当前位置:文档之家› Online-Organic Pollution Removal from TNT Red Water Using Cu-Impregnated Activated Coke

Online-Organic Pollution Removal from TNT Red Water Using Cu-Impregnated Activated Coke

Online-Organic Pollution Removal from TNT Red Water Using Cu-Impregnated Activated Coke
Online-Organic Pollution Removal from TNT Red Water Using Cu-Impregnated Activated Coke

Organic Pollution Removal from TNT Red Water Using Cu-Impregnated Activated Coke

Pan Hu &Yihe Zhang &Fengzhu Lv &Xinke Wang &Fangfang Wei &Xianghai Meng &Shaobin Jiang

Received:21November 2013/Accepted:19March 2014#Springer International Publishing Switzerland 2014

Abstract The novel adsorbent Cu-impregnated activat-ed coke (CAC)has been successfully prepared using a Cu(NO 3)2solution impregnated activated coke (AC).The optimum preparation conditions of CAC are the concentration of Cu(NO 3)2of 0.1mol/L,pH of 6,loading time of 4h,and loading temperature of 333K.The characterizations of CAC are analyzed by N 2adsorption,X-ray diffraction,scanning electron microscope,and en-ergy dispersive X-ray spectroscopy.Also the adsorption behavior of CAC to organic materials in TNT red water is studied.The adsorption data are simulated by Freundlich isotherm and Langmuir isotherm.Below 333K Freundlich isotherm is more suitable,while Langmuir isotherm model is more fitted when the temperature is higher than 333K.The adsorption kinetics follows a pseudo second-order model,and thermodynamic analy-sis indicates an endothermic and spontaneous adsorption processes,and the process appears to be controlled by the chemisorption process.Chemical oxygen demand of 85.34%can be removed as CAC prepared under opti-mized conditions is used as absorbent.In summary,CAC has excellent absorption characteristics and can be used in the removal of organic materials from TNT red water.

Keywords Organic pollutions .TNT red water .Cu impregnation .Activated coke

1Introduction

TNT red water,which is produced during the purifica-tion of crude TNT by sodium sulfate,is dark red and a hazardous solution containing dissolved dinitrotoluene sulfonates (mainly 2,4-dinitrotoluene-3-sulfonate and 2,4-dinitrotoluene-5-sulfonate),trinitrotoluene,nitrotoluene,and dinitrotoluene as well as other by-products (Nefso et al.2005).If it is discharged without effective treatment,contamination of soil and under-ground water poses health and environmental hazards (Rajagopa and Kapoor 2001).Adsorption is the most effect and practical method to elimanate the hazards.Many absorbents have been used to deal with TNT red water,such as activated carbon (Zhang et al.2012),activated coke (AC)(Zhang et al.2011),bamboo char-coal (Fu et al.2012),macroporous polystyrene (Zhao et al.2013;Zhang et al.2012;Meng et al.2012;Meng et al.2013)and so on.However,due to the particularity of organic pollutants in TNT red water,the removal efficient is not high in general and leads to the high cost of processing.So there is much research on developing more efficient and economical adsorbents to treat TNT red water.AC is an adsorbent commonly used as a substitute of activated carbon because of its lower cost and availability.It is reported that the relative removal of COD is only 64.8%,and adsorption efficiency is quite low as 8g of AC extraction of organic pollutants from

Water Air Soil Pollut (2014)225:1936DOI

10.1007/s11270-014-1936-7

P.Hu :Y .Zhang (*):F.Lv (*):X.Wang :F.Wei :X.Meng :S.Jiang

National Laboratory of Mineral Materials,School of Materials Science and Technology,China University of Geosciences,10083Beijing,China e-mail:zyh@https://www.doczj.com/doc/8d15095195.html, e-mail:lfz619@https://www.doczj.com/doc/8d15095195.html,

50ml of TNT red water(Zhang et al.2011).Hence, efficiency improvement is needed before the process becomes viable.

The incorporation of metal ions is one of the means to improve efficiency,Wei et al.reported a high extraction of organic pollutants from TNT red water by metal-impregnated lignite active carbon(Wei et al.2011). However,metal-impregnated AC has not been studied. In this work,copper compound is successfully incorporated into AC to form CAC.The optimum preparation conditions of CAC have been studied, and the adsorption process of organic pollutions in TNT red water by CAC is also discussed.The results show that the extraction efficiency improvement of CAC to organic pollutions in TNT red water is quite obvious.The synthesis process of CAC and removal of organic pollutions from TNT red water is shown in Fig.1.

2Experimental Details

2.1Materials

TNT red water,which was reddish brown,opaque, and with a high concentration of dinitrotoluene sulfonates(2,4-dinitrotoluene-3-sulfonate and2,4-dinitrotoluene-5-sulfonate)and high chemical oxy-gen demand(COD),was supplied by Dongfang Chemical Corporation(Hubei Province,China). The physical and chemical properties of TNT red water were shown in Table1.The AC made from lignite was obtained from Datang Yima coke plant (Henan Province,China),and Table2shows the physical properties of AC,CAC,and CAC after adsorption.All the other reagents used in this study were analytical grade,and distilled water was used to prepare the solutions.

2.2Preparation of CAC

In order to determine the optimal preparation conditions for the CAC adsorbent,the effects of the concentration of Cu(NO3)2solutions(0.03,0.05,0.08,0.10,0.13, 0.15,0.2,0.25,0.30,0.50,0.70,and1.00mol/L),pH (pH=1~4),loading time(1~10h),and solidified tem-perature(293,298,303,313,323,333,343,and353K) were investigated.The pH of the reaction system was adjusted by0.1mol/L of HNO3and0.1mol/L of NaOH.

The preparation process of CAC under optimum conditions is as follows:10g of AC was added to 100mL of Cu(NO3)2·3H2O solution(0.1mol/L).It was shocked in a SHA-BA water bath at333K temper-ature for4h and150rpm.pH of the solution was adjusted to6.In the end,the samples were filtered and dried at393K for8h and then solidified for12h at 573K to obtain the CAC.

2.3Adsorption Experiments

The adsorption experiments were carried out in100ml of conical flasks.A certain amount of the adsorbent was introduced into25mL of TNT red water in the conical flasks.Then,these flasks were shaken in a SHA-BA water bath at a speed of150rpm for a certain time,under a certain temperature.Then,the samples were filtered and dried in vacuum at70°C for8h.The filtrate was analyzed by the COD rapid detector(5B-6,Lian-Hua Tech.Co.,China)with a precision of±5%to determine the adsorption efficiency of adsorbents.Relative remov-al of COD(%)of the organic pollutions and q e(mg/g)in the TNT red water absorbed by CAC were calculated based on Eqs.(1)and(2):

Relative removal of COD%

eT?

COD O?COD e

COD O

?100%

e1Tq e?

COD o?COD e

eTV

e2T

Where COD o(mg/L)and COD e are the COD of the initial TNT red water and treated red water after reaching equilibrium,respectively.V(L)is the volume of the TNT red water and W(g)is the absorbent weight. At any time,the amount of COD and the absorbed q t (mg/g)by the CAC can be calculated using a similar relationship based on Eq.(2).

2.4Characterization

The surface area,pore volume,and average pore diame-ter of AC and CAC were measured by N2adsorption isotherm using a micromeritic instrument(ASIQM0002-4,USA.).X-ray diffraction(XRD,Rigaku D/max-rA), scanning electron microscope(SEM,JSM-6,301F),and energy dispersive X-ray spectroscopy(EDX)were car-ried out to characterize the structure and morphologies of CAC.

1936,Page2of10Water Air Soil Pollut(2014)225:1936

3Results and Discussion

3.1Optimal Preparation Conditions for the CAC Adsorbent

3.1.1Effects of Cu 2+Concentration

The effects of the Cu 2+

concentration are significant to prepare the CAC adsorbent.As shown in Fig.2,the relative removal of COD increases from 48.08to 79.52%as the concentration of Cu 2+increases from 0to 0.1mol/L.However,the reduction rate remains stable when the concentration of Cu 2+increases from 0.1to 1.0mol/L.This is because although a higher Cu 2+concentration can increase the loading capacity,the total active sites on the AC are limited,and the number of

active sites on the AC for Cu 2+depends mainly on the number of metal particles and partially acid functional groups that exist on the AC.So the best concentration of Cu 2+for AC loading is 0.1mol/L,and the maximum relative removal of COD by CAC is 79.52%.3.1.2Effects of pH

The pH of aqueous solution was one of the most impor-tant operational parameters that determined the adsorp-tion capacity of AC to Cu 2+.Figure 3shows the effects of pH on the adsorption of organic materials from TNT red water;the removal efficiency of CAC is higher under acidic conditions than under alkaline conditions.The relative removal of COD slowly increases as the pH rises from 1to 6,due to the higher mobility of H +in

the

Fig.1Synthesis process of CAC and the removal of organic pollutions from TNT red water

T able 1Properties of TNT red water pH

COD [mg/L]

Solid content [mg/L]2,4-DNT-3-SO 3ˉ[mg/L]2,4-DNT-5-SO 3ˉ[mg/L]TNT [mg/L]

Turbidity

Chromaticity

7.802,3436,200

558

526

132.3180.3

Reddish brown 1×30times

Water Air Soil Pollut (2014)225:1936Page 3of 10,1936

solution favor its adsorption onto the surface of CAC which improves the COD reduction efficiency. However,the adsorption efficiency decreases markedly as the pH increases from6to14,since Cu2+forms Cu(OH)2in an alkaline condition,leading to less active sites,further resulting in the decrease of the adsorption efficiency finally(Li et al.2010).Thus,pH of6is used for further study.

3.1.3Effects of Loading Time

Figure4shows the adsorption efficiency of CAC pre-pared in different loading times.The relative removal of COD of the TNT red water increases rapidly in the initial4h,due to the increased incorporation of Cu2+ on the AC,and enough adsorption sites on the AC are formed.The relative removal of COD by CAC formed by losing4h is82.67%.After4h,the reduction rate remains stable and it can be explained by the loaded amount of Cu2+which reaches an equilibrium as the adsorption sites are gradually saturated;thus,4h is chosen as optimal loading time for a further prepared experiment.Meanwhile,compared with the relative re-moval of COD of CAC,the relative removal of COD (44.78%)to TNT red water using the AC is far less than CAC,it indicates that more organic pollutions are absorbed by CAC and finally lead to de-colorization.

