当前位置:文档之家› 复变函数与积分变换(苏变萍、陈东立编)第三章答案

复变函数与积分变换(苏变萍、陈东立编)第三章答案

复变函数与积分变换(苏变萍、陈东立编)第三章答案
复变函数与积分变换(苏变萍、陈东立编)第三章答案

复变函数与积分变换(苏变萍、陈东立编)第三章答案

复变函数与积分变换习题答案

习题六 1. 求映射1 w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2222 11i=+i i x y w u v z x y x y x y ===-+++ 221 x x u x y ax a = ==+, 所以1w z =将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 22221i x y w z x y x y = =-++ 22 2222 x y kx u v x y x y x y = =- =- +++ v ku =- 故1 w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则2222 ,u v y x u v u v ==++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12w > (以(12,0)为圆心、 1 2为半径的圆)

(完整版)复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i ππ π ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 1+ 解:()/3122cos /3sin /3i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2221cos sin 2sin 2sin cos 2sin (sin cos )2 2 2 2 22 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos3sin3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin1i i e ee e i +==+ (7) 11i i -+ 解:3/411cos3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) 解: 1ar 21ar 21ar 2 b i ctg k a b i ctg a b i ctg a π?? + ??? = =??=??? (2) 解:6 2263634632 22i k i i i i e i e e e i πππππππ?? ??++ ? ??? ????+ ????=+????====-+? ??=-?

(3) i i 解:( )2222i i k k i i e e ππππ???? +-+ ? ??? ?? == (4) 解:( ) 1/2222i i k k e e ππππ???? ++ ? ??? ?? == (5) cos5α 解:由于:()()5 5 2cos5i i e e ααα-+=, 而: ()()()() ()()()() 5 5 5 55 5 5 5 55 cos sin cos sin cos sin cos sin n n i n n n n i n n e i C i e i C i αααααααααα-=--==+==-=-∑∑ 所以: ()()()()()()()()()()() 5555055550 4 3 2 5 3 543251cos5cos sin cos sin 21 cos sin 112 5cos sin cos sin cos 5cos sin 10cos sin cos n n n n n n n n n n n C i i C i i C i ααααααααααααααααα --=--=?? =+-????=+-??=++=-+∑∑ (6) sin5α 解:由于:()() 5 5 2sin 5i i e e ααα--=, 所以: ()()()()()()()()()()() () 5555055550 5234 245552341sin 5cos sin cos sin 21 cos sin 1121 sin cos sin sin cos sin 10cos sin 5sin cos n n n n n n n n n n n C i i i C i i i C i C i i ααααααααααααααααα --=--=?? =--? ??? =--??=++=-+∑∑ (7) cos cos2cos n ααα+++L L 解:

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z = X ? iy , X, y 是实数,x = Rez,y=lmz.r=_i. 中的幅角。 3)arg Z与arctan~y之间的关系如下: X y 当X 0, arg Z= arctan 丄; X y y -0,arg Z= arctan 二 ! X y y :: O,arg Z= arctan -二 J X 4)三角表示:Z = Z(COS8 +isin0 ),其中日=argz;注:中间一定是“ +”号。 5)指数表示:Z = ZeF,其中V - arg z。 (二)复数的运算 1.加减法:若Z I=X I iy1, z2=X2 iy2,贝廿z1二z2= x1二x2i y1- y2 2.乘除法: 1)若z1 = x1 iy1, Z2 =X2 iy2,贝U 狂h[N×2 一y$2 i x2% x1y2 ; 乙_ X1+ i y_ (x1 十 i 和X—i y_ XX y*y y x;。X Z2 X2+ i% (对讪-X )i2y 2+2X222+ 2X22 2)若Z I=Iz I e i^,z2 =∣z2 e iθ ,则 Z1Z2 = ZIll Z2 e i(t1也; 3.乘幕与方根 1)若Z= Z(COS J isin * n (CoS n i Sinn )= n e i"。 2)幅角:在Z=O时,矢量与X轴正向的夹角, 记为Arg Z (多值函数);主值arg Z 是位于(-理,二]注:两个复数不能比较大小 2.复数的表示

