当前位置:文档之家› 生物合成可降解材料PHA的研究进展和产业化趋势

生物合成可降解材料PHA的研究进展和产业化趋势

生物合成可降解材料PHA的研究进展和产业化趋势
生物合成可降解材料PHA的研究进展和产业化趋势

纳米复合材料最新研究进展与发展趋势

智能复合材料最新研究进展与发展趋势 1.绪论 智能复合材料是一类能感知环境变化,通过自我判断得出结论,并自主执行相应指令的材料,仅能感知和判断但不能自主执行的材料也归入此范畴,通常称为机敏复合材料。智能复合材料由于具备了生命智能的三要素:感知功能(监测应力、应变、压力、温度、损伤) 、判断决策功能(自我处理信息、判别原因、得出结论) 和执行功能(损伤的自愈合和自我改变应力应变分布、结构阻尼、固有频率等结构特性) ,集合了传感、控制和驱动功能,能适时感知和响应外界环境变化,作出判断,发出指令,并执行和完成动作,使材料具有类似生命的自检测、自诊断、自监控、自愈合及自适应能力,是复合材料技术的重要发展。它兼具结构材料和功能材料的双重特性。 在一般工程结构领域,智能复合材料主要通过改变自身的力学特性和形状来实现结构性态的控制。具体说就是通过改变结构的刚度、频率、外形等方面的特性,来抑制振动、避免共振、改善局部性能、提高强度和韧性、优化外形、减少阻力等。在生物医学领域,智能复合材料可以用于制造生物替代材料和生物传感器。在航空航天领域,智能复合材料已实际应用于飞机制造业并取得了很好的效果,航天飞行器上也已经使用了具有自适应性能的智能复合材料。智能复合材料在土木工程领域中发展也十分迅速。如将纤维增强聚合物(FRP)与光纤光栅(OFBG)复合形成的FRP—OFBG 复合筋大大提高了光纤光栅的耐久性。将这种复合筋埋入混凝土中,可以有效地检测混凝土的裂纹和强度,而且它可以根据需要加工成任意尺寸,十分适于工业化生产。本文阐述了近年来发展起来的形状记忆、压电等几种智能复合材料与结构的研究和应用现状,同时展望了其应用前景。 2.形状记忆聚合物(Shape-Memory Polymer)智能复合材料的研究 形状记忆聚合物(SMP)是通过对聚合物进行分子组合和改性,使它们在一定条件下,被赋予一定的形状(起始态),当外部条件发生变化时,它可相应地改变形状并将其固定变形态。如果外部环境以特定的方式和规律再次发生变化,它们能可逆地恢复至起始态。至此,完成“记忆起始态→固定变形态→恢复起始态”的循环,聚合物的这种特性称为材料的记忆效应。形状记忆聚合物的形变量最大可为200%,是可变形飞行器

生物可降解材料聚乳酸的制备改性及应用

生物可降解材料聚乳酸的制备改性及应用 摘要:聚乳酸(PLA)是人工合成的可生物降解的的热塑性脂肪族聚酯,其具有良好的机械性能、热塑性、生物相容性和生物降解性等,广泛应用于可控释材料、生物医用材料、组织工程材料、合成纤维等领域。本文主要介绍了聚乳酸的合成、改性及其在各个领域的应用。关键词:聚乳酸;生物降解;合成;应用 随着大量高分子材料在各个领域的应用,废弃高分子材料对环境的污染有着日益加剧的趋势。处理高分子材料的一些老套方法如焚烧、掩埋、熔融共混挤出法、回收利用等都存在缺陷并有一定的局限性,给环境带来严重的负荷,因此开发环境可接受的降解性高分子材料是解决环境污染的重要途径。而乳酸主要来源于自然界十分丰富的可再生植物资源如玉米淀粉、甜菜糖等的发酵。聚乳酸(polylactide简称PLA)在自然环境中可被水解或微生物降解为无公害的最终产物CO2和H2O,对其进行堆肥或焚烧处理也不会带来新的环境污染[1]。此外聚乳酸及其共聚物是一种具有优良的生物相容性的合成高分子材料。它具有无毒、无刺激性、强度高、可塑性强、易加工成型等特点,因而被认为是最有前途的生物可降解高分子材料[2]。利用其可降解性,也可用作生物医用材料如组织支架、外科手术缝合线、专业包装、外科固定等。 1 生物降解机理[3,4] 生物降解是指高分子材料通过溶剂化作用、简单水解或酶反应,以及其他有机体转化为相对简单的中间产物或小分子的过程。高分子材料的生物降解过程可分为4个阶段:水合作用、强度损失、物质整体化丧失和质量损失。微生物首先向体外分泌水解酶,与可生物降解材料表面结合,通过水解切断这些材料表面的高分子链,生成低相对分子质量的化合物(有机酸、糖等),然后,降解的生成物被微生物摄入体内,合成为微生物体物或转化为微生物活动能量,在耗氧条件下转化为CO2,完成生物降解的全过程。材料的结构是决定其是否可生物降解的根本因素。合成高分子多为憎水性的,一般不能生物降解,只有能保持一定湿度的材料才有可能生物降解。含有亲水性基团的高分子可保持一定的湿度,宜生物降解,同时含有亲水和憎水基的聚合物生物降解性好。一般分子量大的材料较分子量小的更难生物降解;脂肪族聚合物比相应的芳香族聚合物容易生物降解;支化和交联会降低材料的生物降解性。另外,材料表面的特性对生物降解也有影响,粗糙表面材料比光滑表面材料更易降解。影响可生物降解性的化学因素主要有高分子的亲水性、构型、形态结构、链段的活动性、分子量、高聚物的组成以及上述因素之间的相互关系等。高分子的亲水性越强越易水解,水解酶对酯键、酰胺键和氨基甲酸酯都有较强的作用;无定型态的高聚物比结晶状态容易水解;分子链段越柔顺,玻璃化温度越低,越有利于降解;链段活动性越大,自由体积越大,越容易受到酶的进攻,也就越容易降解;可降解性随着分子量增大而降低;高聚物的组成,如共混、共聚等也影响着高分子的可降解性。一般情况下只有极性高分子才能与酶相吸附并能很好亲和,因此高分子具有极性是生物降解的必要条件。具有生物降解性(包括水解)的分子化学结构有:脂肪族酯键、酞键、脂肪族醚键、亚甲基、氨基、酰氨基、烯氨基、芳香族偶氮基、脲基、氨基甲酸乙酯等。 2 聚乳酸的基本性质