3.1.4Effects of T emperature

The temperature is a very important factor to loading experiments.In the study,the loading experiments are conducted at different temperatures,and the results are shown in Fig.5.The removal efficiency increases with the rise of temperature,so it illustrates that the loading process is endothermic.On one hand,at a higher tem-perature,the kinetic energy of Cu2+ions is high;there-fore,contact between Cu2+ions and the active sites of AC is sufficient,leading to an increase in loading effi-ciency.Similar trends were also observed by other re-searchers for aqueous phase adsorption(Ozcimen and Ersoy-Mericboyu2009).On the other hand,since an increase in loading capacities of the adsorbents at a higher temperature may also be attributed to the enlarge-ment of pore size(Moreno-Castilla et al.2010). However,the trend does not continue after reaching a certain temperature,and the increase in the relative removal of COD is no longer obvious.This can be

T able2Physical properties of AC and CAC

Particle size(mm)BET(m2g?1)Pore volume(cm3g?1)Aperture(um)Bulk density(g cm?3)Porosity(%)

AC0.90–2.00439.70.271≤403.00.7045

CAC 1.01–2.30557.40.190≤333.00.7240

CAC after adsorption 2.20–2.50121.30.090≤219.0 1.02

15

Fig.2Effects of Cu2+concentration on the removal of COD from TNT red water by

CAC Fig.3Effects of pH on the removal of COD from TNT red water by CAC

1936,Page4of10Water Air Soil Pollut(2014)225:1936

explained by the offset of desorption if the tem-perature exceeds a threshold.When the loading temperature reaches333K(Namasivayam and Yamuna1995),the increase in the relative removal of COD is no longer apparent.Consequently,the temperature of333K is chosen for the absorbent preparation.

3.2XRD and SEM of CAC Before and After Adsorption

XRD and SEM are conducted on CAC prepared under the optimized conditions.The XRD patterns in Fig.6a indicate that there are some impurities(SiO2and CaSO4·H2O)in AC.Figure6b,c shows the existence of Cu4SO4(OH)6·H2O in CAC as well as CAC after adsorption.It may be due to Cu(NO3)2which is unstable

and easy to break down at a high temperature and, eventually,formed a stable posnjakite(Cu4SO4(OH)6·H2O)with SO42?in solution.Figure7a,b shows that the AC had a porous and coarse surface.After modification, an amount of Cu4SO4(OH)6·H2O particles attach on the surface of CAC(Fig.7c,d);the particle size will get bigger and the pore volume and aperture will decrease,it can be explained using the figures in Table2.After adsorption,the porous structure of CAC(Fig.7e,f)nearly disappears, and the surfaces of CAC are covered by a layer of matters which can be inferred to be organic materials. The EDX analysis shown as insets in Fig.7d,f demon-strates that the Cu element exists in CAC and CAC after adsorption.3.3FTIR of CAC Before and After Adsorption Figure8depicts the Fourier transform infrared spectros-copy(FTIR)spectrum taken from AC,CAC before,and after adsorption.After adsorption,the peaks at3,381 and1,073cm?1are obviously enhanced,the peak at 3,381cm?1is the stretching of O–H in free phenols or those that do not participate in hydrogen bonds and phenols with intermolecular hydrogen bonds,and the peak at1,073cm?1is the stretching of phenols and the C–O absorption peaks.The characteristic absorption peak at1,550cm?1can be attributed to the axial defor-mation vibrations of the C–H bond(Vargas et al.2011). The characteristic absorption peaks of CAC after ad-sorption are not change-obvious;this may be due

to Fig.4Effects of loading time on the removal of COD from TNT

red water by

CAC

Fig.5Effects of loading temperature on the removal of COD

from TNT red water by

CAC

Fig.6XRD patterns of a AC,b CAC,and c CAC after adsorption Water Air Soil Pollut(2014)225:1936Page5of10,1936

organic volatile and break down during the drying pro-cess of the CAC after adsorption.

3.4Adsorption Isotherm Models

The equilibrium adsorption isotherm is fundamental to describe the behaviors between the solution and the adsorbent and is important in designing an adsorption system.The adsorption equilibrium data of organic pol-lutions in TNT red water on CAC at 298,303,313,323,333,and 343K are processed according to the well-known Langmuir,Freundlich isotherm models;the rel-ative removal of the COD of TNT red water using CAC at different temperatures are shown in Fig.9,and the equilibrium adsorption isotherm results are presented in Table 3.

The linear form of the Langmuir ’s isotherm model is given by the following equation Eq.(3):c e q e ?1bq m tc e

q m

e3

T

Fig.7SEM of (a ,b )AC,(c ,d )CAC before,and (e ,f )CAC after adsorption,the selected area EDX of CAC are inserted in d and

f

Fig.8FTIR of a AC,b CAC before,and c CAC after adsorption

1936,Page 6of 10

Water Air Soil Pollut (2014)225:1936

Where q e (mg/g)is the amount of COD absorbed per unit mass by CAC at equilibrium,c e (mg/L)is the COD of the TNT red water treated by CAC until reaching equilibrium,q m (mg/g)is the amount of maximum COD adsorbed per unit mass by the CAC,and b (L/mg)is the Langmuir constant related to the rate of adsorption.The specific isotherm parameters,q m and b ,can be calculat-ed from the slope and intercept of the plots c e

q e

versus c e .

The essential characteristics of the Langmuir iso-therm can also be expressed in terms of a dimensionless constant separation factor or equilibrium parameter,R L ,defined in Eq.(4):R L ?

11tbC 0

e4T

Where b is the Langmuir constant and C 0is the initial COD of TNT red water.The value of R L indicates

whether the isotherm is unfavorable (R L >1),linear (R L =1),favorable (0

q e ?K f c 1=n

e

e5T

The linear form of the Freundlich model is expressed

in Eq.(6):

log q e ?log K f t1

n

log c e

e6T

Where q e (mg/g)is the amount of COD absorbed per unit mass on the CAC at equilibrium (mg/g),c e (mg/L)is the COD of the TNT red water treated by CAC until reaching equilibrium,and K f (mg/g(L/mg)1/n )and n are the Freundlich constant and intensity factors,respective-ly.The plot of log q e versus log c e yields a straight line with a slope of 1/n .The experimental isotherm data fit well with the corresponding isotherm equation.Table 3lists the parameters of the equations and correlation coefficient values.According to the values of R 2,it can be observed that the fitting is better using the Freundlich isotherm than Langmuir isotherm

below

Fig.9The removal of COD of TNT red water by CAC at different temperatures

T able 3Parameters of Langmuir and Freundlich isotherm models for the extraction of organic pollutions from TNT red water by CAC (absorbent dose=2.0g/25mL;dilution ratio=1:10~1:100;temperature=298–343±0.2K,and contact time=180min)Isotherm

Parameters

Temperature (K)298

303313323333343Langmuir

q m (mg/g)44.984250.050156.529153.304956.053857.7701b (L/mg)0.0027790.0024980.0022110.0023450.002230.002164R L 0.2961750.3188920.3458940.332730.3439860.350823R

2

0.72030.703220.802660.930280.968430.98539Freundlich

K f (mg/g(L/mg)1/n )

0.9149130.8264180.6986670.7451950.7397930.704953n 1.941333 1.82166 1.66193 1.677937 1.619433 1.568037R 2

0.91111

0.91608

0.95867

0.95717

0.95999

0.94237

Water Air Soil Pollut (2014)225:1936Page 7of 10,1936

333K.When the temperature is higher than 333K,the Langmuir isotherm model is more suitable for the ad-sorption process (Faria et al.2014).3.5Adsorption Kinetics

Adsorption is a physicochemical process that involves mass transfer of a solute from a liquid phase to the adsorbent surface (Zhu et al.2010).A kinetics study imparts important information that facilitates the under-standing of the adsorption rate and control of the pro-cess.The adsorption kinetics of organic pollutions by CAC was investigated with the help of two kinetic models,the Lagergren pseudo first-order and pseu-do second-order models.The Lagergren rate equa-tion is one of the most widely used adsorption rate equations for the adsorption of solute from a liquid solution (Lagergren 1898).The linear form of the pseudo first-order kinetic model is expressed by Eq.(7):

log q e ?q t eT?log q e ?

K f

2:303

t e7T

Where K f (L/min)is the rate constant of pseudo first-order adsorption,and q e (mg/g)and q t (mg/g)are the amounts of COD adsorbed at equilibrium and at any time t (min),respectively.The values of K f and q e for CAC can be determined from the plot of log (q e ?q t )versus t .

The pseudo second-order equation is expressed as Eq.(8)(Ho and McKay 1999):t q t ?1k 2q 2e

t1q e t e8T

Where k 2(g mg ?1min ?1)is the pseudo second-order constant,and q e and k 2can be determined

experimentally from the slope and intercept of the plot t

q t

versus t .

To compare the validity of each model,a normalized standard deviation is calculated using Eq.(9):

Δq %eT?100???????????????????????????????????Σq exp ?q cal

eT.q exp

2

N ?1v u u u t e9T

Where q exp and q cal (mg/g)are the experimental and calculated amounts of absorbed COD,and N is the number of measurements.If the data from calculations

are similar to the experimental data,Δq (%)will be

small;but if they differ,Δq (%)will be large.To confirm which model is more fitted with the experiment results,it is necessary to analyze the data using Δq (%)combined with the determined coefficient R 2(Deiber et al.1997).

