当前位置:文档之家› 代谢控制育种

代谢控制育种

代谢控制发酵试题库

1脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的敏感性。 2分解代谢物阻遏:当细胞具有一优先利用的底物时,很多其他分解反应途径受到阻遏 3限量补充培养法:将经适当稀释的浓缩处理液涂布于含有微量蛋白胨或0.1%完全培养基成分的基本培养基平板上。经培养后,野生型细胞迅速生长成较大菌落,而缺陷型细胞生长缓慢只能形成小菌落。这些小菌落大多数为营养缺陷型,将其转接到完全培养基斜面保存待测。 5代谢互锁:从生物合成途径来看,酶受一种与此代谢途径完全无关的终产物的控制,它只是在较高浓度下才发生,而且这种抑制(阻遏)作用是部分性的,不完全的。 6代谢工程:应用重组DNA技术和应用分析生物学相关的遗传学手段进行有精确目标的遗传操作,改变酶的功能或输送体系的功能,甚至产能系统的功能,以改进细胞某些方面的代谢活性的整套操作工作。 7积累反馈抑制:每个分支途径的末端产物都独立于其他末端产物,以一定百分比控制该途径第一个共同的酶所催化的反应。当几个末端产物同时存在时,它们对酶反应的抑制是累积的。各末端产物之间既无协同效应,也无拮抗作用。 8原生质融合:是一个人工实验系统,将遗传性状不同的两个细胞融合,通过基因重组,形成有新的、优良性状的新细胞的过程。 9转导:利用转导噬菌体为媒介而将供体菌的部分DNA导入受体菌中,从而使受体菌获得部分遗传性状的现象。 10营养缺陷型:指原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变型菌株。 11基因工程:指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 12诱变:指利用物理或化学因素处理微生物细胞群体,促使其中少数细胞中的遗传物质(主要是DNA)的结构发生改变,从而引起微生物的遗传性状发生变化,然后通过目的选择标记设法从群体中筛选出少数性状优良的突变菌株的过程。 13.转化:指相当大的游离的供体细胞的DNA片段被直接吸收到受体细胞内,并整合于受体细胞的基因组中,从而使受体细胞获得供体细胞部分遗传性状的现象。 14合作反馈抑制:当任何一种终产物单独过剩时,只部分的反馈抑制第一个酶的活性,只有当终产物同时过剩存在时,才能引起强烈抑制,其抑制程度大于各自单独存在的和 15增强子:指增加同它连锁的基因转录频率的DNA序列(能强化转录起始的一段DNA序列)。 16回复突变株:由突变型菌株经再突变而恢复原初野生型性状的菌株。 17渗漏突变型:指因突变所产生的不完全遗传障碍,其基因所控制的反应程度不象野生型,但多少还能进行,称这种现象为渗漏,具有这种性质的突变型就称为渗漏突变型

微生物的代谢及其调控

微生物的代谢及其调控

1微生物的代谢 微生物代谢包括微生物物质代谢和能量代谢。 1.1微生物物质代谢 微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。 1.1.1分解代谢 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。—般可将分解代谢分为TP。三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH 及FADH2。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。 1.1.1.1大分子有机物的分解 (1)淀粉的分解 淀粉是许多种微生物用作碳源的原料。它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。 微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。淀粉酶是一类水解淀粉糖苷键酶的总称。它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。 以液化型淀粉酶为例,这种酶可以任意分解淀粉的。α-l、4糖苷键,而不能分解α-1、6糖苷键。淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。由于这种酶能使淀粉表现为液化,淀

代谢调控理论在微生物发酵中的应用

代谢调控理论在微生物发酵中的应用 参考文献 贾红华,韦萍,何冰芳.L苯丙氨酸生产的代谢工程研究.生物加工过程.2004,2(2):8-12 目的 使得更加理性的改造菌株成为可能,促进发酵法的广泛应用 方法 目前至少已发现 7种微生物的苯丙氨酸合成途径,且均非常相似。 由于野生菌不会直接大量产生L-苯丙氨酸,高效的L-苯丙氨酸生产菌株多采用诱变和基因工程手段相结合来改变野生菌的芳香族氨基酸生物合成的相关代谢流量而获得。研究人员对L-苯丙氨酸生物合成途径中相关基因及其酶进行调控,并对中央代谢途径进行一定的改造,在芳香族氨基酸生物合成支路中也进行特定的修饰。 相关基因及其酶进行调控 PEP和E4P合成DAHP的反应由3个DAHP合成酶同工酶所催化。分别受L-色氨酸(由aroH表达)、L-苯丙氨酸(由aroG表达)和L-酪氨酸(由aroF)反馈抑制。作为关键反应之一的分支酸转化为预苯酸的反应依赖于两个不同的分支酸变位酶(分别由phoA,tyrA表达),并分别受L-苯丙氨酸和L-酪氨酸反馈抑制。而莽草酸脱氢酶则受其产物莽草酸抑制。 中央代谢途径改造 中央代谢途径是控制中间产物的代谢流量、产物的形成速率及产率的关键步骤。为高效生产目的产品,必须对中央代谢途径的相关步骤进行调节控制。 芳香族氨基酸生物合成途径的共同前体PEP和E4P均来自中央代谢途径(如图2所示)。糖酵解途径会产生PEP,而E4P则由磷酸戊糖途径供应。通过对E.coli 的中央代谢途径的计量分析显示,当该菌生长在以葡萄糖作为唯一碳源的限制性培养基上时,大约有30%的G6P会进入磷酸戊糖途径,但仅有3%的PEP用于芳香族氨基酸的生物合成。 研究表明:仅有当量PEP供应时,L-苯丙氨酸的理论产率为30%,当PEP 的供应量加倍时,其理论产率将增加到56%。为改善芳香族氨基酸的生产,研究人员采用分子生物学手段对该两个生物合成途径进行基因构建及改造,且取得了满意的成绩。

微生物遗传与育种(09140)

