当前位置:文档之家› 深冷处理原理及其在工业上的应用_陈鼎

深冷处理原理及其在工业上的应用_陈鼎

深冷处理原理及其在工业上的应用_陈鼎
深冷处理原理及其在工业上的应用_陈鼎

工业机器人原理及应用实例

工业机器人原理及应用实例 一、工业机器人概念 工业机器人是一种可以搬运物料、零件、工具或完成多种操作功能的专用 机械装置;由计算机控制,是无人参与 的自主自动化控制系统;他是可编程、 具有柔性的自动化系统,可以允许进行 人机联系。可以通俗的理解为“机器人 是技术系统的一种类别,它能以其动作 复现人的动作和职能;它与传统的自动 机的区别在于有更大的万能性和多目 的用途,可以反复调整以执行不同的功 能。” 二、组成结构 工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座 和执行机构,包括臂部、腕部和手部, 有的机器人还有行走机构。大多数工业 机器人有3~6个运动自由度,其中腕 部通常有1~3个运动自由度;驱动系 统包括动力装置和传动机构,用以使执 行机构产生相应的动作;控制系统是按 照输入的程序对驱动系统和执行机构 发出指令信号,并进行控制。 三、分类 工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直 角坐标移动;圆柱坐标型的臂部可作升 降、回转和伸缩动作;球坐标型的臂部 能回转、俯仰和伸缩;关节型的臂部有 多个转动关节。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。 点位型只控制执行 机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、 装卸等作业;连续轨迹型可控制执行机 构按给定轨迹运动,适用于连续焊接和 涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程 输入型是将计算机上已编好的作业程 序文件,通过RS232串口或者以太网等 通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵 盒),将指令信号传给驱动系统,使执 行机构按要求的动作顺序和运动轨迹 操演一遍;另一种是由操作者直接领动 执行机构,按要求的动作顺序和运动轨 迹操演一遍。在示教过程的同时,工作 程序的信息即自动存入程序存储器中 在机器人自动工作时,控制系统从程序 存储器中检出相应信息,将指令信号传 给驱动机构,使执行机构再现示教的各 种动作。示教输入程序的工业机器人称 为示教再现型工业机器人。 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作; 如具有识别功能或更进一步增加自适 应、自学习功能,即成为智能型工业机 器人。它能按照人给的“宏指令”自选 或自编程序去适应环境,并自动完成更 为复杂的工作。 四、主要特点 工业机器人最显著的特点有以下几个: (1)可编程。生产自动化的进一步发 展是柔性启动化。工业机器人可随其工 作环境变化的需要而再编程,因此它在 小批量多品种具有均衡高效率的柔性 制造过程中能发挥很好的功用,是柔性 制造系统中的一个重要组成部分。 (2)拟人化。工业机器人在机械结构 上有类似人的行走、腰转、大臂、小臂、 手腕、手爪等部分,在控制上有电脑。 此外,智能化工业机器人还有许多类似 人类的“生物传感器”,如皮肤型接触 传感器、力传感器、负载传感器、视觉 传感器、声觉传感器、语言功能等。传 感器提高了工业机器人对周围环境的 自适应能力。 (3)通用性。除了专门设计的专用的 工业机器人外,一般工业机器人在执行 不同的作业任务时具有较好的通用性。

冷处理原理,工艺及发展状况

20世纪二三十年代以来,伴随着材料科学的迅速发展,热处理原理和工艺日趋成熟,常规的热处理工艺对金属的强度和韧性很难同时有较大提高,只是以牺牲一方面性能来换取另一方面的性能,但很多的情况下,现有材料的强度和韧性尤其是耐蚀性不是十分的理想。金属深冷工艺的提出,让人们看到了一种提高金属强度和韧性的独特热处理方法。 ⑴何谓深冷处理(SSZ) 所谓冷处理,一般将0~100℃的冷处理定义为普通冷处理,将-130℃以下的处理称为深冷处理,它是最新的强韧化处理工艺之一。深冷处理按照工艺可分为深冷急热法和冷热循环法两种。冷热循环稳定化处理是先将零件冷却到—40℃~—90℃或者更底的温度,保温一定时间,然后再把零件加热到不致降低零件机械性能的某一温度(通常为80℃~190℃),保温一段时间并重复多次这种循环过程。“冷处理急热法”是日本大和久重雄提出的方法,该方法是将工、模具淬火后,不立即进行冷处理,先水浴后再置于处理槽当中于—80℃或—180℃下处理。即—80℃为普通冷处理;—180℃为深冷处理,保温时间按每英寸体积为1小时计算。保温后取出放入热水中快速加热。 在美国、前苏联、日本等国,不但把深冷技术用于高速钢、轴承钢、模具钢,以提高材料的耐磨性和强韧性,进而提高工件的整体使用寿命,同时还利用深冷技术对铝合金、铜合金、硬质合金、塑料、玻璃等进行深冷改性。改善均匀性、稳定尺寸、减小变形、提高使用寿命。

⑵深冷处理机理 钢的淬火过程就是使钢获得马氏体的过程,而淬火不能使钢中奥氏体全部转变为淬火组织,各种钢材热处理后都有部分奥氏体残存,其残存量随钢种及加热温度不同而变化,同时还有一定量的残余应力存在。它们存在对工件的使用性能会产生或多或少的影响,深冷处理能使钢中奥氏体进一步转变为马氏体,并能改善和消除钢中残余应力的分布,析出更多的细小碳化物,从而起到弥散强化的作用,对无相变材料能使晶界发生畸变,从而增强基体性能。 ⑶深冷处理的优点 SSZ处理的最大优点是因γR的马氏体化使得工件硬度升高,从而提高了工件的耐蚀磨碎性能。同时,防止时效变形,帕伦博士的研究表明,经深冷处理的工件具有下述优点: ①γR在实质上已近乎完全转变为M; ②与未经SSZ处理的工件或经普通冷处理之工件相比耐磨性得以提高; ③进行了组织的细化和细小碳化物的析出过程; ④硬度与CSZ处理工件几乎相同。 ⑷深冷处理注意事项 ①不得将淬火时未冷至室温的工件直接放入深冷装置,以免开裂。 ②冷至室温的工件应尽快放入深冷装置,以免使奥氏体稳定化,影响处理效果。 ③一般钢深冷处理前不应回火,高速钢可在回火一次后进行深冷处