The constants of kinetic models for the adsorption of organic pollutions from TNT red water on CAC are listed in Table 4.The calculated adsorption capacity (q e,cal )estimated by the pseudo first-order model differs substantially to those experimental values,whereas cal-culated q e,cal values from the pseudo second-order kinetic model are very close to experimental https://www.doczj.com/doc/8d15095195.html,pared to Δq (%)of the pseudo first-order model,Δq (%)of the pseudo second-order model is much smaller.Moreover,the correlation coefficients for the pseudo second-order model are much larger than those of the pseudo first-order model confirming that the adsorption mechanism of CAC on organic pollutions follows the pseudo second-order kinetic model.These facts suggest that in the present system,the pseudo second-order adsorption mechanism is predominant,and the overall adsorption rate of CAC in the adsorption process appears to be controlled by the chemisorption process (Mandal et al.2014).3.6Adsorption Thermodynamics

Changes of free energy (ΔG ),enthalpy (ΔH ),and en-tropy (ΔS )in equilibrium can be calculated according to Van ’t Hoff Eqs.(10),(11),and (12)(Kannamba et al.2010;Kumar et al.2008;Zhang et al.2010):K c ?

c 0?c e e

?ρV

e10T

ΔG ??RT ln K c

e11T

ln K c ?ΔS R ?ΔH

RT

e12T

Where K c is the distribution coefficient,ρ=1g/L is the density of the solution mixture,c e (mg/L)is the COD of the TNT red water treated by CAC until reaching equilibrium,q e is the COD amount of adsorp-tion at equilibrium (mg/g),T is the solution temperature (K),and R is the gas constant and is equal to 8.314J mol ?1K ?1).ΔH and ΔS are calculated from

1936,Page 8of 10Water Air Soil Pollut (2014)225:1936

the slope and intercept of the linear plot of1

T versus ln

K c(Fig.10).The values and thermodynamic parameters of the adsorption process by CAC are shown in Table5. TheΔG values(KJ/mol)(?2.87,?3.15,?3.58,?3.80,?4.28,?4.58)under the experimental conditions indi-cate that the adsorption of organic pollutions is sponta-neous.The observed decrease ofΔG with increasing temperature implies that the adsorption becomes more favorable at higher temperatures.The positiveΔH indicates that adsorption on the CAC is an endo-thermic process.In addition,ΔH(8.19kJ/mol)is between2and40kJ/mol indicative of physical adsorption characteristics(Oepen et al.1991).The en-tropy change(ΔS)is positive suggesting that the randomness increases during adsorption(Zheng et al.2008).4Conclusions

The novel absorbent(CAC)has been successfully prepared by impregnating Cu2+on AC.The optimum conditions for CAC preparation are the concentration of Cu2+of0.1mol/L,pH of6,the loading time of 4h,and the loading temperature of333K.Under optimum conditions,85.34%of the COD of TNT red water can be removed by the CAC prepared under optimum conditions.The adsorption data fit better using the Freundlich isotherm than the Langmuir isotherm below333K.When the temper-ature is higher than333K,the Langmuir isotherm model is more suitable for the adsorption process. The adsorption kinetics follows a pseudo second-order model,and thermodynamic analysis indicates an endothermic and spontaneous adsorption process, and the process appears to be controlled by the chemisorption process.In summary,CAC has excel-

T able4Parameters of kinetic models for the extraction of organic materials from TNT red water by CAC(absorbent dosage=2.0g/25mL; dilution ratio=1:30;temperature=298–343±0.2K,and contact time=180min)

Kinetic models Parameters Temperature(K)

298303313323333343

Pseudo first-order kinetic q e,cal(mg/g)17.856242.298919.417416.234215.426212.53945 k f(L/min)0.1149890.040070.1466320.1353470.1447210.146862

R20.917120.87750.921950.978790.944540.95971

Δq(%)88.71028

Pseudo second-order kinetic q e,cal(mg/g)19.99220.9030120.383219.99620.1288219.992

k f(L/min)0.0164930.0045770.0065170.0081440.0118780.016493

R20.917120.992820.998320.99970.998390.99697

Δq(%)31.96771

q e,exp(mg/g)13.930514.6908216.1184116.5460117.68741

18.15121

Fig.10Van’t Hoff plots for the uptake of organic pollutions of TNT red water by CAC T able5Thermodynamic parameters for the adsorption of organic pollutions in TNT red water on CAC(absorbent dose=2.0g/25mL;dilution ratio=1:30;temperature=298–343±0.2K,and contact time=180min)

Parameters Temperature(K)

298303313323333343

K c21.4727.4538.2942.7959.8770.27ΔG(KJ/mol)?2.87?3.15?3.58?3.80?4.28?4.58ΔH(KJ/mol)8.19

ΔS(J/mol K)37.34

Water Air Soil Pollut(2014)225:1936Page9of10,1936

lent adsorption characteristics and can be used in the removal of organic pollutions from TNT red water. Acknowledgments We thank the following funding sources for generously supporting this research:the National High Technology Research and Development Program(863Program 2012AA06A109)of China,the project of Chinese Geological Survey(1212011120309),the Fundamental Research Funds for the Central Universities(2652013061,53200959617and2010ZD08), the special co-construction project of Beijing city education commit-tee and Doctoral Program Foundation of Institution of higher educa-tion of China(2-2-08-07).

References

Deiber,G.,Foussard,J.N.,&Debellefontaine,H.(1997).

Removal of nitrogenous compounds by catalytic wet air oxidation,kinetic study.Environmental Pollution,96,311–319.

Faria,M.C.S.,Rosemberg,R.S.,Bomfeti,C.A.,Monteiro,D.S., Barbosa,F.,Oliveira,L.C.A.,Rodriguez,M.,Pereira,M.C., &Rodrigues,J.L.(2014).Arsenic removal from contami-nated water by ultrafine delta-FeOOH adsorbents.Chemical Engineering Journal,237,47–54.

Freundlich,H.M.F.(1906).über die adsorption in l?sungen.

Zeitschrift fur Physikalische Chemie(Leipzig),57A,385–470.

Fu,D.,Zhang,Y.H.,Lv,F.Z.,Chu,K.P.,&Shang,J.W.(2012).

Removal of organic materials from TNT red water by Bamboo Charcoal adsorption.Biochemical Engineering Journal,193,39–49.

Ho,Y.S.,&McKay,G.(1999).Pseudo-second order model for sorption processes.Process Biochemistry,34,451–465. Kannamba,B.,Reddy,K.L.,&AppaRao,B.V.(2010).Removal of Cu(II)from aqueous solutions using chemically modified chitosan.Journal of Hazardous Materials,175,939–948. Kumar,A.,Prasad,B.,&Mishra,I.M.(2008).Adsorptive remov-al of acrylonitrile by commercial grade activated carbon: kinetics,equilibrium and thermodynamics.Journal of Hazardous Materials,152,589–600.

Lagergren,S.(1898).About the theory of so called adsorption of soluble substances.Ksver V eterskapsakad Handling,24,1–6. Li,G.X.,Xue,P.Y.,Yan,C.Z.,&Li,Q.Z.(2010).Copper biosorption by Myriophyllum spicatum:effects of tempera-ture and pH,Korean J.Chemical Engineer,27,1239–1245. Mandal,S.,Sahu,M.K.,Giri,A.K.,&Patel,P.K.(2014).

Adsorption studies of chromium(VI)removal from water by lanthanum diethanolamine hybrid material.Environmental T echnology,35,817–832.

Meng,Q.Q.,Zhao,Q.L.,Zhao,X.,Wu,T.,&Ye,Z.F.(2012).

Removal of nitro aromatic compounds from2,4,6-trinitrotoluene red water using1,2-ethanediamine modified macroporous polystyrene microspheres.Clean-Soil Air W ater, 40,823–829.

Meng,Q.Q.,Song,K.,Zhao,Q.L.,&Ye,Z.F.(2013).Removal of nitro aromatic compounds and sulfite acid from distillate of2,4,6-trinitrotoluene red water using modified porous

polystyrene microspheres.Journal of Applied Polymer Science,127,1578–1584.

Moreno-Castilla,C.,álvarez-Merino,M.A.,Pastrana-Martínez, L.M.,&López-Ramón,M.V.(2010).Adsorption mecha-nisms of metal cations from water on an oxidized carbon surface.Jounal of Colloid Interface Science,345,461–466. Namasivayam,C.,&Yamuna,R.T.(1995).Adsorption of chro-mium(VI)by a low-cost adsorbent:biogas residual slurry.

Chemosphere,30,561–578.

Nefso,E.K.,Burns,S.E.,&McGrath,C.J.(2005).Degradation kinetics of TNT in the presence of six mineral surfaces and ferrous iron.Journal of Hazardous Materials,123,79–88. Oepen,V.B.,Ordel,W.K.,&Klein,W.(1991).Sorption of nonpolar and polar compounds to soils:processes,measure-ment and experience with the applicability of the modified OECD-guideline.Chemosphere,22,285–304. Ozcimen,D.,&Ersoy-Mericboyu,A.(2009).Removal of copper from aqueous solutions by adsorption onto chestnut shell and grape seed activated carbons.Journal of Hazardous Materials,168,1118–1125.

Rajagopa,C.,&Kapoor,J.C.(2001).Development of adsorptive removal process for treatment of explosives contaminated wastewater using activated carbon.Journal of Hazardous Materials,7,73–98.

Vargas,A.M.M.,Cazetta,A.L.,Kunita,M.H.,Silva,T.L.,& Almeida,V.C.(2011).Adsorption of methylene blue on activated carbon produced from flamboyant pods(Delonix regia):study of adsorption isotherms and kinetic models.

Chemical Engineering Journal,168,722–730.

Wei,F.F.,Zhang,Y.H.,Lv,F.Z.,&Chu,K.P.(2011).Extraction of organic materials from red water by metal-impregnated lignite activated carbon.Journal of Hazardous Materials, 197,352–360.

Yao,Y.J.,Xu,F.F.,Chen,M.,Xu,Z.X.,&Zhu,Z.(2010).

Adsorption behavior of methyleneblue on carbon nanotubes.

Bioresource T echnology,101,3040–3046.

Zhang,X.,Lin,Y.M.,Shan,X.Q.,&Chen,Z.L.(2010).

Degradation of2,4,6-trinitrotoluene(TNT)from explosive wastewater using nanoscale zero-valent iron.Biochemical Engineering Journal,158(2010),566–570.

Zhang,M.H.,Zhao,Q.L.,&Ye,Z.F.(2011).Organic pollutants removal from2,4,6-trinitrotoluene(TNT)red water using low cost activated coke.Journal of Environmental Sciences, 23,1–20.

Zhang,Y.H.,Wei,F.F.,Xing,J.,Lv,F.Z.,Meng,X.H.,&Chu, K.P.(2012).Adsorption behavior and removal of organic materials from TNT red water by lignite activated carbon.

Journal Residuals Science T echnology,9,121–129. Zhao,Q.L.,Gao,Y.C.,&Ye,Z.F.(2013).Reduction of COD in TNT red water through adsorption on macroporous polysty-rene resin RS50B.V acuum,95,71–75.

Zheng,H.,Han,L.J.,Ma,H.W.,Zheng,Y.,Zhang,H.M.,Liu,D.

H.,&Liang,S.(2008).Adsorption characteristics of ammo-

nium ion by zeolite13×.Journal of Hazardous Materials, 158,577–584.

