTA 格式直接输入或提交UniProt 的登录号,如图2所示。 《生物信息学分析实践》样 稿

图2 SWISS-MODEL 的序列提交页面 2.参数设置 当前版本只有一个选项可设置,如果用户需要使用指定的模板,可在“Use a specific template ”后的输入框填入ExPDB 晶体图像数据库中的模板代码,其格式为“PDBCODE+ChainID ”,如“1uf2P ”。本例不使用指定模板,默认留空。完毕,点击“Submit Modeling Request ”提交模建请求,服务器返回提交成功的提示,如图3所示: 图3 成功提交 SWISS-MODEL WORKSPACEW 页面会自动刷新,直至模建完成,如图4所示,同时模建结果也会发送到指定的邮箱。 3结果解读 点击下图右上方的“Print/Save this page as ”后的图标,可以将整个结果以PDF 文档格式保存到本地计算机中。模建结果给出了五个部分的信息:模建详情(Model Details)、比对信息(Alignment)、模建评价 (Anolea/Gromos/Verify3D)、模建日志(Modelling log)、模板选择日志(Template Selection Log)。 《生物信息学分析实践》样稿

生物信息学期末考试重点

第一讲 生物信息学(Bioinformatics)是20世纪80年代末随着人类基因组计划的启动而兴起的一门新型交叉学科,它体现了生物学、计算机科学、数学、物理学等学科间的渗透与融合。 生物信息学通过对生物学实验数据的获取、加工、存储、检索与分析,达到揭示数据所蕴含的生物学意义从而解读生命活动规律的目的。 生物信息学不仅是一门学科,更是一种重要的研究开发平台与工具,是今后进行几乎所有生命科学研究的推手。 生物技术与生物信息学的区别及联系 生物信息学的发展历史 ?人类基因组计划(HGP) ?人类基因组计划由美国科学家于1985年提出,1990年启动。根据该计划,在2015年要把人体约4万个基因的密码全部揭开,同时绘制出人类基因的谱图,也就是说,要揭开组成人体4万个基因的30亿个碱基对的秘密。HGP与曼哈顿原子弹计划和阿波罗计划并称为三大科学计划,被誉为生命科学的登月计划。(百度百科) 随着基因组计划的不断发展,海量的生物学数据必须通过生物信息学的手段进行收集、分析和整理后,才能成为有用的信息和知识。换句话说,人类基因组计划为生物信息学提供了兴盛的契机。上文所说的基因、碱基对、遗传密码子等术语都是生物信息学需要着重研究的地方。 :

】 第二讲回顾细胞结构 细胞是所有生命形式结构和功能的基本单位 细胞组成 细胞膜主要由脂类和蛋白质组成的环绕在细胞表面的双层膜结构 细胞质细胞膜与细胞核之间的区域:包含液体流质,夹杂物存储的营养、分泌物、天然色素和细胞器 细胞器细胞内完成特定功能的结构:线粒体、核糖体、高尔基体、溶酶体等 细胞核最大的细胞器 DNA的结构 碱基(腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶G) 。 核苷酸 核苷酸是构成DNA分子的重要模块。每个核苷酸分子由一分子称作脱氧核糖的戊 糖(五碳糖)、一分子磷酸和一分子碱基构成。每种核苷酸都有一个碱基对,也就 是A、T、C、G 基因是什么 基因是遗传物质的基本单位 基因就是核苷酸序列。 大部分的基因大约是1000-4000个核苷酸那么长。 基因通过控制蛋白质的合成,从微观和宏观上影响细胞、组织和器官的产生。 基因在染色体上。

高通量测序基础知识

高通量测序基础知识简介 陆桂 什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变,一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。 什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。 什么是外显子测序(whole exon sequencing) 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

医学信息学基本概念与定义-医学信息学基本概念(精)

