当前位置:文档之家› 第11章分离和富集方法练习答案 (2)

第11章分离和富集方法练习答案 (2)

第11章分离和富集方法练习答案 (2)
第11章分离和富集方法练习答案 (2)

第11章分析化学中常用的分离和富集方法

思考题

1.分离方法在定量分析中有什么重要性?分离时对常量和微量组分的回收率要求如何?

答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。

在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。

2.在氢氧化物沉淀分离中,常用的有哪些方法?举例说明。

答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有:A.氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元

素则生成氢氧化物胶状沉淀。

B.氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。

C.有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。

D.Z nO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。

3.某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全?

答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu (NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)

和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,3

Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。

4.如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何?

答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因

此溶液有AlO22-,ZnO22-,MnO4-和CrO42-和少量Ca2+,在沉淀中有:Fe(OH)

,Mg(OH)2和Cu(OH)2和少量Ca(OH)2或CaCO3沉淀。Ca2+将分离不3

完全。

(注:Na2O2常用以分铬铁矿,分离后的分别测定Cr和Fe。也有认为Mn2+被

Na2O2氧化成Mn4+,因而以MnO(OH)2沉淀形式存在。)

5.某试样含Fe,A1,Ca,Mg,Ti元素,经碱熔融后,用水浸取,盐酸酸化,

加氨水中至出现红棕色沉淀(pH约为3左右),再加六亚甲基四胺加热过滤,分出沉淀和滤液。试问。

A.为什么溶液中刚出现红棕色沉淀时人们看到红棕色沉淀时,表示pH为3

左右?

B.过滤后得的沉淀是什么?滤液又是什么?

C.试样中若含Zn2+和Mn2+,它们是在沉淀中还是在滤液中?

答:A.溶液中出现红棕色沉淀应是Fe(OH)3,沉淀时的pH应在3左右。(当人眼看到红棕色沉淀时,已有部分Fe(OH)3析出,pH值稍大于Fe3+开始沉淀的理论值)。

B.过滤后得的沉淀应是TiO(OH)2、Fe(OH)3和Al(OH)3;滤液是

Ca2+,Mg2+离子溶液。

C.试样中若含Zn2+和Mn2+,它们应以Zn2+和MnO4-离子形式存在于滤液中。

6.采用无机沉淀剂,怎样从铜合金的试掖中分离出微量Fe3+?

答:采用NH4Cl- NH3缓冲液,pH8-9,采用Al(OH)3共沉淀剂可以从铜合金

试液中氢氧化物共沉淀法分离出微量Fe3+。

7.用氢氧化物沉淀分离时,常有共沉淀现象,有什么方法可以减少沉淀对其他

组分的吸附?

答:加入大量无干扰的电解质,可以减少沉淀对其他组分的吸附。

8.沉淀富集痕量组分,对共沉淀剂有什么要求?有机共沉淀剂较无机共沉淀剂

有何优点?

答:对共沉淀剂的要求主要有:一是对富集的微量组分的回收率要高(即富集效率大);二是不干扰富集组分的测定或者干扰容易消除(即不影响后续测定)。

有机共沉淀剂较无机共沉淀剂的主要优点:一是选择性高;二是有机共沉淀剂除去(如灼烧);三是富集效果较好。

9.何谓分配系数,分配比?萃取率与哪些因素有关?采用什么措施可提高萃取率?

答:分配系数和分配比是萃取分离中的两个重要参数。 分配系数:w

o D ]A []A [K =是溶质在两相中型体相同组分的浓度比(严格说应为活度比)。而分配比:w o c c D =

是溶质在两相中的总浓度之比。在给定的温度下,K D 是一个常数。但D 除了与K D 有关外,还与溶液酸度、溶质浓度等因素有关,它是一个条件常数。在分析化学中,人们更多关注分离组分的总量而较少考虑其形态分布,因此通常使用分配比。 萃取率:%100V D D E O

w ?+=,可见萃取率与分配比(即溶质性质和萃取体系)和相比有关,但组分含量无关。

提高萃取率有两个重要途径:一是采用(少量有机溶剂)多次萃取;二是采用协同萃取。

10. 为什么在进行螯合萃取时,溶液酸度的控制显得很重要?

答:螯合物萃取过程可表示为:

+++?+nH )MR ()HR (n M o n o n

可见,溶液酸度可能影响螯合剂的离解、金属离子的水解以及其他副反应,影响螯合物萃取平衡,因此在进行螯合萃取时酸度控制是非常重要的。

11. 用硫酸钡重量法测定硫酸根时,大量Fe 3+会产生共沉淀。试问当分析硫铁矿(FeS 2)中的硫时,如果用硫酸钡重量法进行测定,有什么办法可以消除Fe 3+干扰?

答:将试液流过强酸型阳离子交换树脂过柱除去Fe3+,流出液再加入沉淀剂测定硫酸根。

12.离子交换树脂分几类,各有什么特点?什么是离子交换树脂的交联度,交换容量?

答:通常离子交换树脂按性能通常分为三类:

a)阳离子交换树脂,用于分离阳离子,又分为强酸型阳离子交换树脂和弱

酸型阳离子交换树脂。前者可在酸性中型和碱性溶液中使用,而后者不

宜在酸性溶液中使用。

b)阴离子交换树脂,用于分离阴离子,又分为强碱性阴离子交换树脂和弱

碱性阴离子交换树脂两种。前者可在酸性中型和碱性溶液中使用,而后

者不宜在碱性溶液中使用。

c)螯合树脂。选择性地交换某些金属离子。

交联度指交联剂在树脂中质量百分率,其大小与树脂性能有关。交联度一般在4-14%之间。交联度小,树脂网眼大,溶胀性大,刚性差。

交换容量是指每克干树脂所能交换的物质量(mmol),它决定于树脂内所含活性基团的数目,一般为3-6mmol-g-1。

13.为何在分析工作中常采用离子交换法制备水,但很少采用金属容器来制备蒸馏水?

答:许多分析实验需要纯水作溶剂或洗涤用水,通常有蒸馏水、去离子水和超纯水等。采用离子交换法制备去离子水具有简便且低能耗,能有效除去水中的离子。因此在分析工作中常采用离子交换法制备水。而金属容器容易受氧化腐蚀,蒸馏时引起离子污染,因此金属容器很少用来制备蒸馏水。

附:去离子水的制备

自来水

)3OH柱

去离子水

混合柱RN(CH3)3OH柱

交换柱的填充树脂一般采用强酸型阳离子交换树脂和强碱型阴离子交换树

脂,如001×7 (732#) 和201×7 (717#);

●由于交换容量不同,实验中通常采用一根阳离子交换柱和二根阴离子交换

柱。混合柱也应按等交换容量比例混合;

●混合柱的作用:由于离子交换是可逆反应,经过阳离子交换柱和阴离子交换

柱处理的去离子水,还存在着微量未交换的离子。若让它再通过混合柱,由于两种交换过程同时进行,离子交换后生成的H+和OH-结合成水而除去,进一步提高了水的质量。

14.几种色谱分离方法(纸上色谱,薄层色谱及反相分配色谱)的固定相和分离机理有何不同?

答:色谱法是一种分离方法,它利用物质在两相中分配系数的微小差异,当两相作相对移动时,使被测物质在两相之间进行反复多次分配,这样原来微小的分配差异产生了很大的效果,使各组分分离开来。

通常认为纸色谱的固定相是吸附滤纸纤维素上的水分(或与纤维素羟基缔合的固定水),分配色谱是纸色谱的主要分离机理。

薄层色谱的固定相主要是硅胶等吸附剂,吸附色谱是薄层色谱的分离机理。

反相分配色谱的固定相一般是涂渍在载体上的非极性有机物,其分离机理是反相分配色谱。

15.以Nb和Ta纸上色层分离为例说明展开剂对各组分的作用和展开剂的选择。

答:纸色谱的展开剂应对分离组分有一定的溶解度和不同的分配能力。展开剂的组成和极性对比移值和分离选择性均有较大的影响。

参见课本P290矿石中的Nb和Ta分离测定:试样用HF-HCl-HNO3分解后,使Nb(Ⅴ)和Ta(Ⅴ)以NbF72-和Ta F72-的形式存在。采用20×26cm2的滤纸,丁酮-HF(6:1)展开剂。展开2h后,Nb(Ⅴ)在前,Ta(Ⅴ)在后。分离机理是丁酮质子化后,与NbF72-或Ta F72-形成离子对在流动相和固定相间进行多次分配。HF 的作用是提供H+和抑制NbF72-和Ta F72-的离解。

16.如何进行薄层色谱的定量测定?

