当前位置:文档之家› 贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍
贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍
贝克休斯随钻测井 技术介绍
1
随钻测量(MWD)
旋转倾斜角
– 旋转钻井过程中的井眼倾斜角
旋转方位角
– 旋转钻井过程中的井眼方位角
方向原始数据
– 用于对钻柱轴向磁场干扰进行修正
振动粘滑动态
– 轴向振动 – 横向振动 – 粘滑振动
2
3
2008年5月28日
1

贝克休斯随钻测井技术介绍
高速数据传输 (aXcelerate)
原始信号的形状清晰且容易 确定 泵噪音和反射作用导致到达 地表传感器的信号失真 对泵噪音的消除使得对井下 脉冲发生器信号的识别成为 可能 动态优先级提升(DPP)算 法可消除反射作用和表面噪 音 对信号进行最终过滤,并采 用自适应相关器恢复井下脉 冲发生器的原始信号
4
高速数据传输 (aXcelerate)
3比特/秒的实时数据 密度具有足够分辨率 能确保图像重要特征 的识别 增加至6比特/秒的数 据密度可产生清晰的 图像,可确保特征识 别以及实时倾角选择
5
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Gamma 伽马射线 Ray
6
2008年5月28日
2

贝克休斯随钻测井技术介绍
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率 Resistivity
MPRTEQ
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
7
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Density & 密度与孔 Porosity 隙度
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
8
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
9
2008年5月28日
3

贝克休斯随钻测井技术介绍
声波与核磁共振 (SoundTrak, MagTrak)
SoundTrak可用于测量声波在 岩层中的传播速度
– 声波参数用途包括: 进行实时的孔隙压力预测 对地震模型进行升级 对声波孔隙度进行评估
10
声波与核磁共振 (SoundTrak, MagTrak)
SoundTrak可用于测量声波在 岩层中的传播速度
– 声波参数用途包括: 进行实时的孔隙压力预测 对地震模型进行升级 对声波孔隙度进行评估
11
声波与核磁共振 (SoundTrak, MagTrak)
可开采的碳氢化合物
SoundTrak可用于测量声波在 岩层中的传播速度
– 声波参数用途包括: 进行实时的孔隙压力预测 对地震模型进行升级 对声波孔隙度进行评估
MagTrak 饱和度
MagTrak可用于提供无核源、高质量的 孔隙度和渗透率测量,且不会受到岩性 的干扰
– 与电阻率组合,可用于区分可动水和可动
碳氢化合物
电缆所测密度
12
2008年5月28日
4

贝克休斯随钻测井技术介绍
电阻率成像和地层压力测试 (StarTrak, TesTrak)
StarTrak 高分辨率电子图像,可用于对储层进行地质
和岩石物理方面的评估
13
电阻率成像/地层压力测试 (StarTrak, TesTrak)
StarTrak高分辨率电子图 像,可用于对储层进行地质 和岩石物理方面的评估
TesTrak可实时提供实时地层 压力与流动性数值(渗透率 的参照指数)
– 当量循环密度管理 – 孔隙压力模型实时校准 – 液体接触面 – 储层连通性
14
地层导向 (Reservoir Navigation Service)
借助地层评价与方向数据,引导钻井到达储层并保持在储 层内 帮助进行实时决策
15
2008年5月28日
5

贝克休斯随钻测井技术介绍
随钻解答的应用 (AWD)
钻井风险防范
– 油气公司希望在最大限度提高钻完井效率的同时,避免各种安全 隐患。
井眼布置
– 更多(且更为准确)的测量数据减少了不确定性,确保在油气层 的“甜区”内实现最佳的井眼布置。
综合地层评估
– 对储层概况更为详尽的了解有利于更好地进行完井设计并更为准 确地进行储量预测。
16
随钻解答的应用 当量循环密度与井眼清洗 (ECD Mgt)
准确的随钻当量循环密度测 量可提早发现潜在问题,从 而进行正确的实时决策
17
随钻解答的应用 漏失试验 (LOT)
使用环空压力进行的漏失 试验具有高成本效益,且 OnTrak或TesTrak试验的 结果比表面试验更为准确
压力
地表压力已经进行零 误差修正
试验地表线
试验地表线
18
2008年5月28日
6

贝克休斯随钻测井技术介绍
随钻解答的应用 孔隙压力分析
实时电阻率数据与准确的压缩波参数可以用来预测孔隙压 力,而后者更可用来进行实时决策,从而提高钻井过程的安 全性
19
随钻解答的应用 孔隙压力分析
在孔隙压力预测中引入地层 压力数据,可以确保油气公 司获得最佳的预测结果,从 而在优化钻井作业的同时最 大限度提高安全性
20
随钻解答的应用 井壁崩落/冲蚀探测
方位密度成像可用于确定井眼冲蚀部位
井眼顶部观测到的冲 蚀状况 密度曲线分离
密度曲线重叠
21
2008年5月28日
7

贝克休斯随钻测井技术介绍
随钻解答的应用 井壁崩落/冲蚀探测
使用方位井径仪可获得更 为真实准确的井眼形状,从 而实现对井壁崩落现象的测 量以及对井眼稳定性和冲蚀 程度的确定
22
随钻解答的应用 井壁崩落/冲蚀探测
使用方位井径仪可获得更 为真实准确的井眼形状, 从而实现对井壁崩落现象 的测量以及对井眼稳定性 和冲蚀程度的确定
23
随钻解答的应用 地层导向
实时获得最准确的深探电阻率,可用来确保真正的地质导向 能力,从而实现井眼轨迹部置最优化
24
2008年5月28日
8

贝克休斯随钻测井技术介绍
随钻解答的应用 实时成像
利用实时伽马图像可更为准确地估算净毛层比 和计算倾角,从而提高井眼分布的优化程度
实时地层倾角 更为准确的净毛层比预估 紧临钻头
25
随钻解答的应用 实时成像
利用实时伽马图像可更为准确地估算净毛层比 和计算倾角,从而提高井眼分布的优化程度
实时地层倾角 储层导向 结构特征描述 基本相型描述
ExxonMobile - SaLn
26
随钻解答的应用 实时成像
伽马射线成像与密度测量成像 地质学 – 净砂层和云母砂层相间的 结构 – 净砂层的渗透率比云母砂 层高100倍
27
2008年5月28日
9

贝克休斯随钻测井技术介绍
随钻解答的应用 地层距离分析
利用不同探测深度的电阻率测量值对地层边界距离 进行定量估算
采用深探电阻率确定顶板 通过地层距离分析估算视倾角为26° (以35英尺的间隔进行计算) 穿过地层边界前所估计的倾角 通过伽马图像估算视倾角为30°(以 2英尺的间隔进行计算
Distance to boundary Best Fit
14
12
10
y = -0.3786x + 4081.5 2 R = 0.9208 Relative dip = 20.7 degrees (Borehole = 95.2) Apparent dip = 25.9 degrees
8
6 TVD (feet)
4
2
0 10745 -2
10750
10755
10760
10765
10770
10775
10780
10785
10790
-4
-6
Chevron’s Alba field
MD (feet)
28
随钻解答的应用 岩石物理导向
采用高质量定量的实时地层评价数据 进行以净毛层比为基础的地质导向 利用在井址所计算的实时岩石物 性 按计划钻井直至达到预订的非产 层长度 将井眼轨道的垂直深度增加20英 尺直至在此符合非生产标准 最优化的井眼分布
29
KMG Leadon – 60% net-to-gross, high structure
随钻解答的应用 地震数据校正
利用准确的实时压缩波参数可实现对地表地震数据的及时更新与 校正,并据此将钻头放置于地震剖面上,从而提高井眼分布的优 化程度
合成地震关系
30
2008年5月28日
10