《微生物遗传育种》课程(09140)教学大纲 一、课程基本信息 课程中文名称:微生物遗传育种 课程代码:09140 学时与学分:76学时4学分(理论课52学时,实验课24学时) 课程性质:专业选修课(必选) 授课对象:生物工程专业 二、课程教学目标与任务 《微生物育种学》课程是为生物工程专业本科生开设的一门重要专业选修课,可在学生学习生物化学和微生物学之后选修该课程。该课程主要教授微生物育种的理论基础、诱变育种、代谢控制育种、杂交育种、原生质体融合育种、基因工程育种的原理和方法。通过本门课程的学习,学生可以掌握微生物育种的相关原理和具体方法,为从事生物工程领域的生产和科学研究打下基础。 三、学时安排 课程内容与学时分配表 章节内容课时 第一章绪论 1 第二章遗传物质的基础 2 第三章基因突变 3 第四章工业微生物育种诱变剂 4 第五章工业微生物产生菌的分离筛选 6 第六章工业微生物诱变育种 6 第七章工业微生物代谢控制育种 6 第八章工业微生物杂交育种 3 第九章工业微生物原生质体育种和原生 质体融合育种6 第一〇章微生物基因组改组育种 3 第一一章基因工程育种 3 第一二章分子定向进化育种 3 第一三章高通量筛选技术 3 第一四章工业微生物菌种复壮与保 3 试验1 细菌的原生质体融合 6 试验2 乳酸菌筛选及抑菌作用研究 6 试验3 香菇杂交育种 6 试验4 细菌营养缺陷型筛选试验 6

四、课程教学内容与基本要求 第一章绪论 教学目的:了解微生物育种在发酵工业中的地位,理解微生物育种的进展。 基本要求:通过教学,使学生了解本课程的研究对象和任务、微生物育种在发酵工业中的地位以及工业微生物育种的进展。 重点与难点: 重点:微生物育种的进展。 难点:当前微生物育种的主要技术概览。 教学方法:现代化教学手段,图片展示、讲述法。 主要内容: 第一节工业微生物育种在发酵工业中的地位 一、微生物菌种 二、微生物菌种的重要性 三、微生物菌种特性 四、菌种来源 第二节工业微生物育种的进展 一、自然选育 二、诱变育种 三、杂交育种 四、代谢控制育种 五、基因工程育种 六、基因组改组(genome shuffling) 七、分子定向进化(molecular directed evolution of enzyme) 八、高通量筛选技术(High throughput screening,HTS) 第二章遗传物质的基础 教学目的:了解微生物遗传的基本知识,掌握微生物基因组的组织与结构。 基本要求:通过教学,使学生回顾、了解微生物遗传的物质基础,掌握微生物基因组的组织与结构。 重点与难点: 重点:微生物基因组的组织与结构。 难点:微生物基因组与其他生物基因组的主要区别。 教学方法:现代化教学手段,图片展示、讲述法。 主要内容: 第一节染色体 一、染色体形态 二、原核生物及病毒染色体结构 三、真核生物染色体结构 四、染色体数目 第二节核酸 一、核酸

(整理)代谢调节综述

一、 A 型题 1. 下列描述体内物质代谢的特点,哪项是错误的? (A) 各种物质在代谢过程中是相互联系的 (B) 内源性和外源性物质在体内共同参与代谢 (C) 体内各种物质的分解、合成和转变维持着动态平衡 (D) 物质的代谢速度和方向决定于生理状态的需要 (E) 进人人体的能源物质超过需要,即被氧化分解 2. 关于糖、脂、氨基酸代谢错误的是 (A) 糖、脂不能转变为蛋白质 (B) 三羧酸循环是糖、脂、氨基酸分解代谢的最终途径 (C) 当摄人糖量超过体内消耗时,多余的糖可转变为脂肪 (D) 当摄人大量脂类物质时,脂类可大量异生为糖 (E) 乙酰CoA是糖、脂、氨基酸分解代谢共同的中间代谢物 3. 关于变构效应剂与酶结合的叙述正确的是 (A) 与酶活性中心底物结合部位结合 (B) 与酶活性中心催化基团结合 (C) 与调节亚基或调节部位结合 (D) 与酶活性中心外任何部位结合 (E) 通过共价键与酶结合 4. 饥饿可使肝内哪一条代谢途径增强?

(A) 糖原合成 (B) 糖酵解途径 (C) 糖异生 (D) 磷酸戊糖途径 (E) 脂肪合成 5. 胞浆内不能进行下列哪一代谢途径? (A) 脂肪酸合成 (B) 磷酸戊糖途径 (C) 脂肪酸β一氧化 (D) 糖酵解 (E) 糖原合成与分解 6. 磷酸二羟丙酮是哪两种代谢之间的交叉点? (A) 糖-氨基酸 (B) 糖-脂肪酸 (C) 糖-甘油 (D) 糖-胆固醇 (E) 糖-核酸 7. 长期饥饿时大脑的能量来源主要是 (A) 葡萄糖 (B) 氨基酸 (C) 甘油 (D) 酮体

(E) 糖原 8. 人体活动主要的直接供能物质是 (A) 脂肪酸 (B) 葡萄糖 (C) ATP (D) GTP (E) 磷酸肌酸 9. 作用于细胞内受体的激素是 (A) 类固醇激素 (B) 儿茶酚胺类激素 (C) 生长因子 (D) 肽类激素 (E) 蛋白类激素 10. 关于酶的化学修饰,错误的是 (A) 一般都有活性和非活性两种形式 (B) 活性和非活性两种形式在不同酶催化下可以互变 (C) 催化互变的酶受激素等因素的控制 (D) 一般不需消耗能量 (E) 化学修饰的方式多为肽链的磷酸化和脱磷酸 11. 酶化学修饰调节的主要方式是 (A) 乙酰化与去乙酰化 (B) 甲基化与去甲基