2)若 Z = IZ(COSB+isinT)=∣ze i ^,则 (三)复变函数 1?复变函 数: w = f z ,在几何上可以看作把 Z 平面上的一个点集 D 变到W 平面上的一个点集 G 的映射 . 2 ?复初等函数 1)指数函数:e z =e x cosy isiny ,在Z 平面处处可导,处处解析;且 注:e z 是以2二i 为周期的周期函数。(注意与实函数不同) 3)对数函数: LnZ=In z+i (argz + 2kιι) (k=0,±1,±2八)(多值函数); 主值:In Z = Inz+iargz 。(单值函数) ?1 LnZ 的每一个主值分支In z 在除去原点及负实轴的 Z 平面内处处解析,且 Inz Z 注:负复数也有对数存在。 (与实函数不同) 3)乘幕与幕函数:a — e bLna (a = 0) ; Z b = e bLnZ (Zn 0) 注:在除去原点及负实轴的 Z 平面内处处解析,且 Z S -bz b j 。 Sin z,cos Z 在 Z 平面内解析,且 Sinz = cosz, CoSZ=-Sinz 注:有界性Sin z 兰1, cosz ≤1不再成立;(与实函数不同) Z ■ Z Z ■ Z ,,,, e -e e +e 4) 双曲函数 ShZ ,chz = 2 2 ShZ 奇函数,ChZ 是偶函数。ShZ I ChZ 在Z 平面内解析,且 ShZ =chz, ChZ i - ShZ O (四)解析函数的概念 1 ?复变函数的导数 1)点可导: f r fZ0;fZ 0 2)区域可导:f Z 在区域内点点可导。 2 ?解析函数的概念 1 f 日 +2kπ ..日 +2kπ ) Z n I cos ----------- 十 ISi n -------- I n n (k =0,12…n -1)(有n 个相异的值) 4)三角函数: iz -iz e -e Sin Z = 2i iz JZ . e +e , sin z , ,cos z ,tgz ,ctgz 2 cos z cosz Sin Z

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

复变函数与积分变换课后习题答案详解

复变函数与积分变换 (修订版)主编:马柏林 (复旦大学出版社) ——课后习题答案

习题一 1. 用复数的代数形式a +ib 表示下列复数 π/43513 ; ;(2)(43);711i i e i i i i i -++++ ++. ①解i 4 πππe cos isin 44-??????=-+- ? ? ? ??? ?? ?? ②解: ()()()() 35i 17i 35i 1613i 7i 1 1+7i 17i 2525 +-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解: ()31i 13 35=i i i 1i 222 -+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy ) (z a a z a -∈+ ); 33 3;;;.n z i ① :∵设z =x +iy 则 ()()()()()()()22 i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-????+--+-????===+++++++ ∴ ()222 2 2 Re z a x a y z a x a y ---??= ?+??++, ()22 2Im z a xy z a x a y -?? = ?+??++. ②解: 设z =x +iy ∵ ()()()()() ()()()3 2 322222222 3223i i i 2i i 22i 33i z x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++??=--+-+??=-+- ∴ ()332 Re 3z x xy =-, ()323Im 3z x y y =-. ③解: ∵ (( )( ){ }3 3 2 3 2 111313188-+? ???== --?-?+?-????? ? ?? ?? ()1 80i 18 = += ∴Re 1=?? , Im 0=?? . ④解: ∵ () ( )(( )2 3 3 2 3 13131i 8 ??--?-?+?-???? =?? ()1 80i 18 = += ∴Re 1 =? ? , Im 0=? ? . ⑤解: ∵()()1,2i 211i, k n k n k k n k ?-=? =∈?=+-???¢. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =; 当 21n k =+时, ()Re i 0 n =, ()()Im i 1k n =-. 3.求下列复数的模和共轭复数 12;3;(2)(32); .2 i i i i +-+-++ ①解:2i -+= 2i 2i -+=-- ②解:33-= 33-=- ③解:()( )2i 32i 2i 32i ++=++= ()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+?+=-?-=- ④解: 1i 1i 22++== ()1i 11i 222i ++-??== ??? 4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,

