当前位置:文档之家› 简单介绍Cortex M4 FPU 单精度浮点运算单元

简单介绍Cortex M4 FPU 单精度浮点运算单元

简单介绍Cortex M4 FPU 单精度浮点运算单元
简单介绍Cortex M4 FPU 单精度浮点运算单元

Cortex-M4 PFU单元介绍

近年,在Cortex-M3之后ARM公司又推出Cortex-M4内核,和之前的M3内核的区别之一就是M4带一个单精度浮点运算单元(PFU)。本文就FPU单元进行一个简单介绍,帮助工程师更快的理解FPU单元。

1.Cortext-M系列内核的指令集

从ARM公司发布的白皮书看,Cortex-M系列内核的指令集如下图所示:

从上图可以看出,Corte-M系列的指令是向下兼容的,M0/M1的指令最少,M0/M1 和M3的指令都使用于M4的芯片。

Cortex-M4的指令集分两部分,一部分是在M3的指令集外增加了一些扩展功能。另一部即上图中粉红色部分,就是用于FPU单元的单精度浮点运算指令。这部分指令都是用V-开头的汇编指令,仅在FPU功能被使能时使用。

需要注意的是FPU单元是指的芯片上的一个独立于CPU处理的浮点运算单元,整个单元在大多数厂家的芯片中都是可以被使能和关闭的。相对于芯片,编译器也设置了相应的FPU功能开启/关闭的选项,在编译时需要告诉编译器是否开启FPU功能。编译器一旦开启FPU功能,在处理单精度浮点运算的语句时就会用带V-开头的汇编指令进行编译。

如果编译器使能了FPU功能,而芯片未开启FPU单元,程序运行到浮点语句时就会出现异常。相反,如果编译器未使能FPU功能,芯片即使开启了FPU 单元,程序还是会按照未使能FPU的代码进行处理。

2.编译器中的FPU功能使能

以KEIL为例,在创建一个CORTEX-M4的工程后,在工程的options for target

“XXX”窗口的Target页面中选择是否开启fpu功能。如下图所示:

编译器通过该选项来判断是否使用V开头的浮点运算指令。

一旦选择“use FPU”功能,如果代码中带有单精度浮点运算的代码,编译器就会使用带V的FPU单元汇编指令,无论芯片是否开启了FPU单元功能。如果选择不使用FPU功能,即使芯片开启了FPU单元,编译器一样不会采用带V的汇编指令。

3. 例程分析

下面用一个实例来分析开启、关闭FPU单元的程序处理。

先上代码:

001. static float fDat1 = 0.0;

002. static float fDat2 = 0.01;

003. //******************************************

004. // fpu test.

005. //******************************************

006. int main(void)

007. {

008. int i;

009. FPUEnable();

010. FPUStackingEnable();

011. for (i = 0; i <100; i++)

012. {

013. fDat1 = fDat1 + fDat2;

014. }

015. }

其中011.~014. 行在开启编译器FPU功能后,编译出来的代码为:

MOVS r0, #0x00

VLDR s0, [r1,#0x04]

VLDR s1, [r1,#0x00]

ADDS r0, r0, #1

CMP r0, #0x64

VADD.F32 s1,s1,s0

VSTR s1, [r1, #0x00]

BLF 0x00000316

其中红色标注的都是以V-开头的汇编代码,这些代码在FPU单元中运行。

如果关闭编译器的FPU功能,编译出来的代码如下:

MOVS r4, #0x00

LDR r6, [r5,#0x04]

LDR r0, [r5, #0x00]

MOV r1, r6

BL.W __aeabi_fadd(0x0000029C)

ADDS r4, r4, #1

STR r0, [r5, #0x00]

CMP r4, #0x64

BLT 0x00000430

其中红色标注部分是程序执行浮点加法运算的部分,调用了单精度浮点运算的库函数。

位单精度浮点数的IEEE表示法

32位单精度浮点数的IEEE表示法 float 共计32位(4字节) 31位是符号位,1表示该数为负,0反之 30~23位,一共8位是指数位(-128~127) 22~ 0位,一共23位是尾数位,尾数的编码一般是原码和补码 IEEE标准从逻辑上用三元组{S,E,M}表示一个数N,如下图所示: n,s,e,m分别为N,S,E,M对应的实际数值,而N,S,E,M仅仅是一串二进制位。其中, S(sign)表示N的符号位。对应值s满足:n>0时,s=0; n<0时,s=1。E(exponent)表示N的指数位,位于S和M之间的若干位。对应值e值也可正可负。 M(mantissa)表示N的尾数位,恰好,它位于N末尾。M也叫有效数字位(sinificand)、系数位(coefficient), 甚至被称作“小数”。

