当前位置:文档之家› 微分中值定理及其应用12237

微分中值定理及其应用12237

微分中值定理及其应用12237
微分中值定理及其应用12237

二、内容与要求

1.理解并会用罗尔定理、拉格朗日中值定理,知道泰勒定理,了解并会用柯西中值定理.

2.掌握用洛必达法则求未定式极限的方法.

3. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.

4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

重点罗尔定理、拉格朗日中值定理、用洛必达法则求未定式极限.

难点罗尔定理、拉格朗日中值定理、泰勒定理

三、概念、定理的理解与典型错误分析

定义3.1 若存在x0的某邻域,使得对一切,都有

则称为极大值(极小值),称x0为极大(小)值点。极大值、极小值统称为极值,极大值点、极小值点统称为极值点。

定理3.1(费马(Femat)定理)(取到极值的必要条件)

设f(x)在点x0处取到极值,且存在,则

反之不真,例如但f(0)不是极值。

费马定理常用于证明f(x)=0有一个根,找一个F(x),使证明F(x)在某点x0处取到极值且存在,由费马定理知即

定理3.2( 罗尔(Rolle)定理) 设f(x)在闭区间[a,b]上满足下列三个条件:

(1)f(x)在闭区间[a,b]上连续;(2)f(x)在开区间(a,b)内可导;(3)则至少存在一点使

推论在罗尔定理中,若f(a)=f(b)=0,则在(a,b)内必有一点,使即方程f(x)=0的两个不同实根之间,必存在方程f'(x)=0的一个根。

罗尔定理的应用:1 证明f(x)=0有一个根,找到一个F(x),使,验证F(x)在某闭区间[a,b]上满足罗尔定理条件,

则至少存在一点。2 证明适合某种条件的存在性:把待证含有的等式,通过分析转化为形式,对F(x)应用罗尔定理即可。

定理3.3(拉格朗日(Lanrange)定理) 若f(x)在闭区间[a,b]上满足下列二个条件:

(1)f(x)在闭区间[a,b]上连续 ; (2)f(x)在开区间(a,b)内可导,则至少存在一点

拉格朗日定理的结论常写成下列形式:

上式中当a>b时公式仍然成立,即不论a,b之间关系如何,总介于a,b之间,由

所以

拉格朗日定理是连结函数值与导函数值之间的一座桥梁,特别适合给出导数条件,要证明函数值关系的有关结论,就需要用到拉格朗日定理,拉格朗日定理主要应用是证明不等式.

定理3.4(单调性定理 ) 设f(x)在区间X(X可以是开区间,可以是闭区间,也可以是半闭半开区间,也可以无穷区间)上连续,在X内部可导(不需要在端点可导),

(1)若内部,则f(x)在区间X上递增。

(2)若内部,则f(x)在区间X上递减。

(3)若内部,则f(x)在区间X上是常值函数。

若(1)中,则f(x)在区间X上严格递增,

若(2)中,则f(x)在区间X上严格递减。

推论若f(x)在区间X上连续,在区间X内部可导,当内部,且f(x)在X的任何于区间上,则f(x)在区间X上严格递增(减)。

证由,知f(x)在区间X上递增,假设f(x)在X上不是严格递增,即存在

上递增,

所以任给,有从

所以与条件矛盾,故f(x)在区间X上严格递增,对于,同理可证f(x)在X上严格递减。

单调性定理及推论是证明函数在某区间上(严格)单调或是常值函数和求函数(严格)单调区间的重要方法。

定理3.5(柯西(Cau chy)定理) 设f(x),g(x)在闭区间[a,b]上满足下列条件:

(1)f(x),g(x)在[a,b]上连续

(2)f(x),g(x)在(a,b)内可导

(3),则至少存在一点使

证明与拉格朗日证明类似,只要把拉格朗日定理证明过程中b换成g(b),a换成g(a),x换成g(x)即可,读者可自证。

典型错误: 对f(x),g(x)在[a,b]上分别应用拉格朗日定理有

实际上分子、分母中的两个是不一样。

柯西定理也可以用来证明不等式及适合某种条件的存在性,但没有拉格朗日定理和罗尔定理用得多。

定理3.6(泰勒(Tay lor)定理) 设f(x)在区间X上存在n+1阶导数,对每一个任给

,有

其中是介于x0及x之间

称为拉格朗日余项, 当x0=0时,称为麦克劳林公式,即

称为麦克劳林余项。

定理3.7(佩亚诺(Peano)定理) 若f(x)在点x0处存在n阶导数,则

称为泰勒公式的佩亚诺余项.

相应的麦克劳林公式为

读者要记住5个常用函数的带有佩亚诺余项的麦克劳林公式

带有拉格朗日余项的泰勒公式可用以证明方程根的存在性、适合某种条件的存在性及各种不等式。带有佩亚诺余项的泰勒公式仅适用于求函数极限。

定理3.8(洛必达法则I ) 设

(1);

(2)存在的某邻域,当时,都存在,且;

(3),则.