医学信息学基本概念 J C Wyatt, J L Y Liu. 文研究生周琴译导师许培扬审 摘要:本文是关于医学信息学,这门年轻的学科的术语的定义汇编。希望它对行业内的初学者与职业工作者能有所益处。 关键词:医学信息学词汇表 医学信息学主要研究与应用方法去改善对病人信息、临床知识、人口信息和其它与病人康复与公共卫生有关的信息的管理。它是一门伴随19世纪40年代数字计算机的出现而产生的年轻学科。用于医学的机械性计算起源于更早的年代,在19世纪,赫尔曼霍列瑞斯的“打卡数字处理系统”即开始用于美国人口普查,随后又被用于公共卫生与流行病学调查1。此例反应了医学信息学的多学科性,它与各个不同的领域都有相关性,包含临床医学、公共卫生学(如流行病学与卫生服务研究)、认知科学、计算和信息学。 由于医学信息学工作者的领域多样,新来者很容易混淆行业的专业术语。因此,对想更多了解医学信息学的人做一个医学信息学的基本概念的介绍是有用的。近几年,关于此学科的各种不同分支开始出现,包括公共卫生信息学、用户卫生信息学与临床信息学。对于医学信息学与它的分支学科是否是不同的学科的讨论,Shortliffe 和Ozbolt认为:“信息学的基础是一系列可重复利用与广泛应用的方法,它对所有的卫生学学科都适用,并且‘医学信息学’对于一个综合性核心学科是一个有用的概念,所有的学生都应该学习,不管这些学生的医学专业方向。”2 3以下对医学信息学的分支学科的定义反应了这一理念。 挑选医学信息学术语的标准,在挑选某术语时采用了以下一条或者多条原则: ●对流行病学家和公共卫生专家而言是新出现的词语。 ●一个有众所周知含义的术语,被用于医学信息学领域的具体方面。 ●与流行病学或公共卫生相关的概念。 ●对理解医学信息学必不可少的概念。 ●一个存在时间较长,而不是过渡性的专业术语。 ●在对此术语的意义与使用上有普遍的共识。

生物信息学分析

生物信息学分析 生物信息学难吗? 经常有人向我问这个问题,这有什么疑问吗?如果不难学,根本就不用问我这个问题。也无需投入那么多时间精力就能掌握,更无需花费三四千元参加线下的培训班,也不会月薪过万。所以,答案很肯定,道理很简单:生物信息比较难学。 为什么难学? 我总结里几点原因。首先,这是一个交叉学科,要求你既要有生物学的基础,又要有很强的计算机操作技能。这个就有点困难了。因为只是一个生物学就包括多个门类,有很多东西需要去学习,还需要学习计算机知识。很多人一门内容还没学明白,现在还得在加一门,这就属于祸不单行,雪上加霜,屋漏偏逢连夜雨。因此,这种既懂生物学,又懂计算机的复合型人才就比较短缺。而且,生物信息本质上属于数据挖掘,除了生物,计算机,到后面还需要极强的统计学知识才能做好数据分析,所以,还得加上统计学,也就是生物信息学=生物学+计算机科学+统计学三门学科的知识,这也就是为什么生物信息学比较难学。 第二个原因,生物信息本身就包括很多内容,比如DNA的分析,RNA的分析,甲基化的分析,蛋白质的分析等方面,每一

门类又完全不同,从物种方面来分,动物,植物,微生物,医学等有差别很大,很难有一劳永逸,放之四海而皆准的分析方法。 第三个原因就是生物信息是一门快速发展的学习,会出现很多新的测序方法,比如sanger测序,illumina,BGIseq,PacBio,IonTorrent,Nanopore等,每一个平台技术原理完全不同,因此数据特点也完全不同,这就需要针对每一个平台的数据做专门的学习,而且每个平台又在不断的推陈出现,可能今天你刚开发好的方法,产品升级了,都得推倒重来。还有很多新的技术,例如现在比较火的单细胞测序,Hi-C测序,Bionano测序等等内容,以后还出现更多新技术新方法,足够让你活到老,学到老。当然,你先要能活到老,吾生也有涯,而知也无涯。以有涯随无涯,殆已! 高风险才有高收益 当然啦,虽然你已经看到学习生物信息肯定是不容易了,门槛很高,但是呢,门槛高也有很多好处,就是挡住了一部分人,当你学会了,迈过门槛,你的身价就提高了。如果人人都很容易掌握了,那么也就不值钱了。所以,生物信息,前途是光明的,道路是曲折的。