工业机器人应用技术课程标准

工业机器人应用技术课程标准 、课程基本信息 先修课程:机械设计基础、电气控制与PLG机电设备故障诊断与维修 后续课程:工业机器人现场编程、自动化工业生产的安装与调试 课程类型:专业选修课 二、课程性质 工业机器人技术是一种综合性的机电一体化技术,包括传动机构、伺服系统、数据处理、人机对话以及与机器人工作性质对应的控制功能等。 本门课程致力培养学生具有机器人安装、调试和维护方面等基础知识的专业选修课,课程理论和应用技术紧密结合,使学生能在较短的时间内了解生产现场最需要的工业机器人的实际应用技术。 三、课程的基本理念 以典型案例为载体,设计课程结构;以职业岗位能力要求为基础,改革课程内 容;以职业素质培养为主线,提升学生职业能力。 四、课程设计 该课程以工业机器人常用的技术原理与应用知识为载体,让学生了解工业机器人基 本原理和应用技能为目标,选取基本工业机器人的机械机构和运动控制、基本操作、搬运机器人及其操作应用、码垛机器人及其操作应用、焊接机器人及其操作应用、涂装机器人及其操作应用、装配机器人及其操作应用等内容,采用任务驱动的方式组织教学内容,以典型案例为载体讲述工业机器人的基础知识,培养学生了解和掌握工业机器人应

用能力。教学的过程是:案例导入T相关知识一案例讲解一知识拓展。 五、课程的目标 (一)总目标 通过本门学习领域课程工作任务的完成,使学生了解工业机器人的分类、特点、组成、工作原理等基本理论和技术,掌握工业机器人的使用的一般方法与流程,具备工业机器人选型、操作以及工作站设计等解决实际问题的基本技能,使学生达到理论联系实际、活学活用的基本目标,提高其实际应用技能,并使学生养成善于观察、独立思考的习惯,同时通过教学过程中的案例分析强化学生的职业道德意识和职业素质养成意识以及创新思维的能力。 (二)具体目标: 1知识: 通过本课程的学习,使学生掌握工业机器人的结构,工业机器人的环境感觉技术,工业机器人控制,工业机器人系统等方面的知识。 2、能力 (1)了解如何操作工业机器人,完成简单的动作。 (2)掌握各种工业机器人的构造原理以及特点。 (3)能分析出简单的故障所在。 (4)能设计出简单的末端操作器。 3、素质 (1)培养学生对机器人的兴趣,培养学生关心科技、热爱科学、勇于探索的精神 (2)培养科学的学习态度与作风,利用先进技术进行开拓创新的专业思维。 (3)培养良好的专业触觉。 六、课程内容与学时分配 (一)课程内容与学时分配表

低温深冷操作规范

上海纳福希阀门有限公司 指导文件 零件低温深冷处理作业规程 (A/0版) 编制: 日期: 审核: 日期: 批准: 日期: 2013年10月28日发布 2013年11月01日实施

1 目的 为了指导低温阀门制造过程中零部件进行深冷处理,以确保低温阀门性能确保符合要求。 2 适用范围 本规范规定了低温阀门零部件的深冷处理要求。低温阀门除满足常规阀门制造及检验要求外,必须满足下列要求。 3 职责 3.1 低温测试专职人员负责低温深冷处理的操作。 3.2 质量部检验员负责低温深冷处理过程的记录。 4 工作程序 4.1 处理前准备工作 4.1.1 深冷处理的零部件须在粗加工之后精加工之前进行。 4.1.2 现场工作人员要求穿戴合适有效的保温防护服饰。 4.1.3 深冷处理作业现场应清洁,通风良好,工作通道畅通。 4.1.4 工作前检查低温操作设备,确保安全装置良好。 4.2 降温介质 4.2.1 降温介质为-196℃的液氮。 4.2.2 操作时必须注意低温介质的危险性,严格遵守安全操作规程。 4.3 深冷处理 a)根据每次处理的零部件规格数量,选择合适的不锈钢筐篮将零部件放入其中,再将筐篮放入适当的低温试验槽内,连接好测温传感器,盖好试验槽盖。 b) 先打开低温试验槽上的浸液开关,再缓慢的打开液氮储罐上的放液阀,此时液氮会因压力差流入试验槽内,间断停止进液查开液位,当液氮将零部件完全浸泡即可,当温度达到-196℃时开始保温。保温时间按4.4的试验时间。

4.4 试验时间 4.5 重复试验 4.5.1 保温结束后取出零部件,等待恢复常温后即可,若根据技术协议和产品图样要求需要进行二次深冷处理的零部件再按4.3重复操作1次。 4.6 质量部检验员根据深冷处理的起止时间,做好记录。 5 相关文件(无) 6 记录 6.1 《深冷处理过程记录》

工业机器人使用与维护

机电工程学院课程报告 课程名称:工业机器人使用与维护 专业:机械工程及自动化 年级: 2012级 班级:机械一班 姓名: 学号: 任课老师: 一、前言 机器人技术是融合了电子技术、机械技术等多种新兴技术的一种高新技术。工业机器人先后经历了从第一代示教再现机器人、第二代离线编程机器人,到现在的第三代智能机器人三个过程。焊接