定理3.9(洛必达法则II),设

(1);

(2)存在的某邻域,当时,都存在且;

(3),则.

1.上述两个法则中的改成时,条件(2)只须作相应的修改,结论依然成立。

2.在用洛必达法则求极限之前,应尽可能把函数化简,或把较复杂的因式用简单等价的因式来替换,以达到简化,再利用洛必达法则。

3.利用洛必达法则求极限时,可在计算的过程中论证是否满足洛必达法则的条件,若满足洛必达法则的条件,结果即可求出;若不满足,说明不能使用洛必达法则,则需用其它求极限的方法。此外,可重复使用洛必达法则,但只能用有限次。

例1若在点可导,则是否在的某邻域内可导或连续或极限存在.

答否.

例由

,知在处可导.

当时,但,知在处极限不存在,从而也不连续,更不可导.故在处可导,但在的任何邻域里除外均不可导,不连续,极限也不存在,

因此,我们在解题时,不能根据自己的感觉来得到结论,一定要根据定理、推论、性质、公式来得到所需的结果.

例2 若在点可导,则在的某邻域内有界吗?

答是.

由在点点可导,则在处必连续,利用连续的局部有界性知,存在,使

在内有界.

例3若在区间I上是单调函数且可导,那么在区间I上是单调函数吗?

答否.

例如:,由,知在()上严格

递增,但在上小于0,在()上大于0,故在()不是单调函数.

例4 如果可导数与当时,有,那么当时,必有,这种说法正确吗?

答不正确.

虽然函数的增长率比函数在同一点处的增长率大,但如果在处的初始值比

在处的初始值小,就不能保证对任意的,都有.

例如函数,,我们有

当时,.但是当时,有,

当时,有;当时,才有(图8-1)。

因此,利用导数的大小比较两个函数值的大小时,必须考虑起点处的两个函数值的大小.

上述问题如果加上初始相等:这一条件,那么结论一定正确,请读者自证.

例5设函数在包含点的开区间内可导,如果,由此可以断定在点的某邻域内单调增吗?

答不可以.

例如函数根据导数的定义,有

而当时,有.

在处,有

但在处,却有当时,,因此在点

的任何邻域内,的取值有正有负,

从而在的任何邻域内都不是单调的,如果不然,不妨假定在点的一邻域

内单调增,那么对充分小的,使仍属于该邻域,

则有,于是.

这与相矛盾.

例6 如果函数在处有极大值,能否肯定存在点的邻域,使在左邻域内单调增加,而在右邻域内单调减少?

答不能肯定.

我们知道,如果函数在的某邻域内连续,且在的左邻域单调增加,而在的右邻域单调减少,则在处一定有极大值,但是,这个结论反过来是不一定成立的.

例如,函数显然,是极大值,是极大值点.容易算出

取为自然数),当充分大量,与

都可进入的充分小邻域内,

由此可见,在点的右邻域内,无论多么小,总有这样的点与,使与

.因而函数不是单调的.同样,在点的左邻域内也是如此,其理由参阅问题例5最后一段.

例7最大(小)值一定是极大(小)值吗?反之极大(小)值一定是最大(小)值吗?

答不一定是.

极大(小)值的定义是存在,当时,都有,极值的必要条件是在的两侧要有定义

例如图8-2所示为最小值,为最大值,

但不是极小值,因为在的左侧没定义,

也不是极大值,同样是因为在的右侧没定义.

从图中还可以看出,为极大值但不是最大值,为极小值但不是最小值,因此,一般情形下,最大(小)值与极大(小)值没有关系,但若最大(小)值在区间内部取到,则一定为极大(小)值,故区间内部的极值点是最大(小)值的怀凝点.

例8. 求.

典型错误

点评已不是“”型,此时不能用洛必达法则。

解原式

例9. 求

典型错误

点评分子、分母都是的数列,关于不连续,更不可导,故不能利用洛必达法则。

解方法一

方法二

例10.

典型错误

点评实际上不是未定式,由,因此.

例11. 设存在且求

典型错误由而知由在处二阶可导,知在

处连续,有因此

由知又在处连续,有,于是

点评答案是正确的,但对用洛必达法则是错误的,因为从条件存在,推不出在0的某空心邻域内可导,不符合洛必达法则的第二条,且在不知是否连续,不能用

.

解故

例12. 求.

典型错误1

分析这里用了分次取极限是不正确的,因为当时,,而不可能出现,

典型错误2

点评我们知道1的任何数次幂为1中的数是指的数,而不是一个数,而是无穷大,因此,不能偷梁换柱,

解方法一

方法二

例13.

典型错误

由时,知

点评尽管结论正确,但解法错误,因为

不是“”型,时,,

因此,使用洛必达法则之前,必须验证条件是否适合,否则可能导致错误,甚至会出现结论正确、过程不合理的情形.

