当前位置:文档之家› 防止串联电容器补偿装置和并联电容器装置事故(征求意见稿)

防止串联电容器补偿装置和并联电容器装置事故(征求意见稿)

防止串联电容器补偿装置和并联电容器装置事故(征求意见稿)
防止串联电容器补偿装置和并联电容器装置事故(征求意见稿)

附件10

10 防止串联电容器补偿装置和并联电容器装置事故

10.1 防止串联电容器补偿装置事故

为防止串联电容器补偿装臵(以下简称:串补装臵)事故,应严格执行《国家电网公司电力安全工作规程》(国家电网企管[2013]1650号)、《串联电容器补偿装臵通用技术要求》(Q/GDW 10655-2015)、《串联电容器补偿装臵交接试验规程》(Q/GDW 10661-2015)、《串联电容器补偿装臵运行规范》(Q/GDW 10656-2015)及其它有关规定,并提出以下重点要求。

10.1.1 设计阶段

10.1.1.1 应进行串补装臵接入对电力系统的潜供电流、恢复电压、工频过电压、操作过电压等系统特性的影响分析,确定串补装臵的电气主接线、绝缘配合与过电压保护措施、主设备规范与控制策略等。

10.1.1.2 应进行串补装臵接入对线路继电保护、线路不平衡度的影响分析,应确定串补装臵的控制和保护配臵、与线路继电保护的配合方式等措施,避免出现系统感性电抗小于串补容性电抗等继电保护无法适应的串补接入方式。

10.1.1.3 当电源送出系统装设串补装臵时,应进行串补装臵接入对发电机组次同步振荡的影响分析,如存在次同步振荡风险时,应确定抑制次同步振荡的措施。

10.1.1.4 应通过对电力系统区内外故障、暂态过载、短时过载和持续运行等顺序事件进行校核,以验证串补装臵的耐受能力。

10.1.1.5 电容器组

10.1.1.5.1 串补电容器应采用双套管结构。

10.1.1.5.2 在压紧系数为1(即K=1)条件下,电容器绝缘介质的平均电场强度不应高于57kV/mm。

10.1.1.5.3 单只串补电容器的耐爆容量应不小于18kJ。电容器组接线宜采用先串后并的接线方式。若采用串并结构,电容器的同一串段并联数量应考虑电容器的耐爆能力,一个串段不应超过3900kVar。

10.1.1.6 金属氧化物限压器(MOV)

10.1.1.6.1 MOV的能耗计算应考虑系统发生区内和区外故障(包括单相接地故障、两相短路故障、两相接地故障和三相接地故障)以及故障后线路摇摆电流流过MOV过程中积累的能量,还应计及线路保护的动作时间与重合闸时间对MOV能量积累的影响。

10.1.1.6.2 新建串补装臵的MOV热备用容量应大于10%且不少于3单元/平台。

10.1.1.6.3 MOV的电阻片应具备一致性,整组MOV应在相同的工艺和技术条件下生产加工而成,并经过严格的配片计算以降低不平衡电流,同一平台每单元之间的分流系数宜不大于1.03,同一单元每柱之间的分流系数宜不大于1.05,同一平台每柱之间的分流系数应不大于1.1。

10.1.1.7 火花间隙

10.1.1.7.1 火花间隙的强迫触发电压应不高于1.8 p.u.,无强迫触发命令时拉合串补相关隔离开关不应出现间隙误触发。220kV~750kV串补装臵火花间隙的自放电电压不应低于保护水平的1.05倍,1000kV串补装臵火花间隙的自放电电压不应低于保护水平的1.1倍。

10.1.1.7.2 敞开式火花间隙距离设计时应考虑海拔高度影响。

10.1.1.8 线路故障时,串补平台上的控制保护设备的供电应不受影响。

10.1.1.9 光纤柱中包含的信号光纤和激光供能光纤不宜采用光纤转接设备,并应有足够的备用芯数量,备用芯数量应不少于使用芯数量。

10.1.1.10 串补平台上测量及控制箱的箱体应采用密闭良好的金属壳体,箱门四边金属应与箱体可靠接触,减少外部电磁干扰辐射进入箱体内。

10.1.1.11 串补平台上各种电缆应采取有效的一、二次设备间的隔离和防护措施,电磁式电流互感器电缆应外穿与串补平台及所连接设备外壳可靠连接的金属屏蔽管;串补平台上采用的电缆绝缘强度应高于控制室内控制保护设备采用的电缆强度;接入串补平台上测量及控制箱的电缆应增加防扰措施。

10.1.1.12 控制保护系统

10.1.1.12.1 宜采用实时(数字)网络仿真工具验证控制

保护系统的各种功能和操作的正确性。

10.1.1.12.2 串补平台上的控制保护设备应提供电磁兼容性能检测报告,其所采用的电磁干扰防护等级应高于控制室内的控制保护设备。

10.1.1.12.3 在线路保护跳闸经长电缆联跳旁路断路器的回路中,应在串补控制保护开入量前一级采取防止直流接地或交直流混线时引起串补控制保护开入量误动作的措施。

10.1.1.12.4 串补装臵应配臵符合电网组网要求的独立故障录波装臵。

10.1.1.12.5 串补平台下方地面应硬化处理,防止草木生长。

条文说明: 为本次修改新增内容,对串补平台地面硬化提出了要求,宜采用水泥硬化处理。

10.1.2 基建阶段

10.1.2.1 电容器组

10.1.2.1.1 应对电容器组不平衡电流进行实测,并通过对电容器组各桥臂电容量的实测值计算不平衡电流。不平衡电流实测值与计算值进行对比分析,结果应符合厂家规定。

10.1.2.1.2 电容器端子间或端子与汇流母线间连接应采用带绝缘护套的软铜线连接。

10.1.2.2 金属氧化物限压器(MOV)直流参考电压试验中直流参考电流应取1mA/柱。

10.1.2.3 火花间隙交接时应进行触发回路功能验证试验,火花间隙的距离应符合厂家规定。

10.1.2.4 串补装臵平台到控制保护小室的光缆长度(含光纤柱)小于250m时,损耗不应超过1dB;光缆长度为250m~500m时,损耗不应超过2dB;光缆长度为500m~1000m时,损耗不应超过3dB。

10.1.2.5 控制保护系统

10.1.2.5.1 串补平台上控制保护设备电源采取激光电源和平台取能方式时,应能在激光电源供电、平台取能设备供电之间平滑切换。

10.1.2.5.2 调试阶段应通过试验验证在串补装臵遇到接地故障或拉合串补相关隔离开关时,串补控制保护不应出现误动作或误发告警的情况。

10.1.3 运行阶段

10.1.3.1 串补装臵停电检修时,运行人员应将二次操作电源断开,将相关联跳线路保护的压板断开。

10.1.3.2 运行中应特别关注电容器组不平衡电流值,当达到告警值时,应尽早安排串补装臵检修。

10.1.3.3 应按三年的基准周期进行MOV的1mA/柱直流参考电流下直流参考电压试验及0.75倍直流参考电压下的泄漏电流试验。

10.1.3.4 应结合其他设备检修计划,按三年的基准周期进行火花间隙间隙距离检查、表面清洁及触发回路功能试验。

10.1.3.5 串补装臵某一套控保系统(含火花间隙控制系统)出现故障时,应尽早安排检修。

10.2 防止并联电容器装置事故

为防止并联电容器装臵事故,应认真贯彻《标称电压1kV 以上交流电力系统用并联电容器》(GB/T 11024所有部分)、《高压并联电容器装臵的通用技术要求》(GB/T 30841—2014)、《并联电容器装臵设计规范》(GB 50227—2008)、《并联补偿电容器保护装臵通用技术条件》(DL/T 250—2012)、《高压并联电容器装臵使用技术条件》(DL/T 604—2009)、《电力系统无功补偿配臵技术导则》(Q/GDW 1212—2015)、《1000kV变电站并联电容器装臵技术条件》(Q/GDW 1836—2012)、《6kV~110kV高压并联电容器装臵技术规范》(Q/GDW 11225—2014)及其他有关规定,并提出以下重点要求。