作为工业“裁缝”,是工业生产中非常重要的加工手段,焊接质量的好坏对产品质量起着决定性的影响,同时由于焊接烟尘、弧光、金属飞溅的存在,焊接的工作环境又非常恶劣。随着先进制造技术的发展,实现焊接产品制造的自动化、柔性化与智能化已经成为必然趋势,采用机器人焊接已经成为焊接技术自动化的主要标志。 二、焊接机器人目前的使用情况 我国焊接机器人的应用主要集中在汽车、摩托车、工程机械、铁路机车等主要行业。汽车是焊接机器人的最大用户,也是最早的用户。早在 20 世纪 70年代末,上海电焊机厂与上海电动工具研究所合作研制了直角坐标机械手,成功应用于上海牌轿车底盘的焊接。一汽公司是我国最早引进焊接机器人的企业, 1984 年起先后从 KUKA 公司引进了 3 台点焊机器人,用于当时“红旗牌”轿车的车身焊接和“解放牌”车身顶盖的焊接。 1986 年成功地将焊接机器人应用于前围总成的焊接,并于 1988 年开发了机器人车身总焊线。20 世纪 80 年代末和 20 世纪 90 年代初,德国大众公司分别与上海和一汽成立合资汽车厂生产轿车,虽然是国外的二手设备,但其焊接自动化程度和装备水平让我们认识到了与国外的巨大差距。随后二汽在货车及轻型车项目中都引进了焊接机器人。可以说 20 世纪 90 年代以来的技术引进和生产设备、工艺装备的引进使我国的汽车制造水平由原来的作坊式生产提高到规模化生产,同时使国外焊接机器人大量进入中国。由于我国基础设施建设的高速发展带

深冷处理工艺

随着机械工业的不断发展,对金属材料的要求也越来越高,如何在材料以及热处理工艺既定的前提下尽量提高金属工件的机械性能及使用寿命,这成为很多热处理行业前沿人士思考并探索的问题。 一、问题的提出: 钢材在热处理工艺之后,其硬度及机械性能均大大提高,但热处理后依然有残存的以下问题: 1、残余奥氏体。其比例大约有10%-20%,由于奥氏体很不稳定,当受到外力作用或环境温度改变时,易转变为马氏体,而奥氏体与马氏体的比容不一样,将造成材料的不规则膨胀,降低工件的尺寸精度。 2、组织晶粒粗大,材料碳化物固溶过饱和。 3、残余内应力。热处理后的残余内应力将降低材料的疲劳强度以及其他机械性能,在应力释放过程中且易导致工件的变形。 二、深冷工艺的优点: 经过国内外许多金属材料研究者的不懈研究,深冷及超深冷处理工艺被认为是解决以上问题的最优方法,其优点如下: 1、它使硬度较低的残余奥氏体转变为较硬的、更稳定的、耐磨性和抗热性更高的马氏体。 2、马氏体的晶界、晶界边缘、晶界内部分解、细化,析出大量超细微的碳化物,过饱和的马氏体在深冷的过程中,过饱和度降低,析出的超细微碳化物,与基体保持共格关系,能使马氏体晶格畸变并减小,微观应力降低,而细小弥散的碳化物在材料塑性变形时可以阻碍位错运动,从而强化基体组织;同时由于超细微的碳化物析出,均匀分布在马氏体基体上,减弱了晶界催化作用,而基体组织的细化既减弱了杂质元素在晶界的偏聚程度,又发挥了晶界强化作用。从而使材料的综合力学性能得到三个方面的提高:材料的韧性改善,冲击韧性高,基体抗回火稳定性和抗疲劳性得到提高;耐磨损的性能得到提高;尺寸稳定性提高。从而达到了强化基体,改善热处理质量,减少回火次数,延长模具寿命的目的。 3、材料经深冷处理后内部热应力和机械应力大为降低,并且由于降温过程中使微孔或应力集中部位产生了塑性流变,而在升温过程中会在此类空位表面产生压应力,这种压应力可以大大减轻缺陷对工件局部性能的损害,从而有效地减

深冷处理工艺

深冷处理工艺 随着机械工业的不断发展,对金属材料的要求也越来 越高,如何在材料以及热处理工艺既定的前提下尽量提高 金属工件的机械性能及使用寿命,这成为很多热处理行业 前沿人士思考并探索的问题。 一、问题的提出: 钢材在热处理工艺之后,其硬度及机械性能均大大提 高,但热处理后依然有残存的以下问题: 1、残余奥氏体。其比例大约有10%-20%,由于奥氏 体很不稳定,当受到外力作用或环境温度改变时,易转变 为马氏体,而奥氏体与马氏体的比容不一样,将造成材料 的不规则膨胀,降低工件的尺寸精度。 2、组织晶粒粗大,材料碳化物固溶过饱和。 3、残余内应力。热处理后的残余内应力将降低材料 的疲劳强度以及其他机械性能,在应力释放过程中且易导 致工件的变形。 二、深冷工艺的优点: 经过国内外许多金属材料研究者的不懈研究,深冷及 超深冷处理工艺被认为是解决以上问题的最优方法,其优 点如下: 1、它使硬度较低的残余奥氏体转变为较硬的、更 稳定的、耐磨性和抗热性更高的马氏体。 2、马氏体的晶界、晶界边缘、晶界内部分解、细 化,析出大量超细微的碳化物,过饱和的 马氏体在深冷的过程中,过饱和度降低,析出的超细

微碳化物,与基体保持共格关系,能使马氏体晶格畸变并减小,微观应力降低,而细小弥散的碳化物在材料塑性变形时可以阻碍位错运动,从而强化基体组织;同时由于超细微的碳化物析出,均匀分布在马氏体基体上,减弱了晶界催化作用,而基体组织的细化既减弱了杂质元素在晶界的偏聚程度,又发挥了晶界强化作用。从而使材料的综合力学性能得到三个方面的提高:材料的韧性改善,冲击韧性高,基体抗回火稳定性和抗疲劳性得到提高;耐磨损的性能得到提高;尺寸稳定性提高。从而达到了强化基体,改善热处理质量,减少回火次数,延长模具寿命的目的。 3、材料经深冷处理后内部热应力和机械应力大为降低,并且由于降温过程中使微孔或应力集中部位产生了塑性流变,而在升温过程中会在此类空位表面产生压应力,这种压应力可以大大减轻缺陷对工件局部性能的损害,从而有效地减少了金属工件产生变形、开裂的可能性。 三、深冷工艺的生产使用效果 1、高速钢冷作模具深冷处理 不同处理工艺对W6Cr5Mo4V2Co(M2)钢残留奥氏体的影响(体积百分数%) 深冷处理过程中,大量的残留奥氏体转变为马氏体,特别是过饱和的亚稳定马氏体在从-196℃至室温过程中