还要注意到洛必达法则的条件是充分条件,即满足条件结论一定成立,不满足条件结论可能成立也可能不成立,因此,我们就不能随便用.

例14. 求

典型错误

点评是“”,而中分子、分母的极限都不存在,已不属于“”

或“”型,不能再用洛必达法则。

四、解题方法与题例

1.证明方程根的存在性

把要证明的方程转化为f(x)=0的形式。对方程f(x)=0用下述方法:

(1)根的存在定理若函数f(x)在闭区间[a,b]上连续,且则至少存在一点

,使

(2) 若函数f(x)的原函数在[a,b]上满足罗尔定理的条件,则f(x)在(a,b)内至少有一个零值点.

(3) 若函数f(x)的原函数F(x)在某点x0处取极值,在x0处导数也存在,由费马定理知F'(x0)=0,即f(x0)=0。

(4) 实常系数的一元n次方程,当n为奇数时,至少有一个实根。

证设

由不妨设a0>0。由于当x>N0时,都有f(x)>1>0。

取b>N0,有f(b)>0,,当x<-N1时,都有f(x)<-1<0。

取a<-N1

(5) 实系数的一元n次方程在复数范围内有n个复数根,至多有n个不同的实数根。

(6) 若f(x)在区间X上连续且严格单调,则f(x)在X内至多有一个零值点。若函数在两端点的函数(或极限)值同号,则f(x)无零值点,若函数在两端点的函数(或极限)值异号,则f(x)有一个零值点。

(7) 求具体连续函数f(x)在其定义域内零值点的个数:首先求出f(x)的严格单调区间的个数,若有m个严格单调区间,则至多有m个不同的零值点。至于具体有几个,按照6研究每个严格单调区间是否有一个零值点。

(8) 用泰勒公式证明方程根的存在性.

(9) 在证明方程根的存在性的过程中,我们经常要用拉格朗日定理,积分中值定理,有时也用到柯西中值定理来证明满足方程根的存在性所需的条件,然后利用上述的方法来证明方程根的存在性。

例1设f(x)在上连续,在内可导,(k为常数),f(a)<0,证明至少存在一点。

证。在[a,x]上对f(x)应用拉格朗日中值定理得

要使f(x)>0,只要,只要取有f(b)>0,又f(x)在[a,b]上连续,且f(a)f(b)<0,由根的存在定理知至少存在一点

例2设f(x)在[0,1]上可微,,0f(x)=x。

证令,由F(x)在[0,1]上连续,

,由根的存在定理知,至少存在一点下面证唯一性。

假设存在知,对F (x)在上应用罗尔定理知,至少存在一点由,得即与相矛盾,故在(0,1)内有且仅有一个x,使f(x)=x。

例3. 设为任意的实常数,证明

在内必有一个零点。

分析由于,无法确定f(0)的符号,因此不能用根的存在定理,改用罗尔定理,关键是找的一个原函数,由于是具体的表达式,用求不定积分的方法可找到的一个原函数。

证令且由在

上连续,在内可导,由罗尔定理知至少存在一点使

注:巧妙地利用在特殊角的三角函数值相等这一条件,验证符合罗尔定理的条件.

例4. 设在上n次可导,证明至少存在一点使.

证法一将在处展成泰勒公式有

其中把代入上式得取得

其中由两边同除以得

.

证法二由在上满足罗尔定理条件,则至少存在一点使

由在上满足罗尔定理条件,则至少存在一点使如此下去,在上满足罗尔定理条件,则至少存在一点使

例5.设a,b为常数,若在(a,b)内连续,(常数)(常数)且证明至少存在一点使.

由在,中根的存在定理知至少存在一点使又时,故.

证明方程在区间内有且仅有两个不同的实根

由,

设求出由于令得且无导数不存在的点

由在,在内严格递增且在两端点函数知在内仅有一个零值点

内有且仅有两个零值点。

设方程就

令解得

列表

)当或即或时,方程仅有一个根

)当或,即时,方程有两个不同的根

)当且即时,方程有三个不同的根。

判断方程在有几个根,并证明之。

设由因此考虑区间当时,,而知在(

又时,知在

由于是偶函数所以在内仅有两个根

3<证明方程仅有一实根

设,由是奇次多项式,由第一章§

在()内至少有一个根,又,=36a2-4<知>()

证明适合某种条件下的存在性

设在上连续,在内可导且

,试证介于f(x)的两个零值点之间,至少有一个g(x)的根。

证由条件知存在,且,使用反证法。假设

对每一个令,知在上连续,在内可导,且,由罗尔定理知至少存在一点使,由

,得.