生物可降解塑料的应用、研究现状及发展方向汇总

生物可降解塑料的应用、研究现状及发展方向 关键词:可降解塑料,光降解塑料,光和生物降解塑料,水降解塑料, 生物降解塑料 绪论 半个多世纪以来,随着塑料工业技术的迅速发展,当前世界塑料总产量已超过117×108t,其用途已渗透到工业、农业以及人民生活的各个领域并与钢铁、木材、水泥并列成为国民经济的四大支柱材料。但塑料大量使用后随之也带来了大量的固体废弃物,尤其是一次性使用塑料制品如食品包装袋、饮料瓶、农用薄膜等的广泛使用,使大量的固体废弃物留在公共场所和海洋中,或残留在耕地的土层中,严重污染人类的生存环境,成为世界性的公害{1-3}。有资料表明,城市固体废弃物中塑料的质量分数已达10%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注[4]。因此,解决这个问题已成为环境保护方面的当务之急。一般来讲,塑料除了热降解以外,在自然环境中的光降解和生物降解的速度都比较慢,用C14同位素跟踪考察塑料在土壤中的降解,结果表明,塑料的降解速度随着环境条件(降雨量、透气性、温度等)不同而有所差异,但总的而言,降解速度是非常缓慢的,通常认为需要200-400年[5]。为了解决这个问题,工业发达国家采用过掩埋、焚烧和回收利用等方法来处理废弃塑料,但是,这几种方法都存在无法克服的缺陷。进行填埋处理时占地多,且

使填埋地不稳定;又因其发出热量大,当进行焚烧处理时,易损坏焚烧炉,并排出二恶英,有时还可能排放出有害气体,而对于回收利用,往往难以收集或即使强制收集进行回收利用,经济效益甚差甚至无经济效益[6]。 不可降解的大众塑料塑料对地球的危害: (1)两百年才能腐烂。塑料袋埋在地下要经过大约两百年的时间才能腐烂,会严重污染土壤;如果采取焚烧处理方式,则会产生有害烟尘和有毒气体,长期污染环境。 (2)降解塑料难降解。市场上常见的“降解塑料袋”,实际上只是在塑料原料中添加了淀粉,填埋后因为淀粉的发酵、细菌的分解,大块塑料袋会分解成细小甚至肉眼看不见的碎片。这是一种物理降解,并没有从根本上改变塑料产品的化学性质。 (3)影响土壤的正常呼吸。塑料袋本身不是土壤和水体的基本物质之一,强行进入到土壤之后,由于它自身的不透气性,会影响到土壤内部热的传递和微生物的生长,从而改变土壤的特质。这些塑料袋经过长时间的累积,还会影响到农作物吸收养分和水分,导致农作物减产。 (4)易造成动物误食。废弃在地面上和水面上的塑料袋,容易被动物当做食物吞入,塑料袋在动物肠胃里消化不了,易导致动物肌体损伤和死亡因而越来越多的学者提倡开发和应用降解塑料,并将它看作是解决这一世界难题 的理想途径。目前,世界发达国家积极发展降解塑料,美国、日本、德国等发达国家都先后制定了限用或禁用非降解塑料的法规。[7] 可降解塑料的出现,不仅扩大了塑料功能,而且在一定程度上可缓解和抑制环境矛盾,对石油资源是一个补充,而且从合成技术上展示了生物技术和合金化技术在塑料材料领域中的威力和前景,它的发展已经成为世界研究开发的热点。 随着降解技术的完善,降解性能在不断提高而成本在不断降低,可降解

磁性材料研究进展

磁性材料 引言 磁性材料作为重要的基础功能材料,已广泛用于信息、能源、交通运输、工业、农业及人们日常生活的各个领域,对社会进步和经济发展起着至关重要的推动作用。人们习惯按矫顽力的高低,对磁性材料进行分类:矫顽力大于1000A/m则称为硬磁材料,当硬磁材料受到外磁场磁化后,去掉外磁场仍能保留较高的剩磁,因此又称之为永磁材料或恒磁材料;矫顽力小于lOOA/m则称为软磁材料;矫顽力100A/m

磁电复合材料研究进展.