超深冷处理

一、深冷處理(Sub-Zero)VS超冷處理(Cryogenic Treatment) 殘留沃斯田鐵(AUSTENTTE)不僅會降低刀具、模具的磨耗強度、而且在受到外力刺激時會將已經安定的沃斯田鐵不安定化而變態成初生型的麻田散鐵(MARTENSTTE),使耐衝擊性惡化,又因兩種組織的容積比不同,成型精密刀具、模具會產生體積膨脹、及應力破裂的情形,嚴重影響尺寸精度,使工件付之流水。 如何使鋼材在成型後得到具有優良機械性質的回火麻田散鐵組織、降低沃斯田鐵的殘留量及消除淬火、加工(線割、放電、研磨)過程中所產生的應力集中為目前精密工業界主要的課題之一。我們先從麻田散鐵變態的時機(Ms~Mf)圖一開始探討,再說明超冷處理的理論基礎及所產生的效益,與深冷處理的不同處。 二.麻田散鐵的變態時機(Ms~Mf) 將高溫的淬火組織施以適當的冷卻處理可得到高機械性質的麻田散鐵,由(圖一)可知溫度曲線閃過波來鼻到達+200℃附近時,冷卻速度變的緩慢,該溫度既為Ms點,麻田散鐵開始變態的溫度,溫度持續下降至常溫,麻田散鐵比率約83%如果溫度可以持續下降則麻田散鐵變態可以繼續進行,至-196℃時麻田散鐵比率可達97~98%,約有殘留沃斯田鐵2~3%。然以上為學界實驗室中進行的實驗研究及麻田散鐵變態推演。 以目前業界的環境及熱處理的調任,麻田散鐵的變態(Ms~Mf)是不可能一次完成的,而是分段進行的,有人認為淬火完成後1小時內須進行金屬過冷處理,亦有文章發表在淬火完成後6分鐘立刻進行過冷處理,其目的只有一,當殘留沃斯田鐵安定後不易再不安定化而變態成麻田散鐵,

是目前金屬過冷處理所須要求克服的技術重點,並非只要有經冷處理就能達到效果。 目前業界有數種冷處理的方式,以下將針對其基礎理論、效益逐一說明: 三.深冷處理(屬Sub-Zero) 處理方式: 以液態氮做為冷凍劑,於淬火後進行(約6分鐘)。如果先以100℃熱水從事1小時熱水回火就可於淬火稍後進行(約1小時內)不必畏懼殘留沃斯田鐵安定的問題,並且可以直接滲入液態氮氣中保溫時間長短並不重要,只到達所須要的溫度即可,,保溫不會發生不良後果,但不符合經濟原則。若想從深冷溫度加到室溫並非采自然解凍,而是將工件直接投入水中或熱水中解凍。(以上節緣模具熱處理一書,作者大和久重雄)。 處理時間: 以20-40分鐘內將溫度下降到-80℃~-130℃,再將工件以自然解凍或水中解凍方式回到室溫,就算完成,約1-3小時。 所得效率:

深冷处理技术进展及应用

深冷处理技术进展及应用 张茂勋何福善尤华平郭帅 (福州大学机械工程学院)  摘 要: 本文概述了深冷处理的发展过程、作用机理、研究内容、并举出一些在生产上应用的实例,最后提出继续进行深冷处理技术研究的看法。 关键词: 综述深冷处理热处理 1 前言  深冷处理在有些文献中又称作超冷处理或超低温处理。它是热处理工艺在冷却过程中的延续。深冷处理与一般的冷处理不同之处在于冷处理(SZ)的处理温度约为-100℃以上,深冷处理(SSZ)的处理温度则为-100℃以下[1] 。也有文献[2] 表明,深冷处理是在-130℃或-160℃以下的处理温度。 早在100多年前,人们就将深冷处理应用于钟表零件,铸件等产品,发现它能提高材料的强度、耐磨性、尺寸稳定性和使用寿命。如瑞士钟表商就将钟表中的一些关键零件埋到寒冷的阿尔卑斯雪山中,以提高零件的耐磨性和寿命。则一些有经验的工具制造商则把工具钢放到冷冻箱内储藏数月,从而提高工具钢的使用寿命[3]. 深冷处理最早是1939年由俄国人首先提出的。随着液氮技术及保温材料的发展,1965年美国将其实用化。随即俄罗斯、日本等世界各国学者都对其进行了较为广泛而深入的研究。研究结果表明,材料经深冷处理后的性能比一般冷处理后的性能好。 深冷处理技术在二十世纪八十年代末传人我国,开始在工具钢、模具钢上进行应用研究,而在铸铁合金和有色合金材料等领域研究得很少。而福建省对深冷处理技术的研究目前尚属空白[4]。 2. 深冷处理的作用机制  深冷处理能大幅度提高材料的机械性能和使用性能,目前对其作用机理的研究大致可归纳如下[5,6]: a. 合金材料在淬火后残余的奥氏体在深冷过程中进一步转变成马氏体,并使马氏体组织更加稳定; b. 合金材料中马氏体内分布更多、更细的碳化物硬质点,合金的组织变得更均匀、更致密、更细化。 c. 低温冷却的收缩可使材料本身存在的微小缺陷(如微孔、应力集中部位)产生塑性流变;复温过程中在空位表面产生残余应力,这种残余应力可以减轻缺陷对材料局部强度的损害,最终表现为材料抗力的提高; d. 对钢或其他合金来说,深冷处理能部分转移金属原子的动能,原子间既存在使原子紧靠在一起的结合力,又存在使之分开的动能。深冷处理正是部分转移了原子间的动能,从而使原子结合更紧密,提高了金属性能。 3. 深冷处理工艺 深冷处理工艺过程包括深冷方式、降温速度、保温时间、升温速度、回火过程等工艺参数,这些参数都会对深冷处理效果产生较大的影响,而且不同的材料有不同的工艺参数[7]。 a. 深冷方式 深冷处理通常使用液氮(-196℃)作为制冷剂。根据使用液氮的方法不同可分为液体法和气体法两种。液体法是将工件直接浸入液氮中,处理温度可达-150℃以下,但是有较大的热冲击,容易造成 本课题获福建省教育厅经费资助(JB02066) 60