生物信息学期末考试重点

1、生物信息学(Bioinformatics)是研究生物信息的采集、处理、存储、传播,分析和解 释等各方面的学科,也是随着生命科学和计算机科学的迅猛发展,生命科学和计 算机科学相结合形成的一门新学科。它通过综合利用生物学,计算机科学和信息技 术而揭示大量而复杂的生物数据所赋有的生物学奥秘。 2、数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于 距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后, 数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方 式。数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数 据存储的大型数据库系统都在各个方面得到了广泛的应用。 3、表达序列标签从一个随机选择的cDNA 克隆进行5’端和3’端单一次测序获得的短 的cDNA 部分序列,代表一个完整基因的一小部分,在数据库中其长度一般从20 到7000bp 不等,平均长度为360 ±120bp。EST 来源于一定环境下一个组织总 mRNA 所构建的cDNA 文库,因此EST也能说明该组织中各基因的表达水平。 4、开放阅读框是基因序列中的一段无终止序列打断的碱基序列,可编码相应的蛋白。 ORF识别包括检测六个阅读框架并决定哪一个包含以启动子和终止子为界限的 DNA序列而其内部不包含启动子或终止子,符合这些条件的序列有可能对应一个 真正的单一的基因产物。ORF的识别是证明一个新的DNA序列为特定的蛋白质编 码基因的部分或全部的先决条件。 5、蛋白质的一级结构在每种蛋白质中氨基酸按照一定的数目和组成进行排列,并进 一步折叠成特定的空间结构前者我们称为蛋白质的一级结构,也叫初级结构或基 本结构。蛋白质一级结构是理解蛋白质结构、作用机制以及与其同源蛋白质生理 功能的必要基础。 6、基因识别是生物信息学的一个重要分支,使用生物学实验或计算机等手段识别 DNA序列上的具有生物学特征的片段。基因识别的对象主要是蛋白质编码基因, 也包括其他具有一定生物学功能的因子,如RNA基因和调控因子。基因识别是基 因组研究的基础。

生物信息学基本知识

1.DNA:遗传物质(遗传信息的载体) 双螺旋结构,A,C,G,T四种基本字符的复杂文本 2.基因(Gene):具有遗传效应的DNA分子片段 3.基因组(Genome):包含细胞或生物体全套的遗传信息的全部遗传物质。人类包括细胞核基因组和线粒体基因组 OR一个物种中所有基因的整体组成 4.人类基因组:3.0×109bp模式生物 5.HGP的最初目标通过国际合作,用15年时间(1990~2005)至少投入30亿美元,构建详细的人类基因组遗传图和物理图,确定人类DNA的全部核苷酸序列,定位约10万基因,并对其它生物进行类似研究。 6.HGP的终极目标 阐明人类基因组全部DNA序列; 识别基因; 建立储存这些信息的数据库; 开发数据分析工具; 研究HGP实施所带来的伦理、法律和社会问题。 7.遗传图谱(genetic map)又称连锁图谱(linkage map),它是以具有遗传多态性(在一个遗传位点上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离(在减数分裂事件中两个位点之间进行交换、重组的百分率,1%的重组率称为1cM)为图距的基因组图。 遗传图谱的建立为基因识别和完成基因定位创造了条件。 8.遗传连锁图:通过计算连锁的遗传标志之间的重组频率,确定它们的相对距离,一般用厘摩(cM,即每次减数分裂的重组频率为1%)表示。 9.物理图谱(physical map)是指有关构成基因组的全部基因的排列和间距的信息,它是通过对构成基因组的DNA分子进行测定而绘制的。绘制物理图谱的目的是把有关基因的遗传信息及其在每条染色体上的相对位置线性而系统地排列出来。 10.转录图谱是在识别基因组所包含的蛋白质编码序列的基础上绘制的结合有关基因序列、位置及表达模式等信息的图谱。 11.序列图谱:随着遗传图谱和物理图谱的完成,测序就成为重中之重的工作。 DNA序列分析技术是一个包括制备DNA片段化及碱基分析、DNA信息翻译的多阶段的过程。通过测序得到基因组的序列图谱 12.大规模测序基本策略 逐个克隆法:对连续克隆系中排定的BAC克隆逐个进行亚克隆测序并进行组装(公共领域测序计划) 全基因组鸟枪法:在一定作图信息基础上,绕过大片段连续克隆系的构建而直接将基因组分解成小片段随机测序,利用超级计算机进行组装(美国Celera公司) 13.基因识别(gene identification)是HGP的重要内容之一,其目的是识别全部人类的基因。 基因识别包括: 识别基因组编码区 识别基因结构 基因识别目前常采用的有二种方法: 从基因组序列中识别那些转录表达的DNA片段 从cDNA文库中挑取并克隆。 14.基因组多态性(Polymorphism):是指在一个生物群体中,同时和经常存在两种或多种不连续的变异型或基因型(genotype)或等位基因(allele),亦称遗传多态性(genetic