贝克休斯随钻测井技术介绍
随钻解答的应用 地震数据校正
利用准确的实时压缩波参数可实现对地 震数据的及时校正与更新,并据此将钻 头放置于地震剖面上,从而提高井眼分 布的优化程度
Esso利用声波压缩波参数和密度 数据合成地震记录图,从而将井 眼与地表地震数据相结合 – 在Chocalho油田,Esso曾经在 钻进8井段时遇到位置不确定 的问题。通过利用声波参数和密 度数据,Esso在最短的时间内重 新选择了一个新的目标位置
地表合成地 震
31
随钻解答的应用 水饱和系数SW的高准确推算
采用固定探测深度“矢量式” 处理,提高含水饱和度的推 算精确度,从而实现对碳氢 化合物储量更为准确的估算
32
随钻解答的应用 孔隙度测定
孔隙度指储层岩石中充满水、石油或天 然气的孔隙空间与岩石总体积的比值 利用体密度确定孔隙度
φ=
ρ ma ρ b ρ ma ρ f
33
2008年5月28日
11

贝克休斯随钻测井技术介绍
随钻解答的应用 孔隙度测定
孔隙度指储层岩石中充满水、石油或天 然气的孔隙空间与岩石总体积的比值
7 0
LWD.NPCKLM_1
45 -15
LWD.NPKLM_1
45
LWD.CALM_1
12
DEPTH
FEET
45
ME Carbonate
LWD.NPCLM_1 LWD.NPLM_1
-15
-15
LWD.GRAM_1
100 45
-15
利用体密度确定孔隙度
xx00
中子孔隙度
– 对环境效应非常敏感 – 适用于碳酸盐岩储层
xx50
9 pu
34
随钻解答的应用 孔隙度测定
孔隙度指储层岩石中充满水、石油 或天然气的孔隙空间与岩石总体积 的比值
φ= t - tma tf - tma
声波孔隙度
利用体密度确定孔隙度 中子孔隙度
– 对环境效应非常敏感 – 适用于碳酸盐岩储层
次生孔隙度
声波孔隙度
35
随钻解答的应用 地层液体接触面/分类
利用伽马射线和电阻率可清楚地识别无水地层结构(潜在的碳氢化合物 储层) 中子孔隙度和密度曲线 交叉验证天然气的存在
Oseberg
36
2008年5月28日
12

贝克休斯随钻测井技术介绍
随钻解答的应用 地层液体接触面/分类
利用伽马射线和电阻率可清楚地识别无水地层结构(潜在的碳氢化合物 储层) 中子孔隙度和密度曲线 交叉验证天然气的存在
天然气
Gulf of Mexico
37
随钻解答的应用 地层液体接触面/分类
利用伽马射线和电阻率可清楚地识别无水地层结构(潜在的碳氢化合物 储层) 中子孔隙度和密度曲线 交叉验证天然气的存在
根据Vp/Vs可识别碳氢化 合物
38
随钻解答的应用 地层液体接触面/分类
利用伽马射线和电阻率可清楚地识别无水地层结构(潜在的碳氢化合物 储层) 中子孔隙度和密度曲线 交叉验证天然气的存在
XX00 XX90
Gas Oil
根据Vp/Vs可识别碳氢化 合物
XX10
XX20
Grane, North Sea
39
2008年5月28日
13

贝克休斯随钻测井技术介绍
随钻解答的应用 地层液体接触面/分类
压力梯度的实时确定使得对地层液体和液体接触面的识别 成为可能,从而有助于对储层特征的掌握与了解
Fluid Gradients 液体压力梯度
随钻测井数据可被用于 识别潜在区域,从而确 定压力梯度 梯度交叉点处为液体接 触面
Depth
井眼
Wellbore
页岩
Gas
Shale
天然气
nt die Gra tic sta dro Hy
Pressure
天然气压力梯 度
t
ien Grad Gas
石油 水 水
Water
Oil
Gr ad 石油压力梯度 ie n t
Depth
Oil
Gas-Oil contact 气油接触面
静水压力梯度
Wat er
油水接触面 Gra die nt 水压梯度
Oil-Water contact
Shale
压力
or
Pressure
表示测试点
indicates test points
40
随钻解答的应用 地层液体接触面/分类
压力梯度的实时确定使得对地层液体和液体接触面的识别 成为可能,从而有助于对储层特征的掌握与了解
E W
Depth m TVDSS
-1500
Initial GOC
随钻测井数据可被用于 识别潜在区域,从而确 定压力梯度 梯度交叉点处为液体接 触面
Initial OWC
-1600
-1700
-1800
Coarse clean sand (C-sand) Fine micaceous sand (M-sand) Heterogeneous sand
500
Meter 0 50 100 150
-1900
y
TesTrak station 1500
1000
200 250
1550
Grad 1 = 0.391 bar / 10 m R2 = 0.9439
1600
TVD RT [m]
1650
1700
Grad 2 = 0.973 bar / 10 m R2 = 0.9974
Grad 3 = 1.008 bar / 10 m R2 = 0.9992
1750
1800
1850
1900 140,0 150,0 160,0 170,0 180,0 190,0 200,0
Quartz Gauge Pressure [bara]
41
随钻解答的应用 地层压降监控
通过对地层压力的测定,可掌握砂层中的产降水平
所测得的压力清楚表明不 同的砂层显示出不同的生 产递减水平 利用早期信息可实现完井 配置的最优化
下 层 莱 曼 砂 岩
FPT Formation Pressure Test Depth MD [ft]
15402.00 15341.00 15187.00 14773.00 14606.00 15429.00
Annular Pressure after 2 [psia]
5827 5824 5808 5745 5703 5840
Initial Formation Pressure 1 [psia]
3370 3368 3377 5297 3876 3371
Repeat Formation Pressure 2 [psia]
3370 3368 3376 5297 3876 3371
Repeat Formation Pressure 3 [psia]
3370 3368 3376 5296 3876 3371
Mobility
Overbalance
TVD [ft]
11347.12 11339.82 11321.20 11239.15 11178.02 11350.29
Best Test [mD/cP]
156.3 149.9 8.7 6.6 45.0 42.2
[psia] 2457 2456 2431 449 1827 2469
42
2008年5月28日
14

贝克休斯随钻测井技术介绍
随钻解答的应用 生产递减监控
通过对地层压力的测定,可掌握砂层中的产降水平
用于钻井程序中避免发生 差压卡钻现象 有关生产压降层区的随钻 信息可用于钻井危险的防 范
xx
xx
Njord, North Sea
43
随钻解答的应用 薄地层分析
通过采用高垂直分辨率测量值或后处理,可更为准确地进行有关薄地层的 净毛层比计算,并获得更为准确的含水饱和度参数值(电阻率、孔隙度 等)
Gulf of Mexico
44
随钻解答的应用 薄地层分析
通过采用高垂直分辨率测量值或后处理,可更为准确地进行有关薄地层的 净毛层比计算,并获得更为准确的含水饱和度参数值(电阻率、孔隙度 等)
45
2008年5月28日
15

贝克休斯随钻测井技术介绍
随钻解答的应用 薄地层分析
通过采用高垂直分辨率测量值或后处理,可更为准确地进行有关薄地层的 净毛层比计算,并获得更为准确的含水饱和度参数值(电阻率、孔隙度 等)
通过图像确定的相对倾角有利 于提高MPRTEQ处理的效果
46
随钻解答的应用 构造地质学和倾角
近钻头伽马射线成像和密度成像可用于对结构进行确定
图像具备高清晰度,且与 相互之间相差极小 岩性边界可被清楚地识别
47
随钻解答的应用 储层连通性
在大位移井中不同区段压力值的测定使得对储层连通性的评估成为 可能
S
初始气油接触面
N
-1500 初始气油接触面 -1550 初始油水接触面 -1600
初始油水接触面
-1650 粗净砂层 细云母砂层 非均质砂层 1000
0
TesTrak 采样点
2000
Km 0.2 0.4 0.6 0.8 1.0
-1700 4000
0
3000
48
2008年5月28日
16