深冷处理原理及其在工业上的应用

深冷处理原理及其在工业上的应用 班级: 热能12-2 姓名:黄靖 学号: 120123206067

深冷处理,又称超低温处理(SSZ),是指在以液氮为制冷剂、-l30C以下对材料进行处理的方法而达到给材料改性的目的。它是常规冷处理(CSZ)的一种延伸,其英文名称为Cryogenictreatment,是一种从上世纪中期开始广泛应用于工业生产的一种新工艺[l]。现有研究表明,深冷处理不仅可以显著提高黑色金属、有色金属、金属合金、碳化物、塑料(包括尼龙,泰弗龙)、硅酸盐等材料的力学性能和使用寿命,稳定尺寸,改善均匀性,减小变形,而且操作简便、不破坏工件、无污染、成本低。具有可观的经济效益和市场前景. 1.1深冷处理工艺简介 深冷处理的设备一般用于普通冷处理(0~-l00C)的设备,通常用干冰,氨(或甲醇)和氟里昂压缩机来制冷。也有用液氧制冷的,如l965年山西机床厂研制的液氧冷处理设备,使用温度为-80~-l00C,最低可以达到-l35C。至于深冷处理有采用压缩空气来致冷的,如杭州制氧机研究所的大型轧辊深冷设备最低使用温度为-l30C和航空航天部青云仪器厂的空气涡轮深冷机等最低使用温度为-l60C。最常用的深冷设备都采用液氮致冷,它既经济又方便,一般用液氮深冷罐来存储液氮。国内外众多学者和厂家研制了多种气体制冷的液氮深冷设备,其中天津市热处理研究所于l989年研制的液氮汽化型深冷箱,温度调节范围为常温至-l80C,液氮消耗量为每千克工件0.7kg液氮。华中理工大学于93年研制的嵌套式深冷设备采用了双重致冷方式,即外层箱机械致冷至-l8~-24C,内层箱采用液氮制冷至-l50C,温度偏差为3C以内。中科院低温技术 实验中心于96年研制的深井式冷处理装置,最低工作温度为-l00C,温度偏差为2C以内,升、降温速率为5~40C/1,不仅可调节还可以自动控制。此外国内也有一些从国外引进的深冷处理设备,如宝钢双频淬火车间引进的轧辊深冷装置,采用液氮制冷,最低温度可达-l80C以下。在美国,六七十年代出现了许多液氮气体法的深冷设备,如BOC公司的Ellenite设备,可以均匀的冷却,精确控温。且可以在-l50C保温。八十年代以来,出现了电脑控制升降温和处理飞机机翼的大型液氮深冷设备,如Cosmos公司的CI系列带电脑控制的深冷设备。采用固化的程序严格控制升温降温速度,可实现-l90C下的长时超低温保温。工件处理周期为40~721。表l为各种冷处理设备的主要性能对比表。 1.2深冷处理的制度 深冷处理根据制冷剂使用方法的不同可以分为液体法和气体法,但前者因为冷却温度较高(-l50C),且具有热冲击性容易导致某些脆性部件的断裂,现在已经不大采用,而气体法则因为冷却温度低(-l96C)也没有热冲击性而得到广泛采用。关于深冷处理工艺参数中的升降温速度、保温时间、深冷处理次数和是否采用回火工艺以及回火工艺和深冷处理工艺顺序的关系,由于研究的结果不同,至今尚未有一个统一的认识,但一般认为适当地控制升降温速度(缓慢升降温)对于材料的深冷处理效果为佳。而保温时间和相关回火工艺的问题则与所要进行深冷的材料本身有关,如材料本身体积越大,导热性越差以及组织的稳定性越好则所需的保温时间越长;而对于受冲击载荷较大、易弯曲载荷的模具,应采用淬火+回火一次+深冷+回火一次的处理工艺,对于要求高硬度、动载荷较小的模具材料采用淬火+深冷+回火一次的工艺较佳.

工业催化原理——知识要点

第四章金属催化剂及其催化作用 1、金属催化剂的应用及其特性 1)金属催化剂的应用 金属催化剂:指催化剂的活性组分是纯金属或者合金 纯金属催化剂:指活性组分只由一种金属原子组成,这种催化剂可单独使用,也可负载在载体上 合金催化剂:指活性组分由两种或两种以上金属原子组成 2)金属催化剂的特性 常用的金属催化剂的元素是d区元素,即过渡元素(ⅠB、ⅥB、ⅦB、Ⅷ族元素) 金属催化剂可提供的各种各样的高密度吸附反应中心 2、金属催化剂的化学吸附 1)金属的电子组态与气体吸附能力间的关系 (1)金属催化剂化学吸附能力取决于金属和气体分子的化学性质,结构及吸附条件 (2)具有未结合d电子的金属催化剂容易产生化学吸附 (3)价键理论:不同过渡金属元素的未结合d电子数不同,他们产生化学吸附的能力不同,其催化性能也不同(4)配位场理论:金属表面原子核体相原子不同,裸露的表面原子与周围配位的原子数比体相中少,表面原子处于配位价键不饱和状态,他可以利用配位不饱和的杂化轨道与被吸附分子产生化学吸附。(5)吸附条件对进水催化剂的吸附的影响: 低温有利于物理吸附,高温有利于化学吸附 高压有利于物理吸附,也有利于化学吸附 2)金属催化剂的化学吸附与催化性能的关系 (1)金属催化剂的电子逸出功(脱出功) 定义:将电子从金属催化剂汇中移到外界(通常是真空环境中)所需做的最小功,或者说电子脱离金属表面所需要的最低能量 符号:Φ,在金属能带图中表现为最高空能级与能带中最高填充电子能级的能量差 意义:其大小代表金属失去电子的难易程度或说电子脱离金属表面的难易 (2)反应物分子的电离势 定义:指反应物分子将电子从反应物中移到外界所需的最小功,用I表示。 意义:其大小代表反应物分子失去电子的难易程度。 电离能:激发时所需的最小能量 (3)化学吸附键和吸附状态 ①当Φ>I时,电子将从反应物分子向金属催化剂表面专业,反应物分子变成吸附在金属催化剂表面上的正离子。反应物分子与催化剂活性中心吸附形成离子键,它的强弱程度决定于Φ与I的相对值,两者相差越大,离子键越强。这种正离子吸附层可以降低催化剂表面的电子逸出功。随着吸附量的增加,Φ逐渐降低。 ②当Φ

