当前位置:文档之家› Linux 2.6 内核 新特点

Linux 2.6 内核 新特点

What's new in Linux 2.6? Dr. Ulrich Weigand

Linux for zSeries Development, IBM Lab B?blingen Ulrich.Weigand@https://www.doczj.com/doc/8813832878.html,

Timeline

New features overview

Scalability enhancements

Threading model and futexes

Device model and device configuration

Agenda

Linux 2.6

Timeline

January 1999: Linux 2.2.0 released

May 1999: Start of 2.3.x development (2.2.8)

January 2001: Linux 2.4.0 released

November 2001: Start of 2.5.x development (2.4.15)

October 2002: Feature freeze for 2.6

February 2003: Current version 2.5.61

Estimated release of Linux 2.6.0: mid-2003

Source: Guillaume Boissiere

https://www.doczj.com/doc/8813832878.html,/status/

New features

Platform and device support

File systems and volume managers

Network protocols

Eliminate system limits

Performance and scalability enhancements

Scheduler

Memory management

Block I/O layer

SMP scalability

Backports to 2.4 kernels

New architectures

PowerPC 64-bit (ppc64)

AMD 64-bit (x86_64)

ucLinux (MMU-less processors: v850, m68knommu)

User Mode Linux

New devices

New input device / frame buffer layers

ALSA (Advanced Linux Sound Architecture)

Video for Linux v2

New IDE layer, Serial ATA support

Platform and device support

Support for new file systems

IBM JFS

SGI XFS

NFS v4

Andrew File System (AFS)

ReiserFS v4 (planned)

Other enhancements

Device mapper infrastructure (LVM2, EVMS)

Extended Attribute / Access Control List (ACL) support

Large directory support for ext2/ext3

Zero-copy NFS

File systems

Networking enhancements

SCTP (Stream Control Transmission Protocol)

TCP segmentation offload

IPsec support and CryptoAPI

Improved IPv6 support

Bluetooth support

Networking

Removal of hard limits

Number of processes/threads: 64k -> 2G

Block device limit: 2TB -> 16TB / 8EB

Number of groups per process: 32 -> unlimited (planned)

Major/minor numbers: 256 -> 4k/1M (planned)

SMP scalability

Reduce use of Big Kernel Lock

Eliminate global locks (I/O request, IRQ, task list)Per-CPU data structures

Scalability

O(1) scheduler

Authors: Ingo Molnar et al.

Design of old scheduler

Global run-queue holds all runnable processes

Reschedule scans full run-queue to find next process to run

Time-slice recalculation after all slices have been consumed

Problems

Reschedule slow when run-queue is long

Recalculation loop slow, trashes cache

SMP scalability issues

O(1) scheduler (cont.)

Design goals for new scheduler

O(1) algorithms: wakeup, schedule, timer interrupt

Scale to large number of processes/threads

Perfect SMP scalability

Processor affinity (incl. NUMA/SMT support)

Keep good interactive performance

Keep good performance with few runnable processes

Keep features: priorities, RT scheduling, CPU binding

Implementation

Active/expired per-CPU priority arrays as run-queue

Load balancing between CPUs done by migration threads

Authors: Robert Love, Andrew Morton, et https://www.doczj.com/doc/8813832878.html,tency problem

Kernel preemption / low latency

Kernel preemption / low latency (cont.)

Proposed solutions

Kernel code yields voluntarily ('low latency patches')

Kernel code get preempted involuntarily

Currently implemented: both

Preemption blockers

Interrupts (hard and soft)

Kernel SMP critical section (spinlock, per-CPU data etc.)

Scheduler (and other core routines)

Design issues

Avoid large-scale code changes

Avoid throughput vs. latency trade-off

Memory management

Authors: Rik van Riel, Andrew Morton, et al.Reverse mapping problem

Memory management (cont.) Advantages of reverse mappings

Easy to unmap page from all address spaces

Page replacement scans based on physical pages

Less CPU spent inside memory manager

Less fragile behaviour under extreme load

Challenges with reverse mappings

Overhead to set up rmap structures

Out of memory while allocating rmap?

I/O scalability

Authors: Jens Axboe, Andrew Morton, et al.

Block I/O layer

Manages all access to block devices

Queues/merges/remaps block read/write requests

Implements 'buffer cache'

Problems in 2.4

Shortcomings of 'buffer head' data structure

Large I/O, vectored I/O, raw I/O, async I/O inefficient

Global I/O request lock contention

Bounce buffer bottleneck on high-memory systems

I/O scalability (cont.)

New BIO data structure

Efficiently unifies all types of I/O requests

Challenges

Rewrite much of the block I/O layer

Adapt all low-level drivers and remappers (MD, LVM)

Avoid deadlocks in out-of-memory situations

Other enhancements

Eliminate global I/O request lock

Improved I/O scheduler

Merged buffer cache with page cache

Asynchronous I/O

Authors: Ben LaHaise et al.

Asynchronous I/O

I/O requests executed while application continues to run

Completion of I/O signalled to application

Goal: higher throughput, esp. for data bases etc.

Implementation

Kernel provides async. I/O API (io_submit, io_getevents,...)