贝克休斯随钻测井技术介绍
随钻解答的应用总结
钻井危险防范
– 油气公司希望在最大限度提高钻完效率的同时,避免各种安全隐 患。
井眼布置
– 更多(且更为准确)的测量数据减少了不确定性,确保在储层的 “甜区”内实现最佳的井眼布置。
综合地层评估
– 对储层概况更为详尽的了解有利于更好地进行完井与开采规划并 更为准确地进行储量预测。
49
随钻测井成像和油藏导 航服务
50
什么是随钻成像?
钻具在旋转时沿井筒周围获取测量数据 在高边处展开井筒数据而获得二维图像 平面岩层在图像上显示为正弦曲线
高边 低边
高边 低边 高边
51
2008年5月28日
17

贝克休斯随钻测井技术介绍
为什么使用随钻成像?
能提供及时的地质和井眼状况以便控制以下钻井 进程
– 钻井时与地质模型建立相关性 – 地质导向 – 识别坍塌、裂缝和钻井风险 – 地层压力定位的测量数据
在钻井的同时收集数据,并从关键轨迹采集数据
– 井眼轨迹可能不允许与电缆测井 – 可提供充足的数据来探明储量,或者表示不需要进一 步评价
52
应用概述:
地质导向
LithoTrak
SoundTrak
岩石力学
地质构造
高分辨率 电子成像仪
沉积相分析和 地质导向
断层描述
53
图像对比
伽马射线 图像
结构边界
密度图像
电阻成像
断层
薄岩层详细情况
54
2008年5月28日
18

贝克休斯随钻测井技术介绍
以方位角伽马射线进行的油藏导航
实时方位角伽马射线实例
55
河床砂体 相关性分析
在明显无定形结构 沙体中最佳油藏 的特征
理想的井身轨迹: 通过辨识不同砂岩 组构的能力来 优化井身轨迹
56
对图像的地力学分析
随钻测井电子图像
57
2008年5月28日
19

贝克休斯随钻测井技术介绍
高钻进速度下的断层分析
TOH
油井概况
俄克拉荷马州,巴奈特板岩(Barnett Shale) -井眼 尺寸为 8 ”, 水平井, 有断层的非传统油藏 在记忆模式下产生高分辨率电阻图像
BOH
TOH Feet
目的
Cement nodules
TOH
分析断层特性以优化完井计划 避免水平电缆测井 对钻井过程产生最小干扰
BOH
INTEQ 系统提供
在以高达150英尺/时的速度钻井时,仍能获取高分 辨率的图像 能获取关于复杂断层、薄地层和胶结块的详细信息
Feet
TOH
断层
TVD (feet)
断层
类型、方向、位置和连续性 断层密度
胶结区
类型和位置 对投产可能带来的阻碍
Vertical section (feet)
58
高钻进速度下的断层分析
TOH
油井概况
俄克拉荷马州,巴奈特板岩(Barnett Shale) -井眼 尺寸为 8 ”, 水平井, 有断层的非传统油藏 在记忆模式下产生高分辨率电阻图像
BOH
TOH Feet
目的
Cement nodules
TOH
分析断层特性以优化完井计划 避免水平电缆测井 对钻井过程产生最小干扰
BOH
INTEQ 系统提供
在以高达150英尺/时的速度钻井时,仍能获取高分 辨率的图像 能获取关于复杂断层、薄地层和胶结块的详细信息
Feet
TOH
断层
TVD (feet)
断层
类型、方向、位置和连续性 断层密度
胶结区
类型和位置 对投产可能带来的阻碍
Vertical section (feet)
59
油藏导航(地质导向)服务
先进的 “地质导向” – 实时利用随钻测井的地层评估 传感器并配以定向数据,使得钻井组合在靶点层着 陆,然后将井筒保持在采收价值最大地层。
60
2008年5月28日
20

国内随钻测井解释

1国内随钻测井解释现状及发展 在国内现有的技术条件下,开展大斜度井和水平井测井资料的可视化解释能在很大程度上提高测井解释识别地质目标的精度,通过实时解释、实时地质导向有助于提高钻井精度、降低钻井成本、及时发现油气层。 未来的勘探地质目标将更加复杂,以地质导向为核心的定向钻井技术的应用会越来越多。伴随新的随钻测井仪器的出现,应该有新的集成度高的配套解释评价软件,以充分挖掘新的随钻测井资料中包含的信息,使测井资料的应用从目前的单井和多井评价发展为油气藏综合解释评价。因此,定向钻井技术的发展及钻井自动化程度的提高必将使随钻测井技术的应用领域更加关泛。 2 提高薄油层钻遇率 提高薄油层水平井油层钻遇率必须加强方案研究及现场调整、实施两方面研究。方案设计包括对油层的构造、沉积相、储层物性、电性特征、油气显示特征综合研究。现场调整、实施包括对定向工具的认识及现场地质资料综合分析、重新调整轨迹后而实施的设计。 一口水平井的实施是一个系统工程,包括地质、钻井工程两方面的因素。地质设计及现场提出的方案要充分考虑工程的可行性。只有加强综合研究,根据油藏的变化情况及时调整轨迹,才能提高油层钻遇率。 目前,在石油、天然气等钻井勘探开发技术领域,水平井作业中,使用随钻测井工具、随钻测量工具和现场综合录井工具。随钻测量工具、随钻测井工具位于离钻头不远的地方,在钻机钻进的同时获取地层的各种资料和井眼轨迹资料,包括井斜、方位、自然伽马、深浅侧向电阻率等。现场综合录井工具获取钻时、岩屑、荧光、气测录井等,这样利用随钻测量工具、随钻测井工具测得的钻井参数、地层参数和现场综合录井资料推导出目的层实际海拔深度和钻头在目的层中实际位置,并及时调整钻头轨迹,使之顺着目的层沿层钻进,尽量提高砂岩钻遇率。

随钻测井技术

第8卷第4期断 块 油 气 田 FAUL T-BLOCK OIL&G AS FIFLD2001年7月随钻测井技术 布志虹1 任干能2 陈 乐2 (11中原油田分公司勘探事业部 21中原石油勘探局地质录井处) 摘 要 随钻测井是一种新型的测井技术,它能够在钻开地层的同时实时测量地层信息。 本文介绍了斯伦贝谢公司最新的随钻测井技术,并通过对其新技术的分析,提出了在重点探井文古2井进行随钻测井的建议及方法。 关键词 随钻测量 随钻测井 随钻测量工具 引言 在钻井过程中同时进行的测井称之为随钻测井。 随钻测井系统中随钻测井的井下仪器的安装与常规测井的仪器基本相同,所不同的是各仪器单元均安装在钻铤中,这些钻铤必须能够适应正常的泥浆循环。 用随钻测井系统进行随钻测井作业比电缆测井作业简单。首先在地面把各种随钻测井仪器刻度好,然后把他们对接起来进行整体检验,再把随钻测井仪接在钻杆的底部,最后接上底部钻具总成和钻头,至此,就可以进行钻井和随钻测井作业了。 1 数据记录方式Ξ 随钻测井有2种记录方式,一是地面记录,即将井下实时测得的数据信号通过钻井液脉冲传送到地面进行处理记录;二是井下存储,待起钻时将数据体起出。这里仅介绍地面记录的方法。 在随钻测量仪中设计有一个十分重要的系统即钻井液脉冲遥测系统,该系统的作用是把各传感器采集的信号实时传送到地面。目前在随钻测量系统中主要使用连续钻井液脉冲进行遥测传输,它在井下用一个旋转阀在钻井液柱中产生连续压力波,这个旋转阀称为解制器。在井下改变波的相位(即调频),并在地面检测这些相位变化,就可以把信号连续地传输到地面。 来自各传感器的模拟信号首先被转换成二进制数。每一个二进制数则由一个具有适当的二进制位数的字来表示,每个字所含有的二进制位数的多少(即字长的大小)视测量结果所需的精度而定,如果所传输的信号对精度的要求不高,可用一个字长较小的字表示这个二进制数;反之,则需用一个字长较大的字表示。目前随钻测量系统中采用的字长一般为8位,即每个字含有8个二进制位,这是一个最优化方案,既满足了各测量信号对精度的要求,又能在单位时间里传送较多的二进制数到地面。 这些字由一系列的“0”和“1”组成,由调制器把它调制成代表这些字的钻井液脉冲发送到地面。调制器调制信号是一帧一帧地调制的,每一帧由16个字组成,其中15个字长为8位的字用于传输测量信号,一个字长为10位的字是用来标识一帧的起始位置的帧同步字。 最后,压力信号由安装在立管中的压力传感器检测出,由调制器调制并传送到地面。这些压力信号被送到地面计算机系统,由计算机系统调解后被还原成各传感器的测量信号值,并与其所对应的时间和深度一起存入数据库。这些测量信号和及其处理结果就可以实时地显示在荧光屏上或打印在绘图纸上。 在钻井液遥测系统的数据传输率和字长一定的情况下,系统在单位时间内向地面传送的二进 22Ξ收稿日期 2001-02-15 第一作者简介 布志虹,女,1962年生,高级工程师, 1982年毕业于江汉石油学院测井专业,现在中原油田分公司勘探事业部从事勘探管理工作,地址(457001):河南省濮阳市,电话:(0393)4822513。