《复合材料学》课程论文 题目:磁电复合材料的研究进展 学生姓名:李名敏 学号: 051002109 学院:化学工程学院 专业班级:材料化学101 电子邮箱: 904721996@https://www.doczj.com/doc/8b14765712.html, 2013年 6 月

磁电复合材料的研究进展 摘要:本文介绍磁电复合材料的研究现状和合成工艺,讨论了磁电复合材料性能的影响因素,最后提出了其目前存在的问题及对今后的展望。 关键词:磁电复合材料铁电相铁磁相纳米材料合成工艺性能 1 引言 材料在外加磁场作用下产生自发极化或者在外加电场作用下感生磁化强度的效应称为磁电效应,具有磁电效应的材料称为磁电材料[1]。而磁电复合材料,它由两种单相材料—铁电相与铁磁相经一定方法复合而成。磁电复合材料的磁电转换功能是通过铁电相与铁磁相的乘积效应实现的, 这种乘积效应即磁电效应。磁电复合材料不仅具有前者的压电效应和后者的磁致伸缩效应,而且还能产生出新的磁电转换效应。这种材料能够直接将磁场转换成电场,也可以把电场直接转换为磁场。这种不同能量场之间的转换一步而成,不需要额外的设备,因此转换效率高、易操作。磁电复合材料不但具有较高的尼尔和居里温度,磁电转换系数大等诸多优点,而且还可被用于微波、高压输电、宽波段磁探测,磁场感应器等领域,尤其是在微波泄露、高压输电系统中的电流测量方面有着很突出的优势。此外,磁电复合材料在智能滤波器、磁电传感器、电磁传感器等领域也潜在着巨大的的应用前景[2]。目前, 磁电复合材料作为一种非常重要的功能材料,已成为当今铁电、铁磁功能材料领域的一个新的研究热点。 2 磁电复合材料的研究现状 2.1 磁电复合材料的历史 1894年法国物理学家居里首先提出并证明了一个不对称的分子体在外加磁场的影响下有可能直接被极化,磁电材料概念就此被提出。随后,一些科学家又指出了从对称性角度来考虑,在磁有序晶体中可能存在与磁场强度成正比的电极化以及与电场强度成正比的磁极化即线性磁电效应。直到20世纪80年代,已经发现50多种具有磁电效应的化合物,以及几十种具有此性能的固溶体。虽然发现了一系列具有磁电效应的单相材料,而这类材料虽然既具有铁电性(或反铁电性),又具有铁磁性(或反铁磁性),然而这些材料的居里温度大都远远低于室温,并且只有在居里温度以下这些材料才会表现出微弱的磁电效应。当环境温度上升到居里温度以上时,磁电系数就迅速下降为零,磁电效应也就随之消失。因此,难以利用单相磁电材料开发出具有实际应用价值的器件。这些局限性使得材料科学工作者们又将目光转移到复合材料上,Van Suchtelen首先提出通过复合材料的乘积效应来获得磁电效应,为制备高性能磁电材料开辟了一条新途径。1978

生物医用材料未来发展趋势

生物医用材料未来发展趋势 作者:亦云来源:上海情报服务平台发布者:日期:2006-09-07 今日/总浏览:7/6023 组织工程材料面临重大突破 组织工程是指应用生命科学与工程的原理和方法,构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织或器官的修复和再建,延长寿命和提高健康水乎。其方法是,将特定组织细胞"种植"于一种生物相容性良好、可被人体逐步降解吸收的生物材料(组织工程材料)上,形成细胞――生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的具有与自身功能和形态相应的组织或器官;这种具有生命力的活体组织或器官能对病损组织或器宫进行结构、形态和功能的重建,并达到永久替代。近10年来,组织工程学发展成为集生物工程、细胞生物学、分子生物学、生物材料、生物技术、生物化学、生物力学以及临床医学于一体的一门交叉学科。 生物材料在组织工程中占据非常重要的地位,同时组织工程也为生物材料提出问题和指明发展方向。由于传统的人工器官(如人工肾、肝)不具备生物功能(代谢、合成),只能作为辅助治疗装置使用,研究具有生物功能的组织工程人工器官已在全世界引起广泛重视。构建组织工程人工器官需要三个要素,即"种子"细胞、支架材料、细胞生长因子。最近,由于干细胞具有分化能力强的特点,将其用作"种子"细胞进行构建人工器官成为热点。组织工程学已经在人工皮肤、人工软骨、人工神经、人工肝等方面取得了一些突破性成果,展现出美好的应用前景。 例如,存在于脂肪组织基质中的脂肪干细胞(ADSCs)是一类增殖能力强、具有多向分化潜能的成体干细胞,被发现不但具有与骨髓基质干细胞(BMSc)相似的向成骨、软骨、脂肪、肌肉和神经等细胞多分化的能力,而且表达与BMSc相同的表面标志如CD29、CD105、