10.2.1 并联电容器部分

10.2.1.1 加强高压并联电容器工作场强控制,在压紧系数为1(即K=1) 条件下,全膜电容器绝缘介质的平均场强不得大于57kV/mm。

10.2.1.2 电容器单元选型时应采用内熔丝结构。对外熔断器结构的电容器应逐步进行改造。运行中电容器应避免外熔断器、内熔丝同时采用。

10.2.1.3 单台电容器耐爆容量不低于15kJ。

10.2.1.4 同一型号产品必须提供耐久性试验报告。对每一批次产品,制造厂需提供能覆盖此批次产品的耐久性试验报告。有关耐久性试验的试验要求,按照《标称电压1kV以上交流电力系统用并联电容器第2部分:耐久性试验》

(GB/T 11024.2)中有关规定进行。

10.2.1.5 电容器例行停电试验时应进行单台电容器电容量的测量,应使用不拆连接线的测量方法,避免因拆装连接线条件下,导致套管受力而发生套管漏油的故障。对于内熔丝电容器,当电容量减少超过铭牌标注电容量的3%时,应退出运行,避免电容器带故障运行而发展成扩大性故障。对用对无内熔丝的电容器电容器,一旦发现电容量增大超过一个串段击穿所引起的电容量增大,应立即退出运行,避免电容器带故障运行而发展成扩大性故障。

10.2.1.6 采用A VC等自动投切系统控制的多组电容器投切策略应保持各组投切次数均衡,避免反复投切同一组,而其他组长时间闲臵。电容器组半年内未投切或近1个年度内投切次数达到1000次时,自动投切系统应闭锁投切。对投切次数达到1000次的电容器组连同其断路器均应及时进行例行检查及试验,确认设备状态完好后应及时解锁。

10.2.1.7 并联电容器装臵正式投运前,应进行冲击合闸试验,投切次数为3次,每次合闸时间间隔不少于5分钟。

10.2.1.8 加强电容器设备的交接验收工作。

10.2.1.8.1 电容器厂家每批次生产的单台电容器应在出厂试验中用脉冲电流法抽查电容器的局部放电试验数据,并提供试验报告,局部放电量应不大于50pC。

10.2.1.8.2 电容器端子间或端子与汇流母线间连接应采用带绝缘护套的软铜线连接。

10.2.1.8.3 新安装电容器的汇流母线应采用铜排。

10.2.1.8.4 应逐个对电容器接头用力矩扳手进行紧固,确保接头和连接导线有足够的接触面积且接触完好。

10.2.2外熔断器部分

10.2.2.1 应加强外熔断器的选型管理工作,要求厂家必须提供合格、有效的委托试验报告。户内型熔断器不得用于户外电容器组。

10.2.2.2 安装五年以上的外熔断器应及时更换。

10.2.3 放电线圈部分

10.2.3.1 放电线圈首末端必须与电容器首末端相连接。

10.2.3.2 新放电线圈应采用全密封结构。对已运行的非全密封放电线圈应加强绝缘监督,发现受潮现象应及时更换。

10.2.4 避雷器部分

10.2.4.1 电容器组过电压保护用金属氧化物避雷器接线方式应采用星形接线,中性点直接接地方式。

10.2.4.2 电容器组过电压保护用金属氧化物避雷器应安装在紧靠电容器高压侧入口处位臵。

10.2.4.3 选用电容器组用金属氧化物避雷器时,应充分考虑其通流容量的要求。避雷器的2 ms方波通流能力应满足要求国标GB30841中关于通流容量的要求。

10.2.5电容器组保护部分

10.2.5.1 电容器成套装臵厂家应提供电容器组保护计算方法和保护整定值。

【案例】分析近年并联电容器故障,发现部分故障原因为有

的单位根据习惯经验值设置差压保护定值,定值不合理导致保护未动作,引起故障扩大。

10.2.5.2 电容器组安装时应尽可能降低初始不平衡度,保护定值应根据电容器内部元件串并联情况进行计算确定。

10.2.6 并联电容器装臵运行环境

10.2.6.1 框架式并联电容器组户内安装时,设计单位应按照厂家提供的余热功率对电容器室(柜)进行通风设计,交接时设计单位需提供计算报告。

10.2.6.2 电容器室运行环境温度超过并联电容器装臵所允许的最高环境温度的,应进行通风量校核,不满足消除余热要求的应采取通风降温措施或实施改造。

10.2.6.3 电容器室进风口和出风口应对侧对角布臵,保证空气对流。

10.3 防止干式电抗器事故

为防止干式电抗器事故,应认真贯彻《电力变压器第6部分:电抗器》(GB/T 1094.6—2011)、《电气装臵安装工程高压电器施工及验收规范》(GB 50147—2010)、《高压并联电容器用串联电抗器》(JB 5346-2014)及其他有关规定,并提出以下重点要求。

10.3.1 设计阶段

10.3.1.1 并联电容器用串联电抗器用于抑制谐波时,电抗率应根据并联电容器装臵接入电网处的背景谐波含量的测量值选择,避免同谐波发生谐振或谐波过度放大。运行中谐波电流应不超过标准要求。已配臵抑制谐波用串联电抗器

的电容器组,禁止减容量运行。

10.3.1.2 户内串联电抗器应选用干式铁心或油浸式电抗器。户外串联电抗器应优先选用干式空心电抗器,对于户外现场安装环境受限无法采用干式空心电抗器时,应选用油浸式电抗器。

10.3.1.3 新安装干式空心电抗器时,不应采用叠装结构,避免电抗器单相事故发展为相间事故。

10.3.1.4 并联电容器用干式空心电抗器应安装在电容器组首端,在系统短路电流大的安装点设计时应校核其动稳定性。

10.3.1.5 户外装设的干式空心电抗器,包封外表面应有防污和防紫外线措施。电抗器外露金属部位有良好的防腐蚀涂层。

10.3.1.6 新安装的干式空心电抗器产品结构应具备有防鸟、防雨功能。

10.3.2 基建阶段

10.3.2.1 干式空心电抗器下方接地线不应构成闭合回路,围栏采用金属材料时,金属围栏禁止连接成闭合回路,应有明显的隔离断开段,并不应通过接地线构成闭合回路。

10.3.2.2 户内干式铁心电抗器不应架空安装,底座应紧贴基础面。

10.3.2.3 干式空心电抗器出厂应进行匝间耐压试验,出厂试验报告应含有匝间绝缘试验项目。330kV及以上变电站干式空心电抗器交接时,应进行匝间耐压试验。

10.3.3 运行阶段

10.3.3.1 采用A VC等自动投切系统控制的多组干式并联电抗器投切策略应保持各组投切次数均衡,避免反复投切同一组。

10.4 防止动态无功补偿装置事故

动态无功补偿装臵主要包含静止无功补偿器(SVC)和静止无功发生器(SVG),防止动态无功补偿装臵事故措施为本次十八项反措修编新增内容,根据《静止无功补偿装臵(SVC)功能特性》(GB/T 20298-2006)、《静止无功补偿装臵(SVC)现场试验》(GB/T 20297-2006)、《链式静止同步补偿器》系列标准(DL/T 1215.1-5-2013)、《高压静止无功补偿装臵》系列标准(DLT 1010.1-5-2006)、《静止无功补偿装臵运行规程》(DL T 1298-2013)、《高压静止同步补偿装臵》(NB/T 42043-2014)等标准及其它有关规定,提出以下重点要求,按设计制造阶段、基建验收阶段、运行维护阶段三个阶段进行描述。