SLB随钻测井技术及应用

随钻测井(LWD)技术及应用 WZ11-1 N
宋菊 随钻测量技术 Apr-16-2009
1 Initials 4/18/2009

主要内容
随钻测井简介 VISION Scope 作业要点
环境随钻测井影响
2 Initials 4/18/2009

随钻测井仪器
振共磁核
电缆测井仪器
CMR
proVISION sonicVISION StethoScope TeleScope
随钻测井可以实现 的测井项目
侧向电阻率 电磁波传播电阻率
DSI
PeriScope seismicVISION
geoVISION Xceed/Vortex
3 Initials 4/18/2009
谱获俘、马格西、规常
EcoScope
试测力压层地 像成率阻电 率阻电向侧
波声
MDT
岩性密度 光电指数 中子孔隙度
PEx
元素俘获,自然伽马 声波 地层压力 俘获截面 核磁 地层界面 图像
AIT ECS
HRLS
随钻测井能够完成几乎全部测井项目
FMI
97%以上的随钻测井不再需要重复电缆测井 以上的随钻测井不再需要重复电缆测井

传达独立的地层评价
电缆测井 随钻测井
97%以上的随钻测井不需要重复 相同项目的电缆测井
4 Initials 4/18/2009

随钻测井的价值
决策
决策/ 决策/ 产量
储层增产地质导向
增 值 方 向
地层产能和渗透性
储层产能 储层评价
R Φ R Φ R Φ MR,
孔隙度, 饱和度, 岩性, 孔隙度 饱和度 岩性 流体
西格马
实 时 数 据 构造
随钻测井服务 Φ
地 元 地层元素 地 元 地 元
Rt Rxo
孔 密度 隙 光电 度 指数
ΦISO
向 导 质 质 质 质 地 地 地 地
流度 流 流 流
e e e Perm
V
地层信息
Sc op e
实时测井 EcoScope
GVR (RAB) ARC ADN
马 伽马 伽马 伽马能谱
pe co riS Pe e op Sc tho Ste
N ISIO ProV
Sonic VISION
Te le
测量工具
实时可视化
感应 电阻 率
侧向 电阻 率
试 试 试 测试 力 力 力 压力 层 层 层 地层
振 振 振 共振 核 核磁
测 测 测 测 探 探 探 探 界 界 界 界 边 层 地 地 地 地
西格马
中子
密度
波 声波 声波 声波
成像
遥 测
实时解释
LWD测量的项目 测量的项目
测量项目
5 Initials 4/18/2009

美国页岩气勘探开发关键技术

目录 _Toc28155708 引言 (2) 1 美国页岩气藏特点分析 (2) 2 地层评价 (3) 3 岩石机械特性地质力学 (4) 4 钻完井技术 (5) 5 压裂技术 (8) 5.1 清水压裂技术 (8) 5.2 重复压裂技术 (9) 5.3 水平井分段压裂技术 (9) 5.4 同步压裂技术 (10) 6 结论和建议 (10)

美国页岩气勘探开发关键技术 引言 美国页岩气资源量达16. 9 万亿m3,可开采资源量7. 47 万亿m3。至20 世纪90 年代末,美国页岩气产量一直徘徊在( 30 ~50) 亿m3 /a。2000 年新技术的应用及推广,使得页岩气产量迅速增长。2005 年进入大规模勘探开发,成功开发了沃思堡等5 个盆地的页岩气田,产量以100 亿m3 /a 的速度增长。2008 年产量达到600 亿m3,占美国天然气总产量的8%,相当于中国石油当年天然气总产量,目前则已占到天然气总产量的13% ~15%。截至2008 年底,美国累计生产页岩气3 316 亿m3。预计2015 年美国页岩气产量将达到2 800 亿m3。自2009 年以来,北美的页岩气开发发生了革命性的变化,目前美国已取代俄罗斯成为世界最大的天然气生产国,实现了自给自足并能连续开采上百年。美国页岩气快速发展是技术进步、需求推动和政策支持等多种因素合力作用的结果。从技术进步角度来看,则主要得益于以下几方面的关键技术:前期的页岩气藏分析、地层评价、岩石力学分析、后期的钻完井技术以及压裂增产技术。 1 美国页岩气藏特点分析 美国页岩气藏具有典型的衰竭特点,初始产量高,前3 年急剧下降,随后在很长的时间里保持稳产并有所下降,生产寿命可达25 a 以上。美国页岩气资源丰富,致密页岩分布范围广,有效厚度大,有机质丰富,含气量大,裂缝系统发育,

国外随钻测井发展历程

国外随钻测井发展历程 提高服务质量,降低服务成本是工程技术服务努力追求的目标,就此而言, 随钻测井相对于电缆测井具有多方面的优势。随钻测井资料是在泥浆滤液侵入地层之前或侵入很浅时测得的,更真实地反映原状地层的地质特征,可提高地层评价精度。随钻测井在钻井的同时完成测井作业,减少了井场钻机占用时间,从钻井-测井一体化服务的整体上节省成本。在某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险大以致不能进行作业时,随钻测井是唯一可用的测井技术。因此,随钻测井既提高了地层评价测井数据的质量,又减少了钻井在用时间,降低成本。 在过去的近20年里, 随钻测井技术快速发展, 目前已具备对应电缆测井的所有技术,包括比较完善的电、声、核测井系列,以及随钻核磁、随钻压力等等。同时, 全球随钻测井业务不断增长, 已成为油田工程技术服务的主体技术之一,其业务收入和工作量大幅增加。可以预期, 随着石油勘探开发向复杂储集层纵深发展, 随钻测井技术将更趋完善, 电缆测井市场份额将更多地被随钻测井所取代。 一、随钻测井发展历程 随钻测井技术的发展可追溯到1930年前后,当时电缆测井技术开始出现和发展。20世纪30年代早期,Dallas地球物理公司的J.C.Karaher用一段长4-5英尺的绝缘线将钻头与钻柱绝缘,在每根钻杆内嵌入绝缘棒,用一根导线在绝缘 棒中间穿过,通向地面,通过这根导线传输信号。 用这种方法得到了令人鼓舞的结果,测量到连续 的电阻率曲线。1938年采集到第一条LWD电阻率 曲线[1],这是用电连接方式传输数据的第一条 LWD曲线(图1)。 20世纪40年代和50年代仅有的几个专利文 献表明,许多发明家和研究组织继续致力于实时 的、可靠的随钻测量系统的研究,遗憾的是,LWD 数据传输技术的发展非常缓慢,技术上很难突破。 在测井技术发展开始的50年时间里,在石油工业