答:薄层色谱的定量测定有直接测定或将样斑刮下后提取溶液测定两种方式。直接测定又分为:

a) 比较斑点面积定量法:与标准溶液斑点对照样品斑点大小和颜色深浅,

只能达到半定量分析。

b) 稀释定量法:用标准溶液、稀释一定倍数的标准溶液和样品溶液等体积

点样在同一块板上,展开显色后进行斑点面积测量。样品含量计算公式为:d lg A A A A W lg W lg s sd s

s ?--+=

式中A 、A s 和A sd 分别为样品、标准溶液和稀释标准溶液的斑点面积,d 为稀释倍数的倒数。

c) 薄层扫描法:使用薄层色谱扫描仪对薄层上被分离物质斑点进行光吸收

或荧光测定的直接定量法。

17. 用气浮分离法富集痕量金属离子有什么优点?为什么要加入表面活性剂?

答:用气浮分离法富集痕量金属离子具有分离速度快、富集倍数大和操作简便等优点,特别适用于大量的极稀溶液(10-7--10-15mol/ L) 金属离子的分离富集。对于共沉淀分离中不易过滤或离心分离的胶状、絮状沉淀,对于离子对溶剂萃取分离中经常遇到的分层费时、两液界面不清晰等分离难题, 改用适当的浮选分离可以较好地解决。

在浮选过程中,表面活性剂可改变被浮选物的表面性质和稳定气泡,它直接影响着浮选分离的成败。但表面活性剂的用量不宜超过临界胶束浓度(CMC )。表面活性剂非极性部分链长度增加,会使它在气泡上的吸附增加,从而提高分离效果。一般说来,碳链越长浮选效果越好;但太长时泡沫的稳定性增大,浮选平衡时间增长,反而对浮选不利。碳链太短则表面活性下降,泡沫不稳定,使浮选率下降。碳链的碳原子数以14 ~ 18为宜。

18. 若用浮选分离富集水中的痕量CrO 42-,可采用哪些途径?

答:一是采用离子浮选法:在试液中加入溴化十六烷基三甲胺(CTMAB)为表面活性剂浮选。二是沉淀浮选:在试液中加入Al(OH)3沉淀剂和油酸钠表面活性剂,控制pH~7浮选。

19. 固相微萃取分离法、超临界萃取分离法、液膜分离法及微波萃取分离法的分离机理有何不同?

答:固相微萃取分离法、超临界萃取分离法、液膜分离法及微波萃取分离法是一些新型的分离技术。

固相微萃取(SPME)是一种无需有机溶剂、简便快速,集“采样、萃取、浓缩、进样”于一体,能够与气相色谱或高效液相色谱仪连用样品前处理技术。适用于气体、水样、生物样品(如血、尿、体液等)的萃取提取。其分离原理是溶质在高分子固定液膜和水溶液间达到分配平衡后分离。

超临界流体具有类似于气体的较强穿透能力和类似于液体的较大密度和溶解度。超临界萃取分离法(SFE)是基于分离组分溶解度及其与超临界流体分子间作用力的差别,当超临界溶剂流过样品时,使分离组分与样品基体分离。由于超临界流体不仅有好的溶剂化能力,比液体有更大的扩散系数,而且它的表面张力几乎接近零,即它较容易渗透到一些固体的孔隙里,以使分离效率和速度大为提高。值得一提的是,90 % 的SFE采用CO2流体,因此避免了有害溶剂对环境的严重污染。SFE已逐步作为替代有害溶剂萃取法的标准方法。

在液膜分离过程中, 组分主要是依靠在互不相溶的两相间的选择性渗透、化学反应、萃取和吸附等机理而进行分离。这时欲分离组分从膜外相透过液膜进入内相而富集起来。这一过程实际上是“在膜的两侧界面同时进行萃取和反萃取操作, 液膜选择性地输送欲分离物质”。

微波萃取分离法是利用微波能强化溶剂萃取的效率,使固体或半固体试样中的某些有机物成分与基体有效地分离。微波实际上是一种内部加热方式,微波萃取需要在特定的密闭容器中进行。

20.试述毛细管电泳分离法的分离机理?它的应用如何?

答:毛细管电泳,又称高效毛细管电泳(HPCE),统指以高压电场为驱动力,以毛细管为分离通道,依据样品中个组分之间淌度和分配行为上的差异而实现分离的一类液相分离技术。

由于毛细管电泳具有高效、快速、样品量极少等特点,它广泛用于分子生物学、医学、药学、材料学以及与化学有关的化工、环境保护、食品饮料等各个领域,从无机小分子到生物大分子,从带电离子到中性化合物都可以进行分离分析。

习题

1.0.020 mol ·L -1Fe 2+溶液,加NaOH 进行沉淀时,要使其沉淀达99.99%以上。试问溶液中的pH 至少应为多少?若考虑溶液中除剩余Fe 2+外,尚有少量FeOH +(β=1×104),溶液的pH 又至少应该为多少?已知K sp =8×10-16。

(9.30,9.34)

解:沉淀完全时 [Fe 2+]=0.020×0.01%=2×10-6mol·L -1

15616

2sp

L mol 102102108]Fe [K ]OH [----+-??=??== pH=9.30

若考虑到Fe(OH)+存在,则 [Fe(II)’] =2×10-6mol·L -1

[Fe(II)’] [OH-]2 = K sp ’(1+[OH -]β)

2×10-6 [OH-]2 = 8×10-16 (1+1×104 [OH -])

[OH-]2 - 4×10-6 [OH -] - 4×10-10 = 0

[OH -] = 2.21×10-5 mol·L -1

pH=9.34

2.若以分子状存在在99%以上时可通过蒸馏分离完全,而允许误差以分子状态存在在1%以下,试通过计算说明在什么酸度下可挥发分离甲酸与苯酚?

(pH5.74-7.96)

答:查表得甲酸和苯酚的pK a 值分别为3.74和9.95,可见苯酚先从酸性水溶液中挥发分离。

苯酚完全蒸馏的最低酸度:

96.795.9a 10%1%9910]

PhO []PhOH [K ]H [---+=== pH = 7.96 而甲酸开始蒸馏的最低酸度:

74.574.3a 10%99%110]

HCOO []HCOOH [K ]H [---+=== pH = 5.74 因此,溶液酸度控制在pH5.74-7.96下可挥发分离苯酚。

3.某纯的二元有机酸H 2A ,制备为纯的钡盐,称取0.346 0g 盐样,溶于100.0ml 水中,将溶液通过强酸性阳离子交换树脂,并水洗,流出液以0.099 60mol ·L -1NaOH 溶液20.20ml 滴至终点,求有机酸的摩尔质量。

(208.64g ·mol -1)

解: H 2A + Ba 2+ == BaA + 2H +

n H + = 0.09960×20.20 = 2.012 mmol

13

H BaA mol g 9.343102012.23460.02

n m M --?=?==+ 1A H mol g 6.2080079.1233.1379.343M 2-?=?+-=

4.某溶液含Fe 3+10mg ,将它萃取如入某有机溶剂中时,分配比=99。问用等体积溶剂萃取1次和2次,剩余Fe 3+量各是多少?若在萃取2次后,分出有机层,用等体积水洗一次,会损失Fe 3+多少毫克?