Zhu,H.Y.,Jiang,R.,Xiao,L.,&Zeng,G.M.(2010).Preparation, characterization,adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized-Fe2O3and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange.Bioresource T echnology,101, 5063–5069.

1936,Page10of10Water Air Soil Pollut(2014)225:1936

(生产管理知识)制剂生产过程中常见问题和处理方法

制剂生产过程中常见问题和处理方法 一、质量问题 制剂生产过程由于种种原因造成制剂的质量不合格,尤其是在片剂生产中,造成片剂质量问题的因素更多。现仅对片剂、胶囊剂及注射剂生产中可能产生质量问题的原因及解决方法作介绍。 (一)片剂生产过程中可能发生问题的分析及解决方法 1.松片 片剂压成后,硬度不够,表面有麻孔,用手指轻轻加压即碎裂,原因分析及解决方法: ①药物粉碎细度不够、纤维性或富有弹性药物或油类成分含量较多而混合不均匀。可将药物粉碎过100目筛、选用黏性较强的黏合剂、适当增加压片机的压力、增加油类药物吸收剂充分混匀等方法加以克服。 ②黏合剂或润湿剂用量不足或选择不当,使颗粒质地疏松或颗粒粗细分布不匀,粗粒与细粒分层。可选用适当黏合剂或增加用量、改进制粒工艺、多搅拌软材、混均颗粒等方法加以克服。 ③颗粒含水量太少,过分干燥的颗粒具有较大的弹性、含有结晶水的药物在颗粒干燥过程中失去较多的结晶水,使颗粒松脆,容易松裂片。故在制粒时,按不同品种应控制颗粒的含水量。如制成的颗粒太干时,可喷入适量稀乙醇(50%—60%),混匀后压片。 ④药物本身的性质。密度大压出的片剂虽有一定的硬度,但经不起碰撞和震摇。如次硝酸铋片、苏打片等往往易产生松片现象;密

度小,流动性差,可压性差,重新制粒。 ⑤颗粒的流动性差,填入模孔的颗粒不均匀。 ⑥有较大块或颗粒、碎片堵塞刮粒器及下料口,影响填充量。 ⑦压片机械的因素。压力过小,多冲压片机冲头长短不齐,车速过快或加料斗中颗粒时多时少。可调节压力、检查冲模是否配套完整、调整车速、勤加颗粒使料斗内保持一定的存量等方法克服。 2.裂片 片剂受到震动或经放置时,有从腰间裂开的称为腰裂;从顶部裂开的称为顶裂,腰裂和顶裂总称为裂片,原因分析及解决方法: ①药物本身弹性较强、纤维性药物或因含油类成分较多。可加入糖粉以减少纤维弹性,加强黏合作用或增加油类药物的吸收剂,充分混匀后压片。 ②黏合剂或润湿剂不当或用量不够,颗粒在压片时粘着力差。 ③颗粒太干、含结晶水药物失去过多造成裂片,解决方法与松片相同。 ④有些结晶型药物,未经过充分的粉碎。可将此类药物充分粉碎后制粒。 ⑤细粉过多、润滑剂过量引起的裂片,粉末中部分空气不能及时逸出而被压在片剂内,当解除压力后,片剂内部空气膨胀造成裂片,可筛去部分细粉与适当减少润滑剂用量加以克服。 ⑥压片机压力过大,反弹力大而裂片;车速过快或冲模不符合要求,冲头有长短,中部磨损,其中部大于上下部或冲头向内卷边,

制剂生产过程中常见问题和处理方法

生产过程中常见问题和处理方法 一、质量问题 制剂生产过程由于种种原因造成制剂的质量不合格,尤其是在片剂生产中,造成片剂质量问题的因素更多。现仅对片剂、胶囊剂及注射剂生产中可能产生质量问题的原因及解决方法作介绍。 (一)片剂生产过程中可能发生问题的分析及解决方法 1.松片 片剂压成后,硬度不够,表面有麻孔,用手指轻轻加压即碎裂,原因分析及解决方法: ①药物粉碎细度不够、纤维性或富有弹性药物或油类成分含量较多而混合不均匀。可将药物粉碎过100目筛、选用黏性较强的黏合剂、适当增加压片机的压力、增加油类药物吸收剂充分混匀等方法加以克服。 ②黏合剂或润湿剂用量不足或选择不当,使颗粒质地疏松或颗粒粗细分布不匀,粗粒与细粒分层。可选用适当黏合剂或增加用量、改进制粒工艺、多搅拌软材、混均颗粒等方法加以克服。 ; ③颗粒含水量太少,过分干燥的颗粒具有较大的弹性、含有结晶水的药物在颗粒干燥过程中失去较多的结晶水,使颗粒松脆,容易松裂片。故在制粒时,按不同品种应控制颗粒的含水量。如制成的颗粒太干时,可喷入适量稀乙醇(50%—60%),混匀后压片。 ④药物本身的性质。密度大压出的片剂虽有一定的硬度,但经不起碰撞和震摇。如次硝酸铋片、苏打片等往往易产生松片现象;密度小,流动性差,可压性差,重新制粒。 ⑤颗粒的流动性差,填入模孔的颗粒不均匀。 ⑥有较大块或颗粒、碎片堵塞刮粒器及下料口,影响填充量。 ⑦压片机械的因素。压力过小,多冲压片机冲头长短不齐,车速过快或加料斗中颗粒时多时少。可调节压力、检查冲模是否配套完整、调整车速、勤加颗粒使料斗内保持一定的存量等方法克服。 2.裂片 片剂受到震动或经放置时,有从腰间裂开的称为腰裂;从顶部裂开的称为顶裂,腰裂和顶裂总称为裂片,原因分析及解决方法: ①药物本身弹性较强、纤维性药物或因含油类成分较多。可加入糖粉以减少纤维弹性,加强黏合作用或增加油类药物的吸收剂,充分混匀后压片。 \ ②黏合剂或润湿剂不当或用量不够,颗粒在压片时粘着力差。 ③颗粒太干、含结晶水药物失去过多造成裂片,解决方法与松片相同。 ④有些结晶型药物,未经过充分的粉碎。可将此类药物充分粉碎后制粒。 ⑤细粉过多、润滑剂过量引起的裂片,粉末中部分空气不能及时逸出而被压在片剂内,当解除压力后,片剂内部空气膨胀造成裂片,可筛去部分细粉与适当减少润滑剂用量加以克服。 ⑥压片机压力过大,反弹力大而裂片;车速过快或冲模不符合要求,冲头有长短,中部磨损,其中部大于上下部或冲头向内卷边,均可使片剂顶出时造成裂片。可调节压力与车速,改进冲模配套,及时检查调换。 ⑦压片室室温低、湿度低,易造成裂片,特别是黏性差的药物容易产生。调节空调系统可以解决。 3.粘冲与吊冲

片剂裂片、松片解决办法

片剂生产松片、裂片、粘冲与吊冲、片重差异超限的原因 及解决方案 在药品生产的一线,常常会遇到各种各样的小问题,而就是这些细节,往往能影响产品的质量水准。本文从实际经验出发,对于片剂 生产中出现的“病症”给与诊断分析,并给出了详实“处方”。希 望能给一线生产人员提供一定的帮助。 1:病症:松片,即片剂压成后,硬度不够,表面有麻孔,用手指轻 轻加压即碎裂。 处方: ①药物粉碎细度不够、纤维性或富有弹性药物或油类成分含量较多 而混合不均匀。可将药物粉碎过100目筛、选用黏性较强的黏合剂、适当增加压片机的压力、增加油类药物吸收剂充分混匀等方法加以 克服。 ②黏合剂或润湿剂用量不足或选择不当,使颗粒质地疏松或颗粒粗 细分布不匀,粗粒与细粒分层。可选用适当黏合剂或增加用量、改 进制粒工艺、多搅拌软材、混均颗粒等方法加以克服。 ③颗粒含水量太少,过分干燥的颗粒具有较大的弹性、含有结晶水 的药物在颗粒干燥过程中失去较多的结晶水,使颗粒松脆,容易松 裂片。故在制粒时,按不同品种应控制颗粒的含水量。如制成的颗 粒太干时,可喷入适量稀乙醇(50%- 60%),混匀后压片。 ④药物本身的性质。密度大压出的片剂虽有一定的硬度,但经不起 碰撞和震摇。如次硝酸铋片、苏打片等往往易产生松片现象;密度小,流动性差,可压性差,重新制粒。 ⑤颗粒的流动性差,填入模孔的颗粒不均匀。 ⑥有较大块或颗粒、碎片堵塞刮粒器及下料口,影响填充量。 ⑦压片机械的因素。压力过小,多冲压片机冲头长短不齐,车速过 快或加料斗中颗粒时多时少。可调节压力、检查冲模是否配套完整、调整车速、勤加颗粒使料斗内保持一定的存量等方法克服。 2:病症:裂片,即片剂受到震动或经放置时,从腰间裂开的称为腰裂;顶部裂开的称为顶裂,腰裂和顶裂总称为裂片。