随钻测井介绍

随钻测井技术的新认识 2008-9-1 分享到: QQ空间新浪微博开心网人人网 摘要:随钻测井由于是实时测量,地层暴露时间短,其测量的信息比电缆测井更接近原始条件下的地层,不但可以为钻井提供精确的地质导向功能,而且可以避免电缆测井在油气识别中受钻井液侵入影响的错误,获取正确的储层地球物理参数和准确的孔隙度、饱和度等评价参数,在油气层评价中有非常独特的作用。通过随钻测井实例,对随钻测井与电缆测井在碎屑岩中的测井效果进行了对比评价,指出前者受钻井液侵入和井眼变化的影响小,对油气层的描述更加准确,反映出来的地质信患更加丰富。通过对几个代表性实例的分析,对随钻测井在油气勘探中的作用提出了新认识。 主题词:随钻测井;钻井;钻井液;侵入深度;技术 一、引言 20世纪80年代中期,专业厂商开始将电缆测井项目逐渐随钻化,形成了有真正意义的随钻测井技术,简称LWD(1099ing while drill ing)。由于LWD包含了所有MWD(measurement while drilling)的功能及传统测井项目,所以其具备了识别岩性和地层流体性质的能力,现场可以根据实时上传的各种信息判断钻头是否钻达目的层,这就是LWD的地质导向作用[1~3]。塔里木油田油气埋藏较深,直井开发的成本相对较高,1994年开始在油田钻水平井,已完钻水平井约占开发井的1/4,但产量超过了总产量的50%以上,经济效益非常明显。在水平井和侧钻井的施工中,保证命中靶心和取全取准测井资料是成功完井的关键,推广MWD/LWD技术后,其施工质量大大提高。 目前,在塔里木油田MWD/LWD技术主要用在以下几方面:①在比较熟悉的地质构造中进行非直井施工时,仅采用MWD,测井采集使用钻杆传输测井技术;②在较复杂的地质构造或薄层中进行非直井施工时,采用LWD,以防止钻井设计中可能的错误,一些非常必要的测井项目可使用钻杆传输测井技术;③在一些井眼状况复杂、井下有溢流、井漏等现象的井中,无法使用电缆及钻杆传输测井时,用LWD进行划眼测井,采集最基本的测井数据;④在欠平衡条件下钻井时,采用L WD。目前该油田已经使用过的随钻测井设备包括PathFinder、Sperr y-Sun和PowerPwlse等。

贝克休斯随钻测井技术介绍

贝克休斯随钻测井技术介绍
贝克休斯随钻测井 技术介绍
1
随钻测量(MWD)
旋转倾斜角
– 旋转钻井过程中的井眼倾斜角
旋转方位角
– 旋转钻井过程中的井眼方位角
方向原始数据
– 用于对钻柱轴向磁场干扰进行修正
振动粘滑动态
– 轴向振动 – 横向振动 – 粘滑振动
2
3
2008年5月28日
1

贝克休斯随钻测井技术介绍
高速数据传输 (aXcelerate)
原始信号的形状清晰且容易 确定 泵噪音和反射作用导致到达 地表传感器的信号失真 对泵噪音的消除使得对井下 脉冲发生器信号的识别成为 可能 动态优先级提升(DPP)算 法可消除反射作用和表面噪 音 对信号进行最终过滤,并采 用自适应相关器恢复井下脉 冲发生器的原始信号
4
高速数据传输 (aXcelerate)
3比特/秒的实时数据 密度具有足够分辨率 能确保图像重要特征 的识别 增加至6比特/秒的数 据密度可产生清晰的 图像,可确保特征识 别以及实时倾角选择
5
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Gamma 伽马射线 Ray
6
2008年5月28日
2

贝克休斯随钻测井技术介绍
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率 Resistivity
MPRTEQ
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
7
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
Density & 密度与孔 Porosity 隙度
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
8
伽马射线、电阻率和中子放射性测量(OnTrak, LithoTrak)
伽马射线
– 用于识别砂层或页岩 – 用于计算地层倾角
电阻率测量
– 对碳氢化合物或水进行识别 – 通过后处理(MPRTEQ)计算 含水饱和度 – 增强地层导向功能
中子放射性测量
– 确定孔隙度和识别天然气 – 图像可用于构造解译 – 用于计算井径仪
9
2008年5月28日
3

世界各大测井集团仪器编码表

世界各大测井集团仪器编码表BAKER ATLAS WIRELINE (贝克休斯公司-电缆测井) 3DEX 3D Induction Logging Service (三维感应) AC BHC Acoustilog (井眼补偿声波) CAL Caliper (井径) CBIL Circumferential Borehole Imaging Log (井周成像测井)CDL Compensated Density Log (补偿密度测井) CN Compensated Neutron Log (补偿中子测井) DAC Digital Array Acoustilog (数字阵列声波测井) DAL Digital Acoustilog (数字声波测井) DEL2 Dielectric Log - 200 Mhz (介电测井-200兆赫) DEL4 Dielectric Log - 47 Mhz (介电测井-47兆赫) DIFL Dual Induction Focused Log (双感应聚聚测井) DIP High Resolution 4-Arm Diplog (高分辨率4臂地层倾角)DLL Dual Laterolog (双侧向测井) DPIL Dual Phase Induction Log (双相位感应测井) EI Earth Imager (地层成像仪) FMT Formation Multi-Tester (地层多功能测试器) GR Gamma Ray (伽马仪) HDIL_BA High-Definition Induction Log (高分辨率感应测井)HDIP Hexagonol Diplog (六臂倾角测井) HDLL High-Definition Lateral Log (高分辨率侧向测井)ICAL Imaging Caliper (井径成像仪) IEL Induction Electrolog (感应-电测井)

测井新技术进展综述

测井技术作为认识和识别油气层的重要手段,是石油十大学科之一。现代测井是当代石油工业中技术含量最多的产业部门之一,测井学是测井学科的理论基础,发展测井的前沿技术必须要有测井学科作指导。 二十一世纪,测井技术要在石油与天然气工业的三个领域寻求发展和提供服务:开发测井技术、海洋测井技术和天然气测井技术。目前,测井技术已经取得了“三个突破、两个进展”,测井技术的三个突破是:成像测井技术、核磁测井技术、随钻测井技术。测井技术的两个进展是:组件式地层动态测试器技术、测井解释工作站技术。“三个突破、两个进展”代表了目前世界测井技术的发展方向。为了赶超世界先进水平,我国也要开展“三个突破、两个进展” 的研究。 一、对测井技术的需求 目前我国油气资源发展对测井关键技术的需求主要有如下三个方面:复杂地质条件的需求、油气开采的需求、工程上的需求。 1)复杂地质条件的需求我国石油储量近90%来自陆相沉积为主的砂岩油藏,天然气储量大部分来自非砂岩气藏,地质条件十分复杂。油田总体规模小,储层条件差,类型多,岩性复杂,储层非均质性严重,物性变化大,薄层、薄互层及低孔低渗储层普遍存在。这些迫切需要深探测、高分辩率的测井仪器和方法,开发有针对性、适应性强的配套测井技术。 2)油气开采的需求目前国内注水开发的储量已占可采储量的90%以上,受注水影响的产量已占总产量的80%,综合含水85%以上。油田经多年注水后,地下油气层岩性、物性、含油(水)性、电声特性等都发生了较大的变化,识别水淹层、确定剩余油饱和度及其分布、多相流监测、计算剩余油(气)层产量等方面的要求十分迫切。 3)工程上的需求钻井地质导向、地层压力预测、地应力分析、固井质量检测、套管损坏检测、酸化压裂等增产激励措施效果检测等都需要新的测量方法。 二、测井技术现状 我国国内测井技术发展措施及道路主要有两条:一方面走引进、改造和仿制的路子;另一方面进行自主研究和开发。下面分别总结一下我国测井技术各个部分的现状: 1)勘探井测井技术现状测井装备以MAXIS-500、ECLIPS-5700及EXCELL-2000系统为主;常规探井测井以高度集成化的组合测井平台为主;数据采集主要以国产数控测井装备为主;测井数据的应用从油气勘探发展到油气藏综合描述。 2)套管井测井技术现状目前,套管和油管内所使用的测井方法主要有:微差井温、噪声测井、放射性示踪,连续转子流量计、集流式和水平转子流量计,流体识别、流体采样,井径测量、电磁测井、声测井径和套管电位,井眼声波电视、套管接箍、脉冲回声水泥结胶、径向微差井温、脉冲中子俘获、补偿中子,氯测井,伽马射线、自然伽马能谱、次生伽马能谱、声波、地层测试器等测井方法。测井结果的准确性取决于测井工艺水平、仪器的质量和科技人员对客观影响因素的校正。测井数据的应用发展到生产动态监测和工程问题整体描述与解决。 3)生产测井资料解释现状为了获得油藏描述和油藏动态监测准确的资料,许多公司都把生产测井资料和其它科学技术资料综合起来。不仅测得流体的流动剖面.而且要搞清流体流入特征,因此,生产测井资料将成为油藏描述和油藏动态监测最重要的基础。生产测井技术中一项最新的发展是产能测井,它建立了油藏分析与生产测井资料的关系。产能测井表明,生产流动剖面是评价完井效果的重要手段。产能测井曲线是裸眼井测井资料、地层压力数据、产液参数资料、射孔方案和井下套管设计方案的综合解释结果,其根本目的就是利用油层参数预测井眼流动剖面。生产测井流量剖面成为整个油层评价和动态监测的一个重要方法。 4)随钻测量及其地层评价的进展随钻测井(LWD)是随大斜度井、水平井以及海上钻井而发展起来的,在短短的十几年时间里,已成为日趋成熟的技术了。如今随钻测井已经拥有了