Synchronous kernel-internal interfaces switched to async.

Goal: everything in-kernel should be asynchronous

User space implements POSIX AIO on top

Networking scalability: epoll

Authors: Davide Libenzi et al.

Idle connection problem

Typical server load: many connections, few active

Event notification API (select, poll) performance degraded

epoll: New notification mechanism

API: epoll_create / epoll_ctl / epoll_wait

Idle connections do not affect performance

Better performance, more robust than RT signals

Threading model

Authors: Ulrich Drepper, Ingo Molnar

Problems with LinuxThreads

POSIX non-compliance

One PID per process

POSIX signal handling

Inter-process synchronization primitives

Limited number of threads

Performance issues

Manager thread / heavy-weight library

Linux内核崩溃原因分析及错误跟踪技术

Linux内核崩溃原因分析及错误跟踪技术 随着嵌入式Linux系统的广泛应用,对系统的可靠性提出了更高的要求,尤其是涉及到生命财产等重要领域,要求系统达到安全完整性等级3级以上[1],故障率(每小时出现危险故障的可能性)为10-7以下,相当于系统的平均故障间隔时间(MTBF)至少要达到1141年以上,因此提高系统可靠性已成为一项艰巨的任务。对某公司在工业领域14 878个控制器系统的应用调查表明,从2004年初到2007年9月底,随着硬软件的不断改进,根据错误报告统计的故障率已降低到2004年的五分之一以下,但查找错误的时间却增加到原来的3倍以上。 这种解决问题所需时间呈上升的趋势固然有软件问题,但缺乏必要的手段以辅助解决问题才是主要的原因。通过对故障的统计跟踪发现,难以解决的软件错误和从发现到解决耗时较长的软件错误都集中在操作系统的核心部分,这其中又有很大比例集中在驱动程序部分[2]。因此,错误跟踪技术被看成是提高系统安全完整性等级的一个重要措施[1],大多数现代操作系统均为发展提供了操作系统内核“崩溃转储”机制,即在软件系统宕机时,将内存内容保存到磁盘[3],或者通过网络发送到故障服务器[3],或者直接启动内核调试器[4]等,以供事后分析改进。 基于Linux操作系统内核的崩溃转储机制近年来有以下几种: (1) LKCD(Linux Kernel Crash Dump)机制[3]; (2) KDUMP(Linux Kernel Dump)机制[4]; (3) KDB机制[5]; (4) KGDB机制[6]。 综合上述几种机制可以发现,这四种机制之间有以下三个共同点: (1) 适用于为运算资源丰富、存储空间充足的应用场合; (2) 发生系统崩溃后恢复时间无严格要求; (3) 主要针对较通用的硬件平台,如X86平台。 在嵌入式应用场合想要直接使用上列机制中的某一种,却遇到以下三个难点无法解决: (1) 存储空间不足 嵌入式系统一般采用Flash作为存储器,而Flash容量有限,且可能远远小于嵌入式系统中的内存容量。因此将全部内存内容保存到Flash不可行。

探究linux内核,超详细解析子系统

探究linux内核,超详细解析子系统 Perface 前面已经写过一篇《嵌入式linux内核的五个子系统》,概括性比较强,也比较简略,现在对其进行补充说明。 仅留此笔记,待日后查看及补充!Linux内核的子系统 内核是操作系统的核心。Linux内核提供很多基本功能,如虚拟内存、多任务、共享库、需求加载、共享写时拷贝(Copy-On-Write)以及网络功能等。增加各种不同功能导致内核代码不断增加。 Linux内核把不同功能分成不同的子系统的方法,通过一种整体的结构把各种功能集合在一起,提高了工作效率。同时还提供动态加载模块的方式,为动态修改内核功能提供了灵活性。系统调用接口用户程序通过软件中断后,调用系统内核提供的功能,这个在用户空间和内核提供的服务之间的接口称为系统调用。系统调用是Linux内核提供的,用户空间无法直接使用系统调用。在用户进程使用系统调用必须跨越应用程序和内核的界限。Linux内核向用户提供了统一的系统调用接口,但是在不同处理器上系统调用的方法

各不相同。Linux内核提供了大量的系统调用,现在从系统 调用的基本原理出发探究Linux系统调用的方法。这是在一个用户进程中通过GNU C库进行的系统调用示意图,系 统调用通过同一个入口点传入内核。以i386体系结构为例,约定使用EAX寄存器标记系统调用。 当加载了系统C库调用的索引和参数时,就会调用0x80软件中断,它将执行system_call函数,这个函数按照EAX 寄存器内容的标示处理所有的系统调用。经过几个单元测试,会使用EAX寄存器的内容的索引查system_call_table表得到系统调用的入口,然后执行系统调用。从系统调用返回后,最终执行system_exit,并调用resume_userspace函数返回用户空间。 linux内核系统调用的核心是系统多路分解表。最终通过EAX寄存器的系统调用标识和索引值从对应的系统调用表 中查出对应系统调用的入口地址,然后执行系统调用。 linux系统调用并不单层的调用关系,有的系统调用会由