微生物的代谢与调控论文

链霉素的代谢调控机制与应用 摘要: 链霉菌在生产抗生素方面的特殊作用使它成为放线菌中遗传育种的核心,近年来的进展主要在于原生质体融合、脂质体的使用、质粒及其它载体的发现和克隆技术工业应用。本文综述了链霉素生物合成途径、代谢调节机制、链霉素发酵的代谢调控育种及其进展。 关键词:链霉素代谢调节育种思路应用 前言: 链霉素是1944年从灰色链霉菌培养液中分离出来的一种碱性抗生素,分子式 C21H39N7O12.由链霉胍、链霉糖和N-甲基-L-葡萄糖胺组成的三糖苷,属于氨基糖苷类抗生素.由于链霉素肌肉注射的疼痛反应比较小,适宜临床使用,只要应用对象选择得当,剂量又比较合适,大部分病人可以长期注射(一般2个月左右)。所以,应用数十年来它仍是抗结核治疗中的主要用药。我国于1958年以来大量生产,目前已形成了相当大的生产规模与能力。 链霉素发酵工业延续至今已有相当长的历史,和其它抗生素生产过程一样,它的菌体生长,产物形成等所涉及的一系列时刻变化着的生物化学和质量、能量传递过使链霉素发酵表现出相当程度的不确定性。同时又由于反应机理复杂,无合适的模型用以描述过程,使人们在其发酵操作上依赖经验甚于理论。这给链霉素生产水平的提高带来了一定的困难,但同时又给基于理论分析提高生产提供了可能。 1 链霉素生物合成的途径及代谢调节机制 1.1 链霉素的生物合成途径 由D-葡萄糖和NH3合成链霉素的大致途径如图1所示[2]

从图l可看出,每生成1个链霉素分子都需消耗3个葡萄糖分子、7个HN 3 分子、 2个CO 2分子和l个甲硫氨酸分子。其中,有3个NH 3 分子是通过转氨基反应,分别把 氨基供体—谷氨酰氨、丙氨酸和谷氨酸的氨基结合到链霉胍上和L-葡萄糖胺的氨 基上,另外4个NH 3 分子是通过鸟氨酸环供给的,其中2个分子又由氨甲酰磷酸酯,另外2分子由天冬氨酸引入,最后转变为精氨酸的脒基,再转移到链霉胺衍生物 上。2个CO 2 也是通过鸟氨酸循环固定的。 1.2 链霉素生物合成的调节机制 在链霉素生物合成中的调节机制主要有发酵阶段的转变、分解产物的调节以及无机磷的反馈抑制等方面。 1.2.1 发酵阶段的转变 催化链霉胍的2个转脒基反应的酶,在合成阶段开始时的突然出现是由于新的蛋白质的合成,而不是蛋白质的激活。 1.2.2 分解代谢产物的调节 对大多数微生物来说,甘露糖链霉素的生物活性只有链霉素的20%-25%。直到发酵后期才产生水解甘露糖链霉素的α-D-甘露糖苷酶,能迅速把甘露糖链霉素水解成链霉素和甘露糖,反应如下: 甘露糖苷酶 链霉素-甘露糖链霉素+甘露糖 1.2.3 无机磷的反馈抑制 正常生长所需的无机磷浓度抑制链霉素的形成。磷酸盐与链霉素的生物合成过程有密切关系,在链霉素生物合成中有几步磷酸酯酶所催化的去磷酸化反应。过量的磷酸盐会产生反馈抑制,阻抑这几步的一个或多个磷酸酯酶的活性或形成,因而抑制链霉素的合成,因此磷酸酯酶的活力与链霉素的形成有密切关系。此外磷酸盐还能调节链霉胍合成的关键酶——脒基转移酶的形成,高浓度磷酸盐严重阻遏该酶的形成。 2 代谢控制发酵育种的基本思想 根据代谢控制机制的研究表明,酶的生物合成受基因和代谢物的双重控制。一方面,从DNA 的分子水平上阐明了酶生物合成的控制机制,酶的合成受基因的控制,有基因决定形成酶的分子化学结构;另一方面,从酶学的角度探讨,仅仅有某种基因,并不能保证大量产生某种酶。酶的合成还受代谢物(酶反应的底物、产物及其类似物)的控制和调节。 最有效的方法就是造就从遗传角度解除了微生物正常代谢控制机制的突变株。突破微生物的自我调节控制机制,而使代谢产物大量积累的有效措施如下: (1)应用营养缺陷型菌株。在这些缺陷型菌株中,由于合成途径中某一步骤发生缺陷,终产物不能积累,这样就解除了终产物的反馈调节,使之间产物积累或另一分支途径的末端产物得以积累。 (2)选育抗反馈调节的突变株。由于这样的突变株不再手正常反馈调节作用的影响,使终产物得以积累。 (3)选育细胞膜通透性突变株,以便使终产物在细胞内不能积累到引起反馈调节的浓度。 (4)利用营养缺陷型回复突变株或条件突变株的方法,解除终产物对关键酶的调节。 (5)应用遗传工程技术,创造理想的超微生物(即构建目的工程菌株)。 此外,发酵的环境条件,如pH值、NH 的供应、溶氧水平、营养浓度控制表