生物信息学的主要研究内容

常用数据库 在DNA序列方面有GenBank、EMBL和等 在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等 在蛋白质和其它生物大分子的结构方面有PDB等 在蛋白质结构分类方面有SCOP和CATH等 生物信息学的主要研究内容 1、序列比对(Alignment) 基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。 2、结构比对 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。 3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。 4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一 基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。 5、非编码区分析和DNA语言研究,是最重要的课题之一 在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA 序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。 6、分子进化和比较基因组学,是最重要的课题之一 早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。 7、序列重叠群(Contigs)装配 一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备

CADD药物信息学基本知识

药物信息学初步 1药物信息学: a药物信息学是有关药物研究和开发过程中所涉及的大量小分子、大分子及其相互作用信息的学科。 b药物信息学,简单说来就是化学信息学和生物信息学的加和。 c也包括类药性、药物代谢动力学性质和毒性预测、药靶预测、高内涵筛选及代谢模型等综合信息在新药发现和发展中的整合、分析和应用。 2化学信息学与生物信息学 ?化学信息学(Chemoinformatics,Chemical Informatics),简而言之,一切与小分子化合物有关的计算机操作和运算都属于化学信息学的研究范畴,包括小分子的结构、构象、能量、性质等,也包括小分子与大分子的相互作用,还包括小分子的设计。 ?化学信息学的研究已有较长的历史,比如1960年代出现的QSAR,但作为学科名词1998年才首次出现。 ?与之相对的是生物信息学(Bioinformatics或Biological Informatics)。生物信息学是随着人类基因组计划的实施而出现的,最初仅是指对基因组序列的比较分析。但现在已发展到既对生物大分子的序列、也对生物大分子的结构、构象进行研究。针对生物大分子结构、功能等的计算研究,叫做计算生物学(Computational Biology)。 3 化学信息学在药物设计中的主要应用 ●虚拟组合化学库的设计; ●化合物数据库的相似性分析与多样性分析; ●化合物数据库的类药性分析、ADMET性质预测; ●化合物数据库的虚拟筛选; ●。。。 4 为什么要进行ADMET预测 ●ADMET是候选药物临床研究失败的主要原因(占60%)。 ●ADMET评估已成药物研发的关键,需尽早进行。 ●由于ADMET涉及药物体内过程,因此评估非常困难。 ●实验评价ADMET缺点:代价大、周期长,一般在临床前研究阶段才开始进行,且动物数据与人体数据并 不完全一致。 ●计算机预测ADMET优点:代价低、速度快,可以在化合物合成之前进行,也可以与先导物优化一起进行, 这样可将理论上具有不良ADMET性质的分子尽早排除,从而降低失败率。 5 ADMET预测的基本要求 ●要有大量可靠的实验数据供使用; ●要有合适的方式对分子结构进行表达; ●要有合适的建模方法及评价指标。 6 常规ADMET预测方法 ●分子结构采用分子描述符进行表达;分子描述符与性质之间采用统计回归分析方法建立预测模型。 ●存在的问题:分子描述符是间接描述分子,具有计算繁杂、数据可能不准确,数量众多而难以取舍,模型 可解释性差等问题。 7 基于子结构模式识别的ADMET预测方法 ●新方法:分子结构采用分子指纹进行表达;分子指纹与性质之间采用机器学习方法建立预测模型。 ●优点:跳过分子描述符而直接从分子结构出发来预测分子性质,提高了预测精度;采用信息增益技术识别 关键子结构,建立的模型具有可解释性;等等。 8生物信息学在药物设计中的应用 ●药物作用新靶标的发现与确证: ?人体内靶标 ?病原体内靶标 ●蛋白质序列比较、分析;蛋白质结构相似性比较、同源蛋白的识别。 ●蛋白质二级结构与三维结构的预测。 9 序列比对(sequence alignment) ●序列比对指将两个或多个序列排列在一起,标明其相似之处。序列中可以插入间隔(通常用短横线“-”表示)。