蒸发基本原理

蒸发的基本原理 前言 使含有不挥发溶质的溶液沸腾汽化并移出蒸汽,从而使溶液中溶质浓度提高的单元操作称为蒸发,所采用的设备称为蒸发器。蒸发操作广泛应用于化工、石油化工、制药、制糖、造纸、深冷、海水淡化及原子能等工业中。 蒸发操作中的热源厂采用新鲜的饱和水蒸汽,又称生蒸汽。从溶液中蒸出的蒸汽称为二次蒸汽,以区别于生蒸汽。在操作中一般用冷凝方法将二次蒸汽直接冷凝,而不利用其冷凝热的操作称为单效蒸发。若将二次蒸汽引到下一效蒸发器作为加热蒸汽,以利用其冷凝热,这种串联蒸发操作称为多效蒸发。 蒸发操作可以在加压、常压或减压下进行,工业上的蒸发操作经常在减压下进行,这种操作称为真空蒸发。真空蒸发的特点在于:1. 减压下溶液的沸点下降,有利于处理热敏性物料,且可利用低压强的蒸汽或废蒸汽作为热源。2. 溶液的沸点随所处的压强减小而降低,故对相同压强的加热蒸汽而言,当溶液处于减压时可以提高传热总温度差;但与此同时,溶液的粘度加大,使总传热系数下降。3. 真空蒸发系统要求有造成减压的装置,使系统的投资费用和操作费用提高。 一般情况下,经浓缩后的液体为产品,二次蒸汽冷凝液则被排除;蒸发过程的实质是传热壁面一侧的蒸汽冷凝与另一侧的溶液沸腾间的传热过程,溶剂的汽化速率由传热速率控制,故蒸发属于热量传递过程,但又有别于一般传热过程,因为蒸发过程具有以下特点: 1)传热性质传热壁面一侧为加热蒸汽进行冷凝,另一侧为溶液进行沸腾,故属于避免两侧流体均有相变的恒温传热过程。 2)溶液性质有些溶液在蒸发过程中有晶体析出、易结垢和生泡沫、高温下易分解和聚合;溶液的粘度在蒸发过程中逐渐增大,腐蚀性逐渐增强。 3)溶液沸点的改变含有不挥发溶质的溶液,其蒸汽压较同温度下溶剂(即纯水)的为低,换言之,在相同压强下,溶液的沸点高于纯水的沸点,故当加热蒸汽一定时,蒸发溶液的传热温度差要小于蒸发水的温度差。溶液浓度越高这种现象越显著。 4)泡沫夹带二次蒸汽中常夹带大量液沫,冷凝前必须设法除去,否则不但损

深冷处理工艺

随着机械工业得不断发展,对金属材料得要求也越来越高,如何在材料以及热处理工艺既定得前提下尽量提高金属工件得机械性能及使用寿命,这成为很多热处理行业前沿人士思考并探索得问题。 一、问题得提出: 钢材在热处理工艺之后,其硬度及机械性能均大大提高,但热处理后依然有残存得以下问题: 1、残余奥氏体。其比例大约有10%-20%,由于奥氏体很不稳定,当受到外力作用或环境温度改变时,易转变为马氏体,而奥氏体与马氏体得比容不一样,将造成材料得不规则膨胀,降低工件得尺寸精度。 2、组织晶粒粗大,材料碳化物固溶过饱与。 3、残余内应力。热处理后得残余内应力将降低材料得疲劳强度以及其她机械性能,在应力释放过程中且易导致工件得变形。 二、深冷工艺得优点: 经过国内外许多金属材料研究者得不懈研究,深冷及超深冷处理工艺被认为就是解决以上问题得最优方法,其优点如下: 1、它使硬度较低得残余奥氏体转变为较硬得、更稳定得、耐磨性与抗热性更高得马氏体。 2、马氏体得晶界、晶界边缘、晶界内部分解、细化,析出大量超细微得碳化物,过饱与得马氏体在深冷得过程中,过饱与度降低,析出得超细微碳化物,与基体保持共格关系,能使马氏体晶格畸变并减小,微观应力降低,而细小弥散得碳化物在材料塑性变形时可以阻碍位错运动,从而强化基体组织;同时由于超细微得碳化物析出,均匀分布在马氏体基体上,减弱了晶界催化作用,而基体组织得细化既减弱了杂质元素在晶界得偏聚程度,又发挥了晶界强化作用。从而使材料得综合力学性能得到三个方面得提高:材料得韧性改善,冲击韧性高,基体抗回火稳定性与抗疲劳性得到提高;耐磨损得性能得到提高;尺寸稳定性提高。从而达到了强化基体,改善热处理质量,减少回火次数,延长模具寿命得目得。 3、材料经深冷处理后内部热应力与机械应力大为降低,并且由于降温过程中使微孔或应力集中部位产生了塑性流变,而在升温过程中会在此类空位表面产生压应力,这种压应力可以大大减轻缺陷对工件局部性能得损害,从而有效地减少

模具钢深冷处理

摘要:指出了对高速钢采用-196℃液氮深冷处理可使组织发生明显变化,有效促使残留奥氏体向马氏体转变及超细碳化物的析出,使模具获得较佳的综合力学性能,深冷处理后高速钢模具的使用寿命较常规热处理提高三倍以上,具有十分重要的使用价值。 关键词高速钢模具残留奥氏体超细碳化物使用寿命 1 引言 高速钢自1903年问世以来,一直是以制造金属切削刀具而著称,随着科学技术的飞跃发展,高速钢的应用范围不断扩大。从60年代开始,日本以汽车、自行车工业为中心,试用高速钢做模具取得成功,现在生产的高速钢约有15%用于制造模具。高速钢主要是用来制造冷挤压模具及冷墩压模具,特别是Mo系高速钢比W系高速钢韧性更加优越。高速钢用于模具的主要工艺难点在于热处理技术的掌握。目前我国使用最广泛的高速钢是钨系W18Cr4V(简称18-4-1)钢和钨钼系W6Mo5Cr4V2(简称6-5-4-2)钢[1]。这两种钢的传统淬火回火工艺特点是:高温淬火后需在一次硬化范围内回火三次,以获得高硬度和热硬性,工艺规范如表1所示。主要缺点是在某些场所硬度不足。为了改善模具强韧性,近年来高速钢的传统淬火回火工艺也发生了变革。 表1 高速钢常用热处理规格