代谢控制发酵试题库

代谢控制发酵试题库 名词解释 1.代谢工程指应用重组DNA技术和应用分析生物学相关的遗传学手段进行有精确目标的遗传操作,改变酶的功能或输送体系的功能,甚至产能系统的功能,以改进细胞某些方面的代谢活性的整套操作工作(包括代谢分析、代谢设计、遗传操作、目的代谢活性的实现)。 2.积累反馈抑制指每个分支途径的末端产物都独立于其他末端产物,以一定百分比控制该途径第一个共同的酶所催化的反应。当几个末端产物同时存在时,它们对酶反应的抑制是累积的。各末端产物之间既无协同效应,也无拮抗作用。 3.代谢互锁指从生物合成途径来看,酶受一种与此代谢途径完全无关的终产物的控制,它只是在较高浓度下才发生,而且这种抑制(阻遏)作用是部分性的,不完全的。 4.原生质融合指是一个人工实验系统,是将遗传性状不同的两个细胞融合,通过基因重组,形成具有新的、优良性状的新细胞的过程。 5.转导指利用转导噬菌体为媒介而将供体菌的部分DNA导入受体菌中,从而使受体菌获得部分遗传性状的现象。 6.代谢控制发酵:是指利用遗传学方法或其它生物化学方法,人为地在脱氧核苷酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累的发酵。 7.营养缺陷型:指原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变型菌株。 8.基因工程:基因工程是指重组DNA技术的产业化设计与应用,包括上游技术和下游技术两大组成部分。上游技术指的是基因重组、克隆和表达的设计与构建(即重组DNA技术);而下游技术则涉及到基因工程菌或细胞的大规模培养以及基因产物的分离纯化过程。 9.诱变:指利用物理或化学因素处理微生物细胞群体,促使其中少数细胞中的遗传物质(主要是DNA)的结构发生改变,从而引起微生物的遗传性状发生变化,然后通过目的选择标记设法从群体中筛选出少数性状优良的突变菌株的过程。 10.转化:指相当大的游离的供体细胞的DNA片段被直接吸收到受体细胞内,并整合于受体细胞的基因组中,从而使受体细胞获得供体细胞部分遗传性状的现象。 11.合作反馈抑制:指当任何一种终产物单独过剩时,只部分的反馈抑制第一个酶的活性,只有当终产物同时过剩存在时,才能引起强烈抑制,其抑制程度大于各自单独存在的和。12.分子克隆:指对目的DNA分子进行切割,并连接到合适的载体上进行体外重组。 判断 1.转化和转导都是将外源基因导入受体细胞的方法,只是受体存在差异。 ×,转导需要载体,而转化不需要载体。 2.紫外线照射后的菌悬液,不能移至可见光下进行筛选和检出。 √,由于光复活作用,不能移至可见光下 3.酶的诱导和酶的阻遏都是指终产物对酶合成过程的促进或阻碍。 ×,酶诱导是底物对酶合成的促进,酶阻遏是产物对酶合成的抑制 4.一个操纵子中的结构基因通过转录、转译控制蛋白质的合成,而操纵基因和启动基因通过转录、转译控制结构基因的表达。 ×,操纵基因和启动基因只起调节作用,本身不表达。 5.诱变处理的菌液进行中间培养主要是为了克服表型延迟。 √,解释表型延迟。 6.转化和转导都是将外源基因导入受体细胞的方法,只是供体存在差异。

第十四章代谢调节综述复习课程

第三十九章细胞代谢与基因表达调控 内容 14.1 代谢调节的重要性 531 14.2 酶的调节 532 14.2.1 通过控制酶的生物合成调节代谢 532 14.2.1.1 酶合成的诱导作用 532 14.2.1.2 酶合成的阻遏作用 534 14.2.1.3 分解代谢产物对酶合成的代谢 539 14.2.2 通过控制酶活性调节代谢 536 14.2.2.1 抑制作用 536 14.2.2.2 活化作用 536 14.2.2.3 别构作用 537 14.2.2.4 共价修饰 537 14.2.3 相反单向反应对代谢的调节 538 14.2.4 酶的分布区域化对代谢的调节 538 14.3 激素的调节 539 14.3.1 通过控制激素的生物合成调节代谢 539 14.3.2 通过激素对酶活性的影响调节阻遏 535 14.3.3 通过激素对酶合成的诱导作用调节代谢 540 14.3.4 参与代谢调控的激素 540 14.4 反义核酸的调节 541 14.5 神经的调节 541 总结性思考题 542

提要和学习指导本章是将散见在前面各章中有关代谢调节的内容 作总结性的综合叙述,使读者能认识到全书各章内容都是相互有关,而且是如何通过这些内容的有机联系以阐明生命过程中的化学现象。在学习本章的同时应复习酶、激素、维生素和代谢各章中的有关内容配合学习。这样联系具体实例学习理论,就比较容易体会。神经调节代谢,在生物化学方面研究甚少,因而资料缺乏,读者如能参阅一点动物生理学的神经生理,当可得到一些启发。 14.1 代谢调节的重要性 一切生物的生命都靠代谢的正常运转来维持。机体的代谢途径,异常复杂,一个细菌细胞内的代谢反应已在一千种以上,其他高级生物的代谢反应之复杂就可想而知了。正常机体有其精巧细致的代谢调节机构,故能使错综复杂的代谢反应能按一定规律有条不紊地进行。如果有任何原因使任何调节机构失灵都会妨碍代谢的正常运转,而导致不同程度的生理异常,产生疾病,甚至死亡,所以代谢调节对生命的存亡关系极大。 代谢的主要途径,已基本阐明,但有关代谢调节的知识还很不全面。本书对糖类、脂类、蛋白质和核酸代谢的调节已分散地在有关各章中作了介绍,为了使读者对代谢调节知识有一个比较系统和全面的认识,本章特就目前已有的代谢调节资料,再简要地作综合性的阐述。 代谢的调节机构甚多,可概括为下列4项:1.酶的调节;2.激素的调节;3.反义核酸的调节;4.神经的调节。通过这4种调节机构的协作、机体的代谢才可能正常运行。 14.2 酶的调节 一切代谢反应都有酶参加,酶在代谢反应中所起作用的大小,与其浓度和活性密切相关。细胞的酶浓度取决于酶的合成速度,因此,控制酶的生物合成和活性是机体调节自身代谢的重要措施。 14.2.1 通过控制酶的生物合成调节代谢 直接参加代谢调节的关键性酶类统称调节酶。机体必须保存调节酶的一定含量,防止过剩和不足,才能维持其代谢机能的正常运行。通常是用诱导物(inducer)以促进酶的合成,用阻遏物(repressor)以降低酶的合成。 酶本身是蛋白质,酶的合成也就是蛋白质的合成。关于蛋白质生物合成的调节方式,在蛋白质代谢章中(11.4)已作了扼要介绍,现以大肠杆菌为例,较为详细地说明微生物如何利用酶合成的诱导和阻遏来控制有关酶的生物合成。

微生物代谢与调控

一、金属离子或镁离子的意义 无机盐是微生物生长必不可少的一类营养物。它们为机体提供 必需的金属元素。这些金属元素在机体中的生理作用:参与酶 的组成、调节酶的活性、维持细胞结构的稳定性、调节与维持 细胞的渗透压平衡、控制细胞的氧化还原电位和作为某些微生 物生长的能源物质等。 ①镁离子可以抵消磷酸链上的负电作用,减少了酶和多磷酸核 苷链的作用;②磷酸基上镁离子和氧原子的相互作用,可以保 证核苷酸的构造,确保其与酶的特异性结合;③镁离子可以在 ATP-Mg复合体和酶之间提供额外的作用位点,从而提高结合 力。 二、生长曲线 是指细菌等单细胞微生物,以细胞增长数的对数值为纵坐标, 以培养时间为横坐标作图时,可以绘出一个曲线,此曲线称为 生长曲线。 比生长速率μ:每小时单位质量的菌体所增加的菌体量称为菌 体比生长速率。它是表征微生物生长速率的一个参数,也是发 酵动力学中的一个重要参数。 推算过程假定在任何时间(t),微生物细胞数目的增长速 率(dN/dt)正比于已经存在的总细胞数目(N),则得:dN/dt=μN。 经积分得:lnNt-lnN0=μt,对于一倍增时间,t=td ,Nt=2N0 的培养物:ln2N0-lnN0=μtd。易得:μ=l n2/td 。参数含义