IEEE标准754规定了三种浮点数格式:单精度、双精度、扩展精度。前两者正好对应C语言里头的float、double或者FORTRAN里头的real、double精度类型。限于篇幅,本文仅介绍单精度、双精度浮点格式。★单精度:N共32位,其中S占1位,E占8位,M占23位。 ★双精度:N共64位,其中S占1位,E占11位,M占52位。 值得注意的是,M虽然是23位或者52位,但它们只是表示小数点之后的二进制位数,也就是说,假定 M为“010110011...”, 在二进制数值上其实是“.010110011...”。而事实上,标准规定小数点左边还有一个隐含位,这个隐含位通常,哦不,应该说绝大多数情况下是1,那什么情况下是0呢?答案是N 对应的n非常小的时候,比如小于 2^(-126)(32位单精度浮点数)。不要困惑怎么计算出来的,看到后面你就会明白。总之,隐含位算是赚来了一位精度,于是M对应的m最后结果可能是"m=1.010110011...”或者“m=0.010110011...” 计算e、m 首先将提到令初学者头疼的“规格化(normalized)”、“非规格化(denormalized)”。掌握它以后你会发现一切都很优雅,更美妙的是,规格化、 非规格化本身的概念几乎不怎么重要。请牢记这句话:规格化与否全看指数E! 下面分三种情况讨论E,并分别计算e和m: 1、规格化:当E的二进制位不全为0,也不全为1时,N为规格化形式。此时e被解释为表示偏置(biased)形式的整数,e值计算公式如下图所示: 上图中,|E|表示E的二进制序列表示的整数值,例如E为"10000100",则 |E|=132,e=132-127=5 。 k则表示E的位数,对单精度来说,k=8,则bias=127,对双精度来说,k=11,则bias=1023。 此时m的计算公式如下图所示: 标准规定此时小数点左侧的隐含位为1,那么m=|1.M|。如M="101",则 |1.M|=|1.101|=1.625,即 m=1.625 2、非规格化:当E的二进制位全部为0时,N为非规格化形式。此时e,m 的计算都非常简单。

浮点数结构详解

附录D What Every Computer Scientist Should Know About Floating-Point Arithmetic 注 – 本附录是对论文《What Every Computer Scientist Should Know About Floating- Point Arithmetic》(作者:David Goldberg,发表于 1991 年 3 月号的《Computing Surveys》)进行编辑之后的重印版本。版权所有 1991,Association for Computing Machinery, Inc.,经许可重印。 D.1摘要 许多人认为浮点运算是一个深奥的主题。这相当令人吃惊,因为浮点在计算机系统中是普 遍存在的。几乎每种语言都有浮点数据类型;从 PC 到超级计算机都有浮点加速器;多 数编译器可随时进行编译浮点算法;而且实际上,每种操作系统都必须对浮点异常(如 溢出)作出响应。本文将为您提供一个教程,涉及的方面包含对计算机系统设计人员产生 直接影响的浮点运算信息。它首先介绍有关浮点表示和舍入误差的背景知识,然后讨论 IEEE 浮点标准,最后列举了许多示例来说明计算机生成器如何更好地支持浮点。 类别和主题描述符:(主要)C.0 [计算机系统组织]:概论—指令集设计;D.3.4 [程 序设计语言]:处理器—编译器,优化;G.1.0 [数值分析]:概论—计算机运算,错 误分析,数值算法(次要) D.2.1 [软件工程]:要求/规范—语言;D.3.4 程序设计语言]:正式定义和理论— 语义;D.4.1 操作系统]:进程管理—同步。 一般术语:算法,设计,语言 其他关键字/词:非规格化数值,异常,浮点,浮点标准,渐进下溢,保护数位,NaN, 溢出,相对误差、舍入误差,舍入模式,ulp,下溢。 D-1

单精度浮点数与机器精度解析

单精度浮点数与机器精度解析 一、单精度浮点数 先来简单了解一下浮点数在计算机中的存储方式。根据IEEE 754标准,单精度浮点数格式如下(所有位取0): 各部分解释 单精度浮点数有32个二进制位,左侧是高位,右侧是低位。最高位被指定为符号位,0代表正数,1代表负数。指数部分将是2的幂次,其编码值(即上表指数部分对应的八个二进制位)规定为指数的实际值加上偏移值2^7-1=127,这是为了避免负数,将[-127, 128]映射到[0, 255],这样指数部分编码就可以简单地编排为[00000000, 11111111]。例如指数部分为00001000,十进制为8。那么其所代表的实际指数是8-127=-119,即要乘上2-119。最后23位尾数是不包含整数位的实际有效小数位。规约数的整数位是1,非规约数的整数位是0。 规约形式的浮点数与非规约形式的浮点数 指数部分的编码值在[1, 2e-2]内,且尾数部分的整数位是1,这样的浮点数被称为规约形式的浮点数。 指数部分的编码值为0,尾数非零,这样的浮点数被称为非规约形式的浮点数。 规约浮点数的尾数∈[1, 2),而非规约浮点数的尾数∈(0, 1)。需要注意,非规约数指数编码为00000000,但指数实际值是-126,而非-127。非规约浮点数被IEEE 754-1985标准采用是因为它的渐进式下溢出,而规约浮点数将导致突然式下溢出,具体原理不再展开。 实际计算 设符号位为s。sign(s)确定正负:sign(0)=1,sign(1)=-1;指数部分为e;尾数部分为f。用(N)2表示二进制数N。 规约形式:sign(s)*2e-127*(1.f)2 非规约形式:sign(s)*2-126*(0.f)2 特殊值和极值