最优化计算方法课后习题答案----高等教育出版社。施光燕

习题二包括题目:P36页5(1)(4) 5(4)

习题三 包括题目:P61页1(1)(2); 3; 5; 6; 14;15(1) 1(1)(2)的解如下 3题的解如下

5,6题 14题解如下 14. 设22121212()(6)(233)f x x x x x x x =+++---, 求点在(4,6)T -处的牛顿方向。 解:已知 (1) (4,6)T x =-,由题意得 121212212121212(6)2(233)(3)()2(6)2(233)(3)x x x x x x x f x x x x x x x x +++-----?? ?= ?+++-----?? ∴ (1)1344()56g f x -?? =?= ??? 21212122211212122(3)22(3)(3)2(233)()22(3)(3)2(233)22(3)x x x x x x x f x x x x x x x x +--+--------? ??= ? +--------+--?? ∴ (1)2(1)1656()()564G x f x --?? =?= ?-?? (1)1 1/8007/400()7/4001/200G x --?? = ?--?? ∴ (1)(1)11141/100()574/100d G x g -?? =-= ?-?? 15(1)解如下 15. 用DFP 方法求下列问题的极小点 (1)22 121212min 353x x x x x x ++++ 解:取 (0) (1,1)T x =,0H I =时,DFP 法的第一步与最速下降法相同 2112352()156x x f x x x ++???= ?++??, (0)(1,1)T x =,(0) 10()12f x ???= ??? (1)0.07800.2936x -??= ?-??, (1) 1.3760() 1.1516f x ???= ?-?? 以下作第二次迭代 (1)(0) 1 1.07801.2936x x δ-??=-= ?-??, (1)(0) 18.6240()()13.1516f x f x γ-??=?-?= ?-?? 0110 111011101 T T T T H H H H H γγδδδγγγ=+-

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换(修订版复旦大学)课后的第三章习题答案

习题三 1. 计算积分2 ()d C x y ix z -+?,其中C 为从原点到点1+i 的直线段. 解 设直线段的方程为y x =,则z x ix =+. 01x ≤≤ 故 ()()1 22 1 23 1 0()1 1 (1)(1)(1)333C x y ix dz x y ix d x ix i i ix i dx i i x i -+=-++-=+=+?=+=?? ? 2. 计算积分(1)d C z z -?,其中积分路径C 为 (1) 从点0到点1+i 的直线段; (2) 沿抛物线y=x2,从点0到点1+i 的弧段. 解 (1)设z x ix =+. 01x ≤≤ ()()1 11()C z dz x ix d x ix i -=-++=?? (2)设2 z x ix =+. 01x ≤≤ ()()1 22 211()3 C i z dz x ix d x ix -=-++=?? 3. 计算积分d C z z ?,其中积分路径C 为 (1) 从点-i 到点i 的直线段; (2) 沿单位圆周|z|=1的左半圆周,从点-i 到点i; (3) 沿单位圆周|z|=1的右半圆周,从点-i 到点i. 解 (1)设z iy =. 11y -≤≤ 11 1 1 C z dz ydiy i ydy i --===??? (2)设i z e θ =. θ从32π到2π 22 332 2 12i i C z dz de i de i π π θ θππ===???

(3) 设i z e θ =. θ从32π到2π 2 32 12i C z dz de i π θ π==?? 6. 计算积分()sin z C z e z dz -???,其中C 为0 z a =>. 解 ()sin sin z z C C C z e z dz z dz e zdz -?=-????蜒 ? ∵sin z e z ?在z a =所围的区域内解析 ∴sin 0z C e zdz ?=?? 从而 ()20 22 sin 0 z i C C i z e z dz z dz adae a i e d π θ π θθ-?====?? ??蜒 故()sin 0 z C z e z dz -?=?? 7. 计算积分2 1 (1) C dz z z +??,其中积分路径C 为 (1)11:2 C z = (2) 23 :2 C z = (3) 31:2 C z i += (4) 43:2 C z i -= 解:(1)在 1 2 z = 所围的区域内, 21 (1)z z +只有一个奇点0z =. 12 1 11111 ()2002(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=+-+?? 蜒(2)在2C 所围的区域内包含三个奇点 0,z z i ==±.故 22 1 11111()20(1) 22C C dz dz i i i z z z z i z i πππ= -?-?=--=+-+?? 蜒(3)在2C 所围的区域内包含一个奇点 z i =-,故 32 1 11111()00(1) 22C C dz dz i i z z z z i z i ππ= -?-?=--=-+-+??蜒(4)在4C 所围的区域内包含两个奇点 0,z z i ==,故