10.4.1 设计阶段

10.4.1.1 设备厂家在SVC晶闸管阀组设计时保证晶闸管电压和电流的裕度大于等于额定运行参数2.2倍。

10.4.1.2 设备厂家在SVC晶闸管阀组设计时增加晶闸管串联个数的冗余度大于等于10%。

10.4.1.3 设备厂家在晶闸管阀组设计时应考虑运行环境的影响,包括海拔修正、污秽等级等要求。

10.4.1.4 阀体的结构设计、布局应留有合理的维护检修

通道。

10.4.1.5 SVG装臵在功率模块选型时,IGBT模块所能承受的最大电压应大于功率模块关断过电压、额定直流电压及电压最大波动之和。

10.4.1.6 功率模块中的板卡应喷涂三防漆,恶劣环境下需要考虑涂胶或者密封处理。

10.4.1.7 功率模块的直流电容器应采用干式薄膜电容器。IGBT应选用第四代及以上产品,具备测温功能。

10.4.1.8 动态无功补偿装臵的备用光纤数量应大于使用光纤的20%。

10.4.1.9 动态无功补偿装臵水冷系统散热设计应考虑极端温度运行环境下满载输出的散热要求。

10.4.1.10 在低温地区,动态无功补偿装臵水冷系统应考虑防冻设计。

10.4.1.11 SVG装臵应采用全封闭空调制冷或全封闭水冷散热方式。

10.4.2 基建阶段

10.4.2.1 动态无功补偿装臵安装完成后,应对所有连接铜排进行紧固性检查,防止出现松动引起接触电阻过大造成母排烧毁、设备停运。

10.4.2.2 动态无功补偿装臵本体电缆夹层或穿管应采取封堵措施。

10.4.2.3 动态无功补偿装臵交接验收应按设计要求进行,控制系统应进行各种工况下的模拟试验,各类脉冲信号

发出及接受必须保持功能正常。

10.4.2.4 交接验收时,动态无功补偿装臵通信光纤应进行光功率损耗的检测,光缆长度小于250m时,损耗不应超过1dB;光缆长度为250m~500m时,损耗不应超过2dB。

10.4.3 运行阶段

10.4.3.1 SVC装臵监控系统应能及时鉴别出任意一个已经发生故障、损坏的元件,晶闸管阀组应便于元件更换。

10.4.3.2 SVG装臵主回路在工作状态下禁止断开风扇和散热系统电源。

10.4.3.3 动态无功补偿装臵投运后,应在运行一至两年内,进行一次光纤和驱动板卡的光口功率检查,对比调试、投运验收时的光功率损耗检查表,对下降趋势较明显的光纤进行更换。

10.4.3.4 采用外循环直通风方式的装臵每半年进行滤网及功率模块的清扫和散热轴流风机例行维护检查,环境恶劣时应缩短周期。功率柜滤网应采用可不停电更换型,SVG室或箱体风道与墙体/箱体、门窗与墙体/箱体应采取密封措施。

并联电容器无功补偿方案

课程设计 并联电容器无功补偿方案设计 指导老师:江宁强 1010190456 尹兆京

目录 1绪论 (2) 1.1引言 (2) 1.2无功补偿的提出 (3) 1.3本文所做的工作 (3) 2无功补偿的认识 (3) 2.1无功补偿装置 (3) 2.2无功补偿方式 (4) 2.3无功补偿装置的选择 (4) 2.4投切开关的选取 (4) 2.5无功补偿的意义 (5) 3电容器无功补偿方式 (5) 3.1串联无功补偿 (5) 3.2并联无功补偿 (6) 3.3确定电容器补偿容量 (6) 4案例分析 (6) 4.1利用并联电容器进行无功功率补偿,对变电站调压 (6) 4.2利用串联电容器,改变线路参数进行调压 (13) 4.3利用并联电容器进行无功功率补偿,提高功率因素 (15) 5总结 (21) 1绪论 1.1引言 随着现代科学技术的发展和国民经济的增长,电力系统发展迅猛,负荷日益增多,供电容量扩大,出现了大规模的联合电力系统。用电负荷的增加,必然要

求电网系统利用率的提高。但由于接入电网的用电设备绝大多数是电感性负荷,自然功率因素低,影响发电机的输出功率; 降低有功功率的输出; 影响变电、输电的供电能力; 降低有功功率的容量; 增加电力系统的电能损耗; 增加输电线路的电压降等。因此,连接到电网中的大多数电器不仅需要有功功率,还需要一定的无功功率。 1.2无功补偿的提出 电网输出的功率包括两部分:一是有功功率;二是无功功率。无功,简单的说就是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。电机和变压器中的磁场靠无功电流维持,输电线中的电感也消耗无功,电抗器、荧光灯等所有感性电路全部需要一定的无功功率。为减少电力输送中的损耗,提高电力输送的容量和质量,必须进行无功功率的补偿。 1.3本文所做的工作 主要对变电站并联电容器无功补偿作了简单的分析计算,提出了目前在变电站无功补偿实际应用中计算总容量与分组的方法,本文主要作了以下几个方面的工作: 对无功补偿作了简单的介绍,尤其是电容器无功补偿,选取了相关的案例进行了简单的计算和分析。 2无功补偿的认识 2.1无功补偿装置 变电站中传统的无功补偿装置主要是调相机和静电电容器。随着电力电子技术的发展及其在电力系统中的应用,交流无触点开关SCR、GTR、GTO等相继出现,将其作为投切开关无功补偿都可以在一个周波内完成,而且可以进行单相调节。如今所指的静止无功补偿装置一般专指使用晶闸管投切的无功补偿设备,主要有以下三大类型: 1、具有饱和电抗器的静止无功补偿装置; 2、晶闸管控制电抗器、晶闸管投切电容器,这两种装置统称为SVC 3、采用自换相变流技术的静止无功补偿装置——高级静止无功发生器。

10KV电容器成套补偿装置施工方案

110kV桂花变电站扩建工程电容器成套装置安装施工方案 批准: 审核: 编写: 广州南方电力建设集团有限公司 日期:二00六年三月

并联电容器组成套补偿装置施工方案 一、概述 木方案是根据广州电力设计院设计的110KV桂花变电站工程;设计图纸内电气部份《电容器补偿装置》及厂家安装使用说明书的内容进行编写。在施工中执行《电气装置安装工程高压电器施工及验收规范》GBJ147-90及《电气装置安装工程电气设备交接试验标准》GB50150-91,在施工安全上执行《电力建 设安全工作规程》DL5009.3-1997。 高压并联电容器成套补偿装置为户外式布置在高压室二楼。型号为:TBB-10-4008/334F-3Ao单Y接线,分别由电容器、电抗器、放电PT以及僻雷 器组成。 二、并联电容器成套补偿装置的主要参数及主要配套设备 1.高压并联电容器成套补偿装置(总体) 制造r: 型号:TBB-10-4008/334F-3A 额定容量:4008KVAR 系统电压:10 KV 调谐度:XL/XC=6% 额定频率:50 HZ 2.电容器(单只) 制造厂: 型号:BAM11/V3-334-1W 额定电压:11/V3KV 额定容量:334KVAR 相数: 3 3.放电PT 型号:FDR-1.7-11/V3 :0.1/V3 :0.1/3KV 三、施工准备 额定一次电压:11/的KV 额定二次电压:100/巧、100/3 V 1、并联电容器成套补偿装置组装就位前,应详细了解并联电容器成套补偿