生物可降解材料项目可行性研究报告

生物可降解材料项目可行性研究报告 泓域咨询丨规划设计·投资分析

第一章项目绪论 一、项目名称及建设单位 (一)项目名称 生物可降解材料项目 (二)项目建设单位 某某有限公司 二、项目拟建地址及用地指标 (一)项目拟建地址 该项目选址在某某工业园区。 (二)项目用地性质及用地规模 1、该项目计划在某某工业园区建设,用地性质为工业用地。 2、项目拟定建设区域属于工业项目建设占地规划区,建设区总用地面积56667.0 平方米(折合约85.0 亩),代征地面积510.0 平方米,净用地面积56157.0 平方米(折合约84.2 亩),土地综合利用率100.0%;项目建设遵循“合理和集约用地”的原则,按照生物可降解材料行业生产规范和要求进行科学设计、合理布局,

符合生物可降解材料制造和经营的规划建设需要。 (三)项目用地控制指标 1、该项目实际用地面积56157.0 平方米,建筑物基底占地面积38523.8 平方米,计容建筑面积63401.4 平方米,其中:规划建设生产车间51552.1 平方米,仓储设施面积7075.8 平方米(其中:原辅材料库房4267.9 平方米,成品仓库2807.9 平方米),办公用房2471.0 平方米,职工宿舍1403.9 平方米,其他建筑面积(含部分公用工程和辅助工程)898.6 平方米;绿化面积3706.4 平方米,场区道路及场地占地面积13926.9 平方米,土地综合利用面积56157.1 平方米;土地综合利用率100.0%。 2、该工程规划建筑系数68.6%,建筑容积率1.1 ,绿化覆盖率6.6%,办公及生活用地所占比重5.2%,固定资产投资强度3532.5 万元/公顷,场区土地综合利用率100.0%;根据测算,该项目建设完全符合《工业项目建设用地控制指标》(国土资发【2008】24号)文件规定的具体要求。 三、项目建设的理由 表征制造强国的一些指标,如单位制造业增加值的全球发明

复合材料的最新研究进展

复合材料的最新研究进展 季益萍1, 杨云辉2 1天津工业大学先进纺织复合材料天津市重点实验室 2天津工业大学计算机技术与自动化学院, (300160) thymeping@https://www.doczj.com/doc/8b14765712.html, 摘要:本文主要介绍了当前复合材料的最新发展情况,主要集中在复合材料的增强纤维、加工技术、智能材料和非破坏性检测技术等方面。希望能抛砖引玉,激发研究人员更有价值的创意。 关键词:复合材料,最新进展 1. 引言 人类社会正面临着诸多的问题和需求,如矿物能源、资源的枯竭、环境问题、信息技术以及生活质量等,这推动了复合材料的发展,也促进了各种高新技术的发展。但目前人们已不仅仅局限于新材料的创造、发现和应用上,科学研究已进入一个各种材料综合使用的新阶段,即向着按预定的性能或功能设计新材料的方向发展。并且,在复合材料性能取得飞速发展的同时,其应用领域不断拓宽,性能持续优化,加工工艺不断改善,成本不断降低。 复合材料的独特之处在于其可提供单一材料难以拥有的性能,其最大的优势是赋予材料可剪切性,从而优化设计每个特定技术要求的产品,最大限度地保证产品的可靠性、减轻重量和降低成本。近年以来,复合材料在加工领域中取得了一系列重要的进展,由于计算机辅助设计工具的介入和先进加工技术的开发,使复合材料的市场竞争力有了很大的提高,应用领域不断扩大,除用于结构复合材料外,还大量的进入了功能材料市场。我们观察到,复合材料的发展趋势是[1]: (1)进一步提高结构型先进复合材料的性能; (2)深入了解和控制复合材料的界面问题; (3)建立健全复合材料的复合材料力学; (4)复合材料结构设计的智能化; (5)加强功能复合材料的研究。 近年来,复合材料在增强纤维、加工技术、智能材料和非破坏性检测技术等方面研究较多,并且不断有新的市场应用,能够代表复合材料的最新发展方向。 2. 增强纤维环保化[2] 目前,增强纤维的发展趋势主要是强度、模量和断裂伸长的提高。但随着全球环保意识的风行,复合材料产品也逐渐受到环保方面要求的压力,尤其欧洲地区已有相关规定,热固性复材产品由于无法回收再利用而不易销往欧洲。在树脂之外,复材产品中的增强纤维迄今绝大部分都是无法回收再利用的,包括玻璃纤维、碳纤维、芳纶等,全都是如此。 最近有一种新型增强纤维-玄武岩纤维(Basalt Filament),是由火山岩石所提炼而成的,堪称100% 天然且环保,预期在不久的未来,将会取代相当比例的各种纤维,而加入复合 - 1 -