μ——比生长速率,单位h-1 t——时间,单位h N——任 何时间处微生物细胞量Nt——开始培养t时间过后生物细胞 量N0——开始时微生物细胞量td——倍增时间,即为微 生物细胞量变为原来的两倍所需的时间 意义:比生长速率就是菌体生长速率与培养基中菌体浓度之比,它与微生物的生命活动有关,特别是在抗生素合成阶段,比生 长速率过大,菌体量增加过多,代谢向菌体合成的方向发展, 不利于合成抗生素。因此,必须将菌体比生长速率控制在一定 范围内,以便使抗生素的生产速率维持在较高的水平。实际上 比生长速率是生长与死亡速率平衡的综合反映。 (μ=1/N*dN/dt)在对数生长期,μ是一个常数,这时 ln(N2/N1)=μt 代时generation time;doubling time,又称世代时间。当微生物 处于生长曲线的指数期(对数期)时,细胞分裂一次所需平均时 间,也等于群体中的个体数或其生物量增加一倍所需的平均时 间。 三、周质空间 细菌细胞周质又称膜间质,指位于大肠杆菌( Escher ichia col i ) 等革兰氏阴性细菌细胞内膜和外膜之间的夹层空间,其大小随 环境与胞质间渗透压的变化而改变,约占整个细胞体积的24% -40%。外膜上存在较多非特异性的孔道蛋白( porins) ,能够允

动物营养模型中营养代谢调控的研究进展

动物营养代谢调控的数学模型化研究进展 易渺杨琴熊本海* (中国农业科学院北京畜牧兽医研究所,动物营养学国家重点实验室,北京100193) 摘要:模型是现实情景的再现。在营养、代谢和生物医学等领域,很早就开始利用数学模型来辅助进行相关研究了。动物数学模型化技术作为一种行之有效的研究手段,不仅能总结动物营养学过去的科研成果、整合现有的理论知识,更能指明动物营养学未来研究的方向或具体的领域。本文立足数学模型的内涵,详细介绍了动物数学模型的分类和动物系统的层次结构,通过阐释动物营养代谢模型中的调控理论和调控形式,总结了近30年来主要的动物营养代谢调控模型,尤其与激素有关的代谢调控模型的新进展,最后分析了营养模型化研究所面临的挑战和发展趋势。数学模型在动物营养代谢调控中的应用,对于预测动物营养需要、绘制动物体内营养物质代谢调控通路具有重要意义。 关键字:数学模型;模型化;营养;代谢调控;激素 模型是现实情景的再现。早在二战之前,营养、代谢和生物医学等领域就已经开始利用模型来辅助进行相关研究了[1]。作为一类描述现实情景的工具,很多模型将现有理论知识与生产实践相结合,从而预测动物的营养需要量、改善动物生长性能、减少养分排泄并最终降低生产成本[2]。毫不夸张的说,自20世纪初开始,几乎所有动物营养学的研究成果都被直接或间接地用于营养需要量模型的构建、评估和改进[3]。随着营养模型研究的发展,动物生理、生化、遗传及环境方面的知识渐成体系,面对海量的试验数据,能否通过模型化技术来量化并描绘出动物体内代谢反应中的细节,能否恰当地描述动物的代谢反应及其对营养需要量产生的影响,对经济动物的高效饲养至关重要。 1 动物数学模型分类和动物系统的层次结构 1.1 动物数学模型分类 数学模型依据不同的评价标准可划分为确定型(Deterministic)或随机型(Stochastic),静态型(Static)或动态型(Dynamic),以及经验型(Empirical)或机理型(Mechanistic)[4]。 收稿日期: 基金项目:973计划课题(2011CB100805),863计划课题(2012AA101905) 作者简介:易渺(1987-),男,湖南常德人,硕士研究生,主要从事动物营养与饲料科学研究。E-mail: ym_caas@https://www.doczj.com/doc/8d13985049.html, 通讯作者:熊本海(1963-),湖北红安人,研究员,博士生导师,E-mail: Bhxiong@https://www.doczj.com/doc/8d13985049.html,