如何安装Linux内核源代码

如何获取Linux内核源代码 下载Linux内核当然要去官方网站了,网站提供了两种文件下载,一种是完整的Linux 内核,另一种是内核增量补丁,它们都是tar归档压缩包。除非你有特别的原因需要使用旧版本的Linux内核,否则你应该总是升级到最新版本。 使用Git 由Linus领头的内核开发队伍从几年前就开始使用Git版本控制系统管理Linux内核了(参考阅读:什么是Git?),而Git项目本身也是由Linus创建的,它和传统的CVS不一样,Git是分布式的,因此它的用法和工作流程很多开发人员可能会感到很陌生,但我强烈建议使用Git下载和管理Linux内核源代码。 你可以使用下面的Git命令获取Linus内核代码树的最新“推送”版本: $ git clone git://https://www.doczj.com/doc/8813832878.html,/pub/scm/linux/kernel/git/torvalds/linux-2.6.git 然后使用下面的命令将你的代码树与Linus的代码树最新状态同步: $ git pull 安装内核源代码 内核包有GNU zip(gzip)和bzip2格式。Bzip2是默认和首选格式,因为它的压缩比通常比gzip更好,bzip2格式的Linux内核包一般采用linux-x.y.z.tar.bz2形式的文件名,这里的x.y.z是内核源代码的具体版本号,下载到源代码包后,解压和抽取就很简单了,如果你下载的是bzip2包,运行: $ tar xvjf linux-x.y.z.tar.bz2 如果你下载的是gzip包,则运行: $ tar xvzf linux-x.y.z.tar.gz 无论执行上面哪一个命令,最后都会将源代码解压和抽取到linux-x.y.z目录下,如果你使用Git下载和管理内核源代码,你不需要下载tar包,只需要运行git clone命令,它就会自动下载和解压。 内核源代码通常都会安装到/usr/src/linux下,但在开发的时候最好不要使用这个源代码树,因为针对你的C库编译的内核版本通常也链接到这里的。 应用补丁

linux内核IMQ源码实现分析

本文档的Copyleft归wwwlkk所有,使用GPL发布,可以自由拷贝、转载,转载时请保持文档的完整性,严禁用于任何商业用途。 E-mail: wwwlkk@https://www.doczj.com/doc/8813832878.html, 来源: https://www.doczj.com/doc/8813832878.html,/?business&aid=6&un=wwwlkk#7 linux2.6.35内核IMQ源码实现分析 (1)数据包截留并重新注入协议栈技术 (1) (2)及时处理数据包技术 (2) (3)IMQ设备数据包重新注入协议栈流程 (4) (4)IMQ截留数据包流程 (4) (5)IMQ在软中断中及时将数据包重新注入协议栈 (7) (6)结束语 (9) 前言:IMQ用于入口流量整形和全局的流量控制,IMQ的配置是很简单的,但很少人分析过IMQ的内核实现,网络上也没有IMQ的源码分析文档,为了搞清楚IMQ的性能,稳定性,以及借鉴IMQ的技术,本文分析了IMQ的内核实现机制。 首先揭示IMQ的核心技术: 1.如何从协议栈中截留数据包,并能把数据包重新注入协议栈。 2.如何做到及时的将数据包重新注入协议栈。 实际上linux的标准内核已经解决了以上2个技术难点,第1个技术可以在NF_QUEUE机制中看到,第二个技术可以在发包软中断中看到。下面先介绍这2个技术。 (1)数据包截留并重新注入协议栈技术

(2)及时处理数据包技术 QoS有个技术难点:将数据包入队,然后发送队列中合适的数据包,那么如何做到队列中的数

激活状态的队列是否能保证队列中的数据包被及时的发送吗?接下来看一下,激活状态的队列的 证了数据包会被及时的发送。 这是linux内核发送软中断的机制,IMQ就是利用了这个机制,不同点在于:正常的发送队列是将数据包发送给网卡驱动,而IMQ队列是将数据包发送给okfn函数。