浅析可降解生物医用高分子材料

生物制药与研究 2018·11 177 Chenmical Intermediate 当代化工研究 浅析可降解生物医用高分子材料 *赵芯路 (太原市第二外国语学校 山西 030001) 摘要:医疗废弃物的处理问题,一直困扰着医护人员,虽然国务院于2003年6月发布了《医疗废物管理条例》,但仅限于单纯的处理医 疗废弃物的问题。高分子材料科技的发展,已经将其应用到生活的方方面面,随着医疗废弃物处理的各种问题凸现,势必会形成可降解生物医用高分子材料并大面积应用在医用材料包装、医疗用品废弃物、一次性医疗用品上。本文从作者的角度出发,结合已有的知识结构,大胆探索可降解生物高分子材料在医疗行业的应用及其前景。关键词:可降解;生物材料;高分子材料;医用材料;医疗废物 中图分类号:T 文献标识码:A Brief Analysis of Biodegradable Biomedical Polymer Materials Zhao Xinlu (Taiyuan No.2 Foreign Language School, Shanxi, 030001) Abstract :Medical waste disposal has been bothering medical staff. Although the State Council issued the "Regulations on Medical Waste Management" in June 2003, it is limited to the simple disposal of medical waste. With the development of polymer materials technology, it has been applied to all aspects of life. With various problems in medical waste disposal, degradable biomedical polymer materials will be inevitably and widely used in medical material packaging, medical waste and disposable medical supplies. From the author's point of view, combined with the existing knowledge structure, this paper boldly explores the application and prospect of biodegradable biopolymer materials in the medical industry. Key words :degradable ;biological materials ;polymer materials ;medical materials ;medical waste 医疗废弃物的处理问题,一直困扰着医学界。这些废弃物不同于普通的生产或生活垃圾,也不同于一般的医疗产品,处理起来非常麻烦。随着科学技术的发展,各种高科技产品逐步引入医疗行业,缓解医疗行业中的各种难题——可降解高分 苯甲酸和苯甲酸钠的过敏反应和风疹样反应,羟苯甲酯、羟苯丙酯的刺激性和过敏反应,通过对辅料的用量的控制,将由辅料引入的毒性或者刺激性控制在可以接受的范围内。其次,处方中所使用的辅料均具有各自的作用,如防腐作用、抗氧作用、助溶作用等,有些辅料会因为发挥作用而使得含量发生变化,如抗氧剂就是通过与制剂中存在的氧化性物质发生氧化还原反应而起到抗氧剂的作用,其含量会随着反应的发生不断降低,药品研究者需要对抗氧剂的含量进行研究和控制,以保证在整个有效期内其含量始终保持在可以正常发挥作用的范围内。第三,辅料本身在制剂制备或者贮藏过程中由于稳定性等原因含量也会发生变化,比如苯甲醇在贮藏过程中会降解产生苯甲醛,也提示需要对这些辅料的含量进行控制。 成分名称变更前处方变更后处方变化量磷酸吡哆醛丁咯地尔 200g 200g -微晶纤维素100g 86g -4.2%交联酸甲基纤维素钠30g 0-9.0%单硬脂酸甘油酯15g 0-4.5%交联聚维酮015g +4.5%二氧化硅018g +5.4%滑石粉018g +5.4%硬脂酸镁08g +2.4%总和 345g 345g - 表1 制剂处方变更结果 3.案例分析 安乃近注射液的研究结论分析,由于在市面上引起多种类型的不良反应,在国内外都引起了重大关注,瑞典,美国等相继将其撤离市场,大量文献显示,安乃近会引发多种不良反应,卫生部将其中的复方安乃近片淘汰出药品市场,但留下了安乃近片剂以及滴剂及注射剂还在使用,因为其符合药品变更的安全性与稳定性。药品变更要权衡风险与收益成正比,解决临床安全性问题。安乃近注射液中因为存在亚硫酸氢钠含量及苯甲醛,缺乏安全性与稳定性的考察效果,所以,在安乃近注射液的变更研究中不符合药品工艺变更的质量与稳定性的要求。 4.结论 在化学药品注册工作中,申报量在不断增加,其中制剂处方变更以及制剂生产工艺变更的申报量是较多的,所占比例较重,涉及提高药品质量,必须要达到药品安全性、有效性、药剂型的合理性以及规格合理性的技术要求,才能将其批准上市,完成药品的申请注册。 ?【参考文献】 [1]简晓娜,胡明,蒋学华.已上市化学药口服固体制剂处方工艺变更管理探讨[C].中国药学会,2009:765-769. [2]羡冀,罗显锋.盐酸左氧氟沙星注射剂制剂处方工艺及质量评价[C].中华中医药学会,2009:74-78. [3]马逊娜,陈榕,陈美清.贝诺酯片的处方工艺研究[C].中国药学会,2000:270-271. ?【作者简介】 黄波(1983-),男,南京天朗制药有限公司研发部;研究方向:药物制剂相关科研。 上接第176页 下转第178页