片剂裂片的原因及解决方法

片剂裂片得原因及解决方法 片剂受到震动或经放置后从腰间裂开称“裂片”,从顶部脱落一层称“顶裂”、其产生原因及解决办法为: 1、压片物料细粉过多,或颗粒过粗、过细;或原料为针、片状结晶,且结晶过大,粘合剂未进入晶体内部引起裂片,可采用与松片相同得处理方法医学教育`网搜集整理。 2、颗粒中油类成分较多或药物含纤维成分较多时易引起裂片,可分别加用吸收剂或糖粉克服。 3、颗粒过干或药物失去过多结晶水引起裂片,可喷洒适量稀乙醇湿润,或与含水量较大得颗粒掺合后压片。 4、冲模不合要求,如模圈因磨擦而造成中间孔径大于口部直径,片剂顶出时易裂片、冲头摩损向内卷边,上冲与模圈不吻合,压力不均匀,使片剂部分受压过大而造成顶裂,可更换冲模解决、 5、压力过大,或车速过快,颗粒中空气未逸出造成裂片,可调节压力或减慢车速克服。 一:松片 松片就是压片时经常遇到得问题,会影响压片与包衣。松片主要与颗粒质量、压片机运行有密切得关系、颗粒质量就是压好片子得关键,因此,制粒工艺对于片剂质量尤为重要。影响颗粒质量得因素主要有以下几方面: 1. 中药材成分得影响、如有些中药材中含有大量得纤维成分。由于这些药材弹性大、黏性小,致使颗粒松散、片子硬度低、对此,在实际操作中可采用适宜得溶媒及方法,将此类药材中得有效成分提取浓缩,再进行颗粒制备,以降低颗粒弹性,提高可压性,进而提高片剂硬度;对含油脂量大得药材,压片亦易引起松片,如果这些油脂属有效成分,制粒时应加入适量吸收剂(如碳酸钙)等来吸油,如果这些油脂为无效成分,可用压榨法或其她脱脂法脱脂,减少颗粒油量,增加其内聚力,从而提高片子硬度。 2. 中药材粉碎度得影响。如果中药材细粉不够细,制成得颗粒黏结性不强,易使片剂松散。因此,药粉要具有一定细度,这就是制好颗粒、压好药片得前提。 3。黏合剂与湿润剂得影响。黏合剂与湿润剂在制粒中占有重要地位,其品种得选择与用量正确与否,都直接影响颗粒质量。选择黏合剂、湿润剂应视药粉性质而定,如就是全生药粉压片,应选择黏性强得黏合剂,如就是全浸膏压片,而浸膏粉中树脂黏液质成分较多,则必须选用80%以上浓度得乙醇作湿润剂。黏合剂用量太少,则颗粒细粉过多,会产生松片。 4、颗粒中水分得影响。颗粒中得水分对片剂有很大影响,适量得水分能增加脆碎粒子得塑性变形,减少弹性,有利于压片,而过干得颗粒弹性大、塑性小,难以被压成片。但如果含水量太高,也会使药片松软,甚至黏冲或堵塞料斗,从而影响压片。故每一种中药片剂其颗粒含水量必须控制在适宜范围。 另外,如果由于压片机运行时压力不足、压片机运行转速过快、冲头长短不齐而出现松片现象,可适当调大压力或减慢转速、更换冲头、如压力足够而仍出现松片现象,则应考虑其她原因,切勿强加压力,以免损害压片机。 二:裂片

片剂及其生产过程中常见问题和处理方法

片剂及其生产过程中常见问题和处理方法

片剂及其生产过程中常见问题和处理方法 于亮1 马飞2 (1.山东聊城建设学校,山东聊城252000;2.聊城万合工业制造有限公司,山东聊城252022) 摘要:通过对片剂及片剂生产过程中可能出现的问题和处理方法简单介绍,阐述了片剂生产过程中造成质量问题的诸多因素,为保证片剂质量提供了一些解决和预防的办法和经验。 关键词:片剂;片重超差;问题;处理方法 1 片剂 片剂可定义为用压制或模制的方法制成的含药物的固体制剂,可用稀释剂,也可不用。从19世纪后期开始片剂已经广泛使用并一直深受欢迎,到19世纪末随着压片设备的出现和不断改进,片剂的生产和应用得到了迅速的发展。近十几年来,片剂生产技术与机械设备方面也有较大的发展,如沸腾制粒、全粉末直接压片、半薄膜包衣、新辅料、新工艺等。总之,目前片剂已成为品种多、产量大、用途广,使用和贮运方便,质量稳定的剂型之一,片剂在中国以及其他许多国家的药典所收载的制剂总量中,均占1/3以上,可见应用之广。 1.1 片剂的特点 1.1.1 片剂的优点 (1)一般情况下片剂的溶出速率及生物利用度较丸剂好; (2)剂量准确,片剂内药物含量差异较小; (3)质量稳定,片剂为干燥固体,且某些易氧化变质及潮解的药物可借包衣加以保护,所以光线、空气、水分等对其影响较小; (4)携带、运输、服用较为方便; (5)可实现机械化生产,产量大,成本低,卫生标准也容易达到。 1.1.2 片剂的缺点 (1)片剂中药物的溶出速率较散剂及胶囊剂慢,其生物利用度稍差些; (2)儿童和昏迷病人不易吞服; (3)含挥发性成分的片剂贮存较久时含量下降。

片剂裂片的原因及解决方法

片剂裂片的原因及解决方法 片剂受到震动或经放置后从腰间裂开称“裂片”,从顶部脱落一层称“顶裂”。其产生原因及解决办法为: 1、压片物料细粉过多,或颗粒过粗、过细;或原料为针、片状结晶,且结晶过大,粘合剂未进入晶体内部引起裂片,可采用与松片相同的处理方法医学教育`网搜集整理。 2、颗粒中油类成分较多或药物含纤维成分较多时易引起裂片,可分别加用吸收剂或糖粉克服。 3、颗粒过干或药物失去过多结晶水引起裂片,可喷洒适量稀乙醇湿润,或与含水量较大的颗粒掺合后压片。 4、冲模不合要求,如模圈因磨擦而造成中间孔径大于口部直径,片剂顶出时易裂片。冲头摩损向内卷边,上冲与模圈不吻合,压力不均匀,使片剂部分受压过大而造成顶裂,可更换冲模解决。 5、压力过大,或车速过快,颗粒中空气未逸出造成裂片,可调节压力或减慢车速克服。 一:松片 松片是压片时经常遇到的问题,会影响压片与包衣。松片主要与颗粒质量、压片机运行有密切的关系。颗粒质量是压好片子的关键,因此,制粒工艺对于片剂质量尤为重要。影响颗粒质量的因素主要有以下几方面:

1. 中药材成分的影响。如有些中药材中含有大量的纤维成分。由于这些药材弹性大、黏性小,致使颗粒松散、片子硬度低。对此,在实际操作中可采用适宜的溶媒及方法,将此类药材中的有效成分提取浓缩,再进行颗粒制备,以降低颗粒弹性,提高可压性,进而提高片剂硬度;对含油脂量大的药材,压片亦易引起松片,如果这些油脂属有效成分,制粒时应加入适量吸收剂(如碳酸钙)等来吸油,如果这些油脂为无效成分,可用压榨法或其他脱脂法脱脂,减少颗粒油量,增加其内聚力,从而提高片子硬度。 2. 中药材粉碎度的影响。如果中药材细粉不够细,制成的颗粒黏结性不强,易使片剂松散。因此,药粉要具有一定细度,这是制好颗粒、压好药片的前提。 3. 黏合剂与湿润剂的影响。黏合剂与湿润剂在制粒中占有重要地位,其品种的选择和用量正确与否,都直接影响颗粒质量。选择黏合剂、湿润剂应视药粉性质而定,如是全生药粉压片,应选择黏性强的黏合剂,如是全浸膏压片,而浸膏粉中树脂黏液质成分较多,则必须选用80%以上浓度的乙醇作湿润剂。黏合剂用量太少,则颗粒细粉过多,会产生松片。 4. 颗粒中水分的影响。颗粒中的水分对片剂有很大影响,适量的水分能增加脆碎粒子的塑性变形,减少弹性,有利于压片,而过干的颗粒弹性大、塑性小,难以被压成片。但如果含水量太高,也会使药片松软,甚至黏冲或堵塞料斗,从而影响压片。故每一种中药片剂

制剂生产过程中常见问题和处理方法doc20

制剂生产过程中常见问题和处 理方法doc20 制剂生产过程中常见问题和处理方法 一、质量问题 制剂生产过程由于种种原因造成制剂的质量不合格,尤其是在片剂生产中,造成片剂质量问题的因素更多。现仅对片剂、胶囊剂及注射剂生产中可能产生质量问题的原因及解决方法作介绍。 (一)片剂生产过程中可能发生问题的分析及解决方法 1.松片 片剂压成后,硬度不够,表面有麻孔,用手指轻轻加压即碎裂, 原因分析及解决方法: ①药物粉碎细度不够、纤维性或富有弹性药物或油类成分含量较多而混合不均匀。可将药物粉碎过100目筛、选用黏性较强的黏合剂、适当增加压片机的压力、增加油类药物吸收剂充分混匀等方法加以克服。

②黏合剂或润湿剂用量不足或选择不当,使颗粒质地疏松或颗粒粗细分布不匀,粗粒与细粒分层。可选用适当黏合剂或增加用量、改进制粒工艺、多搅拌软材、混均颗粒等方法加以克服。 ③颗粒含水量太少,过分干燥的颗粒具有较大的弹性、含有结 晶水的药物在颗粒干燥过程中失去较多的结晶水,使颗粒松脆,容易松裂片。故在制粒时,按不同品种应控制颗粒的含水量。如制成的颗粒太干时,可喷入适量稀乙醇(50汇60%,混匀后压片。 ④药物本身的性质。密度大压出的片剂虽有一定的硬度,但经 不起碰撞和震摇。如次硝酸铋片、苏打片等往往易产生松片现象;密度小,流动性差,可压性差,重新制粒。 ⑤颗粒的流动性差,填入模孔的颗粒不均匀。 ⑥有较大块或颗粒、碎片堵塞刮粒器及下料口,影响填充量。 ⑦压片机械的因素。压力过小,多冲压片机冲头长短不齐,车速过快或加料斗中颗粒时多时少。可调节压力、检查冲模是否配套完整、调整车速、勤加颗粒使料斗内保持一定的存量等方法克服。 2.裂片 片剂受到震动或经放置时,有从腰间裂开的称为腰裂;从顶部裂开的称为顶裂,腰裂和顶裂总称为裂片,原因分析及解决方法: ①药物本身弹性较强、纤维性药物或因含油类成分较多。可加入糖粉以减少纤维弹性,加强黏合作用或增加油类药物的吸收剂,充分混匀后压片。 ②黏合剂或润湿剂不当或用量不够,颗粒在压片时粘着力差。