(0.1mg ,0.001mg ,0.1mg )

解:等体积萃取,n 次萃取后剩余量为:n 0n )D 11(

m m += 萃取1次后剩余Fe 3+量:mg 1.099

1110m 1=+?= 萃取2次后剩余Fe 3+量:mg 001.0)99

11(10m 22=+?= 在萃取2次后,m 0’ = 10 – 0.001mg = 10mg

分出有机层,用等体积水洗一次,损失Fe 3+量等于留在水相的萃余率:

mg 1.099

1110'm 1=+?= 5.100mL 含钒40μg 的试液,用10mL 钽试剂-CHCl 3溶液萃取、萃取率为90%。以1cm 比色皿于530nm 波长下,测得吸光度为0.384,求分配比及吸光物质得摩尔吸收系数。

(90,5.4×103L·mol -1·cm -1) 解: 分配比:o

w V V D D E += 10100D D 9.0+= D = 90 有机相中, 1V mL g 6.3109.040c -?μ=?=

由于钒和钽试剂形成1:1螯合物,所以

1133cm mol L 104.51942

.50106.3384.0bc A ---???=??==ε

6.有一金属螯合物在pH=3时从水相萃入甲基异丁基酮中,其分配比为5.96,现取50.0mL 含该金属离子的试液,每次用25.0mL 甲基异丁基酮于pH=3萃取,若萃取率达99.9%。问一共要萃取多少次?

(5次)

解:对于多次萃取, n w o w 0n )V DV V (1m m 1E +-=-

= n )0

.500.2596.50.50(1%9.99+?-= n = 5次

7.试剂(HR )与某金属离子M 形成MR 2后而被有机溶剂萃取,反应的平衡常数即为萃取平衡常数,已知K=K D =0.15。若20.0mL 金属离子的水溶液被含有HR 为2.0×10-2mol ·L -1的10.0 mL 有机溶剂萃取,计算pH=3.50时,金属离子的萃取率。

(99.7%)

解: M + 2HR 有 == MR 2有 + 2H + 萃取平衡常数为22

2]

HR ][M []H []MR [K 有有++= 分配比为 222]H []HR [K ]M []MR [D +==有

60010)100.2(15.0D 2

50.32

2=??=?-- 萃取率: %7.99%1000.100.20600600%100V V D D E o

w =?+=?+= 8.现有0.100 0 mol ·L -1某有机一元弱酸(HA )100mL ,用25.00mL 苯萃取后,取水相25.00mL ,用0.020 0 0 mol ·L -1NaOH 溶液滴定至终点,消耗20.00mL ,计算一元弱酸在两相中的分配系数K D 。

(21.00)

解:水相中有机弱酸的平衡浓度为:

1L m o l 01600.000

.2500.2002000.0]HA [-?=?=

有机相中中有机弱酸的平衡浓度为:

1L mol 336.000

.25100)01600.01000.0]HA [-?=?-=(有 有机弱酸在两相中的分配系数:0.2101600

.0336.0]HA []HA [K D ===有

9.含有纯NaCl 和KBr 混合物0.256 7 g ,溶解后使之通过H-型离子交换树脂,流出液需要用0.102 3 mol ·L -1NaOH 溶液滴定至终点,需要34.56 mL ,问混合物中各种盐的质量分数是多少?

(NaCl 61.70% , KBr 38.30%) 解:交换在H-型离子交换树脂的M +总量:mmol 535.346.341023.0n M =?=+

N aCl K Br m 2567.0m -=

KBr

KBr NaCl NaCl M M m M m n +=+ 00.119m 2567.0443.58m 10535.3NaCl NaCl 3-+=

?- m NaCl = 0.1583g

%67.61%1002567

.01583.0w NaCl =?= w KBr = 38.33%

10. 用有机溶剂从100 mL 某溶质的水溶液中萃取两次,每次用20 mL ,萃取率达89%,计算萃取体系的分配系数。假定这种溶质在两相中均只有一种存在形式,且无其他副反应。

(10.0) 解:根据假设 K D = D

对于多次萃取, n w o w 0n )V DV V (1m m 1E +-=-

= 因此 2)10020D 100(

1%89+?-= D = 10 11. 螯合物萃取体系的萃取常数,与螯合物的分配系数K D (ML n ),螯合物的分配系数K D (HR )和螯合物稳定数常有密切关系。试根据下列反应,推导出K 萃与这几个常数的关系式。

(M n+)w + n(HL)o == (ML n )o + n(H +)w

n n

[MLn][M ][L]+β= a [H ][L ]K (H L )[H L ]+-= n o D n n w [ML ]K (ML )[ML ]= o D w [H L ]K (H L )[H L ]=

解:∵ n o D n n [M L ]

K (M L )[M L ]=? ∴ o D

w [H L ]

K (H L )[H L ]=? n

n o n n o

[ML ][H ]K [M ][HL]++=萃 n n D n n n n n n D K (ML )[ML ][H ][L ]K K (HL)[HL][M ][L ]

+-+-??=???萃 n n D n n n n n n D n D n a n D n a D n D K (ML )[ML ][H ][L ]K K (HL)[M ][L ][HL]K (ML )K (HL)K K (HL)K (HL)K K (ML )()K (HL)+-+-?=????β?==β??萃

12.

13.

某含铜试样用二苯硫腙-CHCl 3光度法测定铜,称取试样0.200 0 g 溶解后

定容为100 mL ,取出10 mL 显色并定容25 mL ,用等体积的CHCl 3萃取一次,有机相在最大吸收波长处以1cm 比色皿测得吸光度为0.380,在该波长下ε=3.8×104mol ·L -1·cm -1,若分配比D=10,试计算:a.萃取百分率E ,b 。试样中铜的质量分数。[已知M r (Cu )=63.55]

(90.9% , 0.087%)

解:有机相中铜浓度为 153L m o l 100.11

108.3380.0c A c --??=??=?ε=有 等体积萃取 %9.90%1001

1010%1001D D E =?+=?+= 试样中铜的质量分数为

%087.02000.055.6310105.210100.1m m w 35Cu Cu

=??????==-- 14. 称取1.5g H-型阳离子交换树脂作成交换柱,净化后用氯化钠溶液冲洗,至甲基橙呈橙色为止。收集流出液,有甲基橙为指示剂,以0.100 0 mol ·L -1NaOH 标准溶液滴定,用去24.51mL ,计算该树脂的交换容量(mmol ·g -1)。

(1.6mmol·g -1) 解:1g mmol 6.15.151.241000.0-?=?=

交换容量 15. 将100mL 水样通过强酸型阳离子交换树脂,流出液用0.104 2 mol ·L -1的NaOH 滴定,用去41.25mL ,若水样中金属离子含量以钙离子含量表示,求水样中含钙的质量浓度(mg ·L -1)?

(8.6×102mg ·L -1) 解:水样中含钙的质量浓度为

12Ca L mg 1060.8078.40100.0225.411042.0c 2-??=???=

+ 16. 设一含有A ,B 两组分的混合溶液,已知R f (A )=0.40,R f (B )=0.60,如果色层用的滤纸条长度为20cm ,则A ,B 组分色层分离后的斑点中心相距最大距离为多少?

(4.0cm)

解: A 组分色层分离后的斑点中心相距原点的长度为:x = 0.40×20 = 8.0cm

B 组分色层分离后的斑点中心相距原点的长度为:y = 0.60×20 = 12.0cm

A,B组分色层分离后的斑点中心相距最大距离为:y – x = 4.0cm

化工分离工程复习题及答案..