生物可降解材料的研究现状

生物降解材料的研究现状 摘要:介绍了生物降解材料和光降解材料的研究背景、研究内容、研究成果和应用现状。分析了其产品对环境的改善和不足,提出了对其降低成本、提高性能和扩大应用范围的建议。关键词:生物降解材料;光降解材料;塑料;成本;环境 近年来,塑料生产技术有了很大的发展,塑料已经渗透到人们生产和生活的各个领域,与水泥、钢铁和木材并称四大工业材料。由于塑料本身具有质量轻,耐腐蚀和易于成型加工等优点,使其成为人们不可或缺的材料。然而现在塑料的使用却面临巨大的挑战。在自然界中塑料很难降解,使用后产生大量固体废弃物。目前在处理这些塑料垃圾时大部分采用焚烧和掩埋的方法,但都未能解决污染问题,例如焚烧后产生的一些有毒气体反而进一步导致了污染的扩散;塑料掩埋地下需要近300 年才能够完全降解。另外石油,天然气等能源都已经面临枯竭的危机,全世界的石油储量大约只能再用40 多年,以石油为原料的塑料生产受到很大的阻力。为了减轻废旧塑料对环境的污染和缓解能源危机,多年来人们尝试开发可降解塑料,用以代替普通塑料制品。 随着可生物降解塑料技术的发展,聚乳酸(PLA) 、生物聚酯等生物降解材料的逐渐成熟,将推进塑料制品可生物降解化,为减少废旧塑料制品带来的污染,并为最终实现资源和环境的可持续性发展找到出路。目前可降解塑料的研制开发十分活跃,并部分进入工业化生产,但从总体上看,当前降解仍处于有待于对技术进行更深入研究、提高性能、降低成本、拓宽用途并逐渐推向市场的阶段。本文对生物可降解材料的发展和应用现状进行了简介,并指出其不足。 1 目前各国生物课可降解塑料的应用现状 生物降解塑料[1]不仅在生产过程中有节能减排效果,而且在使用过程也具有环境友好的特征。普通聚烯烃塑料的合成会排放大量CO2 等尾气及污染物,而塑料制品大量使用,尤其是农用薄膜和包装材料又造成了日益严重的白色污染。但生物降解塑料则不然,其原料来源是可以再生的农作物,农作物在生长过程中通过光合作用可以吸收CO2 放出氧气,其制品废弃物可以在掩埋堆肥条件下完全降解成水和CO2 ,无污染物产生。我国已成功开发的新型降解塑料------二氧化

可生物降解高分子材料的分类及应用

四川工业学院学报 Journa l of S ich ua n Uni vers ity o f Sc ience and Tec hnolog y 文章编号:1000-5722(2003)增刊-0145-03 收到日期:2003-03-22 基金项目:中国石油天然气集团公司中青年创新基金项目(部(基)349):四川工业学院人才引进项目(0225964) 作者简介:王周玉(1977-),女,四川省彭州市人,西华大学生物工程系助教,硕士,主要从事高聚物的合成、改性性质及其应用的研究。 可生物降解高分子材料的分类及应用 王周玉,岳 松,蒋珍菊,芮光伟,任川宏 (西华大学生物工程系,四川成都 610039) 摘 要: 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 关键词: 生物降解;高分子材料;应用 中图分类号:O631.2 文献标识码:B 0前言 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料[1]是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳 的高分子材料。根据降解机理[1,2] 的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光-生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景,所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全 生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestruc tible ma terials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 [3,4] 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合成量超过1010 吨。利用它们制备的生物高分子材料可完全降解、具有良好的生物相容性、安全无毒,由此形成的产品兼具天然再生资源的充分利用和环境治理的双重意义,因而受到各国的重视,特别是日本。如日本四国工业技术实验所用纤维素和从甲壳素制得的脱乙酰壳聚糖复合,采用流延工艺制成的薄膜,具有与通用薄膜同样的强度,并可在2个月后完全降解;他们还对壳聚糖)淀料复合高分子材料进行了大量的研究工作,发现调节原料的比例、热处理温度,可改变高分子材料的强度和降解时间。 天然高分子材料虽然具有价格低廉、完全降解等诸多优点,但是它的热力学性能较差,不能满足工程高分子材料加工的性能要求,因此对天然高分子进行化学修饰、天然高分子之间的共混及天然高分子与合成高分子共混以制得具有良好降解性、实用性的生物降解高分子材料是目前研究的一个主要方向。1.2 微生物合成高分子材料[3,4,5] 微生物合成高分子材料是由生物通过各种碳源发