浮点数的表示和基本运算

浮点数的表示和基本运算 1 浮点数的表示 通常,我们可以用下面的格式来表示浮点数 S P M 其中S是符号位,P是阶码,M是尾数 对于IBM-PC而言,单精度浮点数是32位(即4字节)的,双精度浮点数是64位(即8字节)的。两者的S,P,M所占的位数以及表示方法由下表可知 S P M表示公式偏移量 1823(-1)S*2(P-127)*1.M127 11152(-1)S*2(P-1023)*1.M1023 以单精度浮点数为例,可以得到其二进制的表示格式如下 S(第31位)P(30位到 23位) M(22位到 0位) 其中S是符号位,只有0和1,分别表示正负;P是阶码,通常使用移码表示(移码和补码只有符号位相反,其余都一样。对于正数而言,原码,反码和补码都一样;对于负数而言,补码就是其绝对值的原码全部取反,然后加1.) 为了简单起见,本文都只讨论单精度浮点数,双精度浮点数也是用一样的方式存储和表示的。 2 浮点数的表示约定 单精度浮点数和双精度浮点数都是用IEEE754标准定义的,其中有一些特殊约定。 (1) 当P = 0, M = 0时,表示0。 (2) 当P = 255, M = 0时,表示无穷大,用符号位来确定是正无穷大还是负无穷大。

(3) 当P = 255, M != 0时,表示NaN(Not a Number,不是一个数)。 当我们使用.Net Framework的时候,我们通常会用到下面三个常量 Console.WriteLine(float.MaxValue); // 3.402823E+38 Console.WriteLine(float.MinValue); //-3.402823E+38 Console.WriteLine(float.Epsilon); // 1.401298E-45 //如果我们把它们转换成双精度类型,它们的值如下 Console.WriteLine(Convert.ToDouble(float.MaxValue)); // 3.40282346638529E+38 Console.WriteLine(Convert.ToDouble(float.MinValue)); //-3.40282346638529E+38 Console.WriteLine(Convert.ToDouble(float.Epsilon)); // 1.40129846432482E-45 那么这些值是如何求出来的呢? 根据上面的约定,我们可以知道阶码P的最大值是11111110(这个值是254,因为255用于特殊的约定,那么对于可以精确表示的数来说,254就是最大的阶码了)。尾数的最大值是11111111111111111111111。 那么这个最大值就是:0 11111110 11111111111111111111111。 也就是 2(254-127) * (1.11111111111111111111111)2 = 2127 * (1+1-2-23) = 3.40282346638529E+38 从上面的双精度表示可以看出,两者是一致的。最小的数自然就是- 3.40282346638529E+38。 对于最接近于0的数,根据IEEE754的约定,为了扩大对0值附近数据的表示能力,取阶码P = -126,尾数 M = (0.00000000000000000000001)2 。此时该数的二进制表示为:0 00000000 00000000000000000000001 也就是2-126 * 2-23 = 2-149 = 1.40129846432482E-45。这个数字和上面的Epsilon 是一致的。 如果我们要精确表示最接近于0的数字,它应该是 0 00000001 00000000000000000000000 也就是:2-126 * (1+0) = 1.17549435082229E-38。 3 浮点数的精度问题 浮点数以有限的32bit长度来反映无限的实数集合,因此大多数情况下都是一个近似值。同时,对于浮点数的运算还同时伴有误差扩散现象。特定精度下看似

单精度浮点数的转换和解析

1 单精度浮点数的转换和解析 工业现场通信经常遇到浮点数解析的问题,如果需要自己模拟数据而又不懂浮点数解析的话会很麻烦!很久以前根据modbus 报文格式分析得到的,供大家参考。 浮点数保存的字节格式如下: 地址 +0 +1 +2 +3 内容 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM 这里 S 代表符号位,1是负,0是正 E 偏移127的幂,二进制阶码=(EEEEEEEE)-127。 M 24位的尾数保存在23位中,只存储23位,最高位固定为1。此方法用最较少的位数实现了 较高的有效位数,提高了精度。 零是一个特定值,幂是0 尾数也是0。 浮点数-12.5作为一个十六进制数0xC1480000保存在存储区中,这个值如下: 地址 +0 +1 +2 +3 内容0xC1 0x48 0x00 0x00 浮点数和十六进制等效保存值之间的转换相当简单。下面的例子说明上面的值-12.5如何转 换。 浮点保存值不是一个直接的格式,要转换为一个浮点数,位必须按上面的浮点数保存格式表 所列的那样分开,例如: 地址 +0 +1 +2 +3 格式 SEEE EEEE EMMM MMMM MMMM MMMM MMMM MMMM 二进制 11000001 01001000 00000000 00000000 十六进制 C1 48 00 00 从这个例子可以得到下面的信息: 符号位是1 表示一个负数 幂是二进制10000010或十进制130,130减去127是3,就是实际的幂。 尾数是后面的二进制数10010000000000000000000