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

Linux kernel内核升级全过程,教你一次成功

序言 由于开发环境需要在linux-2.6内核上进行,于是准备对我的虚拟机上的Linux系统升级。没想到这一弄就花了两天时间( 反复装系统,辛苦啊~~),总算把Linux系统从2.4.20-8内核成功升级到了2.6.18内核。 网上虽然有很多介绍Linux内核升级的文章,不过要么过时,下载链接失效;要么表达不清,不知所云;更可气的是很多 文章在转载过程中命令行都有错误。刚开始我就是在这些“攻略”的指点下来升级的,以致于浪费了很多时间。 现在,费尽周折,升级成功,心情很爽,趁性也来写个“升级攻略”吧!于是特意又在虚拟机上重新安装一个Linux系统 ,再来一次完美的升级,边升级边记录这些步骤,写成一篇Linux内核升级记实录(可不是回忆录啊!),和大家一起分享 ~~! 一、准备工作 首先说明,下面带#号的行都是要输入的命令行,且本文提到的所有命令行都在终端里输入。 启动Linux系统,并用根用户登录,进入终端模式下。 1、查看Linux内核版本 # uname -a 如果屏幕显示的是2.6.x,说明你的已经是2.6的内核,也用不着看下文了,该干什么干什么去吧!~~~如果显示的是 2.4.x,那恭喜你,闯关通过,赶快进行下一步。 2、下载2.6内核源码 下载地址:https://www.doczj.com/doc/8813832878.html,/pub/linux/kernel/v2.6/linux-2.6.18.tar.bz2 3、下载内核升级工具 (1)下载module-init-tools-3.2.tar.bz2 https://www.doczj.com/doc/8813832878.html,/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.2.tar.bz2 (2)下载mkinitrd-4.1.18-2.i386.rpm https://www.doczj.com/doc/8813832878.html,/fedora/linux/3/i386/RPMS.core/mkinitrd-4.1.18-2.i386.rpm (3)下载lvm2-2.00.25-1.01.i386.rpm https://www.doczj.com/doc/8813832878.html,/fedora/linux/3/i386/RPMS.core/lvm2-2.00.25-1.01.i386.rpm (4)下载device-mapper-1.00.19-2.i386.rpm https://www.doczj.com/doc/8813832878.html,/fedora/linux/3/i386/RPMS.core/device-mapper-1.00.19-2.i386.rpm (2.6.18内核和这4个升级工具我都有备份,如果以上下载地址失效,请到https://www.doczj.com/doc/8813832878.html,/guestbook留下你的邮箱,我给你发过去)

Linux内核分析-网络[五]:网桥

看完了路由表,重新回到netif_receive_skb ()函数,在提交给上层协议处理前,会执行下面一句,这就是网桥的相关操作,也是这篇要讲解的容。 view plaincopy to clipboardprint? 1. s kb = handle_bridge(skb, &pt_prev, &ret, orig_dev); 网桥可以简单理解为交换机,以下图为例,一台linux机器可以看作网桥和路由的结合,网桥将物理上的两个局域网LAN1、LAN2当作一个局域网处理,路由连接了两个子网1.0和2.0。从eth0和eth1网卡收到的报文在Bridge模块中会被处理成是由Bridge收到的,因此Bridge也相当于一个虚拟网卡。 STP五种状态 DISABLED BLOCKING LISTENING LEARNING FORWARDING 创建新的网桥br_add_bridge [net\bridge\br_if.c] 当使用SIOCBRADDBR调用ioctl时,会创建新的网桥br_add_bridge。 首先是创建新的网桥: view plaincopy to clipboardprint?

1. d ev = new_bridge_dev(net, name); 然后设置dev->dev.type为br_type,而br_type是个全局变量,只初始化了一个名字变量 view plaincopy to clipboardprint? 1. S ET_NETDEV_DEVTYPE(dev, &br_type); 2. s tatic struct device_type br_type = { 3. .name = "bridge", 4. }; 然后注册新创建的设备dev,网桥就相当一个虚拟网卡设备,注册过的设备用ifconfig 就可查看到: view plaincopy to clipboardprint? 1. r et = register_netdevice(dev); 最后在sysfs文件系统中也创建相应项,便于查看和管理: view plaincopy to clipboardprint? 1. r et = br_sysfs_addbr(dev); 将端口加入网桥br_add_if() [net\bridge\br_if.c] 当使用SIOCBRADDIF调用ioctl时,会向网卡加入新的端口br_add_if。 创建新的net_bridge_port p,会从br->port_list中分配一个未用的port_no,p->br会指向br,p->state设为BR_STATE_DISABLED。这里的p实际代表的就是网卡设备。 view plaincopy to clipboardprint? 1. p = new_nbp(br, dev); 将新创建的p加入CAM表中,CAM表是用来记录mac地址与物理端口的对应关系;而刚刚创建了p,因此也要加入CAM表中,并且该表项应是local的[关系如下图],可以看到,CAM表在实现中作为net_bridge的hash表,以addr作为hash值,链入 net_bridge_fdb_entry,再由它的dst指向net_bridge_port。

Linux内核十个版本性能对比

【IT168 评论】从2008年1月底至今,Linux Kernel系统内核已经先后升级了十次,版本号也从2.6.24上升到2.6.33,并且下个版本2.6.34也已进入开发阶段。今天我们就看看过去两年内这十个版本在性能上有何差异。 测试平台是一套工作站系统,硬件配置包括AMD Opteron 2384 2.7GHz四核心处理器(“上海”)、泰安Thunder n3600B S2927主板(NVIDIA nForce 3600PRO 芯片组)、4GB DDR2 ECC Reg内存、希捷ST3300622AS 300GB硬盘、ATI FirePro V8700显卡,软件上采用Ubuntu 8.04.4 LTS 64位操作系统,组件有GNOME 2.22.3、https://www.doczj.com/doc/8813832878.html, Server 1.4.0.90、GCC 4.2.4、EXT3。 Linux Kernel 2.6.24-2.6.33的每个版本都从Ubuntu PPA源上获取,而且均为64位版本。除了替换内核之外,系统其他设置均保持默认。 Apache Benchmark(静态网页服务):2.6.33成绩大幅提升,但事实最早的2.6.24版反而才是好的,之后八个版本都差得很多,最新版终于基本正常了。