随钻声波测井技术综述

随钻声波测井技术综述 随钻测井的研究从20世纪30年代开始研究,在1978年研究出第一套具有商业价值的随钻测井仪器。在那以后,随钻测井在国外取得迅速发展并获得广泛应用,我国对随钻测井的重视达到了前所未有的程度。随钻声波测井也是如此。 1发展随钻测井的意义和随钻声波测井发展现状 随钻测井(LWD)是近年来迅速崛起的先进技术。它集钻井技术,测井技术和油藏描述等技术于一体,在钻井的同时完成测井作业,减少了钻机占用井场的时间,从钻井测井一体化中节省成本[1]。跟常规电缆测井相比,除了节省成本外,随钻测井有如下优势:(1)从测量信息上讲,随钻测井是在泥浆尚未侵入或者侵入不深时测量地层信息,泥饼和冲洗带尚未形成,所测得到的曲线更加准确,更能反映原始地层的真实信息,如声波时差等。(2)从对钻井的指导作用来讲,随钻测井可以提前检测到超压地层,以指导钻井泥浆的配制,提高钻井安全系数。它也可以根据测井信息,分析出有利的含油气方向,确定钻井方向,增强地质导向功能。(3)从适应环境上讲,在大斜度井,水平井或特殊地质环境(如膨胀粘土和高压地层),电缆测井困难或者风险大以致不能进行作业时,随钻测井可以取而代之。目前在海上,几乎所有钻井活动都采用随钻技术[2]。 正因为这些优点,作为随钻测井的重要组成部分的随钻声波测井近年来也获得了巨大的发展。总体而言,国外无论在随钻声波测井的基础理论研究方面还是在仪器研发方面都比较成熟,而国内近年来也对随钻声波测井的相关难题进行了大量的工作。 具体而言,从上世纪90年代起,贝克休斯、哈里伯顿、斯伦贝谢三大公司就率先开始了随钻声波测井的研究,并逐渐占领随钻测井的国际市场份额。APX随钻声波测井仪,CLSS随钻声波测井仪,sonicVISION随钻声波测井仪的相继出现,更加巩固了他们的垄断地位。在国内,鞠晓东,闫向宏[等人在随钻测井数据降噪[3],存储[4],压缩[5],传输特性[6]和电源设计[7]等方面做出了大量的工作。车小花[7],苏远大[8]等人对隔声体设计的隔声效果和机械强度分析进行了数值模拟和实验。此外,唐小明,乔文孝,王海澜等人在随钻声波测井基础理论研究方面做了许多有益的探索。 2随钻声波测井仪工作原理和技术性能 目前国际上主要的随钻声波测井仪有贝克休斯的APX,哈里伯顿的CLSS和斯伦贝谢的sonicVISION。以贝克休斯的APX测井仪为例,介绍一下仪器工作原理和结构。 APX测井仪的结构如下图1所示。从右到左由上部短节,声源电子线路部分,全向声源,声波隔离器,接收器阵列,接收器电子线路部分,下部短节等组成,全长9.82m (32.3ft),其中声波测量点到底部短节的距离为 2.83m(9.3ft),最短源距为 3.26m (10.7ft)。 其工作原理为:位于钻铤上部的声源发射器以最佳频率向井眼周围地层发射声能脉冲,在沿井壁及周围地层向下传播的过程中被阵列接收器接收到首播信号,接收信号后,系统首先用先进的嵌入式技术,将接收到的声波模拟信号转换成数字信号,并采用有限元等方法将数字信号转换为声波时差(data)值。最后将原始声波波形数据和预处理的声波波形数据存储在精心设计的高速存储器内或者以实时方式通过钻井液脉冲遥测技术传输到地面[9]。

随钻测井技术

随钻测井技术发展水平 引言 据统计,近十年来,世界上有关随钻测井(LWD)技术和应用的文献呈现出迅速增多的趋势。这反映了西方国家开始越来越多地重视LWD/MWD。这是两个方面的原因产生的结果。一方面石油工业界强烈需要勘探和开发业降低成本,减少风险,增加投资回报率。另一方面,MWD/LWD有许多迎合石油工业需要的优势,如随钻测井时,钻机不必停钻就能获得大量地层评价信息,节省了宝贵的钻井时间,从而降低了钻井成本。MWD提供的实时信息可即时使用,如可用于预测钻头前方地层的超常压力、预测复杂危险的构造,给钻井工程师警报提示,迅速采取措施,减少事故发生率。近几年里,大斜度井和水平井迅速发展,海上石油的开发受到重视。在这样的井中测井,常规电缆测井难以进行,挠性管输送测井和钻杆传送测井成本十分高,现场操作困难。LWD是在这类井中获取地层评价测井资料的最佳方法,此外,LWD信息还能指导钻头钻进的方向,引导钻井井迹进入最佳的目标地层。 随钻测井(LWD)技术是在钻井的同时用安装在钻铤上的测井仪器测量地层电、声、核等物理性质,并将测量结果实时地传送到地面或部分存储在井下存储器中的一种技术。该技术要求测井仪器应能够安装在钻铤内较小的空间里,并能够承受高温高压和钻井震动;安装仪器的专用钻铤应具有同实际钻井所用的钻铤同样的强度;还应具有用于深井的足够功率和使用时间的电源。 LWD是随钻测量技术的重要组成部分。MWD除了提供LWD信息外,还提供井下方位信息(井斜、方位、仪器面方向)和钻井动态和钻头机械的监测信息。MWD探头组合了LWD探头、方位探头、电子/遥测探头,一般放在钻头后50-100英尺的范围内,一般来说,MWD探头越靠近钻头越好。LWD探头提供地层评价信息,用于识别层面、地层对比、评价地层岩石和流体性质,确实取心和下的点。方位数据用于精确引导井迹向最理想的储层目标。钻井效率和安全性通过连续监测钻井而达到最佳。 目前的随钻测井技术已达到比较成熟的阶段,能进行电、声、核随钻测量的探头系列十分丰富,各种型号的、适用于各种环境的随钻电阻率、密度、中子测井仪器进入MWD 市场。哈里伯顿的PathFinder随钻测井系统包括自然伽马、电磁波电阻率、密度、中子孔隙度、井径和声波等。斯仑贝谢公司的VISION475测井系统包括声波(SI)、电阻率(RAB)、阵列电磁波电阻率(ARC5)及密度中子(ADN)等。Sperry Sun公司的三组合测井系统包括SLIM PHASE4电阻率仪、SLIM稳定岩性密度仪及补偿热中子仪,还测量伽马射线。在地层评价的许多方面LWD已经可以取代常规电缆测井。世界各地的MWD作业实践已经表明,随钻测井对于经济有效的测井评价,相对于常规电缆地层评价有明显优势。 发展MWD/LWD技术,应用MWD/LWD成果已是西方钻井/测井相关公司的热点研究领域。必须承认我国自行研究和开发随钻测井技术是一片空白。本报告将深入地调查国外随钻测井技术的发展历程,技术水平现状,应用情况,预测发展趋势,分析LWD市场,分析LWD风险,供管理决策和研究人员参考。