化工分离过程试题库(复习重点) 第一部分填空题 1、分离作用是由于加入(分离剂)而引起的,因为分离过程是(混合过程)的逆过程。 2、分离因子是根据(气液相平衡)来计算的。它与实际分离因子的差别用(板效率)来表示。 3、汽液相平衡是处理(汽液传质分离)过程的基础。相平衡的条件是(所有相中温度压力相等,每一组分的化学位相等)。 4、精馏塔计算中每块板由于(组成)改变而引起的温度变化,可用(泡露点方程)确定。 5、多组分精馏根据指定设计变量不同可分为(设计)型计算和(操作)型计算。 6、在塔顶和塔釜同时出现的组分为(分配组分)。 7、吸收有(轻)关键组分,这是因为(单向传质)的缘故。 8、对多组分吸收,当吸收气体中关键组分为重组分时,可采用(吸收蒸出塔)的流程。 9、对宽沸程的精馏过程,其各板的温度变化由(进料热焓)决定,故可由(热量衡算)计算各板的温度。 10、对窄沸程的精馏过程,其各板的温度变化由(组成的改变)决定,故可由(相平衡方程)计算各板的温度。 11、为表示塔传质效率的大小,可用(级效率)表示。 12、对多组分物系的分离,应将(分离要求高)或(最困难)的组分最后分离。 13、泡沫分离技术是根据(表面吸附)原理来实现的,而膜分离是根据(膜的选择渗透作用)原理来实现的。 14、新型的节能分离过程有(膜分离)、(吸附分离)。 15、传质分离过程分为(平衡分离过程)和(速率分离过程)两大类。 16、分离剂可以是(能量)和(物质)。 17、Lewis 提出了等价于化学位的物理量(逸度)。 18、设计变量与独立量之间的关系可用下式来表示( Ni=Nv-Nc即设计变量数=独立变量数-约束关系 ) 19、设计变量分为(固定设计变量)与(可调设计变量)。 20、温度越高对吸收越(不利) 21、萃取精馏塔在萃取剂加入口以上需设(萃取剂回收段)。 22、用于吸收过程的相平衡关系可表示为(V = SL)。 23、精馏有(两个)个关键组分,这是由于(双向传质)的缘故。 24、精馏过程的不可逆性表现在三个方面,即(通过一定压力梯度的动量传递),(通过一定温度梯度的热量传递或不同温度物流的直接混合)和(通过一定浓度梯度的质量传递或者不同化学位物流的直接混合)。 25、通过精馏多级平衡过程的计算,可以决定完成一定分离任务所需的(理论板数),为表示塔实际传质效率的大小,则用(级效率)加以考虑。 27、常用吸附剂有(硅胶),(活性氧化铝),(活性炭)。 28、恒沸剂与组分形成最低温度的恒沸物时,恒沸剂从塔(顶)出来。

分析化学中常用的分离和富集方法教案

第8章 分析化学中常用的分离和富集方法 教学目的:学习各种常用分离和富集方法的原理、特点及应用,掌握复杂体系的 分离与分析;分离法的选择、无机和有机成分的分离与分析。 教学重点:掌握各种常用分离和富集方法的原理、特点及应用。 教学难点:萃取分离的基本原理、实验方法和有关计算。 8.1 概述 干扰组分指样品中原有杂质(溶解)或加入试剂引入的杂质,当杂质量少时可加掩蔽剂消除干扰,量大或无合适掩蔽剂时可采用分离的方法。 分离完全的含义:(1)干扰组分少到不干扰;(2)被测组分损失可忽略不计。 完全与否用回收率表示 100?分离后测得的量回收率=%原始含量 对回收率的要求随组分含量的不同而不同: 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物 蒸馏法:N -NH 4+-NH 3↑(酸吸收) 利用沸点不同,进行有机物的分离和提纯。 8.2 液-液萃取分离法 8.2.1萃取分离法的基本原理 萃取:把某组分从一个液相(水相)转移到互不相溶的另一个液相(有机相)的过程。 反萃取:有机相→水相

常用的分离和富集方法

第十章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

分离工程习题解答

[例2-3] 求含正丁烷(1)0.15、正戊烷(2)0.4、和正已烷(3)0.45(摩尔分数)之烃类混合物在0.2MPa 压力下的泡点温度。B. 露点温度 a. 解:因各组分都是烷烃,所以汽、液相均可看成理想溶液, K i 只取决于温度和压力。如计算要求不高,可使用烃类的 p -T -K 图(见图 2-1)。 假设 T = 50℃, p =0.2MPa ,查图求 K i , 组分 xi Ki yi=Kixi 正丁烷 0.15 2.5 0.375 正戊烷 0.40 0.76 0.304 正已烷 0.45 0.28 0.126 说明所设温度偏低,选正丁烷为K G ,95.0805 .076 .03==∑=i G y K K 。查p-t-k 图t 为58.7, 再设 T = 58.7℃,重复上述计算得 故泡点温度为 58.7℃。 解:B. 露点温度, 假设 T = 80℃, p =0.2MPa ,查图求 K i , 组分 xi Ki yi/Ki=xi 正丁烷 0.15 4.2 0.036 正戊烷 0.40 1.6 0.25 正已烷 0.45 0.65 0.692 1978.0≠=∑=∑∴i i i K y x 选正戊烷为参考组分,则 56.1978.06.14=?=∑?=i G x K K 由56.14=K ,查图2-1a 得t=78℃ K 1=4,K 2=1.56, K 3=0.6, 1053.175.0267.00375.0≈=++=∑ =∑∴i i i K y x

故混合物在78℃。 [例2-7] 进料流率为 1000kmol/ h的轻烃混合物,其组成为:丙烷 (1)30% ;正丁烷 (2)10% ;正戊烷 (3)15% ;正已烷 (4)45%( 摩尔 ) 。求在50 ℃和 200kPa 条件下闪蒸的汽、液相组成及流率。 解:该物系为轻烃混合物,可按理想溶液处理。由给定的T 和p ,从p - T - K 图查K i ,再采用上述顺序解法求解。 (1)核实闪蒸温度 假设50℃为进料泡点温度,则 假设50℃为进料的露点温度,则 说明进料的实际泡点和露点温度分别低于和高于规定的闪蒸温度,闪蒸问题成立。 (2)求Ψ ,令Ψ 1 =0.1(最不利的初值) =0.8785 因f (0.1)>0,应增大Ψ 值。因为每一项的分母中仅有一项变化,所以可以写出仅含未知数Ψ 的一个方程: 计算R - R 方程导数公式为:

分离工程课后习题答案-刘家祺

分离工程课后习题答案-刘家祺

分离工程习题 第一章 1. 列出5种使用ESA 和5种使用MSA 的分离操作。 答:属于ESA 分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA 分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。 5.海水的渗透压由下式近似计算:π=RTC/M ,式中C 为溶解盐的浓度,g/cm 3;M 为离子状态的各种溶剂的平均分子量。若从含盐0.035 g/cm 3的海水中制取纯水,M=31.5,操作温度为298K 。问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M =8.314×298×0.035/31.5=2.753kPa 。 所以反渗透膜两侧的最小压差应为2.753kPa 。 9.假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1) 总变更量数Nv; (2) 有关变更量的独立方程数Nc ; (3) 设计变量数Ni; (4) 固定和可调设计变量数Nx , Na ; (5) 对典型的绝热闪蒸过程,你 将推荐规定哪些变量? 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式 C 个 热量衡算式1个 相平衡组成关系式C 个 1个平衡温度等式 1个平衡压力等式 共2C+3个 故设计变量Ni =Nv-Ni=3C+6-(2C+3)=C+3 固定设计变量Nx =C+2,加上节流后的压力,共C+3个 可调设计变量Na =0 解: V -2 F z i T F P F V , y i ,T v , P v L , x i , T L , P L 习题5附图

化学分离与富集实验讲义

化学分离与富集实验讲义 昆明理工大学基础化学实验中心 2012-12

实验一表面活性剂增溶增敏的应用 实验目的 1、了解不同性质的表面活性剂在溶液的作用原理; 2、了解表面活性剂的增溶、增敏在光度法中的应用; 3、熟悉分光光度计的使用。 实验原理 表面活性剂,包括阴离子表面活性剂、阳离子表面活性剂、非离子表面活性剂、两性离子表面活性剂。(I)阴离子表面活性剂:此类表面活性剂在水溶液中会离解为带负电荷的离子(阴离子)和带正电荷的离子(阳离子),而阴离子是其表面活性的载体。(2)阳离子表面活性剂:此类表面活性物质在水溶液中亦会离解成阴、阳离子,而阳离子是其表面活性的载体。(3)非离子表面活性剂:此类表面活性物质在水溶液中不会离解成离子.在水中的溶解度主要靠它的极性基团提供的,其表面活性的载体是它的极性基团。(4)两性表面活性剂:此类表面活性物质在水溶液中,于同一分子内不但含有正电荷,而且还含有负电荷,它是根据组成和介质的pH 值来决定它的阴离子或阳离子的性质。尽管表面活性剂有不同的结构和极性基团,在不同的介质中表现出不同的特性,但对大多数的表面活性剂而言,仍有其共同的特征。表面活性剂最重要的两个特征是在界面上吸附的趋向性和在各种条件下形成具有各种结构的分子聚集体,如:胶束、反胶束。表面活性剂分子溶于水后会不停地旋转,最终找到亲水基与憎水基的恰当位置而基本固定下来,相互靠在一起,形成形状、大小不一的胶束或胶团(如图3所示)。 这种情况容易在逐渐提高表面活性剂浓度而达到某一个浓度数值以上时发生。该浓度称为临界胶束浓度(用CMC表示)。 1、增溶作用 当水溶液中表面活性剂的浓度大于临界胶束浓度时生成胶团或胶束,通过加热与搅拌,体系中难容性成分(显色剂、显色化合物)分散为很小的微粒,被包裹在大量的胶束与胶团之中而间接溶入了体系。表面活性剂的这种能增大不溶物溶解度的作用就叫增溶作用。 2、增敏作用 显色化合物在有表面活性剂胶束存在或不存在时的吸收光谱,往往有明显的不同。通常