代谢控制发酵

《代谢控制发酵》复习题 1.名词解释 代谢控制发酵:所谓代谢控制发酵就是利用遗传学的方法或其他生物化学的方法,人为地在脱氧核糖核苷酸的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累发酵。 关键酶:参与代谢调节的酶的总称。作为一个反应链的限速因子,对整个反应起限速作用。 变构酶:有些酶在专一性的变构效应物的诱导下,结构发生变化,使催化活性改变,称为变构酶。 诱导酶:诱导酶是在环境中有诱导物(通常是酶的底物)存在的情况下,由诱导物诱导而生成的酶。 调节子:就是指接受同一调节基因所发出信号的许多操纵子。 温度敏感突变株:通过诱变可以得到在低温下生长,而在高温下却不能生长繁殖的突变株。 碳分解代谢物阻遏:可被迅速利用的碳源抑制作用于含碳底物的酶的合成,就称为碳分解代谢阻遏。 氮分解代谢物阻遏:可被迅速利用的氮源抑制作用于含氮底物的酶的合成,就称为氮分解代谢阻遏。 营养缺陷型突变菌株:原菌株由于发生基因突变,致使合成途径中某一步骤发生缺陷,从而丧失了合成某些物质的能力,必须在培养基中外源补加该营养物质才能生长的突变菌株。 渗漏突变株:由于遗传性障碍的不完全缺陷,使它的某一种酶的活性下降而不是完全丧失。因此,渗漏突变菌株能少量的合成某一种代谢最终产物,能在基本培养基上进行少量的生长。 代谢互锁:从生物合成途径来看,似乎是受一种完全无关的终产物的控制,它只是在较高浓度下才发生,而受这种抑制(阻遏)作用是部分性的,不完全的。 平衡合成:底物A经分支合成途径生成两种终产物E与G,由于a酶活性远远大于b 酶,结果优先合成E。E过量后就会抑制a酶,使代谢转向合成G。G过量后,就会拮抗或逆转E的反馈抑制作用,结果代谢流转向又合成E,如此循环。(P45图)优先合成:底物A经分支合成途径生成两种终产物E和G,由于a酶的活性远远大于b酶的活性,结果优先合成E。E合成达到一定浓度时,就会抑制a酶,使代谢转向合成G。G合成达到一定浓度时就会对c酶产生抑制作用。 代谢工程:指通过某些生化反应的修饰来定向改善细胞的特性或利用重组DNA技术来创造新的化合物。 流量控制系数:单位酶的变化量所引起的某一分支稳态代谢流量的变化,用来衡量某一步酶反应对整个反应体系的控制程度。 能荷:[(ATP)+1/2(ADP)]/[(ATP)+(ADP)+(AMP)] 分叉中间体:糖代谢中间体既可以用来合成初级代谢产物,也可以用来合成次级代谢产物,这种中间体叫做分叉中间体。 质粒产物:有一部分代谢产物的形成取决于由质粒遗传信息所产生的酶所控制的代谢途径,这类物质称为质粒产物。 2.微生物细胞的代谢调节内容包括哪些? (1)通过控制基因的酶生物合成的控制机制。 ①诱导——促进酶的合成

微生物的代谢及其调控

1微生物的代谢 微生物代谢包括微生物物质代谢和能量代谢。 1.1微生物物质代谢 微生物物质代谢是指发生在微生物活细胞中的各种分解代谢与合成代谢的总和。 1.1.1分解代谢 分解代谢是指细胞将大分子物质降解成小分子物质,并在这个过程中产生能量。—般可将分解代谢分为TP。三个阶段:第一阶段是将蛋白质、多糖及脂类等大分子营养物质降解成氨基酸、单糖及脂肪酸等小分子物质;第二阶段是将第一阶段产物进一步降解成更为简单的乙酰辅酶A、丙酮酸以及能进入三羧酸循环的某些中间产物,在这个阶段会产生一些ATP、NADH及FADH2;第三阶段是通过三羧酸循环将第二阶段产物完全降解生成CO2,并产生ATP、NADH及FADH2。第二和第三阶段产生的ATP、NADH及FADH2通过电子传递链被氧化,可产生大量的ATP。 1.1.1.1大分子有机物的分解 (1)淀粉的分解 淀粉是许多种微生物用作碳源的原料。它是葡萄糖的多聚物,有直链淀粉和支链淀粉之分。一般天然淀粉中,直链淀粉约占20%,支链淀粉约占80%。直链淀粉为α一l、4糖苷键组成的直链分子;支链淀粉只是在支点处由α—1、6糖苷键连接而成。 微生物对淀粉的分解是由微生物分泌的淀粉酶催化进行的。淀粉酶是一类水解淀粉糖苷键酶的总称。它的种类很多,作用方式及产物也不尽相同,主要有液化型淀粉酶、糖化型淀粉酶(包括β—淀粉酶、糖化酶、异淀粉酶)。 以液化型淀粉酶为例,这种酶可以任意分解淀粉的。α-l、4糖苷键,而不能分解α-1、6糖苷键。淀粉经该酶作用以后,黏度很快下降,液化后变为糊精,最终产物为糊精、麦芽糖和少量葡萄糖。由于这种酶能使淀粉表现为液化,淀粉

第十一章 代谢和代谢调控总论习题与参考答案

第十一章代谢和代谢调控总论 一、名词解释 1.新陈代谢:是机体与外界环境不断进行物质交换的过程; 2.同化作用:从外界环境摄取营养物质,通过消化吸收并在体内进行一系列复杂而有规律的化学变化,转化为自身物质,就是同化作用; 3.异化作用:机体自身原有的物质也不断转化为废物而排出体外的作用; 4.基础代谢:指人体处于适宜温度以及清醒而安静的状态中,同时没有食物消化与吸收活动的情况下,所消耗的能量称为基础代谢; 5.抗代谢物:指在化学结构上与天然代谢物类似,进入人体可与正常代谢物相拮抗,从而影响正常代谢的物质; 6.代谢激活剂:指能激活机体代谢某一反应或某一过程的物质; 7.代谢抑制剂:指能抑制机体代谢某一反应或某一过程的物质; 8.激素:指体内的某一细胞、腺体、或者器官所产生的可以影响机体内其他细胞活动的化学物质。 二、填空题 1.生物体内物质代谢的特点主要有整体性、途径多样性、阻止特异性、可调节性。 2.体内能量的直接利用形式是ATP 。在生物体内可产生能量的物质有 糖、脂肪、蛋白质等。 3.常用的物质代谢研究方法主要有利用正常机体方法、使用病变动物方法、器官切除法、立体组织器官法、组织切片或匀浆法、酶及其抑制剂法、同位素示踪法、使用亚细胞成分的方法、致突变法、分子生物法。 4.细胞或酶水平的调节方式有两种:一种是酶活力的调节,属快调节;另一种是酶含量的调节,属慢调节。 三、简答题

1.简述蛋白质与糖代谢的相互联系。 答:①糖是蛋白质合成的碳源和能源:如糖代谢过程中,产生的许多α-酮酸,通过氨基化或者转氨作用可以生成对应氨基酸; ②蛋白质分解产物进入糖代谢:组成蛋白质的20种氨基酸除亮氨酸和赖氨酸外,均可产生糖异生的中间产物,经糖异生作用生成糖。 2.简述糖与脂类代谢的联系。 答:①糖转变为脂肪:如乙酰CoA是唐分解的重要中间产物,正是合成脂肪酸与胆固醇的主要原料; ②脂肪转变为糖:脂肪分子中的甘油可通过糖的异生作用转变为糖; ③能量的相互利用。 3.简述蛋白质与脂类代谢的联系。 答:①脂肪转变为蛋白质:脂肪酸β-氧化所产生的乙酰CoA,虽然可以进入三羧酸循环而生存α-酮戊二酸或草酰乙酸,后者可通过转氨作用二成为谷氨酸或天冬氨酸,但十分有限; ②蛋白质转变为脂肪:无论是生成糖氨基酸或者酮氨基酸,其对应的α-酮酸再进一步代谢过程中都会产生乙酰CoA,然后转变为脂肪或者胆固醇。 4.简述核酸与糖、脂类、和蛋白质代谢的相互联系。 答:糖、脂类、蛋白质和核酸的代谢相互影响、相互联系和相互转化,而这些代谢又以三羧酸循环为枢纽,其成员又是各种代谢的共同中间产物。