国外主要测井公司介绍教学文案

国外主要测井公司介绍 (34)Rabinovich,et al.,2001,enhanced anistropy from jiont processing of multicomponent induction and multi-array induction tools, paper HH,in 42th Annual logging symposium transactions:Society of Professional Well Log Analysts,2001 测井是技术密集型产业,测井仪器装备一次性投资大,投资回收期较长。国际性的油田技术服务公司中,以测井为主营业务的公司,主要有斯仑贝谢公司、哈里伯顿公司、贝克-阿特拉斯公司,这三家公司占据90%多的测井服务市场(斯仑贝谢约占62%),哈里伯顿和贝克-阿特拉斯分别约占14%和15%)。其他公司还有威德福公司、Tucker能源服务公司、REEVES 公司和PROBE公司等等,这些公司在整体上逊色于三大公司,但在部分专项上可以与三大公司媲美。 第一节斯仑贝谢公司 一、公司概况 斯仑贝谢是测井行业的开山鼻祖,公司总部位于美国纽约。经过70多年的发展,斯仑贝谢公司已成为一家除工程建设服务以外的全球性油田和信息服务超级大型企业集团,但公司主要的经营活动还是集中在石油工业,在世界上100多个国家和地区有业务往来。公司员工60,000余人,来自140多个国家。公司2002年总收入为135亿美元,其中测井部分年收入为56亿美元,测井研发经费4亿美元(占测井收入的7%)。除现场作业外,斯仑贝谢公司在美国、英国等地建有研发中心,作为公司经营服务的强大技术支持。 斯仑贝谢公下设三个主要的经营部门: 斯仑贝谢油田服务公司:是世界上最大的油田技术服务公司,为石油和天然气工业提供宽广的技术服务和解决方案。 斯仑贝谢Sema公司:为能源工业,同时也为公共部门、电信和金融市场,提供IT咨询、系统集成、网络和基础建设服务。 斯仑贝谢西方地震服务公司:是与贝克休斯公司合作经营的公司,是世界最大的、最先进的地面地震服务公司。 斯仑贝谢公司其他方面的业务还有智能卡服务(电子付款、安全识别、公用电话、移动电话、身份证、停车系统等)、半导体测试和诊断服务、水资源服务等等。 二、斯仑贝谢油田服务公司 斯仑贝谢油田服务公司是具有测井、测试、钻井、MWD/LWD和定向钻井、陆上和海上地震、井下作业和油田化学、软件开发和资料处理等多种能力的综合性油田技术服务公司,在开放的国际测井服务方面,其市场占有率达到62%左右。 在长达七十多年的时间内,斯仑贝谢公司在测井方面始终保持着领先地位。世界上第一套数字测井仪、第一套数控测井仪、第一套成像测井仪都是斯仑贝谢公司首先推出的;各种新的测井仪器,十有八、九是斯仑贝谢公司首先推出的。可以说,斯仑贝谢一直领导着测井发展的潮流。 该公司于20世纪90年代初率先推出了成像测井系统——MAXIS 500多任务采集成像测井系统,能完成裸眼井和套管井地层评价、生产测井和射孔服务。 1996年又率先推出了快测平台技术,提高了作业效率、仪器可靠性和数据精度。 1998年推出套管井地层电阻率测量仪CHFR,采集套管后地层电阻率数据。2000年推出改进型套管井电阻率测井仪CHFR-Plus。 该公司的核磁共振测井技术也处于领先地位。1996年推出CMR200可组合磁共振成像测井仪,1998年推出其改进型CMR-Plus

中国测井技术发展方向

中国测井技术的发展方向 测井新技术 国外裸眼井测井、随钻测井、油藏评价、在水平井、斜井、高产液井产出剖面测井技术方面发展迅速,仪器的耐温、耐压指标较高,可靠性高,技术的系列化、组合化、标准化和配套化水平较高。流体成像测井和传感器阵列设计是产出剖面测井新技术发展的主要趋势,永久监测技术是油田动态监测技术的非常重要的发展方向。在“十一五”863计划“先进测井技术与设备”重点项目实施方案论证会上,专家组一致认为“先进测井技术与设备”重点项目应瞄准世界测井技术发展方向研发的先进测井技术与装备,为解决我国复杂岩性、复杂储集空间的油气藏地质评价难题和油田中后期剩余油分析与油藏动态监测、油井技术状况监测提供先进有效的测量手段,满足我国石油天然气生产的需要和参与国际竞争的需求。 1 测井技术的发展趋势 井下集成化、系列化、组合测井仪器的研发成为测井技术发展的一大趋势。日本的Tohoku大学开发利用井眼雷达的直接耦合进行电磁波测井,新仪器可以获得雷达图像、电导率和相对介电常数。仪器的分辨率为1m,理想情况下探测深度为10m。Proneta开发了可以透过原油对目标进行高分辨率光成像的成像技术,已经申请并获得了专利。目前电缆测井占主要地位,随钻测井发展比较迅速,由于数据传输等技术不足,在相当一段时间内还是以电缆测井为主,套管钻井测井是未来测井发展的方向。套管钻井测井是在套管钻井技术诞生后出现的新的测井模式,用套管作为钻杆,井眼钻成功时,一口井的钻井和下套管同时完成。套管钻井测井有钻后测井模式或随钻测井模式。钻后测井模式是在完成套管钻井作业后,用电缆将测井仪器在套管内下到要测量的目的层段,进行测井;随钻测井模式是测井仪器安装在与最下面一根套管连接的底部钻具组合内,在套管钻井进行的过程中,在需要测井的层

贝克INTEQ随钻测井新技术介绍-CHN

INTEQ技术介绍
2009年7月2日

INTEQ –随钻测井、随钻解答的应用
? 钻井危险防范
–油气公司希望在最大限度提高钻完效率的同时,避免 各种安全隐患。实时随钻测井资料提供钻井危险的预 测以预防危险发生。
? 井眼布置
–更多(且更为准确)的测量数据减少了不确定性,确 保在储层的“甜区”内实现最佳的井眼布置。实时随 钻测井资料提供快速更改井眼轨迹的依据(包括钻井 与地质依据)以提高采收率。
? 综合地层评估
–对储层概况更为详尽的了解有利于更好地进行完井与 开采规划并更为准确地进行储量预测。

Answers While Drilling Applications
? 钻井危险防范 ? 井眼布置
? 综合地层评估

INTEQ – OnTrak/LithoTrak伽马射线、电阻率和中子放射性测量服务
? 伽马射线
–用于识别砂层或页岩 –用于计算地层倾角
Gamma 伽马射线 Ray

INTEQ – OnTrak/LithoTrak伽马射线、电阻率和中子放射性测
量服务
? 伽马射线
–用于识别砂层或页岩 –用于计算地层倾角
电阻率 Resistivity
MPRTEQ
? 电阻率测量
–对碳氢化合物或水进行 识别 –通过后处理(MPRTEQ) 计算含水饱和度 –增强地层导向功能

INTEQ – OnTrak/LithoTrak伽马射线、电阻率和中子放射性测
量服务
? 伽马射线
–用于识别砂层或页岩 –用于计算地层倾角
Density & 密度与孔 Porosity 隙度
? 电阻率测量
–对碳氢化合物或水进行 识别 –通过后处理(MPRTEQ) 计算含水饱和度 –增强地层导向功能
? 中子放射性测量
–确定孔隙度和识别天然 气