PostgreSQL pgbench(每秒钟TPC-B交易数):2.6.30的成绩比上个版本骤然提升了多达770%,但之后2.6.32迅速下滑,最新的2.6.33却又完全不如2.6.30之前的六个版本了。

7-Zip Compression(文件压缩速度):不同版本有所波动,最新的2.6.33成了赢家,这才是我们最希望看到的。 LZMA Compression(256MB文件压缩):十个版本几乎没什么区别。

Linux的版本与内核

Linux的版本与内核 Linux有两种版本,一个是核心(kernel)版,一个是发行(distribution)版。核心版的序号由三部分数字构成,其形式为:major.minor.patchlevel,其中,majoro为主版本号,minor为次版本号,二者共同构成了当前核心版本号。patchlevel表示对当前版本的修订次数。例如,2.2.11表示对核心作用2.2 版本的第11次修订。根据约定,次版本号为奇数时,表示该版本加入新内容,但不一定稳定,相当于测试版;次版本号为偶数时,表示这是一个可以使用的稳定版本。鉴于Linux内核开发工作的连续性,内核的稳定版本与在此基础上进一步开发的不稳定版本总是同时存在的。建议采用稳定的核心版本。 Linux的内核具有两种不同的版本号,实验版本和产品化版本。要确定LINUX版本的类型,只要查看一下版本号:每一个版本号由三位数字组成,第二位数字说明版本类型。如果第二位数字是偶数则说明这种版本是产品化版本,如果是奇数说明是实验版本。如2.6.20是产品化版本,2.6.16是实验版本。LINUX的两种版本是相互关联的。实验版本最初是产品化产品的拷贝,然后产品化版本只修改错误,实验版本继续增加新功能,到实验版本测试证明稳定后拷贝成新的产品化版本,不断循环,这样一方面可以方便广大软件人员加入到LINUX的开发和测试工作中来,另一方面又可以让一些用户使用上稳定的LINUX版本。真是做到开发和实用两不误。现在LINUX的内核的最新版本是2.6.20。 Linux内核 Linux是最受欢迎的自由电脑操作系统内核。它是一个用C语言写成,符合POSIX标准的类Unix操作系统。Linux最早是由芬兰黑客 Linus Torvalds为尝试在英特尔x86架构上提供自由免费的类Unix操作系统而开发的。该计划开始于1991年,这里有一份Linus Torvalds 当时在Usenet新闻组comp.os.minix所登载的贴子,这份著名的贴子标志着Linux计划的正式开始。在计划的早期有一些Minix 黑客提供了协助,而今天全球无数程序员正在为该计划无偿提供帮助。技术上说Linux是一个内核。“内核”指的是一个提供硬件抽象层、磁盘及文件系统控制、多任务等功能的系统软件。一个内核不是一套完整的操作系统。一套基于Linux内核的完整操作系统叫作Linux操作系统,或是GNU/Linux架构。今天Linux是一个一体化内核(monolithic kernel)系统。设备驱动程序可以完全访问硬件。Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系统运行期间可直接装载或卸载。Linux不是微内核(microkernel)架构的事实曾经引起了Linus Torvalds与Andy Tanenbaum之间一场著名的争论。 Linux内核简史 操作系统是一个用来和硬件打交道并为用户程序提供一个有限服务集的低级支撑软件。一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。但是没有软件来操作和控制它,自身是不能工作的。完成这个控制工作的软件就称为操作系统,在Linux 的术语中被称为“内核”,也可以称为“核心”。Linux内核的主要模块(或组件)分以下几个部分:存储管理、CPU和进程管理、文件系统、设备管理和驱动、网络通信,以及系统的初始化(引导)、系统调用等。

基于Linux内核编程的实验报告(Linux内核分析实验报告)

基于Linux内核编程的实验报告(Linux内核分析实验 报告) 以下是为大家整理的基于Linux内核编程的实验报告(Linux内核分析实验报告)的相关范文,本文关键词为基于,Linux,内核,编程,实验,报告,分析,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在教育文库中查看更多范文。 Linux内核分析实验报告

实验题目:文件系统实验 实验目的:linux文件系统使用虚拟文件系统VFs作为内核文件子系统。可以安装多种 不同形式的文件系统在其中共存并协同工作。VFs对用户提供了统一的文件访问接口。本实验的要求是 (1)编写一个get_FAT_boot函数,通过系统调用或动态模块调用它可以提 取和显示出FAT文件系统盘的引导扇区信息。这些信息的格式定义在内核文件的fat_boot_sector结构体中。函数可通过系统调用或动态模块调用。 (2)编写一个get_FAT_dir函数,通过系统调用或动态模块调用它可以 返回FAT文件系统的当 前目录表,从中找出和统计空闲的目录项(文件名以0x00打头的为从未使用过目录项,以0xe5打头的为已删除的目录项),将这些空闲的目录项集中调整到目录表的前部。这些信息的格式定义在内核文件的msdos_dir_entry结构体中。 硬件环境:内存1g以上 软件环境:Linux(ubuntu)2-6实验步骤: 一:实验原理: 以实验4为蓝本,在优盘中编译并加载模块,启动测试程序,查