生物信息学重点资料

一、名词解释 分子进化中性学说1968,木村资生提出,认为多数或绝大多数突变都是中性的,即无所谓有利或不利,因此对于这些中性突变不会发生自然选择与适者生存的情况。生物的进化主要是中性突变在自然群体中进行随机的“遗传漂变”的结果,而与选择无关。 相似性不同染色体之间的相似程度 同源性两个核酸分子的核苷酸序列或两个蛋白质分子的氨基酸序列的相似程度 外显子断裂基因中的编码序列。成熟mRNA上保留下的编 码序列,蛋白质生物合成过程中表达为蛋白质。内含子断裂基因的非编码区,可被转录到前体RNA,在 mRNA加工过程中被剪切掉,成熟mRNA上无内含 子编码序列,无法表达为蛋白质。 基于距离构建系统发育树首先获得分类群间的进化距离度量,再依 据距离度量来重建一颗系统发育树,并使得该树能 最好的反应已知序列之间的距离 最大简约法根据离散型性状{包括形态学性状和分子序列(DNA,蛋白质等)}的变异程度,构建生物的系统发育树,并分析生物物种之间的演化关系。 最大似然法(ML)是完全基于统计的方法,以一个特定的替代模型分析一组序列数据,使所得的每一个拓扑结构的似然值均为最

大,筛选出最大似然值的拓扑结构为最终树 EST expressed sequence tags,表达序列标签,指从不同组 织来源的cDNA序列。 SNP Single Nucleotide Polymorphisms,单核苷酸的多态性 二、选择 1、RNA不含的碱基 T 2、生物性息学数据库检索6个last,五个程序,何时用 3、DNA.RNA连接方式、方向性、是否重复、RNA易被水解? 磷酸二酯键都5′→3′------ RNA更易水解

生物信息学基本分析

核酸序列的基本分析 运用DNAMAN软件分析核酸序列的分子质量、碱基组成和碱基分布。同时运用BioEdit(版本7.0.5.3)软件对基因做酶切谱分析。 碱基同源性分析 运用NCBI信息库的BLAST程序对基因进行碱基同源性分析(Translated query vs.protien database(blastx))网站如下:https://www.doczj.com/doc/8a15457205.html,/BLAST/ 参数选择:Translated query-protein database [blastx];nr;stander1 开放性阅读框(ORF)分析 利用NCBI的ORF Finder程序对基因做开放性阅读框分析,网址如下: https://www.doczj.com/doc/8a15457205.html,/projects/gorf/orfig.cgi 参数选择:Genetic Codes:1 Standard 对蛋白质序列的结构功能域分析 运用简单模块构架搜索工具(Simple Modular Architecture Research Tool,SMART)对基因的ORF出的蛋白质序列进行蛋白质结构功能域分析。该数据库由EMBL建立,其中集成了大部分目前已知的蛋白质结构功能域的数据。 网址如下:http://smart.embl-heidelberg.de/ 运用NCBI的BLAST程序再对此蛋白质序列进行rpsBlast分析 参数选择:Search Database:CDD v2.07-11937PSSM Expect:0.01 Filter:Low complexity Search mode:multiple hits 1-pass 同源物种分析 用DNAMAN软件将蛋白质序列相关基因序列比对,根据结果绘出系统进化树,并进行分析。 蛋白质一级序列的基本分析 运用BioEdit(版本7.0.5.3)软件对基因ORF翻译的蛋白的一些基本性质,对分子量、等电点、氨基酸组成等作出分析。 二级结构和功能分析 信号肽预测 利用丹麦科技大学(DTU)的CBS服务器蛋白质序列的信号肽(signal peptide)预测,进入Prediction Serves 页面。 网址如下:http://www.cbs.dtu.dk/services/SignalP/ 参数选择: Eukaryotes;Both;GIF (inline);Standard; 疏水性分析 利用瑞士生物信息学研究所(Swiss Institute of Bioinformatics,SIB)的ExPASy服务器上的ProtScale程序对ORF 翻译后的氨基酸序列做疏水性分析 网址如下: https://www.doczj.com/doc/8a15457205.html,/cgi-bin/protscale.pl 参数选择:

2019版国科大生物信息学期末考试复习题

中科院生物信息学期末考试复习题 陈润生老师部分: 1.什么是生物信息学,如何理解其含义?为什么在大规模测序研究中,生物信息学至关重要? 答:生物信息学有三个方面的含义: 1)生物信息学是一个学科领域,包含着基因组信息的获取、处理、存储、分配、分析和 解释的所有方面,是基因组研究不可分割的部分。 2)生物信息学是把基因组DNA序列信息分析作为源头,破译隐藏在DNA序列中的遗传语 言,特别是非编码区的实质;同时在发现了新基因信息之后进行蛋白质空间结构模拟和预测;其本质是识别基因信号。 3)生物信息学的研究目标是揭示“基因组信息结构的复杂性及遗传语言的根本规律”。它 是当今自然科学和技术科学领域中“基因组、“信息结构”和“复杂性”这三个重大科学问题的有机结合。 2.如何利用数据库信息发现新基因,其算法本质是什么? 答:利用数据库资源发现新基因,根据数据源不同,可分2种不同的查找方式: 1)从大规模基因组测序得到的数据出发,经过基因识别发现新基因: (利用统计,神经网络,分维,复杂度,密码学,HMM,多序列比对等方法识别特殊序列,预测新ORF。但因为基因组中编码区少,所以关键是“数据识别”问题。)利用大规模拼接好的基因组,使用不同数据方法,进行标识查找,并将找到的可能的新基因同数据库中已有的基因对比,从而确定是否为新基因。可分为:①基于信号,如剪切位点、序列中的启动子与终止子等。②基于组分,即基因家族、特殊序列间比较,Complexity analysis,Neural Network 2)利用EST数据库发现新基因和新SNPs: (归属于同一基因的EST片断一定有overlapping,通过alignment可组装成一完整的基因,但EST片断太小,不存在数据来源,主要是拼接问题) 数据来源于大量的序列小片段,EST较短,故关键在正确拼接。方法有基因组序列比对、拼接、组装法等。经常采用SiClone策略。其主要步骤有:构建数据库;将序列纯化格式标准化;从种子库中取序列和大库序列比对;延长种子序列,至不能再延长;放入contig库①构建若干数据库:总的纯化的EST数据库,种子数据库,载体数据库,杂质、引物数据库,蛋白数据库,cDNA数据库; ②用所用种子数据库和杂质、引物数据库及载体数据库比对,去除杂质; ③用种子和纯化的EST数据库比对 ④用经过一次比对得到的长的片段和蛋白数据库、cDNA数据库比较,判断是否为已有序列,再利用该大片段与纯化的EST数据库比对,重复以上步骤,直到序列不能再延伸; ⑤判断是否为全长cDNA序列。 (利用EST数据库:原理:当测序获得一条EST序列时,它来自哪一个基因的哪个区域是未知的(随机的),所以属于同一个基因的不同EST序列之间常有交叠的区域。根据这种“交叠”现象,就能找出属于同一个基因的所有EST序列,进而将它们拼接成和完整基因相对应的全长cDNA序列。而到目前为止,公共EST数据库(dbEST)中已经收集到约800万条的人的EST序列。估计这些序列已覆盖了人类全部基因的95%以上,平均起来每个基因有10倍以上的覆盖率。)