随钻测井

内容摘要 摘要:随钻测井是在钻开地层的同时实时测量地层信息的一种测井技术,自1989年成功投入商业应用以来得到了快速的发展,目前已具备了与电缆测井对应的所有技术,包括比较完善的电、声、核测井系列以及随钻核磁共振测井、随钻地层压力测量和随钻地震等技术,随钻测井已成为油田工程技术服务的主体技术之一。随钻测井(LWD)技术的萌芽只比电缆测井晚10年。由于基础工业整体水平的制约,随钻测井技术在前50多年发展缓慢。其业务收入和工作量快速增长。勘探开发生产的需要仍是随钻测井继续发展的强劲动力。作为一种较新的测井方法,随钻测井技术仍有许多有待发展和完善的方面,尤其是数据传输技术、探测器性能、资料解释和评价等。 关键词:随钻测井 LWD 研究进展

第一章随钻测井技术现状 迄今为止,随钻测井能提供地层评价需要的所有测量,如比较完整的随钻电、声、核测井系列,随钻地层压力、随钻核磁共振测井以及随钻地震等等。有些LWD 探头的测量质量已经达到或超过同类电缆测井仪器的水平。 1.1随钻测井数据传输技术 多年来,数据传输是制约随钻测井技术发展的“瓶颈”。泥浆脉冲遥测是当前随钻测量和随钻测井系统普遍使用的一种数据传输方式。泥浆脉冲遥测技术数据传输速率较低,为4~10 bit/s,远低于电缆测井的传输速率,这种方法不适合欠平衡水平井钻井。电磁波传输数据的方法也用于现场测井,但仅在较浅的井使用才有效。哈里伯顿公司的电磁波传输使用的频率为10Hz,在无中继器的情况下传输距离约10000 ft。此外,声波传输和光纤传输方法还处于研究和实验阶段。 1.2随钻电阻率测井 与电缆测井技术一样,随钻电阻率测井技术也分为侧向类和感应类2类。侧向类适合于在导电泥浆、高电阻率地层和高电阻率侵入的环境使用,目前的侧向类随钻电阻率测井仪器能商业化的只有斯伦贝谢公司的钻头电阻率仪RAB及新一代仪器GVR。GVR使用56个方位数据点进行成像,图像分辨率比RAB有较大提高。感应类在导电性地层测量效果好,适合于导电或非导电泥浆。新型随钻电磁波电阻率的仪器结构相似,使用多个发射器和多个接收器,测量2个接收器之间的相移和衰减,工作频率相近,只能使用有限的几种频率才能消除钻铤等背景影响而测量到地层信号,如低频20、250、400、500 kHz,高频一般都使用2 MHz。 通过比较随钻电阻率测井和电缆电阻率测井曲线之间的区别可知,在储层内部二者相差不大;在界面处由于受地层界面表面电荷、钻井液侵入等影响,随钻电阻率数值远大于电缆测井数值;在界面附近,二者电阻率数值还受地层界面表面电荷、钻井液侵入井眼轨迹与地层倾角之间的夹角大小影响。 井眼轨迹与地层倾角之间的关系对电阻率有较大的影响,有效地控制井眼轨迹能大大降低钻井成本和提高效益。同时根据电阻率响应特征和其他测井曲线正确地划分地层界面,能有效地提高测井解释精度及为工程施工提供更好地依据。 1.3随钻声波测井 现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如贝克休斯INTEQ公司的AP既使用单极子也使用四极子声源,斯伦贝谢公司的Son-icVision使用单极子声源,哈里伯顿Sperry公司的BAT是偶极子仪器。这些仪器可测量软/硬地层纵/横波速度和幅度,测量数据一般保存在井下存储器内,

贝克休斯包括异常强化材料的井下工具以及相关方法

(10)申请公布号 (43)申请公布日 2014.11.12 C N 104145073 A (21)申请号 201280066307.0 (22)申请日 2012.11.07 13/295,670 2011.11.14 US E21B 10/46(2006.01)E21B 43/11(2006.01)C22C 19/00(2006.01)(71)申请人贝克休斯公司 地址美国得克萨斯 (72)发明人R·迪弗吉奥 (74)专利代理机构中国国际贸易促进委员会专 利商标事务所 11038 代理人 秦振(54)发明名称 包括异常强化材料的井下工具以及相关方法 (57)摘要 用在地下地层井孔中的井下工具,包括:本 体,所述本体包括至少一种异常强化材料。形成用 在地下地层井孔中的井下工具的方法,包括:形 成包括至少一种异常强化材料的本体。在地下地 层井孔中使用井下工具的方法,包括将包括至少 一种异常强化材料的本体布置在地下地层中。可 以使所述至少一种异常强化材料在井孔内暴露于 比地下地层表面处的温度更高的温度并所述至少 一种异常强化材料的屈服强度可以增加。 (30)优先权数据 (85)PCT国际申请进入国家阶段日 2014.07.08 (86)PCT国际申请的申请数据 PCT/US2012/063850 2012.11.07 (87)PCT国际申请的公布数据 WO2013/074346 EN 2013.05.23 (51)Int.Cl.权利要求书2页 说明书11页 附图7页 按照条约第19条修改的权利要求书1页 按照条约第19条修改的声明或说明1页 (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书2页 说明书11页 附图7页按照条约第19条修改的权利要求书1页按照条约第19条修改的声明或说明1页(10)申请公布号CN 104145073 A

FEWD随钻测井技术应用研究

FEWD随钻测井技术应用研究(1) 摘要:FEWD是一种随钻地质评价测量系统,主要功能是随钻测井。本文针对利用该FEWD形成的随钻测井技术,介绍了该技术涉及到的常用井下仪器组合、常用钻具组合、现场施工管理方式、主要应用技术,以及该技术的应用范围、应用效果和在部分油田的使用情况。到目前为止,利用该技术在胜利、塔里木等7个油田成功地完成了190多口井的施工,在薄层油藏、断块复杂地层油藏等难动用油藏的钻探开发方面取得了良好的效果,具有一定的推广应用价值。 关键词:FEWD;随钻;测井;地层;轨迹;预测;控制;油藏;应用;塔里木;胜利油田 1、FEWD优势及作用 FEWD是随钻地质评价测量系统的简称,主要功能是随钻测井,由测井传感器、定向工程参数传感器、钻具振动传感器等部分组成,可以实时获得地层自然伽玛、电阻率、补偿中子孔隙度、岩石密度四道地质参数和井斜角、方位角、磁/高边工具面角等工程参数,同时仪器自动记录井下钻具的震动情况,当井下钻具的振动超过允许的范围时,井下仪器优先将该钻具剧烈振动的信息传递至地面,以警示施工人员采取措施减振、预防井下复杂情况或井下事故的发生。

FEWD优势 实时获得真实的地质参数 在地质导向钻井施工过程中,井下地质评价仪器或地质导向工具可以向地面传输实时地质参数,可实时绘制出用户需要的各种类型的测井曲线,为工程和地质人员进行工程和地质分析提供准确的依据。由于是实时测量,在地层刚被打开时不久,井下传感器就能测到所打开的地层,因此地层暴露时间短,获得的地质参数是在地层有轻微入侵甚至没有入侵的环境下刚刚打开的地层物性的最早期资料,与电缆测井相比,更接近地层的真实情况。 利用测井参数实现地质导向 实时地质参数可以帮助现场人员随时监控地层特性和地层的变化情况,对地层的变化和特性做出准确的判断,有效控制井身轨迹穿行于产层中的最佳位置,回避油/气界面、油/水界面和水层,从而获得最好的采收效果,达到提高单井产量和储层采收率的目的。 风险回避 对地质参数变化的综合分析,可以预测钻进过程中可能遇到的诸如地层中存在的异常高压等风险因素,同时,如果在FEWD中加挂钻柱振动传感器,可以及时探测到钻具的剧烈

相关主题
文本预览
相关文档 最新文档