代谢控制发酵

第一章 1、 2、 3、研究任务:随机发酵~人为控制发酵 依赖分解代谢的发酵~依赖合成代谢的发酵 盲目育种~定向育种 4、五字策略:进、通、节、堵、出 5、代谢工程的概念:利用分子生物学原理系统分析代谢途径,设计合理的遗传修饰战略,从而优化 细胞生物学特征 第二章 6、代谢体系组成(及之间联系): 7、辅酶(及辅酶再生):

8、重要的辅酶:NAD——电子受体NADPH——提供还原力 FMN、FAD——电子传递泛酸、辅酶A——促乙酰化硫胺素(VB1)——脱羧吡哆醛(VB6)——转氨、脱羧、消旋生物素(VH)——羧化、CO2固定叶酸——转移一碳基团 9、发酵呼吸的区别: 10、途径(生理功能及在发酵上的作用): (1)EMP: (2)HMP:

(3)ED: ??????????? 11、呼吸作用和发酵作用(概念、区别): 12、发酵(狭义)概念:↑ 13、能量转换: (1)底物水平磷酸化 (2)氧化磷酸化 13、呼吸链概念:

(氧化磷酸化中的计算???????)14、耗能代谢: (1) (2)TCA 15、回补途径: 16、氨基酸合成(及前体):

第三章 17、代谢调节概念:????? 18、原核生物代谢调节位点:????? 19、酶、细胞水平调节包括: (1)酶合成的调节的概念、实质:(2)包括3种: (3)操纵子概念:(4)正、负调控概念(了解): (5)正、负调控例子: 负调控:乳糖操纵子 正调控:麦芽糖操纵子 正、负调控:阿拉伯糖操纵子 (6)组合型突变株概念及筛选: (7)分解代谢物阻遏概念、实质及如何克服:

20、弱化子概念: 21、酶活性调节概念:变构(别构)调节:

人体脂肪代谢的调控和调动

人体脂肪代谢的调控和调动 人体摄入的大部分)脂肪经胆汁乳化成小颗粒,胰腺和小肠内分泌的脂肪酶将脂肪里的脂肪酸水解成游离脂肪酸和甘油单酯(偶尔也有完全水解成甘油和脂肪酸). 水解后的小分子,如甘油、短链和中链脂肪酸,被小肠吸收进入血液。甘油单脂和长链脂肪酸被吸收后,先在小肠细胞中重新合成甘油三酯,并和磷脂、胆固醇和蛋白质形成乳糜微粒(chylomicron),由淋巴系统进入血液循环。 脂肪细胞在体内的代谢过程受到多种因素的调控,脂蛋白脂酶,以及脂肪细胞膜上的肾上腺素能受体、胰岛素受体及其他肽类激素和腺苷受体都参与这一过程的调节。 (1)脂蛋白脂酶(LPL):脂蛋白脂酶由体内脂肪细胞合成,然后释放到血液中附着在毛细血管的表面。其功能是将与其接触的乳糜微粒和极低密度脂蛋白中的三酰甘油(甘油三酯)水解成游离脂肪酸和α-磷酸甘油。前者进入脂肪细胞内,与磷酸甘油结合生成三酰甘油。由于人类脂肪细胞合成脂肪酸的能力很弱,因此在脂蛋白脂酶作用下所产生的游离脂肪酸就成为体内脂肪细胞合成三酰甘油所需要游离脂肪酸的主要来源。因此脂蛋白脂酶在调节人体局部脂肪沉积上发挥着一定的功能。脂蛋白脂酶的活性受机体营养状况及相关激素的调节,空腹及营养不良时其活性降低,进食后其活性增高。胰岛素可以增加脂蛋白脂酶的合成,而脂解激素则使脂蛋白脂酶活性受到抑制。 (2)胰岛素:胰岛素可以通过降低脂肪细胞内cAMP的浓度来抑制三酰甘油脂肪酶活性,减少三酰甘油的水解,促进水解后的游离脂肪酸再酯化。胰岛素是体内主要的抗脂解激素。当胰岛,素水平下降时,体内脂肪组织的脂解过程加快,血中游离脂肪酸和磷酸甘油浓度增高。 (3)儿茶酚胺:人类脂肪细胞上分布着许多α2和β1,受体,儿茶酚胺主要就是通过脂肪细胞膜上的肾上腺素能受体来调节脂解反应。 儿茶酚胺通过。α2受体抑制脂解,通过β1受体刺激脂解。人体不同部位脂肪细胞对儿茶酚胺的反应性是不相同的。无论男女,腹部脂肪细胞对儿茶酚胺促进脂解的反应性和敏感性均强于股部,绝经前女性股部脂肪细胞对儿茶酚胺的脂解反应性明显下降,而妊娠晚期和哺乳期女性股部脂肪细胞对儿茶酚胺的脂解反应性明显增强。造成上述差别的主要原因可能与分布在这些部位脂肪细胞上的。α2和β1受体的数目、比例及活性不同有关。 (4)性激素:性激素在促进脂肪细胞脂解反应区域性差异的发生上起着一定的作用。女性激素可以促进脂肪细胞α2受体的活性来达到拮抗儿茶酚胺的脂解作用。 (5)其他激素:生长激素、促肾上腺皮质激素、促甲状腺激素、泌乳素、胰高血糖素等均可促进脂肪细胞的脂解反应。 肪细胞的代谢过程是怎样进行的? 体内脂肪细胞的代谢过程是一个非常活跃、从不间断的循环过程。 正常情况下,机体内的脂肪细胞一方面不断地从血液中摄取食物分解后产生的游离脂肪酸,然后在细胞内将游离脂肪酸与由葡萄糖合成的。α-磷酸甘油结合生成磷酸三酰甘油。