/proc/mydir/myfile的文件内容。从优盘得到fat文件系统的内容存在msdos_sb_info结构中,然后得到msdos_sb_info结构相应的属性值,得到实验一的数据。实验二中,得到fat文件系统第一个扇区的十六个文件信息。然后按照文件名头文字的比较方法,应用归并排序的方法,将头文件是0x00和0xe5的文件调到前面,其他的文件调到后面 二:主要数据结构说明: (1)超级块对象: 数据结构说明:一个已经安装的文件系统的安装点由超级块对象代表。 structsuper_block{... conststructsuper_operations*s_op;} (2)索引i节点对象 数据结构说明:索引i节点对象包含了内核要操作的文件的全部控制信息,对应着打开文件的i节点表。structinode{ conststructinode_operations*i_op;...} (3)目录项对象 数据结构说明:录项对象代表了文件路径名的各个部分,目录文件名和普 通文件名都属于目录项对象。structdentry{

Linux内核版本号及源代码目录树结构

Linux 内核版本号及源代码目录树结构 一、linux内核版本号的命名机制 Linux内核版本有两种:稳定版和开发版。稳定的内核具有工业级的强度,可以广泛地应用和部署。新的稳定内核相对于较旧的只是修正一些bug或加入一些新的驱动程序。而开发版内核由于要试验各种解决方案,所以变化很快。这两种版本是相互关联,相互循环的。 Linux内核的命名机制: num.num.num 其中第一个数字是主版本号,第二个数字是次版本号,第三个数字是修订版本号。如果次版本号是偶数,那么该内核就是稳定版的;若是奇数,则是开发版的。头两个数字合在一齐可以描述内核系列。如稳定版的2.6.0,它是2.6版内核系列。最新的内核源代码可以在https://www.doczj.com/doc/8813832878.html,以tar包或者增量补丁的形式下载.。 Linux还有各种发行版本,除了最熟悉的Redhat,Debian,Bluepoint,红旗,还有 Slackware,Mandarke,Turbo。 二、linux源代码目录树结构 Linux用来支持各种体系结构的源代码包含大约4500个C语言程序,存放在270个左右的子目录下,总共大约包含200万行代码,大概占用58MB磁盘空间。 在阅读源码之前,还应知道Linux内核源码的整体分布情况。现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序和网络等组成。Linux内核源码的各个目录大致与此相对应,其组成如下: arch目录包括了所有和体系结构相关的核心代码。它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录。 include目录包括编译核心所需要的大部分头文件,例如与平台无关的头文件在include/linux子目录下。

Linux内核启动流程分析(一)

很久以前分析的,一直在电脑的一个角落,今天发现贴出来和大家分享下。由于是word直接粘过来的有点乱,敬请谅解! S3C2410 Linux 2.6.35.7启动分析(第一阶段) arm linux 内核生成过程 1. 依据arch/arm/kernel/vmlinux.lds 生成linux内核源码根目录下的vmlinux,这个vmlinux属于未压缩, 带调试信息、符号表的最初的内核,大小约23MB; 命令:arm-linux-gnu-ld -o vmlinux -T arch/arm/kernel/vmlinux.lds arch/arm/kernel/head.o init/built-in.o --start-group arch/arm/mach-s3c2410/built-in.o kernel/built-in.o mm/built-in.o fs/built-in.o ipc/built-in.o drivers/built-in.o net/built-in.o --end-group .tmp_kallsyms2.o 2. 将上面的vmlinux去除调试信息、注释、符号表等内容,生成arch/arm/boot/Image,这是不带多余信息的linux内核,Image的大小约 3.2MB; 命令:arm-linux-gnu-objcopy -O binary -S vmlinux arch/arm/boot/Image 3.将 arch/arm/boot/Image 用gzip -9 压缩生成arch/arm/boot/compressed/piggy.gz大小约 1.5MB;命令:gzip -f -9 < arch/arm/boot/compressed/../Image > arch/arm/boot/compressed/piggy.gz 4. 编译arch/arm/boot/compressed/piggy.S 生成arch/arm/boot/compressed/piggy.o大小约1.5MB,这里实 际上是将piggy.gz通过piggy.S编译进piggy.o文件中。而piggy.S文件仅有6行,只是包含了文件piggy.gz; 命令:arm-linux-gnu-gcc -o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/piggy.S 5. 依据arch/arm/boot/compressed/vmlinux.lds 将arch/arm/boot/compressed/目录下的文件head.o 、piggy.o 、misc.o链接生成arch/arm/boot/compressed/vmlinux,这个vmlinux是经过压缩且含有自解压代码的内核, 大小约1.5MB; 命 令:arm-linux-gnu-ld zreladdr=0x30008000 params_phys=0x30000100 -T arch/arm/boot/compressed/vmlinux.lds a rch/arm/boot/compressed/head.o arch/arm/boot/compressed/piggy.o arch/arm/boot/compressed/misc.o -o arch/arm /boot/compressed/vmlinux