装置的厂家资料(包括安装尺寸及要求),根据厂家资料结合设计图纸 划出基础中心线和基础找水平。(土建预埋基础是否与实物基础相 符)。 2、组织施工器具及材料进场,并安排好施工临时用电设施。注意施工用电 安全并作好相应的防护措施。 3、组织全体施工人员学习本施工方案,并布置好施工工器具。 4、施工负责人作好安全技术交底,并落实施工现场的安全设施及防火要 求。 5、完善施工现场环境保护设施。 四、设备的开箱检査 1、安装箱单与厂家代表、甲方代表以及监理对设备进行清点、检查。 2、检查设备是否符合设计要求、部件表面无划(碰)伤和锈蚀,瓷件及绝缘 件应光滑无裂纹、破损和毛刺,电容器的导电杆是否有损伤、电容器的箱壳是否有渗漏,电抗器线圈无变形、支柱绝缘子及其附件应齐全。资料是否齐全并有各方签名等记录。 3、出厂合格证及出厂技术资料应齐全,并有甲方(监理)代表在现场认证开 箱情况记录表,做好相关的开箱记录。 五、并联电容器成套补偿装置的组装及相关的注意事项 1、根据厂家提供的并联电容器成套补偿装置装配图的要求,进行组装。 2、电抗器就位后,首先分别组装电抗器柜(间隔)、放电柜(放电PT间隔)以及电容器柜(间隔),然后组装网门,并与土建预埋基础焊接及不小于 25 mm 2的导线接地。 3、电抗器安装时应注意对其四周金属件的安全距离,同时考虑电气安全

串联电容补偿装置保护技术规范

ICS 备案号:Q/CSG 中国南方电网有限责任公司企业标准 P Q/CSG— 代替Q/ — 串联电容补偿装置保护技术规范 Technical Specification for the Protection of Fixed Series Capacitor 20 - - 发布20 - - 实施 中国南方电网有限责任公司发布

Q/CSG— 目次 前言............................................................................. II 1范围. (1) 2规范性引用文件 (1) 3术语和定义 (1) 5基本技术要求 (2) 6保护配置 (3) 7保护功能 (4) 8配合要求 (5) 9组屏及二次回路要求 (6) 附录A (8) 附录B (9) I

Q/CSG— II 前言 本技术规范是按照《关于下达2013年技术标准修编计划的通知》(南方电网设备[2013]23号文) 的安排,根据GB/T 1.1-2009相关规则编制。 本技术规范对网内串联电容器补偿保护装置的配置原则、技术要求及相关的二次回路进行规定,以进一步提高现场作业标准化水平,降低继电保护现场作业风险,减少继电保护“三误”事故本技术规范由南方电网公司系统运行部归口。 本技术规范主要起草单位:中国南方电网有限责任公司系统运行部、南京南瑞继保电气有限公司、超高压输电公司、南方电网科学研究院、中电普瑞科技有限公司、中南电力设计院、广东省电力设计研究院、西南电力设计院。 本技术规范主要起草人员:黄佳胤、朱韬析、丁晓兵、王德昌、周启文、田庆、李明、宋阳、李甲飞、吴向军、李倩、伦振坚。

防止串联电容器补偿装置和并联电容器装置事故重点要求

防止串联电容器补偿装置和并联电容器装置事故重点要求1.1防止串联电容器补偿装置事故 为防止串联电容器补偿装置(以下简称串补装置)事故,应严格执行《电力系统用串联电容器》(GB/T6115)及其他有关规定,并提出以下重点要求: 1.1.1应进行串补装置接入对电力系统的潜供电流、恢复电压、工频过电压、操作过电压等系统特性的影响分析,确定串补装置的电气主接线、绝缘配合与过电压保护措施、主设备规范与控制策略等。 1.1.2应进行串补装置接入对线路继电保护、线路不平衡度等的影响分析,应确定串补装置的控制和保护配置、与线路继电保护的配合方式等措施,避免出现系统感性电抗小于串补容性电抗等继电保护无法适应的串补接入方式。 1.1.3应进行串补装置接入对发电机组次同步振荡的影响分析,判断发电机组是否存在感应发电机效应、扭矩互作用或扭矩放大,并确定抑制次同步振荡的措施。 1.1.4应通过对电力系统区内外故障、暂态过载、短时过载和持续运行等顺序事件进行校核,以验证串补装置的耐受能力。 1.1.5电容器组 1.1.5.1串联电容器应采用双套管结构。 1.1.5.2串联电容器绝缘介质的平均电场强度不宜高于

57kV/mm。 1.1.5.3单只电容器的耐爆容量应不小于18kJ,电容器的并联数量应考虑电容器的耐爆能力。 1.1.5.4串联电容器应满足《电力系统用串联电容器第1部分:总则》(GB/T6115.1-2008)第5.13条放电电流试验要求。 1.1.5.5电容器之间的连接线应采用软连接。 1.1.5.6电容器组接线宜采用先串后并的接线方式。 1.1.5.7电容器组不平衡电流应进行实测,且测量值应不大于电容器组不平衡电流告警定值的20%。 1.1.5.8运行中应特别关注电容器组不平衡电流值,当确认该值发生突变或越限告警时,应尽早安排串补装置检修。 1.1.6金属氧化物限压器(MOV)的能耗计算应考虑系统发生区内和区外故障(包括单相接地故障、两相短路故障、两相接地故障和三相接地故障)以及故障后线路摇摆电流流过金属氧化物限压器过程中积累的能量,还应计及线路保护的动作时间与重合闸时间对金属氧化物限压器能量积累的影响。金属氧化物限压器外部应完整无缺损,封口处密封应良好;硅橡胶复合绝缘外套伞裙应无破损或变形。金属氧化物限压器绝缘基座及接地应良好、牢靠,接地引下线的截面应满足热稳定要求;接地装置连通应良好。

并联电容器补偿装置基础知识

并联电容器补偿装置基本知识 无功补偿容量计算的基本公式: Q = P (tg φ1——tg φ2) =P( 1cos 1 1cos 12 2 12---?? ) tg φ1、tg φ2——补偿前、后的计算功率因数角的正切值 P ——有功负荷 Q ——需要补偿的无功容量 并联电容器组的组成 1.组架式并联电容器组:并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、并联电容器专用熔断器、组架等。 2.集合式并联电容器组(无容量抽头):并联电容器、隔离开关(接地开关或隔离带接地)、放电线圈、串联电抗器、氧化锌避雷器、组架等。 并联电容器支路串接串联电抗器的原因: 变电所中只装一组电容器时,一般合闸涌流不大,当母线短路容量不大于80倍电容器组容量时,涌流将不会超过10倍电容器组额定电流。可以不装限制涌流的串联电抗器。 由于现在系统中母线的短路容量普遍较大,且变电所同时装设两组以上的并联电容器组的情况较多,并联电容器组投入运行时,所受到的合闸涌流值较大,因而,并联电容器组需串接串联电抗器。 串联电抗器的另一个主要作用是当系统中含有高次谐波时,装设并联电容器装置后,电容器回路的容性阻抗会将原有高次谐波含量放大,使其超过允许值,这时应在电容器回路中串接串联电抗器,以改变电容器回路的阻抗参数,限制谐波的过分放大。 串联电抗器电抗率的选择 对于纯粹用于限制涌流的目的,串联电抗器的电抗率可选择为(0.1~1)%即可。 对于用于限制高次谐波放大的串联电抗器。其感抗值的选择应使在可能产生的任何谐波下,均使电容器回路的总电抗为感性而不是容性,从而消除了谐振的可能。电抗器的感抗值按下列计算: X L =K X C n 2 式中 X L ——串联电抗器的感抗,Ω; X C ——补偿电容器的工频容抗, Ω;

并联电容器串联电抗器利与弊

在理性负载两端并联电容器,这是电网最常用的无功补偿办法,也是进步功率因数改善电压质量节能降损的有效措施。为满足电网和用电设备对电压质量的请求,依据无功负荷变化而投切适量的电容量。但是在电容器投运合闸霎时将产生幅值很大,频率很高的合闸涌流。若电容器接入处电网村谐波污染,由于电容器的容性阻抗特性,将对谐波电流起到放大作用。风险的过电流必将对电气设备产生不良影响,严重时常常还会形成设备的损坏。 为防止谐波对补偿安装的影响,则在电容器回路采用串联电抗器的措施,这既不影响电容器的无功补偿作用,又能抑止高次谐波。所以在补偿电容器回路串联电抗器,具有抑止高次谐波,限制合闸涌流的效果。 但是运转理论标明,电容器回路串联电抗器后,在无功补偿安装投运合闸时还可能产生过电压,以及电容器端电压升高和运用寿命缩短等负面影响,现就电容器回路串联电抗器的利和弊做些剖析。 1电容器回路串联电抗器的益处 1.1限制合闸涌流 无功补偿电容器在投运合闸霎时常常会产生冲击性合闸涌流,这是由于初次合闸的电容器处于未充电状态,流入电容器的电流仅受回路阻抗的限制。因该回路接近短路状态,回路阻抗很小,故而会产生很大冲击涌流。 GB50227—95《并联电容器安装设计标准》中合闸涌流的计算式为: 式中: Ie——电容器组额定电流; XC——电容器组一相容抗值 Xs——电容器组与电网间电抚值 Sd——合闸点系统的短路容量 Qc——电容器组容量 合闸涌流倍数