2 深冷处理法原理及工艺过程 高速钢的冷处理是在三十年代后期提出的,按传统概念,冷处理的目的是将淬火钢件冷却到零下(一般为-60℃――-70℃),使钢内的残余奥氏体转变为马氏体。过去工业上采用高速钢冷处理主要应用于缩短热处理生产周期,即用淬火+冷处理+一次回火来代替处理方法[2],即在-100℃― -196℃(液氮)处理淬火零件,其后在400℃回火一次,不必需原来2―3次的重复回火。经深冷处理后零件的硬度和耐磨性进一步改善,耐磨性可提高40%,既缩短回火时间,节省了能量,又明显提高了模具使用寿命。20世纪70年代以来,国内外对深冷处理的研究工作卓有成效,前苏联、美国、日本等国均已成功利用深冷处理提高工模具的使用寿命、工件的耐磨性及尺寸稳定性。 (1)深冷处理后的组织转变。 经深冷处理的淬火高速钢不但引起了奥氏体转变,同时也引起了马氏体转变。过去几十年来强调的是残余奥氏体转变,马氏体分解这一新发现可以看作近年来高速钢深冷处理研究的新进展。 高速钢种的马氏体最终转变点Mf非常低,例如W18Cr4V钢的Mf点约-100℃,因此淬火冷却到室温会残留大量的奥氏体,一般认为钢中残留较多的奥氏体是有害的,会降低钢的硬度、耐磨性及使用寿命,还使许多物理性能特别是热性能和磁性下降。试验证明:采用深冷处理可使钢中残留奥氏体降至最低极限,由表2可以看出W18Cr4V高速钢经淬火、回火后,深冷处理可以使回火后的残留奥氏体量降低24%。 表2 不同处理工艺对W18Cr4V钢残留奥氏体的影响(体积百分数%)

空分原理概述

一、空气分离的几种方法 1、低温法(经典,传统的空气分离方法) 压缩膨胀液化(深冷)精馏 低温法的核心 2、吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特定的组分吸附能力的差异进行的一种分离方法。 特点:投资省、上马快、生产能力低、纯度低(93%左右)、切换周期短、对阀的要求或寿命影响大。 3、膜分离法:利用有机聚合膜对气体混合物的渗透选择性。 穿透膜的速度比快约4-5倍,但这种分离方法生产能力更低,纯度低(氧气纯度约25%~35%) 二、学习的基本内容 1、低温技术的热力学基础——工程热力学:主要有热力学第一、第二定律; 传热学:以蒸发、沸腾、冷凝机理为主; 流体力学:伯努利方程、连续性方程; 2、获得低温的方法 绝热节流 相变制冷 等熵膨胀 3、溶液的热力学基础 拉乌尔定律、康诺瓦罗夫定律(1、2 ,空分的核心、精馏的核心) 4、低温工质的一些性质:(空气、O、N、Ar) 5、液化循环(一次节流、克劳特、法兰德、卡皮查循环等) 6、气体分离(结合设备) 三、空分的应用领域 1、钢铁:还原法炼铁或熔融法炼铁(喷煤富氧鼓风技术); 2、煤气化:城市能源供应的趋势、煤气化能源联合发电; 3、化工:大化肥、大化工企业,电工、玻璃行业作保护气; 4、造纸:漂白剂; 5、国防工业:氢氧发动机、火箭燃料; 6、机械工业; 四、空分的发展趋势 ○ 现代工业——大型、超大型规模; ○ 大化工——煤带油:以煤为原料生产甲醇; ○ 污水处理:富氧曝气; ○ 二次采油; 第一章空分工艺流程的组成 一、工艺流程的组织 我国从1953年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代变革:第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质;

深冷制氮的工艺流程说明

深冷制氮的工艺流程说明 ---- 深冷空气分离技术 深度冷冻法分离空气是将空气液化后,再利用氧、氮的沸点不同将它们分离。即,造成气、液浓度的差异这一性质,来分离空气的一种方法。因此必须了解气、混合物的一些基本特征:气-液相平衡时浓度间的关系:液态空气蒸发和冷凝的过程及精馏塔的精馏过程。 1. 空气的汽-液相的平衡,物质的聚集状态有气态、液态、固态。每种聚集态内部,具有相同的物理性质和化学性质并完全均匀的部分,称为相。空气在塔内的分离,一般情况下,物料精馏是在汽、液两相进行的。空气中氧和氮占到99.04%,因此,可近似地把空气当作氧和氮的二元混合物。当二元混合物为液态时,叫二元溶液。 氧、氮可以任意比例混合,构成不同浓度的气体混合物及溶液。把氧、氮溶液置于一封闭容器中,在溶液上方也和纯物质一样会产生蒸汽,该蒸汽是由氧、氮蒸汽组成的气态的相混合物。对于氧氮二元溶液当达到汽液平衡时,它的饱和温度不但和压力有关,而且和氧、氮的浓度有关。当压力为1at时,含氮为0%,2%,10%的溶液的沸点列于表1-5。从表可知,随着溶液中低沸点组分(氮)的增加,溶液的组和温度降低,这是氧-氮二元溶液的一个重要特性。 空气中含氩0.93%,其沸点又介于氧、氮之间。 在空气分离的过程中,氩对精馏的影响较大,特别是在制取高纯氧、氮产品时,必须考虑氩的影响。 一般在较精确的计算中,又将空气看作氧-氩-氮三元混合物,其浓度为氧20.95%,氩0.93%,氮78.09(按容积)。 三元系的汽液平衡关系,可根据实验数据表示在相平衡图上。确定三元系的汽液平衡状态时,必须给定三个独立参数,除给定温度、压力外,需再细定一个组分浓度(气相或液相)平衡状态才能确定。 2. 压力-浓度图和温度-浓度图在工业生产中,气液平衡一般在某一不变条件下进行的。在温度一定时可得如图1-13所示的压力-浓度的关系图(P-X图)。