片剂产生松片,裂片,粘冲与吊冲,片重差异超限的原因及解决办法

片剂产生松片,裂片,粘冲与吊冲,片重差异超限的原因及解决办法 在药品生产的一线,常常会遇到各种各样的问题,而就是这些细节,往往能影响产品的质量水准。本文从实际经验出发,对于片剂生产中出现的“病症”给予诊断分析,并给出了详细“处方”。希望能给一线生产人员提供一定的帮助。 一,松片:即片挤压成后,硬度不够,表面有嘛空,用手轻压即碎裂。 1,药物粉碎细度不够,纤维性或富含弹性药物或油类成分含量较多而混合不均匀。可将药物粉碎过100目筛,选用黏性较强的粘合剂,适当增加压片机压力,增加油类药物吸收剂充分混匀等方法加以克服。 2,粘合剂或润湿剂用量不足或选择不当,使颗粒质地疏松或颗粒粗细分布不均,粗粒与细粒分层。可选用适当粘合剂或增加用量,改进制粒工艺,多搅拌软材,混匀颗粒等方法加以克服。 3,颗粒含水量太少,过分干燥的颗粒具有较大的弹性,含有结晶水的药物在克里干燥的过程中容易失去较多的结晶水,使颗粒松脆,容易裂片。故在制粒时,按不同品种应控制颗粒的含水量。如制成的颗粒太干时,可喷入适量稀乙醇(50%-60%),混匀后压片。4,药物本身性质。密度大压出的片剂虽有一定的硬度,但经不起碰撞和震摇。入次硝酸铋片,苏打片等往往易产生松片现象;密度小,流动性差,可压性差,重新制粒。 5,颗粒的流动性差,填入膜孔的颗粒不均匀。 6,有较大块或颗粒,碎片堵塞刮料器及下料口,影响填充量。 7,压片机的因素。压力过小,多冲压片机冲头长短不齐,车速过快或加料斗中颗粒时多时少。可调节压力,检查冲模是否配套完整,调整车速,勤加颗粒使料斗内保持一定的存量等方法克服。 二,裂片:即片剂受到震动或经放置时,从腰间裂开的称腰裂:顶部裂开的称顶裂 1,药物本身弹性较强,纤维性药物或因油类成分见多。可加入糖粉以减少纤维弹性,加强粘合作用或增加油类药物的吸收剂,充分混匀后压片。 2,粘合剂或润湿剂不当或用量不够,颗粒在压片时黏着力差。 3,颗粒太干,含结晶水药物失去过多造成裂片,解决办法同松片。 4,有些结晶性药物,未经过充分的粉碎。可将此类药物充分粉碎后制粒。 5,细粉过多,润滑剂过量引起裂片,粉末中部分空气不能及时逸出而被压在片剂内,当接触压力后,片剂内部空气膨胀造成裂片,可筛去部分细分或适当减少润滑剂用量加以克服。 6,压片机压力过大,反弹力大而裂片;车速过快或冲模不符合要求,冲头有长短,中部磨损,其中部大于上下部或冲头向内卷边,均可使片剂顶出时造成裂片。可调节压力与车速,改进冲模配套,及时检查调换。 7,压片室室温低,湿度低,一造成裂片,特别是粘性差的药物容易产生。调节空调系统可以解决。 三,粘冲与吊冲:即压片时片剂表面细粉被冲头或冲模粘附,只是表面不光,不平有凹痕,刻字冲头更易发生粘冲现象。吊冲边的边缘粗糙哟纹路。 1,颗粒含水量过多,含引湿性易受潮的药物,操作室温度与湿度过高易产生粘冲。应注意适当干燥,降低操作室温度,湿度避免引湿性药物受潮等。 2,润滑剂用量过少或含量不均,细粉过多。应适当增加润滑剂用量或充分混合,解决粘冲问题。 3,冲头表面不干净,有防锈油或润滑油,新冲模表面粗糙或刻字太深有菱角。可将冲头搽干净,调换不合规格的冲模或用微量液状石蜡在刻字冲头表面是字面润滑。此外,入为机械发热造成粘冲时应检查原因,检修设备。

表碎片起因及解决办法

表碎片起因及解决办法 跟表碎片有关的基础知识: 什么是水线(High Water Mark)? ---------------------------- 所有的oracle段(segments,在此,为了理解方便,建议把segment作为表的一个同义词) 都有一个在段内容纳数据的上限,我们把这个上限称为"high water mark"或HWM。这个HWM是一个标记,用来说明已经有多少没有使用的数据块分配给这个segment。HWM通常增长的幅度为一次5个数据块,原则上HWM只会增大,不会缩小,即使将表中的数据全部删除,HWM还是为原值,由于这个特点,使HWM很象一个水库的历史最高水位,这也就是HWM的原始含义,当然不能说一个水库没水了,就说该水库的历史最高水位为0。但是如果我们在表上使用了truncate命令,则该表的HWM会被重新置为0。 HWM数据库的操作有如下影响: a) 全表扫描通常要读出直到HWM标记的所有的属于该表数据库块,即使该表中没有任何数据。 b) 即使HWM以下有空闲的数据库块,键入在插入数据时使用了append关键字,则在插入时使用HWM以上的数据块,此时HWM会自动增大。 如何知道一个表的HWM? a) 首先对表进行分析: ANALYZE TABLE ESTIMATE/COMPUTE STATISTICS; b) SELECT blocks, empty_blocks, num_rows FROM user_tables WHERE table_name = ; BLOCKS 列代表该表中曾经使用过得数据库块的数目,即水线。 EMPTY_BLOCKS 代表分配给该表,但是在水线以上的数据库块,即从来没有使用的数据块。 让我们以一个有28672行的BIG_EMP1表为例进行说明: 1) SQL> SELECT segment_name,segment_type,blocks FROM dba_segments WHERE segment_name='BIG_EMP1'; SEGMENT_NAME SEGMENT_TYPE BLOCKS EXTENTS ----------------------------- ----------------- ---------- ------- BIG_EMP1 TABLE 1024 2 1 row selected. 2) SQL> ANALYZE TABLE big_emp1 ESTIMATE STATISTICS; Statement processed. 3) SQL> SELECT table_name,num_rows,blocks,empty_blocks

复方双黄片裂片解决方法的探讨

复方双黄片裂片解决方法的探讨 摘要:目的:探讨复方双黄片(薄膜衣片)裂片问题的解决方法。方法:对复方双黄片(薄膜衣片)粘合剂类型进行选择,用10%~12%的糊精液作粘合剂,3%淀粉作填充剂和崩解剂,修改颗粒的水分与细粉率的质量指标,颗粒水分控制在4.0%~6.0%,细粉率控制在22%以下。结果:通过选择合理的制备工艺,有效防止了裂片的产生。结论:优选得到的工艺稳定可行,裂片问题得以控制,适合工业大生产的要求。 关键词:薄膜衣片;裂片;粘合剂;水分含量;细粉率 复方双黄片原为糖衣片,现改为薄膜衣片。薄膜衣片对片芯的硬度要求较高,在包衣的过程中也较易出现裂片问题,为了保证产品的质量,使其能稳定地生产,需对其制备工艺进行调整,并进行工艺筛选。 1 仪器与试药 (1)仪器:FG-200沸腾干燥器、FL-200沸腾干燥制粒器(重庆市科旭制药机械设备制造有限公司),ZSF-1振动筛(天津市飞云振动机械有限公司),HZD-1200自动提升料斗混合机(浙江迦南制药设备有限公司),GZPL40C全自动高速旋转式压片机(北京国药龙立科技有限公司),BGB-150C高效包衣机(温州市制药设备厂),ZB-1D智能崩解仪(天津大学精密仪器厂),XM-60Precisa电子水分仪等。 (2)试剂:淀粉,糊精,羧甲基淀粉钠,75%~95%乙醇,纯化水。 2 方法与结果 2.1 辅料选择及制备方法的确定 (1)崩解剂的选择:羧甲基淀粉钠是常用的崩解剂。其崩解原理是:具有良好的亲水性、吸湿性和膨胀性,能吸收其干燥体积30倍的水,充分膨胀后体积可增大200~300倍[1]。复方双黄片采用羧甲基淀粉钠作为崩解剂,在包衣过程中有裂片现象出现,需增加其颗粒的粘性;分析该中药片剂处方,药材的纤维性比较强,粘性成分比较少,质地疏松,为了防止制备过程中出现松片、裂片等现象,需选用适当的辅料以提高颗粒的粘性。而羧甲基淀粉钠的粘性比较弱,应该选用一些弹性小、塑性大的辅料。鉴于以上原因,淀粉是个不错的选择,淀粉在片剂中起的崩解作用主要是由于其毛细管吸水作用和本身吸水膨胀[2]。虽然其可压性与流动性、崩解性都不如羧甲基淀粉钠,但是粘性比较强,而且淀粉与糊精配合的效果比羧甲基淀粉钠与糊精的配合好,且廉价、易得。在崩解时限能够符合要求的情况下,选用淀粉作为崩解剂会有比较好的效果。 具体做法:粘合剂的配制是将药粉量7%~10%的糊精加沸水制成浓度为

片剂裂片的原因及解决方法之令狐文艳创作

片剂裂片的原因及解决方法 令狐文艳 片剂受到震动或经放置后从腰间裂开称“裂片”,从顶部脱落一层称“顶裂”。其产生原因及解决办法为: 1、压片物料细粉过多,或颗粒过粗、过细;或原料为针、片状结晶,且结晶过大,粘合剂未进入晶体内部引起裂片,可采用与松片相同的处理方法医学教育`网搜集整理。 2、颗粒中油类成分较多或药物含纤维成分较多时易引起裂片,可分别加用吸收剂或糖粉克服。 3、颗粒过干或药物失去过多结晶水引起裂片,可喷洒适量稀乙醇湿润,或与含水量较大的颗粒掺合后压片。 4、冲模不合要求,如模圈因磨擦而造成中间孔径大于口部直径,片剂顶出时易裂片。冲头摩损向内卷边,上冲与模圈不吻合,压力不均匀,使片剂部分受压过大而造成顶裂,可更换冲模解决。 5、压力过大,或车速过快,颗粒中空气未逸出造成裂片,可调节压力或减慢车速克服。 一:松片 松片是压片时经常遇到的问题,会影响压片与包衣。松片主要与颗粒质量、压片机运行有密切的关系。颗粒质量是压好

片子的关键,因此,制粒工艺对于片剂质量尤为重要。影响颗粒质量的因素主要有以下几方面: 1. 中药材成分的影响。如有些中药材中含有大量的纤维成分。由于这些药材弹性大、黏性小,致使颗粒松散、片子硬度低。对此,在实际操作中可采用适宜的溶媒及方法,将此类药材中的有效成分提取浓缩,再进行颗粒制备,以降低颗粒弹性,提高可压性,进而提高片剂硬度;对含油脂量大的药材,压片亦易引起松片,如果这些油脂属有效成分,制粒时应加入适量吸收剂(如碳酸钙)等来吸油,如果这些油脂为无效成分,可用压榨法或其他脱脂法脱脂,减少颗粒油量,增加其内聚力,从而提高片子硬度。 2. 中药材粉碎度的影响。如果中药材细粉不够细,制成的颗粒黏结性不强,易使片剂松散。因此,药粉要具有一定细度,这是制好颗粒、压好药片的前提。 3. 黏合剂与湿润剂的影响。黏合剂与湿润剂在制粒中占有重要地位,其品种的选择和用量正确与否,都直接影响颗粒质量。选择黏合剂、湿润剂应视药粉性质而定,如是全生药粉压片,应选择黏性强的黏合剂,如是全浸膏压片,而浸膏粉中树脂黏液质成分较多,则必须选用80%以上浓度的乙醇作湿润剂。黏合剂用量太少,则颗粒细粉过多,会产生松片。 4. 颗粒中水分的影响。颗粒中的水分对片剂有很大影响,适量的水分能增加脆碎粒子的塑性变形,减少弹性,有利于压片,而过干的颗粒弹性大、塑性小,难以被压成片。但如