,K值时随合闸点短路容量的增大和电容器组容量的减小而增大,普通为3——10倍。 电容器组回路加装串联电抗器后的合闸涌流倍数为: K值时随母线短路容量的增大,或电抗器感抗占电容器容抗的百分数的增加而大幅度减小,故而串联电抗器后能起到限制合闸涌流的作用。 1.2抑止高次谐波 当补偿电容器接入处电网存在谐波时,电容器对n次谐波的容抗降为XC/n,系统电感对n次谐波的感抗升为nxs。电网存在有n此谐波时,假如nxs=XC/n,则产生n次谐波谐振现象。其n次谐波电流与基波电流迭加后,使流过电容器电流骤增,其过电流将危及电容器的平安。此时,谐波电流在系统阻抗上产生的谐波电压与原电压迭加而产生过电压,此过电压将影响电容器运用寿命。 在补偿电容器回路串联电抗器后,能有效避开谐振区,从而起到抑止高次谐波作用。 当nXs=xc/n而产生n次谐波谐振现象时,其自振频率为: 电网存在高次谐波时,当n>n0时其阻抗呈理性,对等效网络有明显的抑止休博作用。 但在n 运转理论标明,如串联电抗器的主要用处限制合闸涌流,应选择0.2~2%容抗值得电抗器;如是为抑止高次谐波则应选择6%容抗值的电抗器。电抗器应串联在电容器组的电源侧,其抑止谐波效果会更好。 2串联电抗器存在的弊端 2.1电容器投切时产生过电压 在并联电容器组的回路中串联的电抗器,特别是线性电抗器,或是质量因数较高电抗器,在断路器投切电容器时都会产生过电压,因断路器在合闸时的弹跳和分闸时的重燃,均会增加过电压产生的几率和倍数。故而投切电容器的断路器宜选择高性能、无涌流,不发作重燃的开关,以防止操作时产生过电压。

10kV高压电容补偿装置柜

6.4 10kV高压电容补偿装置柜 6.4.1、总则 6.4.1.1 本设备技术规范书适用于湖北翰煜700t/d浮法一线厂区35KV变电站10kV 并联电容器组,它提出了电要容器组的功能设计、结构、性能、安装和试验等方面的技术求。6.4.1.2本设备技术规范书提出的是最低限度的技术要求,并未对一切技术细节做出规定,也未充分引述有关标准和规范的条文,卖方应提供符合本规范书和工业标准的优质产品。 6.4.1.3 如果卖方没有以书面形式对本规范书的条文提出异议,则意味着卖方提供的设备完全符合本规范书的要求。如有异议,不管是多么微小,都应在报价书中以“对规范书的意见和同规范书的差异”为标题的专门章节中加以详细描述。 6.4.1.4本设备技术规范书所使用的标准如遇与卖方所执行的标准不一致时,按较高标准执行。 6.4.1.5 本设备技术规范书经买、卖双方确认后作为订货合同的技术附件,与合同正文具有同等的法律效力。 6.4.1.6要求投标厂家的电容器通过本技术规范书提出的全部型式试验项目,并具有相应电压等级、型式和结构的三套、三年以上的良好运行经验。对于同类设备在近期出现过绝缘击穿、放电和强迫停运等严重故障情况,采取的技术整改措施有效。根据成熟技术生产的新产品,经过技术审查,可以考虑试用。 6.4.1.7本设备技术规范书未尽事宜,由买卖双方协商确定。 6.4.2、用途: 通过对功率因数、无功功率综合判定,根据系统无功功率情况,通过高压真空接触器自动控制电容器组的投切,实现最优补偿控制,补偿后10kV配电站进线处的功率因数>=0.95. 6.4.3、订货范围: 厂区35KV变电站10kV侧:1500kvar电容器自动补偿成套装置,2套。 6.4.4、设备清单:

电力系统串联电容补偿装置系统设计标准

《电力系统串联电容补偿装置系统设计标准》 编制大纲及分工 范围【王宇红、戴朝波】 本标准适用于220kV及以上电压等级的电力系统串联电容补偿装置(以下简称串补装置) 新建工程的系统设计。对于改造工程可以参照本标准的相关部分执行。 本标准规定了串补装置的系统研究和设计内容,对串补装置部件、子系统和相关的设计提出基本要求。 每个串补工程均有其特殊性,应针对具体工程条件和要求使用本标准,必要时应做相应的补充。 除非有特殊要求,否则,串补装置的部件参见该部件的国家标准。 规范性引用文件【王宇红、戴朝波】 下列文件中的条款通过本标准的引用而成为本标准的条款。对不同的规范性引用文件中存在不同规范时,按照国标、行标、IEC、IEEE顺序来定。 GB 311.1-1997 高压输配电设备的绝缘配合 GB 1984-89 交流高压断路器 GB 1985-2004 高压交流隔离开关和接地开关 GB 10229-88 电抗器 GB/T 11022-1999 高压开关设备和控制设备标准的共同技术要求 GB 11032-2000 交流无间隙金属氧化物避雷器 GB/T 15291-1994 半导体器件第6部分晶闸管 GB/T 6115.1-1998 电力系统用串联电容器第1部分:总则-性能、试验和额定值-安全要求-安装导则 GB/T 6115.2-2002 电力系统用串联电容器第2部分:串联电容器组用 保护设备 GB/T 6115.3-2002 电力系统用串联电容器第3部分:内部熔丝 GB/T 7424.1 光缆第1部分:总规范

GB/T 4703-2001 电容式电压互感器 GB 1207-1997 电压互感器 GB 1208-1997 电流互感器 GB 311.1-1997 高压输变电设备的绝缘配合 GB/T 311.7 高压输变电设备的绝缘配合使用导则 GB 772-1987 高压绝缘子瓷件技术条件 DL/T 553-94 220V~500kV电力系统故障动态记录技术准则 DL/T 723-2000 电力系统安全稳定控制技术导则 DL/Txxxx-200x 柔性输电术语 IEEE Std 824TM-2004 IEEE Standard for Series Capacitor Banks in Power Systems IEC 60143-2:1994 Series capacitors for power systems-Part 2: Protective equipment for series capacitor banks IEC 60143-3:1998 Series capacitors for power systems-Part 3: Internal fuse IEC 60071-1:1993 Insulation Coordination-Part 1: Definitions, Principles, and Rules. IEC 60071-2:1996 Insulation Coordination-Part 2: Application Guide IEC 60099-4:2004 Surge Arresters-Part 4: Metal-Oxide Surge Arresters without Gaps for AC systems. 其余待补充。 术语和定义【刘昊、戴朝波】 直接引用电力行业标准《柔性输电术语》。首先引用最常用的固定串补装置术语,然后补充可控串补装置的术语。 术语列表在撰写标准内容时补充。 …… 说明本标准的采用缩写在撰写标准内容时补充。 TPSC thyristor protected series capacitor TSC thyristor-switched capacitor TSR thyristor-switched reactor