化工分离工程试题答卷及参考答案

MESH方程。 一、填空(每空2分,共20分) 1. 如果设计中给定数值的物理量的数目等于 设计变量,设计才有结果。 2. 在最小回流比条件下,若只有重组分是非分 配组分,轻组分为分配组分,存在着两个 恒浓区,出现在精镏段和进料板 位置。 3. 在萃取精镏中,当原溶液非理想性不大时, 加入溶剂后,溶剂与组分1形成具有较强正 偏差的非理想溶液,与组分2形成 负偏差或理想溶液,可提高组分1对2的 相对挥发度。 4. 化学吸收中用增强因子表示化学反应对传质 速率的增强程度,增强因子E的定义是化学吸 收的液相分传质系数(k L)/无化学吸收的液相 分传质系数(k0L)。 5. 对普通的N级逆流装置进行变量分析,若组 分数为C个,建立的MESH方程在全塔有 NC+NC+2N+N=N(2C+3) 个。 η; 6. 热力学效率定义为= 实际的分离过程是不可逆的,所以热力学效 率必定于1。 7. 反渗透是利用反渗透膜选择性的只透过 溶剂的性质,对溶液施加压力,克服溶 剂的渗透压,是一种用来浓缩溶液的膜 分离过程。 二、推导(20分) 1. 由物料衡算,相平衡关系式推导图1单 级分离基本关系式。 ——相平衡常数; 式中: K i ψ——气相分 率(气体量/进料量)。 2. 精馏塔第j级进出物料如图1,建立

三、简答(每题5分,共25分) 1.什么叫相平衡相平衡常数的定义是什么 由混合物或溶液形成若干相,这些相保持物理平衡而共存状态。热力学上看物系的自由焓最小;动力学上看相间表观传递速率为零。 K i =y i /x i 。 2.关键组分的定义是什么;在精馏操作中, 一般关键组分与非关键组分在顶、釜的 分配情况如何 由设计者指定浓度或提出回收率的组分。 LK绝大多数在塔顶出现,在釜中量严格控制; HK绝大多数在塔釜出现,在顶中量严格控制; LNK全部或接近全部在塔顶出现; HNK全部或接近全部在塔釜出现。 3.在吸收过程中,塔中每级汽、液流量为 什么不能视为恒摩尔流 吸收为单相传质过程,吸收剂吸收了气体中的溶质而流量在下降过程中不断增加,气体的流量相应的减少,因此气液相流量在塔内都不能视为恒定。 4.在精馏塔中设中间换热器为什么会提高 热力学效率 在中间再沸器所加入的热量其温度低于塔 底加入热量的温度,在中间冷凝器所引出的 热量其温度高于塔顶引出热量的温度,相对 于无中间换热器的精馏塔传热温差小,热力 学效率高。 5.反应精馏的主要优点有那些 (1)产物一旦生成立即移出反应区;(2)反应区反应物浓度高,生产能力大;(3)反应热可由精馏过程利用;(4)节省设备投资费用;(5)对于难分离物系通过反应分离成较纯产品。 四、计算(1、2题10分,3题15分,共35分) 1. 将含苯(mol分数)的苯(1)—甲苯(2)混合物在下绝热闪蒸,若闪蒸温度为94℃,用计算结果说明该温度能否满足闪蒸要求 已知:94℃时P 1 0= P 2 0= 2. 已知甲醇(1)和醋酸甲酯(2)在常压、54℃ 下形成共沸物,共沸组成X 2 =(mol分率), 在此条件下:kPa P kPa p98 . 65 , 24 . 9002 1 = =求 该系统的活度系数。 3. 气体混合物含乙烷、丙烷、丁烷(均为摩尔分数),用不挥发的烃类进行吸收,已知吸收后丙烷的吸收率为81%,取丙烷在全塔的平均吸收因子A=,求所需理论板数;若其它条件不变,提高平均液汽比到原来的2倍,此时丙烷的吸 收率可达到多少。

生物分离工程题库+答案

《生物分离工程》题库 一、填充题 1. 生物产品的分离包括R 不溶物的去除 ,I 产物分离 ,P 纯化 和P 精 制 ; 2. 发酵液常用的固液分离方法有 过滤 和 离心 等; 3. 离心设备从形式上可分为 管式 , 套筒式 , 碟片式 等型式; 4. 膜分离过程中所使用的膜,依据其膜特性(孔径)不同可分为 微滤膜 , 超滤膜 , 纳滤膜 和 反渗透膜 ; 5. 多糖基离子交换剂包括 离子交换纤维素 和 葡聚糖凝胶离子交换剂 两大类; 6. 工业上常用的超滤装置有 板式 , 管式 , 螺旋式和 中空纤维式 ; 7. 影响吸附的主要因素有 吸附质的性质 , 温度 , 溶液pH 值 , 盐的浓度 和 吸附物的浓度与吸附剂的用量 ; 8. 离子交换树脂由 网络骨架 (载体) , 联结骨架上的功能基团 (活性基) 和 可 交换离子 组成。 9. 电泳用凝胶制备时,过硫酸铵的作用是 引发剂( 提供催化丙烯酰胺和双丙烯酰胺聚 合所必需的自由基) ; 甲叉双丙烯酰胺的作用是 交联剂(丙烯酰胺单体和交联剂甲叉双丙烯酰胺催化剂的作 用下聚合而成的含酰胺基侧链的脂肪族长链) ; TEMED 的作用是 增速剂 (催化过硫酸胺形成自由基而加速丙烯酰胺和双丙烯酰胺的 聚合 ); 10 影响盐析的因素有 溶质种类 , 溶质浓度 , pH 和 温度 ; 11.在结晶操作中,工业上常用的起晶方法有 自然起晶法 , 刺激起晶法 和 晶种起晶法 ; 12.简单地说离子交换过程实际上只有 外部扩散 、内部扩散 和化学交换反应 三步; 13.在生物制品进行吸附或离子交换分离时,通常遵循Langmuir 吸附方程,其形式为c K c q q 0+= 14.反相高效液相色谱的固定相是 疏水性强 的,而流动相是 极性强 的;常用的固定相有C 8 辛烷基 和 十八烷基C 18 ;常用的流动相有 乙腈 和 异丙醇 ; 15.超临界流体的特点是与气体有相似的 粘度和扩散系数 ,与液体有相似的 密度 ; 16.离子交换树脂的合成方法有 加聚法 和 逐步共聚法 两大类;

分离与富集

人胎盘组织造血干/祖细胞的分离富集 【摘要】为了探索从胎盘组织中分离富集造血干/祖细胞(HSPC)的标化流程,采用机械法加胶原酶消化法制备人胎盘组织单个细胞悬液,用羟乙基淀粉(6% HES)法从中分离出单个核细胞(MNC),再经免疫磁珠分选法分选出CD34-、CD34+CD38-、CD34+CD38+ 3个细胞亚群,用流式细胞术对各阶段分选细胞进行表型分析并计算分选细胞的富集度和回收率。结果表明:机械法加胶原酶消化法制备的人胎盘组织单个细胞悬液中单个核细胞(MNC)数达(12.30±3.51)×108,与脐血初始样品所含的MNC数(8.86±5.38)×108 比较差异无统计学意义,而其CD34+细胞所占百分率[(3.93±2.31)%]则明显高于脐血[(0.44±0.29)%]。胎盘组织单个细胞悬液经6% HES分离后MNC和CD34+细胞的回收率分别为(45.3±11.7)%和(51.1±9.8)%;MNC经免疫磁珠分选后,其CD34+细胞的纯度和回收率分别为(73.4±14.1)%和(52.7±11.7)%。结论:本实验所建立的"机械法加胶原酶消化法-HES分离MNC-MACS分选目标细胞"的分离纯化方法可从胎盘组织获得高丰度、高富集度、高活性的HSPC,为进一步研究胎盘HSPC提供了比较经济、效果较好的分离富集方案。【关键词】