影响片剂质量的主要原因及解决方法

影响片剂质量的主要原因及解决方法 影响片剂质量的主要原因及解决方法 整理及经验总结 影响片剂质量的主要原因及解决方法 主要原因:1、原材料特性的符合性 2、药用赋形剂的使用比例,辅料的不一致性 3、不合理的配方关系 4、不合理的混合工艺,制粒工艺 5、压片时使用的模具及设备不佳 6、不良的压片工艺过程 7、不适宜的生产环境 一、片重差异 主要原因解决方法 1、下冲长度不一致,超差修差,差±5μm以内 2、颗粒分层解决颗粒分层,减小粒度差 3、压片机震动过大 A、结构松动,装配不合理重新装配 B、物料颗粒不均匀混匀,过筛 C、压片机设置压力过大减小压力 4、刮粉板不平或安装不良调平 5、冲杆与转台冲杆孔间隙过大调小间隙 6、颗粒中偶有异物引起加料器堵塞除去异物 7、充填凸轮或轨道的磨损,充填机构更换,稳固 不稳定 8、追求产量,转速太高降低转速 9、部分下冲未拉足保证所有下冲拉到底部 10、颗粒过湿细粉过多干燥物料,减少细粉 11、颗粒差异大均匀化 12、颗粒流动不畅,加料堵塞加助流剂,改配方,疏通料斗 13、较小的药片选用较大颗粒的物料适当的颗粒 14、物料内物料存储量差异大控制在50%以内 15、双面压片,两侧进料,速度不一致调一致 16、带强迫加料器的,强迫加料器转速调一致 与转轮转速不匹配 17、下冲阻尼螺钉调整的阻尼力不佳重新调整 二、粘冲:有细粉粘于冲头及模圈表面,致使片面不光洁、不平、有凹痕现象 主要原因解决方法 1、冲头表面损坏或表面光洁度降低更换冲头清洁冲头表面 2、刻、冲字符设计不合理更换冲头 3、颗粒过湿干燥颗粒 4、药粉中含易吸潮成分加吸湿剂 5、润滑剂不足或选型不当加大用量或更换新润滑剂 6、环境湿度过大、湿度过高降低环境湿度 三、裂片

裂片原因和解决方法

裂片原因及解决方法 原因 1、压力过大或车速过快,空气来不及跑出,易引起裂片。调节压力、减慢车速即可。 2、冲模不合格,当调节冲模。 3、药物本身弹性大,全粉末片及半浸膏片或含纤维性药物等。可考虑将纤维性药物经提取 等制成浸膏或流浸膏用于制粒,也可在制粒时加入糖粉或淀粉浆趁热使用。 4、颗粒直径大小差异过大,或细粉过多。 5、制粒时黏合剂或润湿剂选择不当或用量不足。 6、颗粒含水量过低,浸膏颗粒或含结晶水的药物失去结晶水引起裂片,可加入少量稀乙醇。 解决方法 1. 针状结晶的药物粉碎是必需的,如果药物是疏水性,则可以与pvp一起粉碎,可改善溶 出。 2. 产生层裂可能是你的粘合剂加的太少,由于是直接压片,全是细粉,因此粘合剂用量要 比制粒时大。 3. 润滑剂的量要掌握好,多了少了都会产生此现象。 4. 助流剂建议你用进口雾状硅胶。 微晶纤维素如果制粒的话因为它吸水性很强反而会造成颗粒的成型性很差,颗粒很松散。微晶纤维素是有很好的提高硬度作用,可是它也是易分散的。 处方改为:50%主药、11%糊精、淀粉18%,10%微晶纤维素、10%的粘合剂(HPMC 用水溶解)、1%润滑剂; 在工艺上改进的方法是: 1、主辅料混合均匀后,分次加入粘合剂; 2、延长湿搅拌的时间,从而增加软票的粘性与紧密度; 3、干燥升温要缓慢一些。 压片中可能发生的问题及解决办法

在压片过程中,有时会碰到裂片、松片、粘冲、崩解迟缓、片重差异等问题。它不仅影响到片剂的外观质量,也直接影响其内在质量。如片剂崩解迟缓,不能在药典规定的时限内完全崩解或溶解,影响药物的溶出、吸收和疗效。而片重差异不合要求,超出药典规定的限度,也影响片剂效用的发挥。因而,研究和探讨压片过程中可能发生的问题,对于保证药品质量,提高生产工艺水平,革新操作技术具有重要意义。 1颗粒的物理性状 颗粒的物理性状与其所含药物原料的性状所含水分、所用的赋形剂有关。而这些因素加上颗粒制成后的粒度比例分布,均可对压片工艺造 成影响。 (1)药物原料的形状对片剂的形成有一定关系。凡属立方系的晶体一般可直接压片;而鳞片状、针状及球形晶体不易直接压片,应碎成细粉过80~100目筛后备用,否则压片中易发生裂片、松片,片剂表面不光。特别当药物为有色物时,尤其注意粉碎过筛后制粒,以免压出的片剂表面产生斑点,致使外观不合要求。 (2)颗粒中的水分对片剂的形成及质量具有重要作用。适量的水分能增加脆碎粒子的塑性变形,减少弹性有利于压片,硬度亦较好。实践证明,维生素C片颗粒水分控制在1.5%~2%之间则易压片,而水分减至1%以下时,出现裂片、松片现象,即使片剂成形,通过数片板分装时,30%左右的片子出现毛角、片面松散等现象。相反,水分超过3%时,又易产生粘冲现象。 一般解决水分过量颗粒的办法是采用去湿机,必要时重新干燥。对完全干燥或水分不足的颗粒可根据药物本身的性质,采取自然吸湿或酌喷适宜浓度乙醇,静置或密闭吸湿5小时左右过筛后压片。如含结晶水的药物颗粒,结晶水失去过多时出现的裂片、松片、崩解迟缓等情况则可采用此法解决。但黄连素颗粒,由于其药物粘性大,喷洒收湿则易粘结成块状,坚硬不易均匀,会造成片重不稳及压片机受损等问题。遇此情况,以自然吸湿或重新制粒为好。 (3)颗粒所用的赋形剂对片剂形成和质量具有密切关系。如压片过程中,出现裂片、松片、边角毛缺等现象,这多因粘合剂选用不当或用量不足而使颗粒质松、细粉多所致,当药物为疏松性或纤维时更为明显。对压出的片子出现崩解迟缓的情况时,除了其它因素外,粘合剂的浓度、用量是否过大都应做考虑和调整,临时解决措施为增加崩解剂的用量和减少压片机的压力。 出现裂片和松片也与颗粒中所含的油类成分的药物有关,选用吸收剂可克服之。但吸收

陶瓷基板裂片原因分析

陶瓷基板裂片不良分析 (三) 技术质量部 2013.12.10

LED陶瓷基板的热震试验的现状 目前陶瓷基板热震试验条件: 把瓷片放在烤箱(加热到200度左右,保温半小时以上,然后拿出来马上放到水里(水温与烤箱温度差在170度以上,就是说水温是20度时,烤箱温度为190度),或者将瓷片直接放置在200度(温差在170度以上)加热台上,这个过程反复做3次以上,如果片没出现裂纹,说明抗热震合格。 但作为用于LED封装的陶瓷基板,由于需要在陶瓷基板上进行切割和划线(一般为激光加工),而在激光切割和划线过程中可能导致微裂纹的产生,从而影响热震性能,因此对LED陶瓷基板的热震性检测,目前的热震试验方法存在较大的缺陷,导致检测结过与客户的使用结果相差甚远,导致在进行封装过程中裂片不良的原因分析时没有有效的实验验证手段。 针对上述情况,需要对LED陶瓷基板的使用条件进行具体分析,寻找出导致客户使用中出现裂纹的原因,并寻找出有效的试验验证手段。

一、LED陶瓷基板使用现状分析 目前封装时使用的焊线机一般对 基板都有预热,同时焊线时进行 加热,如右图: 在瓷片预热区将瓷片从室温预热 到一定的温度,然后再到焊线区 进行焊线操作,在此过程中,瓷 片需要经过两次升温,以达到满 足焊线工艺要求的温度。 瓷片预热区 焊线加热块

二、试验方案 1、为模拟焊线时的实际使用情况,采用有切孔及划线加工的基 板进行试验,基板切割及划线图形不变。 2、对切割好的瓷片使用加热平台进行整体加热(由室温加热至 200度),确认陶瓷基板热震性能。 3、模拟焊线机状态,对陶瓷先进行预热,然后再加热到焊线温 度(150度)区进行设定,确定不同陶瓷基板预热表面温度及焊线区温度组合,以确定不同的陶瓷升温曲线对陶瓷热震的影响。 实验条件如下: 预热区焊线区室温 60度 150度 23~25度 85度 150度 23~25度 100度 150度 23~25度