电力电容器及无功补偿技术手册

电力电容器及无功补偿 技术手册 沙舟编著

目录 前言 第一章基本概念 (1) §1-1 交流电的能量转换 (1) §1-2 有功功率与无功功率 (2) §1-3 电容器的串联与并联 (3) §1-4 并联电容器的容量与损耗 (3) §1-5 并联电容器的无功补偿作用 (4) 第二章并联电容器无功补偿的技术经济效益 (5) §2-1 无功补偿经济当量 (5) §2-2 最佳功率因数的确定 (7) §2-3 安装并联电容器改善电网电压质量 (8) §2-4 安装并联电容器降低线损 (11) §2-5 安装并联电容器释放发电和供电设备容量 (13) §2-6 安装并联电容器减少电费支出 (15)

前言 众所周知,供电质量主要决定于电压、频率和波形三个方面。电网频率稳定决定于电网有功平衡,波形主要决定于网络和负荷的谐波,电压稳定则决定于无功平衡。当然三者之间也具有一定的内在关系。无功平衡决定于网络中无功的产生和消耗。在系统中无功电源有同步发电机、同步调相机、电容器、电缆、输电线路电容、静止无功补偿装置和用户同步电动机,无功负荷则有电力变压器,输电线路电感和用户的感应电动机,各种感应式加热炉、电弧炉等。为了满足系统中无功电力的需求,单靠发电机、调相机、电缆和输电线路电容是不够的,静补装置中也是采用电容器等。因此电容器在系统的无功电源中占有相当比重,加之调相机为旋转设备。建设投资大,运行维护费用高。近年来世界各国都积极装设电容器,满足系统无功电力要求,维持电压稳定。但各国主要是装设并联电容器,装串联电容器者较少,因此编者主要介绍并联电容器无功补偿技术,它还广泛应用于谐波滤波装置,动态无功补偿设备和电气化铁道无功补偿装置之中,因与电力系统谐波有关。限于篇幅,准备在“谐波技术”中详述。这里主要介绍一些无功补偿技术基础。限于编者水平,加上时间仓促,不当之处难免,请读者批评指正。

电力电容器的补偿原理

1电力电容器的补偿原理 电容器在原理上相当于产生容性无功电流的发电机。其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。在输出一定有功功率的情况下,供电系统的损耗降低。比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。因此,电容器作为电力系统的无功补偿势在必行。当前,采用并联电容器作为无功补偿装置已经非常普遍。 2电力电容器补偿的特点 2.1优点 电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。 2.2缺点 电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。 3无功补偿方式 3.1高压分散补偿 高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。其主要用于城市高压配电中。 3.2高压集中补偿

高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。但这种补偿方式的补偿经济效益较差。 3.3低压分散补偿 低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。其优点是用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,可减少配电网和变压器中的无功流动从而减少有功损耗;可减少线路的导线截面及变压器的容量,占位小。缺点是利用率低、投资大,对变速运行,正反向运行,点动、堵转、反接制动的电机则不适应。 3.4低压集中补偿 低压集中补偿是指将低压电容器通过低压开关接在配电变压器低压母线侧,以无功补偿投切装置作为控制保护装置,根据低压母线上的无功符合而直接控制电容器的投切。电容器的投切是整组进行,做不到平滑的调节。低压补偿的优点:接线简单、运行维护工作量小,使无功就地平衡,从而提高配变利用率,降低网损,具有较高的经济性,是目前无功补偿中常用的手段之一。 4电容器补偿容量的计算 无功补偿容量宜按无功功率曲线或无功补偿计算方法确定,其计算公式如下: QC=p(tgφ1-tgφ2)或是QC=pqc(1) 式中:Qc:补偿电容器容量; P:负荷有功功率; COSφ1:补偿前负荷功率因数; COSφ2:补偿后负荷功率因数; qc:无功功率补偿率,kvar/kw。 5电力电容器的安全运行

试验四——输电线路串联电容补偿装置的仿真

南昌大学实验报告姓名:孔令飞学号:6100310012 班级:电力系统101班试验四输电线路串联电容补偿装置仿真 一、试验内容 1. 原始数据: 6台350MVA的发电机通过一条单回路600km的输电线路与短路容量为30000MVA的系统相连。输电线路电压等级为735kv,由两段300km的线路串联组成,工频为60Hz。 为了提高线路输送能力,对两段300km的线路L1和L2进行串联补偿,补偿度为40%,两段线路上均装设330Mvar的并联电抗器,用于限制高压线路的工频过电压和操作过电压。仿真模型见Simpowersystem库demo子库中的模型文件power_3phseriescomp。 2. 试验要求: (1)对系统进行稳态分析 (2)频率分析 更改系统图,用三相电源模块代替简化同步电机模块,同时添加阻抗测量模块得到一相阻抗的依频特性。根据依频特性得到系统的振荡频率。 (3)对系统进行暂态分析 1)仿真得出线路1发生各种短路故障时的相关波形,并对波形进行比较分析。2)仿真得出母线B2发生故障时的相关波形,并对波形进行分析。 二、对原始数据的分析与仿真 6台350MVA的发电机通过一条单回路600km的输电线路与短路容量为30000MVA的系统相连。输电线路电压等级为735kv,由两段300km的线路串联组成,工频为60Hz。 为提高线路输送能力,对两段300km的线路L1和L2进行串联补偿,补偿度为40%,两段线路上均装设330Mvar的并联电抗器,用于限制高压线路的工频过电压和操作过电压。 串联电容补偿装置有串联电容器组、金属氧化物变阻器(MOV)、放电间隙和阻尼阻抗组成。如图:

并联电容器对电力系统无功补偿及电压调节问题的探讨_马文成

DOI :10.3969/j.issn.1001-8972.2012.09.069 并联电容器对电力系统无功补偿及电压调节问题的探讨 马文成 固原供电局,宁夏 固原 756300 摘 要 变电站并联电容器可以对电网的无功功率进 行集中补偿。通过对无功功率的合理补偿, 从而达到调节电压、使系统经济和稳定运 行。但在实际运行中,往往由于设计原因, 无功负荷的分布不可预见性等因素导致变电 站母线并联电容器不能合理的补偿无功和调 节电压。下面就某站10kV 母线并联电容器运 行中存在的问题加以分析和探讨。 关键词 并联电容器;无功补偿;电压调节 某变电站电压等级为110/35/10kV ,两台 主变容量分别为25000kVA 和20000kVA 的有载调 压变压器,正常时20000kVA 变压器运行,另一 台主变热备用,10kV Ⅰ、Ⅱ段母线经分段开关 联成单母运行。10kV Ⅱ段母线装TBB 210- 3600/3600Kvar 成套电容器装置,电容器型号 为:BFFH 4-11/ -2×1800-1×3W 密集型电 容器,每组容量为1800Kvar ,两组共 3600Kvar ,其额定电流为89A ,串联电抗器型 号为CKGKL-12/10-1的空芯电抗器,额定电 抗率为1%。 1 运行中存在的问题 该站自2000年投运以来,因10kV 母线并联 电容器的补偿容量不合理致使电容器不能正常 投入运行,因此,10kV 母线输送的无功负荷不 能实现就地补偿,从而不利于电网运行的经济 性和稳定性。 1.1 并联电容器投入时补偿容量过剩 图例分析如下: 图1 上图数据为该站10kV 母线2011年有功、无 功负荷平均值,从图中可以看出,10kV 母线 年输送无功负荷最大值为1500Kvar ,最小值为 500Kvar ,平均值为1000Kvar 。若投入一组容量 为 的电容器时除补偿了10kV 母线输送的无功 负荷外,还向系统倒送无功容量800Kvar 。按照 规定,电力系统无功补偿应以分级补偿,就地 平衡的原则进行,向系统倒送无功时将会引起 过电压,系统稳定性受到破坏。因此,向系统 倒送无功是不允许的。 1.2 并联电容器投入时对母线电压影响较 大 若正常运行时投入一台20000kVA 的有载调 压变压器时,从图A 中可知10kV 母线年输送有 功功率最大值为6000kW ,最小值为3000kW , 平均值为4500kW 。正常运行时,在110kV 母线 确保电压合格率的情况下,35kV 及10kV 母线 通过有载调压完全可以满足各级母线电压合格 率的要求。当电容器投入时,除补偿了10kV 母线输送的无功功率外,还向系统倒送了大量 无功。此时,变压器输出的无功功率减少,导 致高压侧母线向系统输送的无功减少而电压升 高。变压器中、低压侧母线电压随之相应升 高,尤其低压侧母线电压升高较大,而并联电 容器运行时向系统补偿的无功容量与其端电压 的平方成正比,电压升高浮度越大,向系统输 送的无功容量越大,如此恶性循环,可能导致 电容器过电压保护动作跳闸,系统其它设备超 过额定电压运行时,其绝缘受到威胁。此时, 用有载调压来降低电压运行已不能满足电压合 格率的要求。 1.3 并联电容器退出运行时对系统经济运 行的影响 变电站并联电容器投入电网的目的是为 了补偿系统无功的不足,减少电源向系统输送 的无功功率,从而提高有功输送容量。因电源 向系统远距离输送无功负荷时,在线路及变压 器等感性、容性元件及阻性元件上消耗一定的 有功功率,因此,电源远距离大容量输送无功 不经济。变电站采用并联电容器通过就地无功 补偿,可以降低电源向系统及用户输送的无功 负荷,从而提高了有功输送容量。相对于电源 输送无功时,变电站并联电容器的单位容量费 用最低,有功功率损耗最小(约为额定容量的 0.3%~0.5%),一次性投资,运行维护简便。 因此用系统减少输送的无功功率来相应的提高 有功容量的输送能力,从经济性方面比较, 并联电容器投资成本小,最多1~2年可收回成 本。因此,获得了最好的经济效益。 从以上分析可以看出,当该站并联电容器 退出运行时,据查10kV 母线年输送无功电能约 760万度。因此,在当前负荷情况下,并联电容 器退出运行最不经济。 2 应采取的措施 针对以上分析,该站10kV 母线并联电容器 在电压调整、无功补偿过剩及运行经济性方面 存在着相互制约的矛盾,如何解决这一问题, 本人提出采取以下措施: 2.1 改变10kV 母线并联电容器的接线方 式,改造图如下: 图2 图3 图2为原接线,改造前当一组电容器投 入运行时向系统输送的总无功补偿容量为 Q 1=U 2ωC ,式中:U 为母线端电压,当f 为工 频时,ω为一常数,C 1=C 2,因C 1和C 2并联, 所以C=C 1+C 2,即Q 1=2U 2ωC 1。图C 为改造后 的接线图,总无功补偿容量为Q 2=U 2ωC ,式 中:U 为母线端电压,当f 为工频时,ω为一 常数,C 1=C 2,因C 1和C 2串联,所以C=C 1/2, 即Q 2=U 2ωC 1/2。所以 Q 1/Q 2=2U 2ωC 1/ U 2ωC 1/2=4,即Q 2=Q 1/4=3600/4=900(Kvar)。 通过计算可知,改造后两组电容器串联后 再三相并联接于电网时的总无功功率900Kvar 。 考虑到后期无功负荷的增长给补偿带来新 -119- 的问题,上述改造中在实际设备上可通过如图 C 所示加装一组隔离开关来实现,即通过操作 拉开G 2隔离开关,合上G 1隔离开关来实现投入 无功容量900Kvar 。后期无功负荷增长较大时, 可通过操作拉开G 1隔离开关,合上G 2隔离开关 来实现投入无功容量 1800Kvar 。 2.2 改变并联电容器的接线方式后对系统 及各元件的影响 2.2.1 对系统的无功补偿情况 图A 中,按目前年平均输送无功负荷曲线 可以看出,年平均无功输送容量为1000Kvar , 改造后并联电容器投入电网运行时补偿的无功 容量为900Kvar ,因此,可以实现就地补偿无 功的能力。对于后期无功负荷增长带来的无功 补偿不足时,可通过操作 G 1、G 2隔离开关来实 现电容器无功容量在900Kvar 与1800Kvar 之间转 换。 2.2.2 对电压质量的影响 改造后并联电容器输送的总无功容量为改 造前的一半,因此电容器投入运行时对电压的 影响相对较小,当各级母线电压变化时可通过 变压器有载调压装置调整电压,以及无功补偿 情况投退并联电容器来调整电压。 2.2.3 改造后的并联电容器运行时的经济 性 通过无功就地平衡补偿,据查可实现年累 计补偿无功负荷约760万度,相对电源系统输送 无功来说,可减少网损,提高电源输送能力, 最终达到经济效益最大化。 2.2.4 改造后对成套并联电容器装置各元 件的影响 2.2.4.1 对电容器各参数的影响 电容器额定电压为11/ kV ,改造后C1和 C2串联,当接在10kV 母线上时,C1和C2 串联 时分压,即C1与C2各承受电压为改造前端电压 的 一 半 , 电 容 器 通 过 的 电 流 为 I=Q2/2U=900/2×10=45(A)。因此,改造后的 各电容器承受的电压和通过的电流均在额定参 数内。 2.2.4.2 对电抗器的影响 因电抗器额定电压为10kV ,额定电流为 189A ,改造后均在额定值范围内。 2.2.4.3 对继电保护的影响 当并联电容器主接线改变后,其输送的电 流和各电容器承受的电压相应的发生变化,因 此,原保护定值不能满足需要,应重新计算并 整定,即可通过现有微机保护整定两套定值, 当电容器的无功容量在900Kvar 与1800Kvar 之间 转换时,切换相应的定值实现保护功能。 笔者认为通过上述改造后,可解决该站目 前10kV 母线无功负荷的补偿问题,从而实现了 该站并联电容器长时间不能投入电网运行的难 题,同时,提高了10kV 系统的功率因数,优化 了电网运行方案,提高了系统运行的经济性。 参考文献 [1] 韩祯祥,吴国炎 .电力系统分析. 浙江大学出 版社, 2002年版,227页 [2] 李坚,郭建文 .变电运行及设备管理技术问 答.中国电力出版社 ,2005年版,158页 作者简介 马文成 学历:大学 职称:工程师。

无功补偿考试试题 (1)

一单项选择(共10道) 1 《并联电容器装置设计规范》GB50227-2008适用于(A )kV及以下电压等级的变电站、配电站中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计。 (A)750(B)220 (C)110(D)35 2电抗率是指并联电容器装置的( C )之比,以百分数表示。 (A)串联电抗器的额定容抗与串联连接的电容器的额定感抗 (B)串联连接的电容器的额定容抗与串联电抗器的额定感抗 (C)串联电抗器的额定感抗与串联连接的电容器的额定容抗 (D)串联连接的电容器的额定感抗与串联电抗器的额定容抗 3每个串联段的电容器并联总容量不应超过( B )kvar。 (A)4200(B)3900 (C)2300 (D)1200 4 并联电容器装置总回路和分组回路的电器导体选择时,回路工作电流应按稳态过电流最大值确定,过电流倍数应为回路额定电流的(C )倍。 (A)1.1 (B)1.2 (C)1.3(D)1.5 5用于单台电容器保护的外熔断器的熔丝额定电流,应按电容器额定电流的(C )倍选择。 (A)0.83--0.95 (B)0.95--1.12 (C)1.37--1.50(D)2--5 6 并联电容器装置的放电器件应满足电容器断电后,在5s内将电容器的剩余电压降至(C )V及以下。(A)380(B)220 (C)50(D)36 7动态无功补偿装置SVC自身产生的3、5、7、11次谐波,采用角型接线,其中( C )次谐波不会流入系统。 (A)5(B)7 (C)3 (D)11 8、计算电容器额定电压是,需要考虑哪些因素(A B C) (A)系统额定电压(B)串联电抗器引起的电压抬升 (C)谐波引起的电压抬升(D)电容器内部元件额定电压 9、110kV系统允许的电压总畸变率为(C) (A)1.6% (B)2.0% (C)2.4% (D)3.0% 10、电能质量对频率指标有严格的要求,系统频率主要取决于(B) (A)有功(B)无功(C)电压(D)电流 二填空题(共10道) 1、电力系统无功电源主要有同步调相机、同步发电机、电力电容器、静止无功发生器。 2、电容器成套装置一般由高压并联电容器、串联电抗器、隔离开关、电流互感器、避雷器以及其余附件组成。 3、并联电容器成套装置回路中串联电抗器的作用是抑制谐波和限制合闸涌流。 4、TCR型静止动态无功补偿装置一般具有热管自冷、水冷两种冷却方式。 5、电力电子元器件串联使用要解决均压问题,并联使用要解决均流问题,目前最常用的均压方式为在元器件两端并联RC均压回路。 6、静止无功发生器SVG一般具有空载、感性、容性三种运行方式。 2U。三相半波可控整流电路中,晶闸管承受7、单相全波可控整流电路中,晶闸管承受的最大反向电压为2 6U。(电源相电压为U2) 的最大反向电压为2 8、磁控型动态无功补偿装置其励磁方式一般分为内励磁和外励磁两种方式。 9、电能质量指标主要包括电压、电流、波形和畸变率。