CD34抗原;造血干细胞;胎盘;免疫磁珠细胞分选;脐血【材料和方法】 造血干/祖细胞(hematopoietic stem/ progenitor cells,HSPC)存在于人骨髓、动员的外周血和脐血等组织中。新近,有学者提出人胎盘组织中含有比脐血更为丰富的造血干细胞;人胎盘组织中CD34+ HSPC的百分率是脐血的8.8倍,并且人胎盘组织中免疫细胞成分较少,极有希望成为今后HSPC 的新来源。从人胎盘组织分离出高活性、高丰度的HSPC是对其进行相关生物学特性等研究的前提,目前尚无有关人胎盘组织HSPC分离的优化方案可循。本研究旨在建立从胎盘组织中分离、 纯化HSPC的标化流程,为今后人胎盘组织HSPC的深入研究打下良好的基础。 主要试剂 胶原酶(collagenase Ⅳ)、羟乙基淀粉(hydroxyethyl starch,HES)为Sigma公司产品。RPMI 1640、新生牛血清(FCS)购自于Gibco公司。荧光标记单克隆抗体 CD38-FITC、CD34-PE及CD34绝对计数试剂盒为Becton Dickinson公司产品。免疫磁珠细胞分选试剂盒购自Miltenyi Biotec公司。

常用的分离和富集方法

第十一章 常用的分离和富集方法 【教学目标】 1.学习各种常用分离和富集方法的原理、特点及应用 2.掌握复杂体系的分离与分析 3.了解分离法的选择、无机和有机成分的分离与分析 【重点难点】 掌握各种常用分离和富集方法的原理、特点及应用 【课时安排】计划4课时 【教学内容】共五节 第一节 概述 一、回收率 100 分离后测得的量回收率=%原始含量 对回收率的要求(随组分含量的不同而不同): 含量(质量分数) 回收率 1%以上 >99.9% 0.01-1% >99% 0.01%以下 90-95% 常用的分离方法:沉淀、挥发和蒸馏、液-液萃取、离子交换、色谱等。 8.1.1沉淀分离法 1.常量组分的分离(自己看书:5分钟) (1) 利用生成氢氧化物 a. NaOH 法 b. NH3法(NH 4+存在) c. 有机碱法 六次(亚)甲基四胺 pH =5-6 d. ZnO 悬浮液法 pH =6 (2) 硫化物沉淀 (3) 有机沉淀剂 2.痕量组分的共沉淀分离和富集 (1) 无机共沉淀分离和富集 a. 利用表面吸附进行共沉淀 CuS 可将0.02ug 的Hg 2+从1L 溶液中沉淀出 b. 利用生成混晶 (2) 有机共沉淀剂 灼烧时共沉淀剂易除去,吸附作用小,选择性高,相对分子质量大,体积也大,分离效果好。 a. 利用胶体的凝聚作用进行共沉淀:辛可宁,丹宁,动物胶b. 利用形成离子缔合物进行共沉淀:甲基紫,孔雀绿,品红,亚甲基蓝c. 利用“固体萃取剂”进行共沉淀。 8.1.2挥发和蒸馏分离法 挥发法:选择性高 As 的氢化物,Si 的氟化物,As 、Sb 、Sn 、Ge 的氯化物

《分离工程》试卷及答案

一、填空(每空2分,共20分) 1. 如果设计中给定数值的物理量的数目等于 设计变量 ,设计才有结果。 2. 在最小回流比条件下,若只有重组分是非分配组分,轻组分为分配 组分,存在着两个恒浓区,出现在 精镏段和进料板 位置。 3. 在萃取精镏中,当原溶液非理想性不大时,加入溶剂后,溶剂与组分 1形成具有较强 正 偏差的非理想溶液,与组分2形成 负偏差或理想 溶液 ,可提高组分1对2的相对挥发度。 4. 化学吸收中用增强因子表示化学反应对传质速率的增强程度,增强因子E 的定义是 化学吸收的液相分传质系数(k L )/无化学吸收的液相分传质系数(k 0L ) 。 5. 对普通的N 级逆流装置进行变量分析,若组分数为C 个,建立的MESH 方程在全塔有 NC+NC+2N+N=N(2C+3) 个。 6. 热力学效率定义为=η ; 实际的分离过程是不可逆的,所以热力学效率必定 于1。 7. 反渗透是利用反渗透膜选择性的只透过 溶剂 的性质,对溶液施加 压力,克服 溶剂的渗透压 ,是一种用来浓缩溶液的膜分离过程。 二、推导(20分) 1. 由物料衡算,相平衡关系式推导图1单级分离基本关系式。 1(1) 0(1) 1c i i i i z K K ψ=-=-+∑ 式中: K i ——相平衡常数; ψ——气相分率(气体量/进料量) 。 2. 精馏塔第j 级进出物料如图1,建立MESH 方程。

— 三、简答(每题5分,共25分) 1.什么叫相平衡?相平衡常数的定义是什么? 由混合物或溶液形成若干相,这些相保持物理平衡而共存状态。 热力学上看物系的自由焓最小;动力学上看相间表观传递速率为零。 K i =y i /x i 。 2.关键组分的定义是什么;在精馏操作中,一般关键组分与非关键 组分在顶、釜的分配情况如何? 由设计者指定浓度或提出回收率的组分。 LK绝大多数在塔顶出现,在釜中量严格控制; HK绝大多数在塔釜出现,在顶中量严格控制; LNK全部或接近全部在塔顶出现; HNK全部或接近全部在塔釜出现。 3.在吸收过程中,塔中每级汽、液流量为什么不能视为恒摩尔流? 吸收为单相传质过程,吸收剂吸收了气体中的溶质而流量在下降过程中不断增加,气体的流量相应的减少,因此气液相流量在塔内都不能视为恒定。 4.在精馏塔中设中间换热器为什么会提高热力学效率? 在中间再沸器所加入的热量其温度低于塔底加入热量的温度,在中间冷凝器所引出的热量其温度高于塔顶引出热量的温度,相对于无中间换热器的精馏塔传热温差小,热力学效率高。 5.反应精馏的主要优点有那些? (1)产物一旦生成立即移出反应区;(2)反应区反应物浓度高,生产能力大;(3)反应热可由精馏过程利用;(4)节省设备投资费用;(5)对于难分离物系通过反应分离成较纯产品。 四、计算(1、2题10分,3题15分,共35分) 1. 将含苯0.6(mol分数)的苯(1)—甲苯(2)混合物在101.3kPa下绝热闪蒸,若闪蒸温度为94℃,用计算结果说明该温度能否满足闪蒸要求? 已知:94℃时P10=152.56kPa P20=61.59kPa 2. 已知甲醇(1)和醋酸甲酯(2)在常压、54℃下形成共沸物,共沸组成X2=0.65(mol分率), 在此条件下:kPa P kPa p98 . 65 , 24 . 9002 1 = = 求该系统的活度系数。 3. 气体混合物含乙烷0.50、丙烷0.4、丁烷0.1(均为摩尔分数),用不挥发的烃类进行吸收,已知吸收后丙烷的吸收率为81%,取丙烷在全塔的平均吸收因子A=1.26,求所需理论板数;若其它条件不变,提高平均液汽比到原来的2倍,此时丙烷的吸收率可达到多少。