最新生物信息学名词解释(个人整理)

一、名词解释: 1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。 2.二级数据库:在一级数据库、实验数据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。 3.FASTA序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 4.genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“//”结尾。 5.Entrez检索系统:是NCBI开发的核心检索系统,集成了NCBI的各种数据库,具有链接的数据库多,使用方便,能够进行交叉索引等特点。 6.BLAST:基本局部比对搜索工具,用于相似性搜索的工具,对需要进行检索的序列与数据库中的每个序列做相似性比较。P94 7.查询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。P29 10.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响对比的结果。P37 11.E值:衡量序列之间相似性是否显著的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越接近零,越不可能找到其他匹配序列,E 值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义。P95 12.低复杂度区域:BLAST搜索的过滤选项。指序列中包含的重复度高的区域,如poly(A)。 13.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。 14.多序列比对:通过序列的相似性检索得到许多相似性序列,将这些序列做一个总体的比对,以观察它们在结构上的异同,来回答大量的生物学问题。 15.分子钟:认为分子进化速率是恒定的或者几乎恒定的假说,从而可以通过分子进化推断出物种起源的时间。 16.系统发育分析:通过一组相关的基因或者蛋白质的多序列比对或其他性状,可以研究推断不同物种或基因之间的进化关系。 17.进化树的二歧分叉结构:指在进化树上任何一个分支节点,一个父分支都只能被分成两个子分支。 系统发育图:用枝长表示进化时间的系统树称为系统发育图,是引入时间概念的支序图。 18.直系同源:指由于物种形成事件来自一个共同祖先的不同物种中的同源序列,具有相似或不同的功能。(书:在缺乏任何基因复制证据的情况下,具有共同祖先和相同功能的同源基因。)

生物信息学基础知识

分子生物学基础知识太仓生命信息研究所 2011-7

前言 本文仅适用于对非生物专业的员工进行基础知识普及。如有深入学习的要求,请选用正规权威教材。 本教材以蛋白质、DNA、RNA、复制、转录和翻译为主要讲解内容,目的是帮助员工理解在工作中会遇到的常见生物学概念及术语 目录 前言 (2) 目录 (2) 蛋白质 (3) 1. 什么是蛋白质 (3) 2. 蛋白质的3D结构 (5) DNA (7) 1. DNA的组成—4种碱基 (7) 2. DNA的复制 (8) 3. DNA转录为RNA (9) 4. mRNA翻译成氨基酸序列 (11)

蛋白质 1.什么是蛋白质 蛋白质是由20中基本氨基酸链接而成的,生物体的大部分是有蛋白质构成的。每种氨基酸由4部分组成:碳原子C,羧基coo-,氨基H3N和R group。 20中氨基酸按照不同的排列和不同的长度,就形成了蛋白质。不同的R group把氨基酸分为5类: 无极性脂肪类R Group:

芳香类R Group 有极性,无电荷R Group

正电荷R Group 负电荷R Group 2.蛋白质的3D结构 氨基酸链在三维空间里呈现出一定的结构。各个氨基酸分子于相邻的氨基酸之间有氢键连接。 一级结构:氨基酸的排列顺序,可以用氨基酸的缩写在书面上表达。 氨基和羧基之间的氢键使得单个的氨基酸分子能够链接起来。

二级结构:单条氨基酸链所形成的2D形态。常见的有Alpha helix Beta sheet。 Alpha helix:氨基酸分子按顺时针或逆时针的方向螺旋上升。 Beta sheet:多条氨基酸分子链并列在一起。 三级结构:氨基酸链在各个方向的形态综合在一起。

相关主题
文本预览
相关文档 最新文档