代谢控制发酵复习

试卷题型: ⑴、名词解释:8×4' ⑵、填空题:22×1' ⑶、简答题:3×8' ⑷、综合题:2×11' 第一章绪论 1、代谢控制发酵:就是利用遗传学的方法或其他生物化学方法,人为地在脱氧核糖核酸(DNA)的分子水平上,改变和控制微生物的代谢,使有用目的产物大量生成、积累的发酵。P2 2、代谢控制发酵的关键:取决于微生物代谢控制机制是否能够被解除,能否打破微生物正常的代谢调节,人为地控制微生物的代谢。P2 3、代谢工程的具体思路:P3 1、改变代谢流: (1)、加速速度限制反应;(2)、改变分支代谢途径的流向;(3)、构建代谢旁路;(4)、改变能量代谢途径。 2、扩展代谢途径和构建新的代谢途径: (1)、引入外源基因,延伸代谢途径;(2)、利用新的底物,构建新的生物合成途径。 第二章代谢控制发酵的基本思想 1、微生物细胞的调节机制:P7-9 (1)、通过控制基因的酶生物合成的控制机制: ①诱导——促进酶的合成; ②阻遏——抑制酶的合成,包括: 1)终产物阻遏,2)分解代谢物阻遏。 (2)、酶活性的控制机制: ①终产物抑制或激活, ②通过辅酶水平的活性调节, ③酶原的活化, ④潜在酶的活化。 (3)、通过细胞渗透性的控制:(根据酶在代谢调节中作用不同分类) ①调节酶:变构酶、同功酶、多功能酶。 ②静态酶 ③潜在酶 2、脱敏作用:变构酶经特定处理后,不丧失酶活性而失去对变构效应物的敏感性。 注:处理方法:①使变构酶解聚,②基因突变。P15 3、反馈抑制的调节类型可以分为以下几种:P18-21 图略 (1)、单功能途径中酶活性的调节类型:①前体激活,②补偿性激活。 (2)、多功能途径中酶活性的调节类型: ①协作反馈抑制或称多价反馈抑制, ②合作反馈抑制, ③积累反馈抑制, ④顺序反馈抑制, ⑤假反馈抑制:指结构类似物的反馈抑制,

植物代谢调控复习

第一章 植物代谢调控:运用现代生物技术理论和方法研究植物代谢产物,尤其是次级代谢产物的人为调控生产的一门科学,是一门基于生物学和天然产物化学基础的交叉应用学科,旨在对于重要生物资源的再生和利用。 药用植物活性成分代谢调控的目的?①解决濒临灭绝的药用植物资源问题,对这些药用植物可采用人工驯化和规范化种植等方法生产。②特殊生物资源的代谢调控生产技术,为工业化生产提供技术支持,比如采用组织快速繁殖和细胞培养的技术工业化生产紫草素。③寻找不同于传统意义上的天然产物活性成分的生产方式,例如采用生物转化技术对一些植物活性物质结构修饰,得到理想的药用化合物。 第二章 1.一次代谢:维持植物机体生命活动的代谢过程叫一次代谢。糖类、脂肪、蛋白质在植物体内不可以相互转化。糖类,蛋白质和脂肪是初级代谢产物,是植物维持生命活动的基本物质; 2.二次代谢:以某些一次代谢产物为原料,经一系列特殊生物反应生成一些小分子物质的过生物碱、萜类和黄酮等是次级代谢产物,对生物的生存和适应具有重要的作用。 次生代谢物质结构的多样性决定了其生物活性的多样性,被人们作为寻找药物的源泉,例如人参中的人参皂苷,黄花蒿中的青蒿素以及红豆杉中的紫杉醇都被开发成治疗不同疾病的药物。 同位素跟踪/标记技术是早期的生物合成途径探索中采用的标记技术,现在普遍认为生物碱类物质是以氨基酸为合成前体,醋酸-丙二酸途径可以合成脂肪酸、酚类、蒽酮/蒽醌等物质。 1.氨基酸途径:以一些氨基酸为前体,经过一定的生物合成反应生成生物碱的合成途径。不是所有的氨基酸都可以合成含氮类物质。 4.甲戊二羟酸途径:以甲戊二羟酸为前体,经过一定的生物合成反应生成萜类化合物和甾体类化合物的途径。 甲戊二羟酸是合成萜类化合物的前体,15个碳原子的焦磷酸金合欢酯FPP是合成倍半萜的前体,两分子FPP聚合成的30碳的角鲨烯是合成三萜和甾体物质的直接前体。 5. 桂皮酸—莽草酸途径:以莽草酸途径产生的芳香族氨基酸为前体,进一步合成桂皮酸,在经过不同分支途径合成苯丙素类化合物的途径。 莽草酸途径产生的芳香族氨基酸苯丙氨酸和酪氨酸等除了合成苯丙素类化合物,还可以进一步合成生物碱。 6.醋酸—丙二酸途:以乙酰辅酶A和丙二酸单酰辅酶A为前体经过一定路径合成脂肪酸、酚类、蒽酮、蒽醌类化合物的途径。 复合途径:一些化合物分子中既具有黄酮结构,又具有萜类结构,那么它来源于复合生物合成途径,苯丙氨酸即可以合成生物碱,又可以合成苯丙素类成分,如香豆素、木脂素以及(黄酮等成分。 7. 生物合成前体:处于目的次生代谢产物生物合成途径上游的物质。 了解生物合成的意义有哪些? 了解生物合成的意义在于: 1.可以利用植物亲缘相关性进行化学分类学研究。因为亲缘越相近,越有可能具有相同或相似的合成途径,产生相同的代谢物质,所以可以根据次生代谢产物相似度进行植物分类;相同的道理,也可以从亲缘关系相近的植物资源中寻找共有的活性成分。 2.人为的调控代谢达到提高代谢产物的目的。 如对代谢途径中的关键酶基因研究,调控生物合成的进行,使其朝着目标代谢产物进行,如

相关主题
文本预览
相关文档 最新文档