分析化学中常用的分离富集方法

分析化学中常用的分离富集方法 思考题 11-1 在分析化学中,为什么要进行分离富集?分离时对常量和微量组分的回收率要求如何?答:在定量分析,对于一些无法通过控制分析条件或采用掩蔽法来消除干扰,以及现有分析方法灵敏度达不到要求的低浓度组分测定,必须采用分离富集方法。换句话说,分离方法在定量分析中可以达到消除干扰和富集效果,保证分析结果的准确性,扩大分析应用范围。在一般情况下,对常量组分的回收率要求大于99.9%,而对于微量组分的回收率要求大于99%。样品组分含量越低,对回收率要求也降低。 11-2 常用哪些方法进行氢氧化物沉淀分离?举例说明。 答:在氢氧化物沉淀分离中,沉淀的形成与溶液中的[OH-]有直接关系。因此,采用控制溶液中酸度可使某些金属离子彼此分离。在实际工作中,通常采用不同的氢氧化物沉淀剂控制氢氧化物沉淀分离方法。常用的沉淀剂有: a 氢氧化钠:NaOH是强碱,用于分离两性元素(如Al3+,Zn2+,Cr3+)与非两性元素,两性元素的含氧酸阴离子形态在溶液中,而其他非两性元素则生成氢氧化物胶状沉淀。 b 氨水法:采用NH4Cl-NH3缓冲溶液(pH8-9),可使高价金属离子与大部分一、二金属离子分离。 c 有机碱法:可形成不同pH的缓冲体系控制分离,如pH5-6六亚甲基胺-HCl缓冲液,常用于Mn2+,Co2+,Ni2+,Cu2+,Zn2+,Cd2+与Al3+,Fe3+,Ti(IV)等的分离。 d ZnO悬浊液法等:这一类悬浊液可控制溶液的pH值,如ZnO悬浊液的pH值约为6,可用于某些氢氧化物沉淀分离。 11-3 某矿样溶液含Fe3+,A13+,Ca2+,Mg2+,Mn2+,Cr3+,Cu2+和Zn2+等离子,加入NH4C1和氨水后,哪些离子以什么形式存在于溶液中?哪些离子以什么方式存在于沉淀中?分离是否完全? 答:NH4Cl与NH3构成缓冲液,pH在8-9间,因此溶液中有Ca2+,Mg2+,,Cu(NH3)42-、Zn(NH3)42+等离子和少量Mn2+,而沉淀中有Fe(OH)3,Al(OH)3和Cr(OH)3和少量Mn(OH)2沉淀。试液中Fe3+,A13+,Cr3+可以与Ca2+,Mg2+,Cu2+和Zn2+等离子完全分开,而Mn2+分离不完全。 11-4 如将上述矿样用Na2O2熔融,以水浸取,其分离情况又如何? 答:Na2O2即是强碱又是氧化剂,Cr3+、Mn2+分别被氧化成CrO42-和MnO4-。因此溶液有AlO22-,ZnO22-,MnO4-和CrO42-和少量Ca2+,在沉淀中有:Fe(OH)3,Mg(OH)2和Cu(OH)2和少量Ca(OH)2

分离与富集

分离与富集 读书报告 题名:共沉淀分离富集法的应用与新进展姓名:樊红霞 指导老师:陈建荣 学院:化学与生命科学学院 专业:分析化学 班级:10级 学号:2010210638 成绩:

共沉淀分离富集法的应用与新进展 姓名:樊红霞学号:2010210638 专业:分析化学 摘要:对共沉淀分离富集法的应用与新进展进行了综述。近年来,由于其与固体进样分析仪器的结合而得到了迅速发展,从自然水样到高纯和其它特殊材料曲分析,从空属元素到非空属乃至有机物的测定,越来越多、越来越好的有机和无机的共沉淀体系正被研究和广泛应用。关键词:共沉淀;分离;富集;进展 引言 沉淀法是一种传统的分离富集方法,但共沉淀法能在60年代迅速发展得益于Luke C L 的技能:在溶液中加入沉淀剂和一点点金属(称为载体)离子共沉淀溶液中的痕量金属元素,另一方面得益于其与具有高选择性的固体进样仪器的结合,使富集倍数极大提高而被应用于超痕量分析,近年来又与流动注射分析结合克服了耗时多的缺点。科学技术的发展对共沉淀方法提出了更高要求,新型沉淀剂的研究,两种或数种沉淀剂的联合使用以及传统沉淀剂与其他分离富集技术的联用等方面的研究非常活跃。另外由于其操作相对简便,实验条件容易满足,经济可行,正在被广泛应用于材料物质的改性方面,利用共沉淀合成纳米材料已见报道。因此探索新型高选择性共沉淀剂和将理论与经验规律结合,寻找特定的沉淀剂和与之相配的载体离子以及寻求简单、快速的共沉淀技术是最新的发展动向。 1新共沉淀捕集剂的研究与应用[1] Luke C L等最初使用的沉淀剂主要是金属氢氧化物和二乙基硫代氨基甲酸盐,研究了它们共沉淀痕量金属离子的实验条件。而后30年间,大多数研究致力于开发新的共沉淀捕集剂,以适应各种式样中不同组分的分离富集并达到尽可能高的回收率。 1.1新的金属氢氧化物和其它无机共沉淀捕集剂 金属氢氧化物作为共沉淀剂捕集剂以其不需要有机试剂、易于离心分离以及回收率高等优点而得到广泛应用,最早使用和用的最多的是Fe(OH)3、Al(OH)3、Mg(OH)2,进入80年代以后,新的无机共沉淀捕集剂不断涌现,日本学者在这方面处于领先地位,Yoshimura W等对Zr(OH)4、Harada Y等对La(OH)3、Ueda J等对Hf(OH)4做了较多研究。日本学者还对Be(OH)2、Ga(OH)3、Y(OH)3、Sn(OH)4作为共沉淀捕集剂进行了应用研究。其它的无机共沉淀捕集剂还有GaPO4、碱式碳酸锌、BaSO4、AlPO4等。以上这些新的无机氢氧化物共沉淀捕集剂大多以稀有元素作为载体离子,比起以前的无机捕集剂具有以下优点:

《生化分离工程》思考题与答案

第一章绪论 1、何为生化分离技术?其主要研究那些容? 生化分离技术是指从动植物组织培养液和微生物发酵液中分离、纯化生物产品的过程中所采用的方法和手段的总称。 2、生化分离的一般步骤包括哪些环节及技术? 一般说来,生化分离过程主要包括4个方面:①原料液的预处理和固液分离,常用加热、调PH、凝聚和絮凝等方法;②初步纯化(提取),常用沉淀、吸附、萃取、超滤等单元操作;③高度纯化(精制),常选用色谱分离技术;④成品加工,有浓缩、结晶和干燥等技术。 3、生化分离工程有那些特点,及其重要性? 特点:1、目的产物在初始物料(发酵液)中的含量低;2、培养液是多组分的混合物,除少量产物外,还有大量的细胞及碎片、其他代物(几百上千种)、培养基成分、无机盐等;3、生化产物的稳定性低,易变质、易失活、易变性,对温度、pH值、重金属离子、有机溶剂、剪切力、表面力等非常敏感;4、对最终产品的质量要求高 重要性:生物技术产品一般存在于一个复杂的多相体系中。唯有经过分离和纯化等下游加工过程,才能制得符合使用要求的产品。因此产品的分离纯化是生物技术工业化的必需手段。在生物产品的开发研究中,分离过程的费用占全部研究费用的50%以上;在产品的成本构成中,分离与纯化部分占总成本的40~80%;精细、药用产品的比例更高达70~90%。显然开发新的分离和纯化工艺是提高经济效益或减少投资的重要途径。 4、生物技术下游工程与上游工程之间是否有联系?

它们之间有联系。①生物工程作为一个整体,上游工程和下游工程要相互配合,为了利于目的产物的分离与纯化,上游的工艺设计应尽量为下游的分离纯化创造条件,例如,对于发酵工程产品,在加工过程中如果采用液体培养基,不用酵母膏、玉米浆等有色物质为原料,会使下游加工工程更方便、经济;②通常生物技术上游工程与下游工程相耦合。发酵-分离耦合过程的优点是可以解除终产物的反馈抑制效应,同时简化产物提取过程,缩短生产周期,收到一举数得的效果。 5、为何生物技术领域中往往出现“丰产不丰收”的现象? 第二章预处理、过滤和细胞破碎 1、发酵液预处理的目的是什么?主要有那几种方法? 目的:改变发酵液的物理性质,加快悬浮液中固形物沉降的速率;出去大部分可溶性杂质,并尽可能使产物转入便于以后处理的相中(多数是液相),以便于固液分离及后提取工序的顺利进行。 方法:①加热法。升高温度可有效降低液体粘度,从而提高过滤速率,常用于粘度随温度变化较大的流体。控制适当温度和受热时间,能使蛋白质凝聚形成较大颗粒,进一步改善发酵液的过滤特性。使用加热法时必须注意加热温度必须控制在不影响目的产物活性的围,对于发酵液,温度过高或时间过长可能造成细胞溶解,胞物质外溢,而增加发酵液的复杂性,影响其后的产物分离与纯化; ②调节悬浮液的pH值,pH直接影响发酵液中某些物质的电离度和电荷性质,适当调节pH可以改善其过滤特性;③凝聚和絮凝;④使用惰性助滤剂。 2、何谓絮凝?何谓凝聚?何谓混凝?各自作用机理是什么? 3、常用的凝聚剂有哪些?常用的絮凝剂有哪些?