浮点数表示方法与运算

在计算机系统的发展过程中,曾经提出过多种方法表达实数,典型的比如定点数。在定点数表达方式中,小数点位置固定,而计算机字长有限,所以定点数无法表达很大和很小的实数。最终,计算机科学发展出了表达范围更大的表达方式——浮点数,浮点数也是对实数的一种近似表达。 1.浮点数表达方式 我们知道任何一个R 进制数N 均可用下面的形式表示:N R =±S ×R ±e 其中,S—尾数,代表N 的有效数字; R—基值,通常取2、8、16;e—阶码,代表N 的小数点的实际位置(相当于数学中的指数)。 比如一个十进制数的浮点表达1.2345×102,其中1.2345为尾数,10为基数,2为阶码。一个二进制数的浮点表达0.001001×25,0.001001为尾数,2为基数,5为阶码;同时0.001001×25也可以表示成0.100100×23,0.100100为尾数,2为基数,3为阶码。浮点数就是利用阶码e 的变化达到浮动小数点的效果,从而灵活地表达更大范围的实数。 2.浮点数的规格化 一个数用浮点表示时,存在两个问题:一是如何尽可能多得保留有效数字;二是如何保证浮点表示的唯一。 对于数0.001001×25,可以表示成0.100100×23、0.00001001×27等等,所以对于同一个数,浮点有多种表示(也就是不能唯一表示)。另外,如果规定尾数的位数为6位,则0.00001001×27会丢掉有效数字,变成0.000010×27。因此在计算机中,浮点数通常采用规格化表示方法。 当浮点数的基数R 为2,即采用二进制数时,规格化尾数的定义为:1/2<=|S|<1。若尾数采用原码(1位符号位+n 位数值)表示,[S]原=S f S 1S 2S 3…S n (S f 为符号位的数符),则满足S 1=1的数称为规格化数。即当尾数的最高有效位S 1=1,[S]原=S f 1S 2S 3…S n ,表示该浮点数为规格化数。对0.001001×25进行规格化后,表示为0.100100×23。 3.浮点数的表示范围 求浮点数的表示范围,实质是求浮点数所能表示的最小负数、最大负数、最小正数和最大正数。

单精度浮点乘法器

EDA/SOPC课程设计报告题目:单精度浮点乘法器 姓名:张恺 学号:120260230 同组人:刘龙 指导教师:王晨旭 成绩:

目录 目录................................................................................................................................................... II 第1章课程设计的要求 . (1) 1.1 课程设计的目的 (1) 1.2 课程设计的条件 (1) 1.3 课程设计的要求 (1) 第2章课程设计的内容 (2) 2.1 设计思路 (2) 2.1.1 符合IEEE-754标准的单精度浮点乘法器规格 (2) 2.1.2 操作数类型 (2) 2.1.3 运算规则 (3) 2.1.4 逻辑门级框图 (3) 2.2 软件流程图 (4) 2.3 HDL代码阐述 (6) 2.4 Modelsim验证 (10) 2.4.1 验证代码 (10) 2.4.2 验证波形 (12) 2.5 硬件调试 (12) 2.5.1 基本说明 (12) 2.5.2 具体操作 (13) 2.6 虚拟机下的DC综合 (17) 2.7 虚拟机下的SDF反标仿真 (19) 第3章课程设计的心得 (20)

第1章课程设计的要求 1.1 课程设计的目的 ●通过课堂所讲授的内容以及私下查阅资料,自主完成课程设计的题目,提高编 程能力,培养用计算机解决实际问题的能力,积累调试程序的经验,更好的消化 老师课堂所讲授的内容,对Verilog这种语言也有了更深的了解; ●掌握较大工程的基本开发技能; ●培养综合运用Modelsim,ISE,Debussy工具进行硬件开发的能力; ●培养数字系统设计的基本能力; ●通过课设积累起的编程以及硬件的能力对于今后的考研抑或是找工作都有非常实 际性的效果; 1.2 课程设计的条件 ●设计条件1:gVim编辑器以及Mentor公司开发的FPGA仿真软件Modelsim; ●设计条件2:Xilinx公司开发的硬件设计工具ISE以及Xilinx公司的开发板; ●设计条件3:虚拟机环境下的Linux系统具有的Design Compiler工具; ●设计条件4:虚拟机环境下的Linux系统具有的SDF工具以及Debussy工具; 1.3 课程设计的要求 ●设计要求1:能够在Modelsim工具下正确的完成程序的编译以及成功的实现波 形的仿真; ●设计要求2:能够在ISE工具下正确的完成程序的综合以及合理的绑定管脚并成 功的将程序下载到开发板里,在开发板中实现程序的功能; ●设计要求3:能够在虚拟机的Linux系统下采用Design Compiler完成逻辑综 合,并且评估其时序面积; ●设计要求4:能够在虚拟机的Linux系统下完成SDF反标仿真;

浮点数的加减乘除运算步骤

设两个浮点数X=Mx※2Ex Y=My※2Ey 实现X±Y要用如下5步完成: ①对阶操作:小阶向大阶看齐 ②进行尾数加减运算 ③规格化处理:尾数进行运算的结果必须变成规格化的浮点数,对于双符号位的补码尾数来说,就必须是001×××…×× 或110×××…××的形式, 若不符合上述形式要进行左规或右规处理。 ④舍入操作:在执行对阶或右规操作时常用“0”舍“1”入法将右移出去的尾数数值进行舍入,以确保精度。 ⑤判结果的正确性:即阶码是否溢出 若阶码下溢(移码表示是00…0),要置结果为机器0; 若阶码上溢(超过了阶码表示的最大值)置溢出标志。 例题:假定X=0 .0110011*211,Y=0.1101101*2-10(此处的数均为二进制)?? 计算X+Y;解:[X]浮:0 1010 1100110 [Y]浮:0 0110 1101101 符号位阶码尾数 第一步:求阶差:│ΔE│=|1010-0110|=0100 第二步:对阶:Y的阶码小,Y的尾数右移4位 [Y]浮变为0 1010 0000110 1101暂时保存 第三步:尾数相加,采用双符号位的补码运算 00 1100110 +00 0000110 00 1101100 第四步:规格化:满足规格化要求 第五步:舍入处理,采用0舍1入法处理 故最终运算结果的浮点数格式为:0 1010 1101101, 即X+Y=+0. 1101101*210