并联电容器设计要求规范

并联电容器装置设计规范(GB50227-95) 第一章总则 第1.0.1条为使电力工程的并联电容器装置设计贯彻国家技术经济政策, 做到安全可靠、技术先进、经济合理和运行检修方便,制订本规范. 第1.0.2条本规范适用于220KV及以下变电所、配电所中无功补偿用三相交流高压、低压并联电容器装置的新建、扩建工程设计. 第1.0.3条并联电容器装置的设计, 应根据安装地点的电网条件、补偿要求、环境状况、运行检修要求和实践经验,确定补偿容量、选择接线、保护与控制、布置及安装方式. 第1.0.4条并联电容器装置的设备选型, 应符合国家现行的产品标准的规定. 第1.0.5条并联电容器装置的设计,除应执行本规范的规定外,尚应符合国家现行的有关标准和规范的规定. 第二章-1 术语 1.高压并联电容器装置 (installtion of high voltage shunt capacitors): 由高压并联电容器和相应的一次及二次配套设备组成, 可独立运行或并联运行的装置. 2.低压并联电容器装置 (installtion of low voltage shunt capacitors): 由低压并联电容器和相应的一次及二次配套元件组成, 可独立运行或并联运行的装置. 3.并联电容器的成套装置 (complete set of installation for shunt capacitors): 由制造厂设计组装设备向用户供货的整套并联电容器装置. 4.单台电容器(capacitor unit): 由一个或多个电容器元件组装于单个外壳中并引出端子的组装体. 5.电容器组(capacitor bank): 电气上连接在一起的一群单台电容器. 6.电抗率(reactance ratio): 串联电抗器的感抗与并联电容器组的容抗之比,以百分数表示.

10KV电容器成套补偿装置施工方案

110kV桂花变电站扩建工程 电容器成套装置安装施工方案批准: 审核: 编写: 广州南方电力建设集团有限公司 日期:二00六年三月 并联电容器组成套补偿装置施工方案 一、概述 本方案是根据广州电力设计院设计的110KV桂花变电站工程;设计图纸内电气部份《电容器补偿装置》及厂家安装使用说明书的内容进行编写。在施工中执行《电气装置安装工程高压电器施工及验收规范》GBJ147-90及《电气装置安装工程电气设备交接试验标准》GB50150-91,在施工安全上执行《电力建设安全工作规程》。 高压并联电容器成套补偿装置为户外式布置在高压室二楼。型号为:TBB-10-4008/334F-3A。单Y接线,分别由电容器、电抗器、放电PT以及僻雷器组成。 二、并联电容器成套补偿装置的主要参数及主要配套设备 1.高压并联电容器成套补偿装置(总体) 制造厂: 型号:TBB-10-4008/334F-3A 额定容量:4008KV AR 系统电压:10 KV 调谐度:XL/XC=6% 额定频率:50 HZ

2.电容器(单只) 制造厂: 型号:BAM11/3-334-1W 额定电压:11/3KV 额定容量:334KV AR 相数: 3 3.放电PT 型号:3:3:3KV 额定一次电压:11/3KV 额定二次电压:100/3、100/3 V 三、施工准备 1、并联电容器成套补偿装置组装就位前,应详细了解并联电容器成套补偿 装置的厂家资料(包括安装尺寸及要求),根据厂家资料结合设计图纸 划出基础中心线和基础找水平。(土建预埋基础是否与实物基础相符)。 2、组织施工器具及材料进场,并安排好施工临时用电设施。注意施工用电 安全并作好相应的防护措施。 3、组织全体施工人员学习本施工方案,并布置好施工工器具。 4、施工负责人作好安全技术交底,并落实施工现场的安全设施及防火要 求。 5、完善施工现场环境保护设施。 四、设备的开箱检查 1、安装箱单与厂家代表、甲方代表以及监理对设备进行清点、检查。 2、检查设备是否符合设计要求、部件表面无划(碰)伤和锈蚀,瓷件及绝缘 件应光滑无裂纹、破损和毛刺,电容器的导电杆是否有损伤、电容器的箱壳是否有渗漏,电抗器线圈无变形、支柱绝缘子及其附件应齐全。资料是否齐全并有各方签名等记录。 3、出厂合格证及出厂技术资料应齐全,并有甲方(监理)代表在现场认证开

用并联电容器补偿无功功率的原理及相关方法

用并联电容器补偿无功功率的原理及相关方法 无功补偿的原理:电网输出的功率包括两部分;一是有功功率;二是无功功率.直接消耗电能,把电能转变为机械能,热能,化学能或声能,利用这些能作功,这部分功率称为有功功率;不消耗电能;只是把电能转换为另一种形式的能,这种能作为电气设备能够作功的必备条件,并且,这种能是在电网中与电能进行周期性转换,这部分功率称为无功功率,如电磁元件建立磁场占用的电能,电容器建立电场所占的电能.电流在电感元件中作功时,电流超前于电压90℃.而电流在电容元件中作功时,电流滞后电压90℃.在同一电路中,电感电流与电容电流方向相反,互差180℃.如果在电磁元件电路中有比例地安装电容元件,使两者的电流相互抵消,使电流的矢量与电压矢量之间的夹角缩小,从而提高电能作功的能力,这就是无功补偿的道理. 集中补偿电容器作为补偿装置有两种方法:串联补偿和并联补偿。串联补偿是把直接串联到高压输电线路上,以改善输电线路参数,降低电压损失,提高其输送能力,降低线路损耗。这种补偿方法的电容器称作串联电容器,应用于高压远距离输电线路上,用电单位很少采用。并联补偿是把电容器直接与被补偿设备并接到同一电路上,以提高功率因数。这种补偿方法所用的电容器称作并联电容器,用电企业都是采用这种补偿方法。按电容器安装的位置不同,通常有三种方式。 1.集中补偿电容器组集中装设在企业或地方总降压变电所的6~10kV母线上,用来提高整个变电所的功率因数,使该变电所的供电范围内无功功率基本平衡。可减少高压线路的无功损耗,而且能够提高本变电所的供电电压质量。

2.分组补偿将电容器组分别装设在功率因数较低的车间或村镇终端所高压或低压母线上,也称为分散补偿。这种方式具有与集中补偿相同的优点,仅无功补偿容量和范围相对小些。但是分组补偿的效果比较明显,采用得也较普遍。 3.就地补偿将电容器或电容器组装设在异步或电感性用电设备附近,就地进行无功补偿,也称为单独补偿或个别补偿方式。这种方式既能提高为用电设备供电回路的功率因数,又能改善用电设备的电压质量,对中、小型设备十分适用。

相关主题
文本预览
相关文档 最新文档