常用的分离和富集方法

第十一章常用的分离和富集方法 1.试说明定量分离在定量分析中的重要作用。 答:在实际的分析工作中,遇到的样品往往含有各种组分,当进行测定时常常彼此发生干扰。不仅影响分析结果的准确度,甚至无法进行测定,为了消除干扰,较简单的方法是控制分析条件或采用适当的掩蔽剂,但在有些情况下,这些方法并不能消除干扰,因此必须把被测元素与干扰组分分离以后才能进行测定。所以,定量分离是分析化学的主要内容之一。 2.何谓回收率?在回收工作中对回收率要求如何? 答:回收率是用来表示分离效果的物理量,回收率越大,分离效果越好,一般要求R A>90~95%即可。 3.何谓分离率?在分析工作中对分离率的要求如何? 答:分离率表示干扰组分B与待测组分A的分离程度,用表示S B/A,S B/A越小,则R B越小,则A与B之间的分离就越完全,干扰就消除的越彻底。通常,对常量待测组分和常量干扰组分,分离率应在0.1%以下;但对微量待测组分和常量干扰组分,则要求分离率小于10-4%。 4.有机沉淀剂和有机共沉淀剂有什么优点。 答:优点:具有较高的选择性,沉淀的溶解度小,沉淀作用比较完全,而且得到的沉淀较纯净。沉淀通过灼烧即可除去沉淀剂而留下待测定的元素。 5.何谓分配系数、分配比?二者在什么情况下相等? 答:分配系数:是表示在萃取过程中,物质进入有机溶剂的相对大小。 分配比:是该物质在有机溶剂中存在的各种形式的浓度之和与在水中各存在形式的浓度之和的比值,表示该物质在两相中的分配情况。 当溶质在两相中仅存在一种形态时,二者相等。 6.为什么在进行螯合物萃取时控制溶液的酸度十分重要? 答:在萃取过程中,溶液的酸度越小,则被萃取的物质分配比越大,越有利于萃取,但酸度过低则可能引起金属离子的水解,或其他干扰反应发生,应根据不同的金属离子控制适宜的酸度。 7.解释下列各概念:交联度,交换容量,比移值。 答:交联度:在合成离子交换树脂的过程中,将链状聚合物分子相互连接而形成网状结构的过程中,将链状聚合物分子连接而成网状结构的过程称为交联。 交换容量:表示每克干树脂所能交换的相当于一价离子的物质的量。是表征树脂交换能力大小的特征参数,通常为3~6 mmol/g。 比较值R f:表示某组分再滤纸上的迁移情况。 8.在离子交换分离法中,影响离子交换亲和力的主要因素有那些? 答:离子亲和力的大小与离子所带电荷数及它的半径有关,在交换过程中,价态愈高,亲和力越大,对于同价离子其水化半径越大,(阳离子原子序数越大)亲和力越小。 9.柱色谱、纸色谱、薄层色谱和离子交换色谱这几种色谱分离法的固定相和流动相各是什么?试比较它们分离机理的异同。

分离工程课后习题答案刘家祺

分离工程习题 第一章 1.列出5种使用ESA和5种使用MSA的分离操作。 答:属于ESA分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。 5.海水的渗透压由下式近似计算:π=RTC/M,式中C为溶解盐的浓度,g/cm3;M为离子状态的各种溶剂的平均分子量。若从含盐0.035 g/cm3的海水中制取纯水,M=31.5,操作温度为298K。问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M=8.314×298×0.035/31.5=2.753kPa。 所以反渗透膜两侧的最小压差应为2.753kPa。 9.假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1)总变更量数Nv; (2)有关变更量的独立方程数Nc; (3)设计变量数Ni; (4)固定和可调设计变量数Nx , Na; (5)对典型的绝热闪蒸过程,你将推荐规定哪些变量? 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式C个 热量衡算式1个 相平衡组成关系式C个 1个平衡温度等式 1个平衡压力等式共2C+3个 故设计变量Ni =Nv-Ni=3C+6-(2C+3)=C+3 固定设计变量Nx=C+2,加上节流后的压力,共C+3个 可调设计变量Na=0 解: (1)Nv = 3 ( c+2 ) (2)Nc 物 c

能 1 相 c 内在(P,T) 2 Nc = 2c+3 (3)Ni = Nv – Nc = c+3 (4)Nxu = ( c+2 )+1 = c+3 (5)Nau = c+3 –( c+3 ) = 0 思路2: 输出的两股物流看成是相平衡物流,所以总变量数Nv=2(C+2) 独立方程数Nc:物料衡算式C个,热量衡算式1个,共C+1个 设计变量数Ni=Nv-Ni=2C+4-(C+1)=C+3 固定设计变量Nx:有C+2个加上节流后的压力共C+3个 可调设计变量Na:有0 11.满足下列要求而设计再沸汽提塔见附图,求: (1)设计变更量数是多少? (2)如果有,请指出哪些附加变量需要规定? 解:N x u 进料c+2 压力9 c+11=7+11=18 N a u 串级单元 1 传热 1 合计 2 N V U = N x u+N a u = 20 附加变量:总理论板数。 16.采用单个精馏塔分离一个三组分混合物为三个产品(见附图),试问图中所注设计变量能否使问题有唯一解?如果不,你认为还应规定哪个(些)设计变量? 解: N X U进料c+2 压力40+1+1 c+44 = 47 N a u3+1+1+2 = 7 N v u = 54 设计变量:回流比,馏出液流率。 第二章 4.一液体混合物的组成为:苯0.50;甲苯0.25;对二甲苯0.25(摩尔分率)。分别

第十一章 常用分离富集方法

第八章 分析化学中常用的分离和富集方法 1. 0.020 mol/L Fe 2+溶液,加NaOH 进行沉淀时,要使其沉淀达99.99%以上。试问溶液中的pH 至少应为多少?若考虑溶液中除剩余Fe 2+外,尚有少量FeOH + (β=1×104),溶液的pH 又至少应为多少?已知16sp 108-?=K 。 解: 30.9H mol/L 100.2% 01.0020.0108][OH ]][OH [Fe 1) (516sp 22=??=??=?=--- -+p K () 34 .9H mol/L 1021.22 1044104104][OH 0104-][OH 104][OH 10 8][OH ] [OH 10110.01%0.020]][OH [Fe 2)(510 2 6610-6216 2-4sp 22=??=??+?+ ?= ?=??-??=???+?? =----- ------+p K 2. 若以分子状态存在99%以上时可通过蒸馏分离完全,而允许误差以分子状态存在1%以下,试通过计算说明在什么酸度下可挥发分离甲酸和苯酚? 解: 74 .5H mol/L 1084.1]H [%110 ]H [] H []H []H [%195.7H mol/L 1011.1]H [% 9910]H [] H []H []H [%9995 .974.3674 .3HCOOH a,89.95 OH H C a,OH H C a,HCOOH a,5656=??=?=+=+=??=?=+=+==-+-++++-+-++++p K p K pK pK 以分子状态存在,则甲酸以分子状态存在,则苯酚 因此可挥发分离甲酸和苯酚的酸度为5.74-7.95 3. 某纯的二元有机酸H 2A ,制备为纯的钡盐,称取0.3460 g 盐样,溶于100.0 mL 水中,将溶液通过强酸性阳离子交换树脂,并水洗,流出液以0.09960 mol/L NaOH 溶液20.20 mL 滴至终点,求有机酸的摩尔质量。 解:

相关主题
文本预览
相关文档 最新文档