linux内核gpio操作函数解析

详解内核驱动操作GPIO引脚API函数 函数原型: void s3c2410_gpio_cfgpin(unsigned int pin, unsigned int function); unsigned int s3c2410_gpio_getcfg(unsigned int pin); void s3c2410_gpio_pullup(unsigned int pin, unsigned int to); void s3c2410_gpio_setpin(unsigned int pin, unsigned int to); unsigned int s3c2410_gpio_getpin(unsigned int pin); unsigned int s3c2410_modify_misccr(unsigned int clear, unsigned int change); int s3c2410_gpio_getirq(unsigned int pin); 关于函数中用到的虚拟地址到物理地址转换的变量及算法可以参考 https://www.doczj.com/doc/8813832878.html,/hefeng330467115@126/blog/static/78205842201 0620511659/ 或https://www.doczj.com/doc/8813832878.html,/u3/102836/showart_2065945.html 看简单led驱动程序是用到的文件及头文件可能有: linux/include/asm-arm/arch-s3c2410/map.h linux/include/asm-arm/arch-s3c2410/regs-gpio.h linux/arch/arm/plat-s3c24xx/gpio.c linux/include/asm-arm/io.h 用Source Insight 打开这些文件,然后再看驱动程序,可以随意跳转到定义处,很是方便 pin参数: gpio引脚及特殊功能寄存器助记符都在 linux/include/asm-arm/arch-s3c2410/regs-gpio.h中定义: eg: S3C2410_GPACON S3C2410_GPADAT S3C2410_GPA0 - S3C2410_GPA22 //引脚 S3C2410_GPA0_OUT - S3C2410_GPA22_OUT //设置引脚为输出 用到哪个不清楚的可以直接到这个文件去查找 还有中断和GSTATUS: S3C2410_EXTINT0 -> irq sense control for EINT0..EINT7 S3C2410_EXTINT1 -> irq sense control for EINT8..EINT15 S3C2410_EXTINT2 -> irq sense control for EINT16..EINT23 …… function参数: 指定引脚功能:输出、输入还是特殊功能,也在 linux/include/asm-arm/arch-s3c2410/regs-gpio.h中定义。 函数功能: 1原型:void s3c2410_gpio_cfgpin(unsigned int pin, unsigned int

Linux内核源码分析方法

Linux内核源码分析方法 一、内核源码之我见 Linux内核代码的庞大令不少人“望而生畏”,也正因为如此,使得人们对Linux的了解仅处于泛泛的层次。如果想透析Linux,深入操作系统的本质,阅读内核源码是最有效的途径。我们都知道,想成为优秀的程序员,需要大量的实践和代码的编写。编程固然重要,但是往往只编程的人很容易把自己局限在自己的知识领域内。如果要扩展自己知识的广度,我们需要多接触其他人编写的代码,尤其是水平比我们更高的人编写的代码。通过这种途径,我们可以跳出自己知识圈的束缚,进入他人的知识圈,了解更多甚至我们一般短期内无法了解到的信息。Linux内核由无数开源社区的“大神们”精心维护,这些人都可以称得上一顶一的代码高手。透过阅读Linux 内核代码的方式,我们学习到的不光是内核相关的知识,在我看来更具价值的是学习和体会它们的编程技巧以及对计算机的理解。 我也是通过一个项目接触了Linux内核源码的分析,从源码的分析工作中,我受益颇多。除了获取相关的内核知识外,也改变了我对内核代码的过往认知: 1.内核源码的分析并非“高不可攀”。内核源码分析的难度不在于源码本身,而在于如何使用更合适的分析代码的方式和手段。内核的庞大致使我们不能按照分析一般的demo程序那样从主函数开始按部就班的分析,我们需要一种从中间介入的手段对内核源码“各个击破”。这种“按需索取”的方式使得我们可以把握源码的主线,而非过度纠结于具体的细节。 2.内核的设计是优美的。内核的地位的特殊性决定着内核的执行效率必须足够高才可以响应目前计算机应用的实时性要求,为此Linux内核使用C语言和汇编的混合编程。但是我们都 知道软件执行效率和软件的可维护性很多情况下是背道而驰的。如何在保证内核高效的前提下提高内核的可维护性,这需要依赖于内核中那些“优美”的设计。 3.神奇的编程技巧。在一般的应用软件设计领域,编码的地位可能不被过度的重视,因为开发者更注重软件的良好设计,而编码仅仅是实现手段问题——就像拿斧子劈柴一样,不用太多的思考。但是这在内核中并不成立,好的编码设计带来的不光是可维护性的提高,甚至是代码性能的提升。 每个人对内核的了理解都会有所不同,随着我们对内核理解的不断加深,对其设计和实现的思想会有更多的思考和体会。因此本文更期望于引导更多徘徊在Linux内核大门之外的人进入Linux的世界,去亲自体会内核的神奇与伟大。而我也并非内核源码方面的专家,这么做也只是希望分享我自己的分析源码的经验和心得,为那些需要的人提供参考和帮助,说的“冠冕堂皇”一点,也算是为计算机这个行业,尤其是在操作系统内核方面贡献自己的一份绵薄之力。闲话少叙(已经罗嗦了很多了,囧~),下面我就来分享一下自己的Linix内核源码分析方法。 二、内核源码难不难? 从本质上讲,分析Linux内核代码和看别人的代码没有什么两样,因为摆在你面前的一般都不是你自己写出来的代码。我们先举一个简单的例子,一个陌生人随便给你一个程序,并要你看完源码后讲解一下程序的功能的设计,我想很多自我感觉编程能力还可以的人肯定觉得这没什么,只要我耐心的把他的代码从头到尾看完,肯定能找到答案,并且事实确实是如此。那么现在换一个假设,如果这个人是Linus,给你的就是Linux内核的一个模块的代码,你还会觉得依然那么 轻松吗?不少人可能会有所犹豫。同样是陌生人(Linus要是认识你的话当然不算,呵呵~)给 你的代码,为什么给我们的感觉大相径庭呢?我觉得有以下原因:

Linux内核源代码解读

Linux内核源代码解读!! 悬赏分:5 - 提问时间2007-1-24 16:28 问题为何被关闭 赵炯书中,Bootsect代码中有 mov ax , #BOOTSEG 等 我曾自学过80x86汇编,没有见过#的用法,在这为什么要用#? 另外, JMPI 的用法是什么?与JMP的区别是什么? 提问者: Linux探索者 - 一级 答复共 1 条 检举 系统初始化程序 boot.s 的分析 [转] 系统初始化程序 boot.s 的分析: 阚志刚,2000/03/20下午,在前人的基础之上进行整理完善 ******************************************************************************** ************** boot.s is loaded at 0x7c00 by the bios-startup routines, and moves itself out of the way to address 0x90000, and jumps there. 当PC 机启动时,Intel系列的CPU首先进入的是实模式,并开始执行位于地址0xFFF0处的代码,也就是ROM-BIOS起始位置的代码。BIOS先进行一系列的系统自检,然后初始化位于地址0的中断向量表。最后BIOS将启动盘的第一个扇区装入0x7C00(31K;0111,1100,0000,0000),并开始执行此处的代码。这就是对内核初始化过程的一个最简单的描述。 最初,Linux核心的最开始部分是用8086汇编语言编写的。当开始运行时,核心将自己装入到绝对地址0x90000(576K; 1001,0000,0000,0000,0000),再将其后的2k字节装入到地址0x90200(576.5k;1001,0000,0010,0000,0000)处,最后将核心的其余部分装入到0x10000(64k; 1,0000,0000,0000,0000). It then loads the system at 0x10000, using BIOS interrupts. Thereafter it disables all interrupts, moves the system down to 0x0000, changes to protected mode, and calls the start of system. System then must RE-initialize the protected mode in it's own tables, and enable interrupts as needed. 然后,关掉所有中断,把系统下移到0x0000(0k;0000,0000,0000,0000,0000)处,改变到保护模式,然后开始系统的运行.系统必须重新在保护模式下初始化自己的系统表格,并且打开所需的中断. NOTE 1! currently system is at most 8*65536(8*64k=512k; 1000,0000,0000,0000,0000) bytes long. This should be no problem, even in the future. I want to keep it simple. This 512 kB kernel size should be enough - in fact more would mean we'd have to move not just these start-up routines, but also do something about the cache-memory

Linux内核详细介绍

Linux内核详细介绍 现如今,电脑的使用越来越普遍,几乎每家每户都有电脑,而电脑的操作离不开操作系统,在这里,小编就向大家介绍Linux 内核。 很多Linux 爱好者对内核很感兴趣却无从下手,本文旨在介绍一种解读Linux内核源码的入门方法,而不是讲解Linux复杂的内核机制。 1.核心源程序的文件组织 (1)Linux核心源程序通常都安装在/usr/src/Linux下,而且它有一个非常简单的编号约定:任何偶数的核心(中间数字)如:2.0.30都是一个稳定的发行的核心,而任何奇数的核心如:2.1.42都是一个开发中的核心。 本文基于稳定的2.2.5源代码,第二部分的实现平台为Redhat Linux 6.0。 (2)核心源程序的文件按树形结构进行组织,在源程序树的

最上层你会看到这样一些目录: arch:arch子目录包括了所有和体系结构相关的核心代码。它的每一个子目录都代表一种支持的体系结构,例如i386就是关于Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录; include:include子目录包括编译核心所需要的大部分头文件。与平台无关的头文件在include/linux子目录下,与Intel CPU 相关的头文件在include/asm-i386子目录下,而include/scsi目录则是有关SCSI设备的头文件目录; init:这个目录包含核心的初始化代码(注:不是系统的引导代码),包含两个文件main.c和Version.c,这是研究核心如何工作的一个非常好的起点; Mm:这个目录包括所有独立于CPU 体系结构的内存管理代码,如页式存储管理内存的分配和释放等,而和体系结构相关的内存管理代码则位于arch/*/mm/,例如arch/i386/mm/Fault.c; Kernel:主要的核心代码,此目录下的文件实现了大多数Linux系统的内核函数,其中最重要的文件当属sched.c,同样,和

相关主题
文本预览
相关文档 最新文档