《最优化方法》复习题(含答案)

x zD 天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 判断与填空题 arg max f(x)二 arg min 以儿 “ max(x): x D 二 R n 』=-min(x): x D 二 R n ; 设f : D 5 R n > R.若x : R n ,对于一切R n 恒有f(x”)^f(x),则称x”为 设f : D 5 R n >R.若x ” ? D ,存在x ”的某邻域N ;(x”),使得对一切 x ?N .(x)恒有f(x”)::: f (x),则称x”为最优化问题 min f (x)的严格局部最 优解? 给定一个最优化问题,那么它的最优值是一个定值 ? V 非空集合D R n 为凸集当且仅当 D 中任意两点连线段上任一点属于 D . V 非空集合D R n 为凸集当且仅当D 中任意有限个点的凸组合仍属于 D . V 任意两个凸集的并集为凸集? 函数f:D R n >R 为凸集D 上的凸函数当且仅当 -f 为D 上的凹函数? V 设f : D R n >R 为凸集D 上的可微凸函数,X :D ?则对-D ,有 f (x) - f(x )乞 f (x )T (X —X )? 若c(x)是凹函数,则 D={x^R n C(x)启0}是凸集。 V f(x)的算法A 产生的迭代序列,假设算法 A 为下降算法, 则对-k ? 5,1, 2,…匚恒有 ________________ f(x k1)乞 f(x k ) ______________ ? 算法迭代时的终止准则(写出三种) : ___________________________________________________ 凸规划的全体极小点组成的集合是凸集。 V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

复变函数与积分变换期末试题(附有答案)

复变函数与积分变换期末试题 一.填空题(每小题3分,共计15分) 1. 2 3 1i -的幅角是( 2,1,0,23±±=+-k k ππ);2. )1(i Ln +-的主值是 ( i 4 32ln 21π + );3. 211)(z z f +=,=)0() 5(f ( 0 ),4.0=z 是 4sin z z z -的( 一级 )极点;5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题3分,共15分) 1.解析函数),(),()(y x iv y x u z f +=的导函数为( ); (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周3=z ,如果函数=)(z f ( ),则0d )(=?C z z f . (A ) 23-z ; (B )2)1(3--z z ; (C )2)2()1(3--z z ; (D )2 ) 2(3 -z . 3.如果级数∑∞ =1 n n n z c 在2=z 点收敛,则级数在 (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛;

(C )i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( ) (A )如果函数)(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果)(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果 0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是 ),(y x u 、),(y x v 在该区域内均为调和函数. 5.下列结论不正确的是( ). (A) 的可去奇点;为z 1 sin ∞(B) 的本性奇点;为z sin ∞ (C) ;1sin 1 的孤立奇点为 z ∞(D) .sin 1的孤立奇点为z ∞ 三.按要求完成下列各题(每小题10分,共40分) (1).设)()(2 2 2 2 y dxy cx i by axy x z f +++++=是解析函数,求 .,,,d c b a 解:因为)(z f 解析,由C-R 条件

最优化方法(试题+答案)

一、 填空题 1 . 若 ()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则 =?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T ) 3,2,1(关于3阶单位方阵的所有线性无关的共轭向量 有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算 法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutend ij k算法或Frank Wol fe算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 212112 22121≥≥≤+-+-= x x x x t s x x x x x x f