生物可降解材料及其在生物医学上的应用

伴随着医疗技术的不断发展和人们生活水平的日益提高,多种类型的医用材料开始在人体组 织中得到广泛应用,医用材料与人体组织之间的相容性、血液相容性和可降解性等问题越来 越受到人们的重视。以下围绕生物可降解材料在生物医学领域中的应用问题进行系统分析与 探讨,首先就生物可降解材料的降解原理进行初步分析,然后根据工艺以及来源标准对生物 医学领域中常见的生物可降解材料进行分类,并介绍部分典型材料在生物医学上应用情况。一、生物可降解材料降解原理 生物可降解材料通过与其接触的体液、有机大分子、酶、自由基、细胞等多种因素的生物学 环境相互作用,经水解、酶解、氧化等一系列反应,逐渐降解成低分子量化合物或单体。再 经过吸收、消化以及代谢反应后,降解产物被排出体外或参加体内正常新陈代谢被人体吸收 的方式完成降解过程。如体液从组织进入生物材料内部或生物材料的某种组分溶解于体液中,材料就会因体积增加而发生膨胀,同时渗出自身物质,这一过程破坏了材料本身的氢键和范 德华力均会使材料产生裂缝或空隙,最终材料在生物学环境下逐步发生化学降解。在临床中,人们希望植入的生物可降解材料同样按照该流程,在生物组织治疗期内全部完成分化降解反应,以免因植入材料而导致机体产生炎症或应激性反应。我们知道,皮肤组织治疗时间通常 在3~10d内,内脏组织治疗时间通常在1~2个月之间,而大器官组织治疗时间则往往需要6 个月甚至更长。可降解生物材料植入人体内后,其降解性能及降解产物对生物学环境、材料 反应及人体反应都造成了非常大的影响,降解速率慢或降解产物滞留时间长,易使人体组织 产生炎症、血栓等不良反应。有研究[6]显示:多数生物可降解材料的降解过程和进度与最佳 预期效果是不相符合的。因此,在生物可降解材料的研究和临床应用中,必须谨慎对待生物 可降解材料的降解相关问题,尤其是降解速率和降解产物。 二、生物可降解材料基本分类与应用 生物可降解材料用于人体,从材料本身和对人体效应2方面需满足严格条件: 易于加工,价格低廉,便于消毒灭菌,确定的降解时间,生物稳定性和力学性能满足植入部位的需要,良好 的组织相容性、血液相容性和力学相容性,无热源反应、遗传毒性、致畸性和致癌性,无刺 激性和致敏性。 目前生物可降解材料可以根据工艺以及来源的不同进行分类,包括天然高分子可降解材料、 微生物合成可降解高分子材料、以及化学合成可降解高分子材料这几种类型[39]。具体分类 和应用概述如下: 1. 天然高分子可降解材料 目前,在生物医学领域中应用较多的天然高分子可降解材料主要包括明胶、胶原、多糖、丝 素蛋白几种类型。

生物降解高分子材料研究

生物降解高分子材料研究 [摘要] 本文作者对天然高分子材料、微生物合成高分子材料、化学合成高分子材料及掺混型高分子材料四类生物降解高分子材料进行了综述,并对可生物降解高分子材料在包装、餐饮业、农业及医药领域的应用作了简要介绍。 [关键词] 生物降解;高分子材料;应用 塑料是应用最广泛的高分子材料,按体积计算已居世界首位,由于其难以降解,随着用量的与日俱增,废弃塑料所造成的白色污染已成为世界性的公害。意大利、德国、美国等国家已率先以法律形式,规定了必须使用降解性塑料的塑料产品范围;我国目前的塑料生产和使用已跃居世界前列,每年产生几百万吨不可降解的废旧物,严重污染着环境和危害着我们的健康。可见开发可降解高分子材料、寻找新的环境友好高分子材料来代替塑料已是当务之急。 降解高分子材料是指在使用后的特定环境条件下,在一些环境因素如光、氧、风、水、微生物、昆虫以及机械力等因素作用下,使其化学结构能在较短时间内发生明显变化,从而引起物性下降,最终被环境所消纳的高分子材料。根据降解机理的不同,降解高分子材料可分为光降解高分子材料、生物降解高分子材料、光一生物降解高分子材料、氧化降解高分子材料、复合降解高分子材料等,其中生物降解高分子材料是指在自然界微生物或在人体及动物体内的组织细胞、酶和体液的作用下,使其化学结构发生变化,致使分子量下降及性能发生变化的高分子材料。生物降解高分子材料的应用广泛,在包装、餐饮业、一次性日用杂品、药物缓释体系、医学临床、医疗器材等诸多领域都有广阔的应用前景所以开发生物降解高分子材料已成为世界范围的研究热点。 1 生物降解高分子材料的分类 根据生物降解高分子材料的降解特性可分为完全生物降解高分子材料(Biodegradable materials)和生物破坏性高分子材料(或崩坏性,Biodestructible materials);按照其来源的不同主要分为天然高分子材料、微生物合成高分子材料、化学合成高分子材料和掺混型高分子材料四类。 1.1 天然高分子材料 天然高分子物质如淀粉、纤维素、半纤维素、木质素、果胶、甲壳素、蛋白质等来源丰富、价格低廉,特别是天然产量居首位的纤维素和甲壳素,年生物合