与对每一个相矛盾,所以假设不成立,故原结论成立。

例11. 设f(x)在上有二阶导数,且,又设

,则在(a,b)内至少存在一点,使=0。

证由且在上连续,在内可导,由罗尔定理知至少存在一点使,知,从而在上满足罗尔定理条件,至少存在一点,使。

注:读者也可尝试用泰勒公式展开去证,将在处展开,然后将代入即可。

例12.若在上可导,且,则至少存在一点,使

证要证结论成立,只要证成立,只要证

成立,只要证

成立,令只要证

(1)成立,由在上连续,在(a,b)内可导,由罗尔定理至少存在一点,使,即(1)式成立,由每一步可逆,故原等式成立。

例13.设(x)在[0,1]上有三阶导数,且(0)=(1)=0,设F=x3f(x)试证在(0、1)内至少存在一点,使=0

证将F(x)在x=0处展成泰勒公式

F=F(0)++其中。

又,于是。

令由代入上式有

注:读者也可用例27的方法去证明.

例14 .设在上连续,在内可导,且试证存在

使得.

证要证原等式成立,只要证

(1)

成立,由在上满足拉格朗定理条件,有

,又应用拉格朗定理知

知(1)式成立,故原等式成立。

3. 证明不等式

证明不等式的方法:

(1) 拉格朗日定理适用于已知函数导数的条件,证明涉及函数(值)的不等式

(2) 泰勒公式适用于已知函数的高阶导数的条件,证明涉及函数(值)或低阶导函数(值)的不等式.

(3)单调性定理.

(i)对于证明数的大小比较的不等式,转化为同一个函数在区间两端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明.

(ii) 对于证明函数大小比较的不等式,转化为同一个函数在区间内上任意一点函数值与区间端点函数(或极限)值大小的比较,利用函数在区间上的单调性进行证明.

(4)利用函数最大值,最小值证明不等式.

把待证的不等式转化为区间上任意一点函数值与区间上某点处的函数值大小的比较,然后证明

为最大值或最小值,即可证不等式成立。

(5)利用函数取到唯一的极值证明不等式.

把待证的不等式转化为区间上任意一点函值与区间内某点处的函数值大小的比较,然后证明

为唯一的极值且为极大值或极小值,即为最大值或最小值,即可证不等式成立。

(6)用柯西定理证明不等式..

(7)利用不等式:有

.

几何平均数算术平均数)等号仅当时成立。

例15.设a,b均为常数,在(a,b)内有界,证明在(a,b)内有界。

证由题意知在(a,b)内有界,即存在对一切都有

取(定点),对应用拉格朗定理得

(其中介于之间,有知,从而.

由为常数,故在内有界。

注:学会把语言给出的条件与结论转化为数学表达式。

例16. 设阶可导,且在(0,a)内某点取到最大值,对一切都有

(m为常数),证明。

证由在取到最大值,且知为极大值,又存在,由费马定理知于是

注:学会把题目中所给的条件利用不定定理或性质转化为我们所需的条件。

例17.当时,证明.

证由于在上满足拉格朗定理条件,且于是

其中由在上是严格递减函数,得

又各边同乘以得,即

.

注:把待证的不等式转化为有共同的形式,使得便于比较.

例18.证明时,.

证设上满足拉格朗定理条件,且于是

其中知由各边同乘以x得,

注:学会把隐藏的条件找出来,即然后就可以利用定理,这个结果以后可以作为结论用。

我们还可以证明时,.

事实上,当时,在上满足拉格朗定理条件,有

微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得 '()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,

微分中值定理及其应用

第六章微分中值定理及其应用 微分中值定理(包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理)是沟通导数值与函数值之间的桥梁,是利用导数的局部性质推断函数的整体性质的有力工具。中值定理名称的由来是因为在定理中出现了中值“ξ”,虽然我们对中值“ξ”缺乏定量的了解,但一般来说这并不影响中值定理的广泛应用. 1.教学目的与要求:掌握微分中值定理与函数的Taylor公式并应用于函数性质的研究,熟练应用L'Hospital法则求不定式极限,熟练应用导数于求解函数的极值问题与函数作图问题. 2.教学重点与难点: 重点是中值定理与函数的Taylor公式,利用导数研究函数的单调性、极值与凸性. 难点是用辅助函数解决有关中值问题,函数的凸性. 3.教学内容: §1 拉格朗日定理和函数的单调性 本节首先介绍拉格朗日定理以及它的预备知识—罗尔定理,并由此来讨论函数的单调性. 一罗尔定理与拉格朗日定理 定理6.1(罗尔(Rolle)中值定理)设f满足 (ⅰ)在[]b a,上连续; (ⅱ)在) a内可导; (b , (ⅲ)) a f= f ) ( (b