裂片原因及解决方法

裂片原因及解决方法 总结裂片原因及解决方法,瞧就是否有用: 1、压力过大或车速过快,空气来不及跑出,易引起裂片。调节压力、减慢车速即可。 2、冲模不合格,当调节冲模。 3、药物本身弹性大,全粉末片及半浸膏片或含纤维性药物等。可考虑将纤维性药物经提取等制成浸膏或流浸膏用于制粒,也可在制粒时加入糖粉或淀粉浆趁热使用。 4、颗粒直径大小差异过大,或细粉过多。 5、制粒时黏合剂或润湿剂选择不当或用量不足。 6、颗粒含水量过低,浸膏颗粒或含结晶水得药物失去结晶水引起裂片,可加入少量稀乙醇。 1、针状结晶得药物粉碎就是必需得,如果药物就是疏水性,则可以与pvp一起粉碎,可改善溶出,我就是用球磨 2、产生层裂可能机粉碎得,之后与其她辅料混合后压片,我做得就是分散片,所以没有包衣,15分钟溶出98%。? 就是您得粘合剂加得太少,由于就是直接压片,全就是细粉,因此粘合剂用量要比制粒时大。 3、润滑剂得量要掌握好,多了少了都会产生此现象 4、助流剂建议您用进口雾状硅胶。微晶纤维素如果制粒得话因为它吸水性很强反而会造成颗粒得成型性很差,颗粒很松散。微晶纤维素就是有很好得提高硬度作用,可就是它也就是易分散得。 处方组成:片重1、0克,本人现处方为:50%主药、19%糊精、20%微晶纤维素、10%得粘合剂(HPMC用水溶解)、1%润滑剂;压出来得片剂为椭圆形片,片剂得压力怎么都达不到要求,一般压力都在1-2kg左右,片剂还必须得包衣,之前我已尽本人最大努力想尽办法都无法做到,我用过直接压片糖、卡波谱、二次制粒、原料粉碎、淀粉浆制粒等方法都不行!!本人现将您得处方改为:50%主药、11%糊精、淀粉18%,10%微晶纤维素、10%得粘合剂(HPMC用水溶解)、1%润滑剂;在工艺上改进得方法就是:1、主辅料混合均匀后,分次加入粘合剂;2、延长湿搅拌得时间,从而增加软票得粘性与紧密度;3、干燥升温要缓慢一些。压片中可能发生得问题及解决办法在压片过程中,有时会碰到裂片、松片、粘冲、崩解迟缓、片重差异等问题。它不仅影响到片剂得外观质量,也直接影响其内在质量。如片剂崩解迟缓,不能在药典规定得时限内完全崩解或溶解,影响药物得溶出、吸收与疗效。而片重差异不合要求,超出药典规定得限度,也影响片剂效用得发挥。因而,研究与探讨压片过程中可能发生得问题,对于保证药品质量,提高生产工艺水平,革新操作技术具有重要意义。?本文根据药剂学得理论基础,同时荟萃多方经验。在此基础上,结合生产实际中得亲身体会,试从生产要素诸方面,如物:颗粒得物理性状;机:压片机得机械条件;人:岗位工人得操作技能及环境空气得湿度等方面对压片中易出现得问题作一综述。 1 颗粒得物理性状 颗粒得物理性状与其所含药物原料得性状所含水分、所用得赋形剂有关。而这些因素加上颗粒制成后得粒度比例分布,均可对压片工艺造成影响。?(1)药物原料得形状对片剂得形成有一定关系。凡属立方系得晶体一般可

片剂制备中可能出现的问题及解决办法

片剂制备中可能出现的问 题及解决办法 The latest revision on November 22, 2020

片剂制备中可能出现的问题及解决办法: ⑴裂片:常见的形式是顶裂。造成的原因:压力分布的不均匀以及由此而带来的弹性复原率的不同,是造成裂片的主要原因。解决裂片问题的关键是换用弹性小、塑性大的敷料,从整体上降低物料的弹性复原率。另外,颗粒中细粉太多、颗粒过干、黏合剂粘性较弱或用量不足、片剂过厚以及加压过快也可造成裂片。 ⑵松片:所谓松片,一是片剂成型后不结实,稍加外力片剂便松散了,另是基本上不成型。前面讨论的影响片剂成型的因素都决定了片剂是否会松片。 ⑶粘冲:出现粘冲的主要原因:颗粒不够干燥或物料易于吸湿、润滑剂选用不当或用量不足以及冲头表面锈蚀或刻字粗糙不光等,应根据实际情况确定原因加以解决。 ⑷片重差异超限:产生的原因及解决的办法是①颗粒流动性不好,应重新制粒或加入较好的助流剂②颗粒内的细粉太多或颗粒的大小相差悬殊,应除去过多的细粉或重新制粒③加料斗内的颗粒时多时少,造成加料斗的重量波动,应保持加料斗内始终有1/3量以上颗粒④冲头与模孔吻合性不好,应更换冲头、模圈。 ⑸崩解迟缓:崩解机理简介影响崩解的因素①原敷料的可压性,可压性强的原敷料被压缩时易发生塑性变形,片剂崩解较慢。②颗粒的硬度,硬度较小时,易因受压而破碎,片剂的崩解较慢。③压片力,压片力适中,否则片剂过硬,难以崩解。④表面活性剂,加入表面活性剂可改善湿润性,但对于易被水湿润的药物如果加入表面活性剂,不必要地降低了液体的表面张力,不利于水分透入,不易崩解。⑤润滑剂,片剂中常用的疏水性润滑剂,可能严重影响片剂的湿润性,造成崩解迟缓。在实际应用中,应对润滑剂的品种、用量、混合强度、混合时间严格控制。⑥黏合剂,粘合力越大,崩解时间越长⑦崩解剂,品种、用量、加入方法等不同,崩解效果不同⑧片剂的贮存条件,贮存后,崩解时间延长。

影响片剂质量的主要原因及解决方法

影响片剂质量的主要原因及解决方法 影响片剂质量的主要原因及解决方法 整理及经验总结 影响片剂质量的主要原因及解决方法 主要原因:1、原材料特性的符合性 2、药用赋形剂的使用比例,辅料的不一致性 3、不合理的配方关系 4、不合理的混合工艺,制粒工艺 5、压片时使用的模具及设备不佳 6、不良的压片工艺过程 7、不适宜的生产环境 一、片重差异 主要原因解决方法 1、下冲长度不一致,超差修差,差±5μm以内 2、颗粒分层解决颗粒分层,减小粒度差 3、压片机震动过大 A、结构松动,装配不合理重新装配 B、物料颗粒不均匀混匀,过筛 C、压片机设置压力过大减小压力 4、刮粉板不平或安装不良调平 5、冲杆与转台冲杆孔间隙过大调小间隙 6、颗粒中偶有异物引起加料器堵塞除去异物 7、充填凸轮或轨道的磨损,充填机构更换,稳固 不稳定 8、追求产量,转速太高降低转速 9、部分下冲未拉足保证所有下冲拉到底部 10、颗粒过湿细粉过多干燥物料,减少细粉 11、颗粒差异大均匀化 12、颗粒流动不畅,加料堵塞加助流剂,改配方,疏通料斗 13、较小的药片选用较大颗粒的物料适当的颗粒 14、物料内物料存储量差异大控制在50%以内 15、双面压片,两侧进料,速度不一致调一致 16、带强迫加料器的,强迫加料器转速调一致 与转轮转速不匹配 17、下冲阻尼螺钉调整的阻尼力不佳重新调整 二、粘冲:有细粉粘于冲头及模圈表面,致使片面不光洁、不平、有凹痕现象 主要原因解决方法 1、冲头表面损坏或表面光洁度降低更换冲头清洁冲头表面 2、刻、冲字符设计不合理更换冲头 3、颗粒过湿干燥颗粒 4、药粉中含易吸潮成分加吸湿剂 5、润滑剂不足或选型不当加大用量或更换新润滑剂 6、环境湿度过大、湿度过高降低环境湿度 三、裂片

片剂生产松片、裂片、粘冲与吊冲、片重差异超限的原因及解决方案

片剂生产松片、裂片、粘冲与吊冲、片重差异超限的原因及解决方案 在药品生产的一线,常常会遇到各种各样的小问题,而就是这些细节,往往能影响产品的质量水准。本文从实际经验出发,对于片剂生产中出现的“病症”给与诊断分析,并给出了详实“处方”。希望能给一线生产人员提供一定的帮助。 1:病症:松片,即片剂压成后,硬度不够,表面有麻孔,用手指轻轻加压即碎裂。 处方: ①药物粉碎细度不够、纤维性或富有弹性药物或油类成分含量较多而混合不均匀。可将药物粉碎过100目筛、选用黏性较强的黏合剂、适当增加压片机的压力、增加油类药物吸收剂充分混匀等方法加以克服。 ②黏合剂或润湿剂用量不足或选择不当,使颗粒质地疏松或颗粒粗细分布不匀,粗粒与细粒分层。可选用适当黏合剂或增加用量、改进制粒工艺、多搅拌软材、混均颗粒等方法加以克服。 ③颗粒含水量太少,过分干燥的颗粒具有较大的弹性、含有结晶水的药物在颗粒干燥过程中失去较多的结晶水,使颗粒松脆,容易松裂片。故在制粒时,按不同品种应控制颗粒的含水量。如制成的颗粒太干时,可喷入适量稀乙醇(50%-60%),混匀后压片。 ④药物本身的性质。密度大压出的片剂虽有一定的硬度,但经不起碰撞和震摇。如次硝酸铋片、苏打片等往往易产生松片现象;密度小,流动性差,可压性差,重新制粒。 ⑤颗粒的流动性差,填入模孔的颗粒不均匀。 ⑥有较大块或颗粒、碎片堵塞刮粒器及下料口,影响填充量。

⑦压片机械的因素。压力过小,多冲压片机冲头长短不齐,车速过快或加料斗中颗粒时多时少。可调节压力、检查冲模是否配套完整、调整车速、勤加颗粒使料斗内保持一定的存量等方法克服。 2:病症:裂片,即片剂受到震动或经放置时,从腰间裂开的称为腰裂;顶部裂开的称为顶裂,腰裂和顶裂总称为裂片。 处方: ①药物本身弹性较强、纤维性药物或因含油类成分较多。可加入糖粉以减少纤维弹性,加强黏合作用或增加油类药物的吸收剂,充分混匀后压片。 ②黏合剂或润湿剂不当或用量不够,颗粒在压片时黏着力差。 ③颗粒太干、含结晶水药物失去过多造成裂片,解决方法与松片相同。 ④有些结晶型药物,未经过充分的粉碎。可将此类药物充分粉碎后制粒。 ⑤细粉过多、润滑剂过量引起的裂片,粉末中部分空气不能及时逸出而被压在片剂内,当解除压力后,片剂内部空气膨胀造成裂片,可筛去部分细粉与适当减少润滑剂用量加以克服。 ⑥压片机压力过大,反弹力大而裂片;车速过快或冲模不符合要求,冲头有长短,中部磨损,其中部大于上下部或冲头向内卷边,均可使片剂顶出时造成裂片。可调节压力与车速,改进冲模配套,及时检查调换。 ⑦压片室室温低、湿度低,易造成裂片,特别是黏性差的药物容易产生。调节空调系统可以解决。 3:病症:粘冲与吊冲,即压片时片剂表面细粉被冲头和冲模黏附,

相关主题
文本预览
相关文档 最新文档