制氮原理

一.氮气的作用: 在国民经济和日常生活中,氮气有广泛的用途。首先,利用它“性格孤独”的特点,我们将它充灌在电灯泡里,可防止钨丝的氧化和减慢钨丝的挥发速度,延长灯泡的使用寿命。还可用它来代替惰性气体作焊接金属时的保护气。在博物馆里,常将一些贵重而稀有的画页、书卷保存在充满氮气的圆筒里,这样就能使蛀虫在氮气中被闷死。 氮气在各行各业中的应用: 〃金属热处理:为各种工业炉提供氮气保护、渗氮、光亮退火、防氧化。 〃电子工业:用于提供保护气、稀释气、携带氧和自动化系统半导体、电子元件加工等氮气保护。 〃粉末冶金:粉末烧结氮气保护,磁性材料烧结。 〃铝加工业:铝制品加工,铝薄轧制气体保护。 〃石油化工:管道容器贮罐充氮、置换、检漏、可燃气体隔离保护,制造炸药等 〃医药医疗:制药原料、药物充氮包装、运输及保护中草药品防蛀、防腐。 利用液氮给手术刀降温,就成为“冷刀”。医生用“冷刀”做手术,可以减少出血或不出血,手术后病人能更快康复。 ·海运:各种化工产品、油品、液态天然气体充氮运输。 〃易燃易爆品保护:防止库房、贮井尘爆,煤矿灭火。 〃合成纤维:充氮拉丝防止氧化。 〃浮法玻璃:生产过程中气体保护、防锡槽氧化。 〃粮食仓储:杀虫、保鲜、贮藏。 二.工业制氮

以空气为原料,l利用物理的方法,将其中的氧和氮分离而获得。 工业中有三种,即深冷空分法、分子筛空分法(PSA)和膜空分法。 A.深冷空分制氮 深冷空分制氮是一种传统的制氮方法,已有近几十年的历史。它是以空气为原料,经过压缩、净化,再利用热交换使空气液化成为液空。液空主要是液氧和液氮的混合物,利用液氧和液氮的沸点不同(在1大气压下,前者的沸点为-183℃,后者的为-196℃),通过液空的精馏,使它们分离来获得氮气。深冷空分制氮设备复杂、占地面积大,基建费用较高,设备一次性投资较多,运行成本较高,产气慢(12~24h),安装要求高、周期较长。综合设备、安装及基建诸因素,3500Nm3/h以下的设备,相同规格的PSA装置的投资规模要比深冷空分装置低20%~50%。深冷空分制氮装置宜于大规模工业制氮,而中、小规模制氮就显得不经济。目前,我公司就使用深冷空分制氮. B.分子筛空分制氮 以空气为原料,以碳分子筛作为吸附剂,运用变压吸附原理,利用碳分子筛对氧和氮的选择性吸附而使氮和氧分离的方法,通称PSA制氮。此法是七十年代迅速发展起来的一种新的制氮技术。与传统制氮法相比,它具有工艺流程简单、自动化程度高、产气快(15~30分钟)、能耗低,产品纯度可在较大范围内根据用户需要进行调节,操作维护方便、运行成本较低、装置适应性较强等特点,故在1000Nm3/h以下制氮设备中颇具竞争力,越来越得到中、小型氮气用户的欢迎,PSA制氮已成为中、小型氮气用户的首选方法。 C.膜空分制氮 以空气为原料,在一定压力条件下,利用氧和氮等不同性质的气体在

工业催化答案完整版

第一章催化剂基本知识1、名词解释 (1)活性:催化剂使原料转化的速率,工业生产上常以每单位容积(或质量)催化剂在单位时间内转化原料反应物的数量来表示,如每立方米催化剂在每小时内能使原料转化的千克数。 (2)选择性:目的产物在总产物中的比例,实质上是反应系统中目的反应与副反应间反应速度竞争的表现。 (3)寿命:指催化剂的有效使用期限。 (4)均相催化反应:催化剂与反应物同处于一均匀物相中的催化作用。 (5)氧化还原型机理的催化反应:催化剂与反应物分子间发生单个电子的转移,从而形成活性物种。 (6)络合催化机理的反应:反应物分子与催化剂间配位作用而使反应物分子活化。 (7)(额外补充)什么是络合催化剂?答:一般是过渡金属络合物、过渡金属有机化合物。 (8)反应途径:反应物发生化学反应生成产物的路径。 (9)催化循环:催化剂参与了反应过程,但经历了几个反应组成的循环过程后,催化剂又恢复到初始态,反应物变成产物,此循环过程为催化循环。 (10)线速度:反应气体在反应条件下,通过催化床层自由体积的的速率。(11)空白试验:在反应条件下,不填充催化床,通入原料气,检查有无壁效应,是否存在非催化反应。

(12)催化剂颗粒的等价直径:催化剂颗粒是不规则的,如果把催化剂颗粒等效成球体,那么该球体的直径就是等价直径。 (13)接触时间:在反应条件下的反应气体,通过催化剂层中的自由空间所需要的时间。 (14)初级离子:内部具有紧密结构的原始粒子。 (15)次级粒子:初级粒子以较弱的附着力聚集而成-----造成固体催化剂的细孔。 2.叙述催化作用的基本特征,并说明催化剂参加反应后为什么会改变反应速度? ①催化剂只能加速热力学上可以进行的反应,而不能加速热力学上无法进行的反应。 ②催化剂只能加速反应趋于平衡,而不能改变平衡的位置(平衡常数)。 ③催化剂对反应具有选择性。 ④催化剂的寿命。 催化剂之所以能够加速化学反应趋于热力学平衡点,是由于它为反应物分子提供了一条轻易进行的反应途径。 3.从反应途径说明什么是催化循环? 催化剂是一种化学物质,他借助于反应物间的相互作用而起催化作用,在完成催化的一次反应后,又恢复到原来的化学状态,因而能循环不断地起催化作用。催化剂暂时的介入反应,在反应物系的始态和终态间架起了新的通道,从而改变了反应的某种不稳定的活性中间络合物,后者再继续反应生成产物和恢复成原来的催化剂。这样不断循环起作用。

相关主题
文本预览
相关文档 最新文档