①阶码运算:阶码求和(乘法)或阶码求差(除法) 即[Ex+Ey]移= [Ex]移+ [Ey]补 [Ex-Ey]移= [Ex]移+ [-Ey]补 ②浮点数的尾数处理:浮点数中尾数乘除法运算结果要进行舍入处理 例题:X=0 .0110011*211,Y=0.1101101*2-10 求X※Y 解:[X]浮:0 1 010 ******* [Y]浮:0 0 110 1101101 第一步:阶码相加 [Ex+Ey]移=[Ex]移+[Ey]补=1 010+1 110=1 000 1 000为移码表示的0 第二步:原码尾数相乘的结果为: 0 10101101101110 第三步:规格化处理:已满足规格化要求,不需左规,尾数不变,阶码不变。第四步:舍入处理:按舍入规则,加1进行修正 所以X※Y= 0.1010111※2+000

IEEE-754 32位单精度浮点数计算VB源码

VB IEEE-754 32位单精度浮点数计算源码 Option Explicit Private Function GetData(TmpHex As String) As String Dim TmpBin As String Dim TmpMi As Integer On Error Resume Next TmpBin = HexToBin(TmpHex) Label1.Caption = TmpBin & " 长度" & Len(TmpBin) & "位,第1位1为负数,0为正数" TmpMi = BinToOct(Mid(TmpBin, 2, 8)) - 127 GetData = Round(BinToOct("1." & Mid(TmpBin, 10, 23)) * (2 ^ TmpMi), 6) If Left(TmpBin, 1) = "1" Then GetData = "-" & GetData End Function Private Function HexToBin(TmpHex As String) As String Dim n As Integer Dim I As Integer Dim TmpBin As String On Error Resume Next For n = 1 To Len(TmpHex) I = Val("&H" & Mid(TmpHex, n, 1)) TmpBin = "" While I > 0 TmpBin = CStr(I Mod 2) & TmpBin I = I \ 2 Wend HexToBin = HexToBin & Right("0000" & TmpBin, 4) Next n End Function Private Function BinToOct(TmpBin As String) As Double Dim n As Integer Dim TmpS() As String On Error Resume Next TmpS = Split(TmpBin, ".") For n = 1 To Len(TmpS(0)) If Mid(TmpS(0), n, 1) = "1" Then BinToOct = BinToOct + (2 ^ (Len(TmpS(0)) - n)) Next n

十进制数和单精度浮点数的相互转换

将十进制数转换成浮点格式(real*4) [例1]: 十进制26.0转换成二进制 11010.0 规格化二进制数 1.10100*2^4 计算指数 4+127=131 符号位指数部分尾数部分 0 10000011 10100000000000000000000 以单精度(real*4)浮点格式存储该数0100 0001 1101 0000 0000 0000 0000 0000 0x41D0 0000 [例2]: 0.75 十进制0.75转换成二进制 0.11 规格化二进制数 1.1*2^-1 计算指数 -1+127=126 符号位指数部分尾数部分 0 01111110 10000000000000000000000 以单精度(real*4)浮点格式存储该数0011 1111 0100 0000 0000 0000 0000 0000 0x3F40 0000 [例3]: -2.5 十进制-2.5转换成二进制 -10.1 规格化二进制数 -1.01*2^1 计算指数 1+127=128 符号位指数部分尾数部分 1 10000000 01000000000000000000000 以单精度(real*4)浮点格式存储该数1100 0000 0010 0000 0000 0000 0000 0000 0xC020 0000

将浮点格式转换成十进制数 [例1]: 0x00280000(real*4) 转换成二进制 00000000001010000000000000000000 符号位指数部分(8位)尾数部分 0 00000000 01010000000000000000000 符号位=0;因指数部分=0,则:尾数部分M为m: 0.01010000000000000000000=0.3125 该浮点数的十进制为: (-1)^0*2^(-126)*0.3125 =3.6734198463196484624023016788195e-39 [例2]: 0xC04E000000000000(real*8) 转换成二进制1100000001001110000000000000000000000000000000000000000000000000 符号位指数部分(11位)尾数部分 1 10000000100 1110000000000000000000000000000000000000000000000000 符号位=1;指数=1028,因指数部分不为全'0'且不为全'1',则:尾数部分M为1+m:1.1110000000000000000000000000000000000000000000000000=1.875 该浮点数的十进制为: (-1)^1*2^(1028-1023)*1.875 =-60

浮点数计算方式

2.3.4二进制转10进制及10进制转为二进制 【例2-3-4】 把二进制110.11转换成十进制数,及十进制转为二进制。 解: (110.11)2 =1×22+1×21+1×20+1×2-1+1×2-2 =4+2+0+0.5+0.25=(6.75)10 把十进制转换为二进制 解: 2 6 0 2 3 1 1 1 所以实数部分为110 0.75×(2×2-1)=0.75×2×2-1 =1×2-1+0.5×2-1 =1×2-1+1×2-2 所以结果为:(110.11)2 2.3.5 浮点数在计算机中存储形式 当前主流微机中广泛采用的IEEE754标准浮点格式。 按IEEE754标准,常用的浮点数(32位短实数)的格式如图2-3所示。