则),(b a ∈?ξ使 0)(='ξf (1) 注 (ⅰ)定理6.1中三条件缺一不可. 如: 1o ? ??=<≤=1 010 x x x y , (ⅱ),(ⅲ)满足, (ⅰ)不满足, 结论不成立. 2o x y = , (ⅰ),(ⅲ)满足, (ⅱ)不满足,结论不成立. 3o x y = , (ⅰ), (ⅱ)满足, (ⅲ)不满足,结论不成立. (ⅱ) 定理6.1中条件仅为充分条件. 如:[]1,1 )(2 2-∈?????-∈-∈=x Q R x x Q x x x f , f 不满足(ⅰ), (ⅱ), (ⅲ)中任一条,但0)0(='f . (ⅲ)罗尔定理的几何意义是:在每一点都可导的一段连续 曲线上,若曲线两端点高度相等,则至少存在一条水平切线. 例 1 设f 在R 上可导,证明:若0)(='x f 无实根,则0)(=x f 最多只有一个实根. 证 (反证法,利用Rolle 定理) 例 2 证明勒让德(Legendre)多项式 n n n n n dx x d n x P )1(!21)(2-?= 在)1,1(-内有n 个互不相同的零点. 将Rolle 定理的条件(ⅲ)去掉加以推广,就得到下面应用更为广

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

第五章微分中值定理及其应用答案

139 第五章 微分中值定理及其应用 上册P 178—180 习题解答 1. 设0)(0>'+x f ,0)(0<'-x f .证明0x 是函数)(x f 的极小值点 . 证 0)()(lim )(0000 <--='- →-x x x f x f x f x x ,?在点0x 的某左去心邻域内有 0) ()(0 0<--x x x f x f , 此时00<-x x ,?在点0x 的该左去心邻域内有 0)()(0>-x f x f , 即)()(0x f x f >; 0)()(lim )(0000 >--='+ →+x x x f x f x f x x ,?在点0x 的某右去心邻域内有0) ()(0 0>--x x x f x f , 此时00>-x x ,?在点0x 的该左去心邻域内有 0)()(0>-x f x f , 即)()(0x f x f >. 综上 , 在点0x 的某去心邻域内有)()(0x f x f >. 即0x 是函数)(x f 的极小值点 . 2. 举例说明 , Rolle 定理的三个条件都不满足 , 函数仍然可以存在水平的切线 . 解答: 例如函数 . 21 , 1, 12 , )(2? ??≤<-≤≤-=x x x x x f )(x f 定义在区间] 2 , 2 [-上 , )(x f 在 点1=x 间断 ,因此不满足在闭区间上连续和在开区间内可导的条件 , 并且4) 2(=-f , 而 1) 2 (=f , ≠-) 2(f ) 2 (f . 对区间] 2 , 2 [-上的这个函数)(x f , Rolle 定理的三个条件都 不满足 . 但是 , 0) 0 (='f , 该曲线上点) 0 , 0 (处的切线仍然是水平的 . 3. 设函数)(x f 在闭区间] , [b a 上连续 , 在开区间) , (b a 内可微 . ⑴ 利用辅助函数 1 )(1)(1)( )(b f b a f a x f x x =ψ. 证明Lagrange 中值定理 .

第六章 微分中值定理及其应用

第六章 微分中值定理及其应用 引言 在前一章中,我们引进了导数的概念,详细地讨论了计算导数的方法.这样一来,类似于求已知曲线上点的切线问题已获完美解决.但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具. 另一方面,我们注意到:(1)函数与其导数是两个不同的的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,因此如何解决这个矛盾?需要在导数及函数间建立起一一联系――搭起一座桥,这个“桥”就是微分中值定理. 本章以中值定理为中心,来讨论导数在研究函数性态(单调性、极值、凹凸性质)方面的应用. §6.1 微分中值定理 教学章节:第六章 微分中值定理及其应用——§6.1微分中值定理 教学目标:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础. 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之 间的包含关系. 教学重点:中值定理. 教学难点:定理的证明. 教学方法:系统讲解法. 教学过程: 一、一个几何命题的数学描述 为了了解中值定理的背景,我们可作以下叙述:弧? AB 上有一点P,该处的切线平行与弦AB.如何揭示出这一叙述中所包含的“数量”关系呢? 联系“形”、“数”的莫过于“解析几何”,故如建立坐标系,则弧? AB 的函数是y=f(x),x ∈[a,b]的图像,点P 的横坐标为x ξ=.如点P 处有切线,则f(x)在点x ξ=处可导,且切线的斜率为()f ξ';另一方面,弦AB 所在的直线斜率为()() f b f a b a --,曲线y=f(x)上点P 的切线平行于弦 AB ?()() ()f b f a f b a ξ-'= -. 撇开上述几何背景,单单观察上述数量关系,可以发现:左边仅涉及函数的导数,右边仅涉及

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

微分中值定理

微分中值定理 班级: 姓名: 学号:

摘要 微分中值定理是一系列中值定理的总称,是研究函数的有力工具,包括费马中值定理、罗尔定理、拉格朗日定理、柯西定理.以罗尔定理、拉格朗日中值定理和柯西中值定理组成的一组中值定理是一整个微分学的重要理论。它不仅沟通了函数与其导数的关系,而且也是微分学理论应用的桥梁,本文在此基础上,综述了微分中值定理在研究函数性质,讨论一些方程零点(根)的存在性,和对极限的求解问题,以及一些不等式的证明. 罗尔定理 定理1 若函数f 满足下列条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 几何意义: 在每一点都可导的连续曲线上,若端点值相等则在曲线上至少存在一条水平曲线。 (注:在罗尔定理中,三个条件有一个不成立,定理的结论就可能不成立.) 例1 若()x f 在[]b a ,上连续,在()b a ,内可导()0>a ,证明:在()b a ,内方程 ()()[]() ()x f a b a f b f x '222-=-至少存在一个根. 证明:令()()()[]()()x f a b x a f b f x F 222---= 显然()x F 在[]b a ,上连续,在()b a ,内可导,而且 ()()()()b F a f b a b f a F =-=22 根据罗尔定理,至少存在一个ξ,使

()()[]() ()x f a b a f b f '222-=-ξ 至少存在一个根. 例2 求极限: 1 2 20(12) lim (1) x x e x ln x →-++ 解:用22ln )(0)x x x →:(1+有 20 2 12 012 01(12)2lim (1) 1(12)2 lim (12)lim 2(12)lim 2212 x x x x x x x x e x In x e x x e x x e x →→-→- →-++-+=-+=++=== 拉格朗日中值定理 定理2:若函数f 满足如下条件: (1)在闭区间[,]a b 连续; (2)在开区间(,)a b 可导, 则在开区间(,)a b 内至少存在一点ξ,使得 ()() () f b f a f b a ξ-'=- 显然,特别当()()f a f b =时,本定理的结论即为罗尔中值定理的结论.这表明罗尔中值定理是拉格朗日中值定理的一种特殊情形. 拉格朗日中值定理的几何意义是:在满足定理条件的曲线()y f x =上至少存在一点(,())P f ξξ,该曲线在该点处的切线平行于曲线两端点的连线AB . 此外,拉格朗日公式还有以下几种等价表示形式,供读者在不同场合适用:

微分中值定理及其应用

分类号UDC 单位代码 密级公开学号 2006040223 四川文理学院 学士学位论文 论文题目:微分中值定理及其应用 论文作者:XXX 指导教师:XXX 学科专业:数学与应用数学 提交论文日期:2010年4月20日 论文答辩日期:2010年4月28日 学位授予单位:四川文理学院 中国 达州 2010年4月

目 录 摘要 .......................................................................... Ⅰ ABSTRACT....................................................................... Ⅱ 引言 第一章 微分中值定理历史 (1) 1.1 引言 ................................................................... 1 1.2 微分中值定理产生的历史 .................................................. 2 第二章 微分中值定理介绍 (4) 2.1 罗尔定理 ............................................................... 4 2.2 拉格朗日中值定理........................................................ 4 2.3 柯西中值定理 ........................................................... 6 第三章 微分中值定理应用 (7) 3.1 根的存在性的证明........................................................ 7 3.2 一些不等式的证明........................................................ 8 3.3 求不定式极限 .......................................................... 10 3.3.1 型不定式极限 .................................................... 10 3.3.2 ∞ ∞ 型不定式极限 .................................................... 11 3.4 利用拉格朗日定理讨论函数的单调性 ....................................... 12 第四章 结论 ................................................................... 14 参考文献....................................................................... 15 致谢 .. (16)

数学分析之微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。 一、引入新课:

通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.doczj.com/doc/8513596974.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证) 推论2 函数和在区间I上可导且

微分与积分中值定理及其应用

第二讲 微分与积分中值定理及其应用 1 微积分中值定理 0 微分中值定理 .......................................................................................... 0 积分中值定理 .......................................................................................... 2 2 微积分中值定理的应用 . (3) 证明方程根(零点)的存在性 ............................................................... 3 进行估值运算 .......................................................................................... 7 证明函数的单调性................................................................................... 7 求极限 ...................................................................................................... 8 证明不等式 . (9) 引言 Rolle 定理,Lagrange 中值定理,Cauchy 中值定理统称为微分中值定理。微分中 值定理是数学分析中最为重要的内容之一,它是利用导数来研究函数在区间上整体性质的基础,是联系闭区间上实函数与其导函数的桥梁与纽带,具有重要的理论价值与使用价值。 1 微积分中值定理 微分中值定理 罗尔(Rolle)定理: 若函数f 满足如下条件 (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )内可导; (ⅲ))()(b f a f =, 则在(a,b )内至少存在一点ξ,使得 0)(='ξf . 朗格朗日(Lagrange)中值定理: 设函数f 满足如下条件: (ⅰ)f 在闭区间[a,b]上连续; (ⅱ)f 在开区间(a,b )上可导; 则在(a,b )内至少存在一点ξ,使得 a b a f b f f --= ') ()()(ξ.