复变函数与积分变换重要知识点归纳

复变函数与积分变换重 要知识点归纳 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

积分变换习题解答2-2

2-2 1.求下列函数的Laplace 变换式: 1)()232f t t t =++. 解:由[]2 132!1232132m m m t s s s s s t t +????==++=++???? 及有L L L . 2)()1e t f t t =-. 解 :[]() () 11 11 ,e e t t t t t s s s s --????= ==- ????2 2 2+1-1L L ,L 1-. 3)()()2 1e t f t t =-. 解: ()22-1e e 2e e t t t t t t t ????=-+???? L L () () () 2 3 2 3 2 2 145 .-1-1-1s s s s s s -+= - + = -1 5)()cos f t t at =. 解: 由微分性质有: [][]() 2 2 2 222 2 d d cos cos d d s s a t at at s s s a s a -?? =-=-= ? +?? +L L 6) ()5sin 23cos 2f t t t =- 解:已知[][]2 2 2 2 sin ,cos s t t s s ω ωωω ω= = ++L L ,则 []52 2 222103sin 23cos 25 34 4 4 s t t s s s --=-= +++L 8)()4e cos 4t f t t -=. 解: 由[]2 cos 416 t s +s = L 及位移性质有 42cos 4416 e t s t s -??=??++4(+)L . 3.若()()f t F s ??=??L ,证明(象函数的微分性质):

复变函数与积分变换重要知识点归纳

复变函数与积分变换重要知 识点归纳 标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

积分变换课后答案

1-1 1. 试证:若 ()f t 满足Fourier 积分定理中的条件,则有 ()()()d d 0 cos sin f t a t b t ωωωωωω+∞+∞ =+? ? 其中()()()()d d ππ11cos ,sin .a f b f ωτωττωτωττ+∞+∞ -∞-∞ ==?? 分析:由Fourier 积分的复数形式和三角形式都可以证明此题,请读者试 用三角形式证明. 证明:利用Fourier 积分的复数形式,有 ()()j j e e d π12t t f t f ωωτω+∞+∞--∞-∞??= ? ????? ()()j j d e d π11cos sin 2t f ωτωτωττω+∞+∞-∞-∞??=-???? ?? ()()()j j d 1cos sin 2 a b t t ωωωωω+∞ -∞??= -+??? 由于()()()(),,a a b b ωωωω=-=--所以 ()()()d d 11cos sin 22 f t a t b t ωωωωωω+∞+∞-∞-∞= +?? ()()d d 0 cos sin a t b t ωωωωωω+∞+∞ =+? ? 2.求下列函数的Fourier 积分: 1)()22 21,10,1t t f t t ?-≤?=?>??; 2) ()0, 0;e sin 2,0 t t f t t t -???为连续的偶函数,其Fourier 变换为 j 21()[()]()e d 2()cos d 2(1)cos d 00t F f t f t t f t t t t t t ωωωω-+∞ +∞?====-?-∞ ???F

最优化方法(试题+答案)

一、 填空题 1.若()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f , 则=?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T )3,2,1(关于3阶单位方阵的所有线性无关的共轭向量有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutendijk 算法或Frank Wolfe 算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 21211222121≥≥≤+-+-= x x x x t s x x x x x x f

复变函数与积分变换 学习笔记

第二章解析函数 一、复变函数的导数及微分 1、导数的定义 2、可导与连续 3、求导法则 实变函数的求导法则可以不加更改地推广到复变函数中来 4、微分的概念 与一元实变函数的微分概念完全一致 二、解析函数的概念 1、解析函数的定义 如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。 如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。或称f(z)是区域D 内的一个解析函数(全纯函数或正则函数) 2、奇点的定义 如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。 根据定义可知,函数在区域内解析和区域内可导是等价的。但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。 函数在一点处解析比在该点处可导的要求高得多。 定理 (1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。 (2)设函数h=g(z)在z平面上的区域D内解析,函数w=f(h)在h平面上的区域G内解析。如果对于D内的每个点z,函数g(z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。 根据定理可知: (1)所有多项式在复平面内是处处解析的。 (2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分母为零的点是它的奇点。 注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多。 第二节、函数解析的充要条件 一、主要定理 定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方 程:=,=。 根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z)=+=+。 定理二:函数f(z)=u(x,y)+iv(x,y)在其定义域D内解析的充要条件是:u(x,y)与v(x,y)在D内可微,并满足柯西-黎曼方程。

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

相关主题
文本预览
相关文档 最新文档