IEEE754标准浮点格式 N=2e.M (M为浮点尾数,为纯小数,e为浮点数的指数(阶码))尾数部分决定了浮点数的精度,阶码决定了表示范围32为浮点数(IEEE754标准格式0—22为尾数M,23-30为阶码E,31为符号位S),阶码用移码表示。阶码E=指数真值e+127 规格化真值x=(-1)^S*(1.M)*2^(E-127) 将(82.25)10 转换成短浮点数格式。 1)先将(82.25)10 转换成二进制数 (82.25)10 =(1010010.01)2 2)规格化二进制数(1010010.01)2 1010010.01=1.01001001×2 6 尾数M=01001001 3)计算移码表示的阶码=偏置值+阶码真值: E=127+6=133=10000101 4)以短浮点数格式存储该数 因此:符号位=0 S=0表示该数为正数 阶码=10000101 由3)可得 尾数=01001001000000000000000 由2)可得;尾数为23位, 不足在后面添15位0 所以,短浮点数代码为: 0;10000101;01001001000000000000000 表示为十六进制代码为:42A48000H

浮点数(单精度浮点数与双精度浮点数)在计算机中的存储

浮点数在计算机中的存储 十进制浮点数格式: 浮点数格式使用科学计数法表示实数。科学计数法把数字表示为系数(coefficient)(也称为尾数(mantissa)),和指数(exponent)两部分。比如3.684*10^2. 在十进制中,指数的基数为10,并且表示小数点移动多少位以生成系数。每次小数点向前移动时,指数就递增;每次小数点向后移动时,指数就递减。例如,25.92 可表示为2.592 * 10^1,其中2.592 是系数,值10^1 是指数。必须把系数和指数相乘,才能得到原始的实数。另外,如0.00172 可表示为1.72*10^-3,数字1.72 必须和10^-3 相乘才能获得原始值。 二进制浮点格式: 计算机系统使用二进制浮点数,这种格式使用二进制科学计数法的格式表示数值。数字按照二进制格式表示,那么系数和指数都是基于二进制的,而不是十进制,例如1.0101*2^2. 在十进制里,像0.159 这样的值,表示的是0 + (1/10) + (5/100) + (9/1000)。相同的原则也适用二进制。比如,1.0101 乘以2^2 后,生成二进制值101.01 ,这个值表示二进制整数5,加上分数(0/2) + (1/4) 。这生成十进制值5.25 。下表列出几个二进制 编写二进制浮点值时,二进制通常被规格化了。这个操作把小数点移动到最左侧的数位,并且修改指针进行补偿。例如1101.011 变成1.101011*2^3 浮点数的存储 ?IEEE 标准754 浮点数标准使用3 个成分把实数定义为二进制浮点值: ?符号 ?有效数字

?指数 符号位表示值是负的还是正的。符号位中的1 表示负值,0 表示正值。 有效数字部分表示浮点数的系数(coefficient)(或者说尾数(mantissa))。系数可以是规格化的(normalized),也可以是非规格化的(denormalized)。所谓规格化,就是任何一个数的科学计数法的表示都可为1.xxx*2^n,既然小数点左边的一位都是1,就可以把这一位省略。单精度浮点数23bit的尾数部分,可表示的精度却为24位,道理就在这里。 指数表示浮点数的指数部分,是一个无符号整数。因为指数值可以是正值,也可以是负值,所以通过一个偏差值对它进行置偏,及指数的真实值=指数部分的整数—偏差值。对于32位浮点数,偏差值=127;对于64位浮点数,偏差值=1023. 浮点数的这3 个部分被包含在固定长度的数据格式之内。IEEE 标准754 定义了浮点数的两种长度:32位单精度和64位双精度 可以用于表示有效数字的位的数量决定精度。下图显示了两种不同精度类型的位布局: 单精度浮点使用23 位有效数字值。但是,浮点格式假设有效数字的整数部分永远为1 ,并且不在有效数字值中使用它。这样实际上有效数字的精度达到了24 位。指数使用8 位值,它的范围从0~255,称为移码指数,意思是必须从指数中减去一个数(称为偏移量或者是偏差值),对单精度浮点数而言,这个值是127 。当指数是0和255时,指数由别的含义,因此实际指数的范围是从-126 到+127 (二进制指数),这样整个浮点数的范围则为:(1.18 * 10^-38~1.0×2……-126 到3.40 * 10^38~1.1……1×2^127)。 ?指数0和255用于特殊用途。如果指数从1变化到254,则由s(符号位)、e(指数)和f(有效数)来表示的数为: ?

浮点数在计算机中的存储方式

C语言和C#语言中,对于浮点类型的数据采用单精度类型(float)和双精度类型(double)来存储,float数据占用32bit,double数据占用64bit,我们在声明一个变量float f= 2.25f的时候,是如何分配内存的呢?如果胡乱分配,那世界岂不是乱套了么,其实不论是float还是double在存储方式上都是遵从IEEE 的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。 无论是单精度还是双精度在存储中都分为三个部分: 1.符号位(Sign) : 0代表正,1代表为负 2.指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移 位存储 3.尾数部分(Mantissa):尾数部分 其中float的存储方式如下图所示: 而双精度的存储方式为: R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25 用十进制的科学计数法表示就为:8.25*,而120.5可以表示 为:1.205*,这些小学的知识就不用多说了吧。而我们傻蛋计算机根本不认 识十进制的数据,他只认识0,1,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,我靠,不会连这都不会转换吧?那我估计要没辙了。120.5用二进制表示为:1110110.1用二进制的科学计数法表示1000.01可以表示为