微分中值定理及其应用习题解析2

第六节 定积分的近似计算 1. 分别用梯形法和抛物线法近似计算 ?21x dx (将积分区间十等份) 解 (1)梯形法 ?21x dx ≈412.111.1121(1012+??+++-)6938.0≈ (2)抛物线法 ?21x dx =???++-(42 113012])8.116.114.112.11(2)9.117.115.113.111.11++++++++6932.0≈ 2. 用抛物线法近似计算dx x x ?π0sin 解 当n=2时,dx x x ?π 0sin ≈12π?? ?????+++πππ22)32222(41≈1.8524. 当n=4时,dx x x ?π 0sin ≈ 24π ??? ????????? ??+++??? ??++++πππππππππππ322222287sin 7885sin 5883sin 388sin 841 ≈1.8520. 当n=6时,dx x x ?π 0sin ≈ ??? ? ??+++++???? ??+?+++++πππππππππππππππ54332233321211sin 11122234127sin 712125sin 5122212sin 124136≈1.8517. 3..图10-27所示为河道某一截面图。试由测得数据用抛物线法求截面面积。 解 由图可知n=5,b-a=8. ? b a x f )(dx ≈()()[]864297531100245*68y y y y y y y y y y y ++++++++++ =()()[]85.075.165.185.0255.02.10.230.15.0400154++++++++++ =()2.102.2215 4+=8.64(m 2) (1)按积分平均 ?-b a t d t f a b )(求这一天的平均气温,其中定积分值由三种近视法分别计算;

微分中值定理历史与发展

微分中值定理历史与发展 卢玉峰 (大连理工大学应用数学系, 大连, 116024) 微分中值定理是微分学的基本定理之一, 研究函数的有力工具. 微分中值 定理有着明显的几何意义和运动学意义. 以拉格朗日(Lagrange) 定理微分中值定理为例,它的几何意义:一个定义在区间[]b a ,上的可微的曲线段,必有中一点()x f (b a ,)ξ, 曲线在这一点的切线平行于连接点())(,a f a 与割线.它的运动学意义:设是质点的运动规律,质点在时间区间()(,b f b )f []b a ,上走过的路程),()(a f b f ?a b a f b f ??)()(代表质点在()b a ,上的平均速度, 存在()b a ,的某一时刻ξ,质点在ξ的瞬时速度恰好是它的平均速度. 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在 几何研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的 底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes) 正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实: 曲线段上必有一点的切线平行于曲线的弦.这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了. 1637年,著名法国数学家费马(Fermat) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy) ,他是数学分析严格化运动的推动者,他的三部

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理及其在不等式的应用

安阳师范学院本科学生毕业论文微分中值定理及其应用 作者张在 系(院)数学与统计学院 专业数学与应用数学 年级2008级 学号06081090 指导老师姚合军 论文成绩 日期2010年6月

学生诚信承诺书 本人郑重承诺:所成交的论文是我个人在导师指导下进行的研究工作即取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包括其他人已经发表的或撰写的研究成果,也不包括为获得安阳师范学院或其他教育机构的学位或证书所需用过的材料。与我一同工作的同志对本研究所作出的任何贡献均已在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名:导师签名:日期

微分中值定理及其应用 张庆娜 (安阳师范学院 数学与统计学院, 河南 安阳455002) 摘 要:介绍了使用微分中值定理一些常见方法,讨论了洛尔中值定理、拉格朗日中值定理、柯西中值定理在证明中根的存在性、不等式、等式及判定级数的敛散性和求极限等方面的应用,最后通过例题体现微分中值定理在具体问题中的应用. 关键词:连续;可导;微分中值定理;应用 1 引言 人们对微分中值定理的认识可以上溯到公元前古希腊时代.古希腊数学家在几何研究中,得到如下论:“抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这正是拉格朗日定理的特殊情况.希腊著名数学家阿基米德(Archimedes )正是巧妙地利用这一结论,求出抛物弓形的面积. 意大利卡瓦列里(Cavalieri ) 在《不可分量几何学》(1635年) 的卷一中给出处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理. 人们对微分中值定理的研究,从微积分建立之始就开始了.1637,著名法国数学家费马(Fermat ) 在《求最大值和最小值的方法》中给出费马定理,在教科书中,人们通常将它称为费马定理.1691年,法国数学家罗尔(Rolle ) 在《方程的解法》一文中给出多项式形式的罗尔定理.1797年,法国数学家拉格朗日在《解析函数论》一书中给出拉格朗日定理,并给出最初的证明.对微分中值定理进行系统研究是法国数学家柯西(Cauchy ) ,他是数学分析严格化运动的推动者,他的三部巨著《分析教程》、《无穷小计算教程概论》 (1823年)、《微分计算教程》(1829年),以严格化为其主要目标,对微积分理论进行了重构.他首先赋予中值定理以重要作用,使其成为微分学的核心定理.在《无穷小计算教程概论》中,柯西首先严格地证明了拉格朗日定理,又在《微分计算教程》中将其推广为广义中值定理—柯西定理.从而发现了最后一个微分中值定理. 近年来有关微分中值定理问题的研究非常活跃,且已有丰富的成果,相比之下,对有关中值定理应用的研究尚不是很全面.由于微分中值定理是高等数学的一个重要基本内容,而且无论是对数学专业还是非数学专业的学生,无论是研究生入学考试还是更深层次的学术研究,中值定理都占有举足轻重的作用,因此有关微分中值定理应用的研究显得颇为必要. 2 预备知识 由于微分中值定理与连续函数紧密相关,因此有必要介绍一些闭区间上连续函数的性质、定理. 定理2.1[1](有界性定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有界.即常数0M > ,使得x [,]a b 有|()|f x M ≤. 定理2.2(最大、最小值定理) 若函数()f x 在闭区间[,]a b 上连续,则()f x 在[,]a b 上有最大值与最小值. 定理2.3(介值性定理) 设函数()f x 在闭区间[,]a b 上连续,且()()f a f b ≠.若μ为介于()f a 与()f b 之间的任意实数(()()f a f b μ<<或()()f b f a μ<<),则至少存在一点