石墨烯复合材料在电磁领域的应用研究进展

工 程 塑 料 应 用 ENGINEERING PLASTICS APPLICATION 第43卷,第9期2015年9月 V ol.43,No.9Sept. 2015 143 doi:10.3969/j.issn.1001-3539.2015.09.029 石墨烯复合材料在电磁领域的应用研究进展 王雯1,黄成亮1,郭宇1,宋宇华1,张颖异1,刘玉凤1,杜汶泽2 (1.中国兵器工业集团第五三研究所,济南 250031; 2.总装备部装甲兵驻济南地区军代室,济南 250031) 摘要:石墨烯以其独特的二维结构和优异的力学、电学、光学、热学性能成为材料领域的研究热点,石墨烯复合材料是石墨烯应用领域中重要的研究方向。概括了国内外石墨烯复合材料在电磁波吸收及电磁屏蔽领域的应用研究进展,并展望了未来石墨烯复合材料在此领域的发展趋势。 关键词:石墨烯;石墨烯复合材料;微波吸收;电磁屏蔽;应用 中图分类号:TB332 文献标识码:A 文章编号:1001-3539(2015)09-0143-04 Application Research Progress of Graphene Composites in Electromagnetic Fields Wang Wen 1, Huang Chengliang 1, Guo Yu 1, Song Yuhua 1, Zhang Yingyi 1, Liu Yufeng 1, Du Wenze 2 (1. CNGC Institute , Jinan 250031, China ; 2. Jinan Regional Office of Armoured Force Military Representative Bureau , Jinan 250031, China) Abstract :Graphene has become a hot research spot at home and abroad in recent years due to its unique two-dimensional structure and excellent mechanical, electrical, optical and thermal properties. Graphene composites is an important research direction in the area of graphene application. The application research progress in the microwave absorption and electromagnetic interference shielding fields of graphene composites were summarized. The developmental trend of graphene composites in the fields was expected. Keywords :graphene ;graphene composite ;microwave absorption ;electromagnetic interference shielding ;application 石墨烯是单层碳原子紧密堆积而形成的一种超薄碳质新材料,厚度只有0.34 nm ,是目前世界上最薄的二维材料 [1–2] 。自2004年英国曼彻斯特大学的物理学教授A. Geim 和 K. Novoselov 等用机械剥离方法观测到单层石墨烯,其独特的物理性能和在电子领域的潜在应用成为国际研究的热点,并引起科学界新一轮“碳”热潮[3–6]。 碳材料是电磁屏蔽和吸波材料研究的重要内容,对于石墨、碳纤维、碳纳米管等材料的电磁屏蔽和吸收性能的研究已经相当广泛。然而,作为一种新型碳材料的石墨烯具有纵横比、电导率和热导率高、比表面积大、密度低等特点,其本征强度高达130 GPa ,常温下的电子迁移率可达到15 000 cm 2/(V ·s),是目前电阻率最小的材料。并且石墨烯具有室温量子霍尔效应和良好的铁磁性[7–10],与石墨、碳纤维、碳纳米管等材料相比,拥有独特性能的石墨烯可以突破碳材料原有的局限,成为一种新型有效的电磁屏蔽和微波吸收材料[11–14]。因此,以石墨烯为研究方向,结合金属纳米材料或聚合物材料,通过结构设计研制性能优异的石墨烯复合材料,有望广泛应用于电磁波吸收及电磁屏蔽等民用及军事领域。笔者根据国内外学者的研究情况,重点介绍石墨烯复合材料在电磁波吸收以及电磁屏蔽领域中的研究进展,并对未来石墨烯复合材料的发展进行了展望。 1 石墨烯复合材料在电磁波吸收领域中的应用 随着无线电探测技术和探测手段的发展以及其它非可见光探测技术和各种反伪装技术的逐渐完善和应用,传统武器装备的生存受到严峻的挑战。因此,研制高效吸收雷达波的轻型材料是提高武器装备系统生存能力的有效途径之一,是现代战争中最具有价值、最有效的战术突防手段。可见,高性能轻型微波吸收材料研制及在武器装备中的应用至关重要。 二维片状的石墨烯具有高的比表面积(2 630 m 2/g)[9] 以及特异的热、电传导功能,对微波能产生较强的电损耗。与传统吸收剂相比,石墨烯材料以其优异的电磁性能成为一种有效的新型微波吸收材料。传统的铁磁类吸收剂,如Fe ,Ni ,Co ,Fe 3O 4,Co 3O 4等铁磁性纳米物质对电磁波具有较强的磁损耗。通过结构设计,将石墨烯与此类纳米粒子复合后,得到石墨烯片层中镶嵌强吸收电磁波纳米磁性粒子结构的复合材料,并且可实现对微波较强的介电损耗和磁损耗。此类复合材料将石墨烯与磁性纳米粒子的优异性能结合在一起,有效提高了石墨烯材料的磁损耗,并可显著提高我国吸 联系人:王雯,工程师,博士,主要从事新型碳材料的制备及应用方面的研究 收稿日期:2015-06-22

相关主题
文本预览
相关文档 最新文档