1.0001*,1110110.1可以表示为1.1101101*,任何一个数都的科学计 数法表示都为1.xxx*,尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据+127,下面就看看8.25和120.5在内存中真正的存储方式。 首先看下8.25,用二进制的科学计数法表示为:1.00001* 按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,故8.25的存储方式如下图所示: 而单精度浮点数120.5的存储方式如下图所示:

浮点运算

STM32-F4属于Cortex-M4构架,与M0、M3的最大不同就是有硬件浮点运算FPU,数学计算速度相比普通cpu运算快上几十倍。想要使用FPU首先包含#include “arm_math.h”,还有在keil的target选项中勾选use single precision。 1.1 简单的FPU运算性能测试 测试条件是开启一个100ms定时器,定时串口打印计算次数,优化级别是0,main函数中运行的代码如下: float a=1.1,b=1.2,c=1.3,d=1.4; 1、FPU运算474566次,CPU运算64688次,除法速度快了7.3倍多。 c = b / d; 2、FPU运算722169次,CPU运算244271次,乘法运算快了3倍。FPU的乘法运算比除法运算快1.5倍。 c = b * d; 3、FPU运算19398次,CPU运算19628次,FPU的双精度除法运算没有优势,比单精度运算慢了24.5倍 c = b / 1.4; 4、FPU运算503321次,CPU运算65450次,单精度常数和变量的运算差不多,单精度常数的除法快6%左右,这根编译器的关系比较大。 c = b / 1.4f; 5、FPU运算519073次,跟下面比较说明整形常数和单精度常数的除法运算速度几乎一样。

c = b / 3; 6、FPU运算519057次 c = b / 3.0f; 7、FPU运算263643次 c = arm_cos_f32(1.3f); 8、FPU运算3949次,说明IT给的DSP库运算速度还是很给力的,速度快了67倍 c = cos(1.3f); 1.2 代码设置 旧版本的keil设置如下,但是发现我使用的keil5包含的新固件库已经不需要这一步了。 如果没有启动FPU而使用数学函数运算时,CPU执行时认为遇到非法指令而跳转到HardFault_Handler()中断函数中死循环。因此,需要在系统初始化时开启FPU。在system_stm32f4xx.c中的SystemInit()函数中添加如下代码: /* FPU settings ------------------------------------------------------------*/ #if (__FPU_PRESENT == 1) && (__FPU_USED == 1) SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */ #endif 当__FPU_PRESENT=1且__FPU_USED=1时,编译时就加入了启动FPU的代码,CPU也就能正确高效的使用FPU进行简单的加减乘除。需要使用固件库自带的arm_math.h而非编译器自带的math.h,这个文件根据编译控制项(__FPU_USED ==1)来决定是使用哪一种函数方法:如果没有使用FPU,那就调用keil的标准math.h头文件中定义的函数;如果使用了FPU,那就是用固件库自带的优化函数来解决问题。

简单介绍CortexM4FPU单精度浮点运算单元

Cortex-M4 PFU单元介绍 近年,在Cortex-M3之后ARM公司又推出Cortex-M4内核,和之前的M3内核的区别之一就是M4带一个单精度浮点运算单元(PFU)。本文就FPU单元进行一个简单介绍,帮助工程师更快的理解FPU单元。 1.Cortext-M系列内核的指令集 从ARM公司发布的白皮书看,Cortex-M系列内核的指令集如下图所示: 从上图可以看出,Corte-M系列的指令是向下兼容的,M0/M1的指令最少,M0/M1 和M3的指令都使用于M4的芯片。 Cortex-M4的指令集分两部分,一部分是在M3的指令集外增加了一些扩展功能。另一部即上图中粉红色部分,就是用于FPU单元的单精度浮点运算指令。这部分指令都是用V-开头的汇编指令,仅在FPU功能被使能时使用。 需要注意的是FPU单元是指的芯片上的一个独立于CPU处理的浮点运算单元,整个单元在大多数厂家的芯片中都是可以被使能和关闭的。相对于芯片,编译器也设置了相应的FPU功能开启/关闭的选项,在编译时需要告诉编译器是否开启FPU功能。编译器一旦开启FPU功能,在处理单精度浮点运算的语句时就会用带V-开头的汇编指令进行编译。 如果编译器使能了FPU功能,而芯片未开启FPU单元,程序运行到浮点语句时就会出现异常。相反,如果编译器未使能FPU功能,芯片即使开启了FPU 单元,程序还是会按照未使能FPU的代码进行处理。 2.编译器中的FPU功能使能 以KEIL为例,在创建一个CORTEX-M4的工程后,在工程的options for target

“XXX”窗口的Target页面中选择是否开启fpu功能。如下图所示: 编译器通过该选项来判断是否使用V开头的浮点运算指令。 一旦选择“use FPU”功能,如果代码中带有单精度浮点运算的代码,编译器就会使用带V的FPU单元汇编指令,无论芯片是否开启了FPU单元功能。如果选择不使用FPU功能,即使芯片开启了FPU单元,编译器一样不会采用带V的汇编指令。 3. 例程分析 下面用一个实例来分析开启、关闭FPU单元的程序处理。 先上代码: 001. static float fDat1 = 0.0; 002. static float fDat2 = 0.01; 003. //****************************************** 004. // fpu test. 005. //****************************************** 006. int main(void) 007. { 008. int i; 009. FPUEnable(); 010. FPUStackingEnable(); 011. for (i = 0; i <100; i++) 012. { 013. fDat1 = fDat1 + fDat2; 014. } 015. }