数学分析简明教程答案数分5_微分中值定理及其应用

第五章 微分中值定理及其应用 第一节 微分中值定理 331231.(1)30()[0,1]; (2)0(,,),;(1)[0,1]30[0,1]()3n x x c c x px q n p q n n x x c x x f x x x c -+=++=-+=<∈=-+证明:方程为常数在区间内不可能有两个不同的实根方程为正整数为实数当为偶数时至多有两个实根当为奇数时,至多有三个实根。 证明:设在区间内方程有两个实根,即有使得函数 值为零012023(,)[0,1],'()0. '()33(0,1)(3,0)30()[0,1] (2)2220n x x x f x f x x x x c c n n k x px q x ∈?==---+=≤=>++=。那么由罗尔定理可知存在使得 但是在内的值域为是不可能有零点的,矛盾。因此有:方程为常数在区间内不可能有两个不同的实根。当时,方程至多只可能有两个实根,满足所证。 当时,设方程有三个实根,即存在实数1230112022301021 01011 0202()0 (,),(,),'()'()0,'()0 (*'()0n n n x x f x x px q x x x x x x f x f x f x nx p f x nx p --<<=++=∈∈==?=+=??=+=?? 使得函数 成立。那么由罗尔定理可知存在使得即 001022 0000102), (,),''(0)0,''()(1)0, 0,0,0. 2(*).212n n x x x f f x n n x x x x n k p n n k x px q -∈==-==<>==+>++ 再次利用罗尔定理可以知道,存在使得即 显然必有那么就有 那么由于为偶数,可以知道此时不存在满足式的实数因此当为偶数时方程至多有两个实根。 当时,设方程12341112122313341112131 11110()0(,),(,),(,)'()0,'()0,'()0,'()0'(n n x x x x f x x px q x x x x x x x x x f x f x f x f x nx p f x -=<<<=++=∈∈∈====+=有三个实根,即存在实数使得函数成立。那么利用罗尔定理可知存在 使得即有 1 12121 131321111222121321222 21212 2222212)0, '()0 (,),(,)''()''()0,''()(1)0 .''()(1)0 212,n n n n nx p f x nx p x x x x x x f x f x f x n n x f x n n x n k x x ----??=+=??=+=?∈∈==?=-=??=-=??=+>= 于是就存在使得即 由于于是此时必有221111222121321220;(,),(,),,0(,,)n x x x x x x x x n x px q n p q =∈∈<++=但是由于可知必有 出现了矛盾。 因此当为奇数时,方程为正整数为实数至多有三个实根。

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

最新3[1]1微分中值定理及其应用汇总

3[1]1微分中值定理 及其应用

3.2 微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:2学时 一、微分中值定理: 1. Rolle中值定理: 设函数在区间上连续,在内可导,且有.则?Skip Record If...?,使得?Skip Record If...?.

https://www.doczj.com/doc/8513596974.html,grange中值定理: 设函数在区间上连续,在内可导, 则?Skip Record If...?,使得?Skip Record If...?. 推论1 函数在区间I上可导且为I上的常值函 数. 推论2 函数和在区间I上可导且 推论3 设函数在点的某右邻域上连续,在内可导. 若存在,则右导数也存在,且有 (证) 但是, 不存在时, 却未必有不存在. 例如对函数 虽然不存在,但却在点可导(可用定义求得). Th ( 导数极限定理 ) 设函数在点的某邻域内连续,在 内可导. 若极限存在, 则也存在, 且( 证 ) 由该定理可见,若函数在区间I上可导,则区间I上的每一点,要么是导函 数的连续点,要么是的第二类间断点.这就是说,当函数在区间I 上点点可导时,导函数在区间I上不可能有第二类间断点.

相关主题
文本预览
相关文档 最新文档