浮点数的加减法运算

计算机组成与结构 之 浮点数的加减法运算 学生组所在学院:燕山大学信息学院 学生组所在班级:2014级计算机1 班 学生组姓名:陈朝俊张海傅晓欣曲佳彤

地址:中国河北省秦皇岛市河北大街438号邮编:066004 电话: 传真: 网址:

浮点数加减法运算简介 大型计算机和高档微型机中,浮点加减法运算是由硬件完成的。低档的微型机浮点加减法运算是由软件完成的,但不论用硬件实现还是软件实现,基本原理是一致的。 浮点加减法运算要经过对阶、尾数加减运算、结果规格化、舍入处理、溢出判断五步操作。其中尾数运算与定点加减法运算相同,而对阶、规格化、舍入和溢出判断,则是浮点加减法运算和定点加减法运算不同的操作之处。 在补码浮点运算中,阶码与尾数可以都用补码表示。在硬件实现的运算中,阶码和数符常采用双符号位。 浮点数的表示形式 浮点数的表示形式(假设以2为底): N=M·2E 其中,M为浮点数的尾数,一般为绝对值小于1的规格化二进制小数,用原码或补码形式表示;E为浮点数的阶码,一般是用移码或补码表示的整数。 阶码的底除了2以外,还有用8或16表示的,这里暂且只以2为底进行讨论。

浮点数加减法运算的步骤 设两浮点数X、Y进行加减运算,其中:X=M X·2EX,Y=M Y·2EY 一般由以下五个步骤完成:

规 格 化 浮 点 数 加 减 运 算 流 程 一、对阶 1.对阶是指将两个进行运算的浮点数的阶码对齐的操作。对阶的目

的是为了使两个浮点数的尾数能够进行加减运算。因为,当进行MX·2EX 与MY·2EY加减运算时,只有使两浮点数的指数值部分相同,才能将相同的指数值作为公因数提出来,然后进行尾数的加减运算。 2.对阶的具体方法是:首先求出两浮点数阶码的差,即ΔE=Ex-Ey,将小阶码加上ΔE,使之与大阶码相等,同时将小阶码对应的浮点数的尾数右移ΔE位,以保证该浮点数的值不变。 3.几点注意: (1)对阶的原则是小阶对大阶,因为若大阶对小阶,则尾数的数值部分的高位需移出,而小阶对大阶移出的是尾数的数值部分的低位,这样损失的精度更小。 (2)若ΔE=0,说明两浮点数的阶码已相同,无需再做对阶操作。(3)尾数右移时,对原码表示的尾数,符号位不参加移位,尾数数值部分的高位补0;对补码表示的尾数,符号位参加右移,并保持原符号位不变。 (4)由于尾数右移时是将最低位移出,会损失一定的精度,为减少误差,可先保留若干移出的位,供以后舍入处理用。 二、尾数的加减运算

浮点运算

简介 当我们用不同的电脑计算圆周率时,会发现一台电脑的计算较另一台来讲结果更加精确。或者我们在进行枪战游戏的时候,当一粒子弹击中墙壁时,墙上剥落下一块墙皮,同样的场面在一台电脑上的表现可能会非常的呆板、做作;而在另外一台电脑上就会非常生动形象,甚至与我们在现实中看到的所差无几。这都是浮点运算能力的差异导致的。 定点与浮点 大学计算机基础中已经了解过计算机的实数表示方法可分为两种即定点与浮点 1、定点数: 定点数指小数点在数中的位置是固定不变的,通常有定点整数和定点小数。在对小数点位置作出选择之后,运算中的所有数均应统一为定点整数或定点小数,在运算中不再考虑小数问题。 (1)定义:数据中小数点位置固定不变的数 (2)种类:定点整数 (3)小数点在符号位与有效位之间。 注:定点数受字长的限制,超出范围会有溢出。 2、浮点数: 浮点数的表示形式有点像科学计数法(*.*****×10^***),它的表示形式是0.*****×10^***,在计算机中的形式为 .***** e ±***),其中前面的星号代表定点小数,也就是整数部分为0的纯小数,后面的指数部分是定点整数。利用这样的形式就能表示出任意一个整数和小数,例如1024就能表示成0.1024×10^4,也就是 .1024e+004,3.1415926就能表示成0.31415926×10^1,也就是 .31415926e+001,这就是浮点数。浮点数进行的运算就是浮点运算。 注:其浮点数的精度由尾数决定,数的表示范围由阶码决定。 浮点数,这个复杂点,有三种格式 单精度:_31_30________23_22___________0 符号指数有效数 双精度:_63_62__________52_51__________________0 符号指数有效数 扩展精度数: _79_78____________64_63___________________0 符号指数有效数 3、定点数与浮点数区别 定点表示法运算直观,但数的表示范围较小,不同的数运算时要考虑比例因子的选取,以防止溢出。浮点表示法运算时可以不考虑溢出,但浮点运算,编程较难。要掌握定、浮点数的

相关主题
文本预览
相关文档 最新文档