当前位置:文档之家› 高中数学第一章三角函数1_5函数y=Asinωx+φ的图象教学案新人教A版必修4

高中数学第一章三角函数1_5函数y=Asinωx+φ的图象教学案新人教A版必修4

高中数学第一章三角函数1_5函数y=Asinωx+φ的图象教学案新人教A版必修4
高中数学第一章三角函数1_5函数y=Asinωx+φ的图象教学案新人教A版必修4

1.5 函数y =Asin (ωx +φ)的图象

[核心必知]

1.预习教材,问题导入

根据以下提纲,预习教材P 49~P 55的内容,回答下列问题. (1)φ对函数y =sin(x +φ)的图象有什么影响?

提示:函数y =sin(x +φ),x ∈R (其中φ≠0)的图象,可以看作是把正弦曲线上所有的点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度而得到.

(2)ω(ω>0)对函数y =sin(ωx +φ)的图象有什么影响?

提示:函数y =sin(ωx +φ),x ∈R (其中ω>0且ω≠1)的图象,可以看作是把y =sin(x +φ)的图象上所有点的横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1

ω倍(纵坐标

不变)而得到的.

(3)A (A >0)对函数y =A sin(ωx +φ)的图象有什么影响?

提示:函数y =A sin(ωx +φ)(A >0且A ≠1)的图象,可以看作是把y =sin(ωx +φ)的图象上所有点的纵坐标伸长(当A >1时)或缩短(当0

(4)函数y =A sin(ωx +φ)(A >0,ω>0)中,A 、ω、φ的物理意义各是什么? 提示:A 是振幅,2πω是周期,ω

2π是频率,φ是初相.

2.归纳总结,核心必记

(1)参数A 、ω、φ对函数y =A sin(ωx +φ)图象的影响 ①φ对函数y =sin(x +φ)图象的影响

②ω(ω>0)对函数y =sin(ωx +φ)图象的影响

③A (A >0)对函数y =A sin(ωx +φ)图象的影响

(2)由函数y =sin x 的图象得到函数y =A sin(ωx +φ)的图象的途径

由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象有两种主要途径:“先平移后伸缩”与“先伸缩后平移”.

①先平移后伸缩

②先伸缩后平移

(3)函数y =A sin(ωx +φ)(A >0,ω>0)中,A 、ω、φ的物理意义 ①简谐运动的振幅就是A ; ②简谐运动的周期T =2π

ω

③简谐运动的频率f =1T =ω

2π;

④ωx +φ称为相位; ⑤x =0时的相位φ称为初相.

[问题思考]

(1)如何由y =sin x 的图象得到y =sin ?

????x +π4的图象?

提示:将y =sin_x 的图象向左平移π

4

个单位长度即可.

(2)如何由y =sin x 的图象得到y =sin 2x 和y =sin 1

2

x 的图象?

提示:将y =sin_x 的图象的横坐标变为原来的1

2,即可得y =sin_2x 的图象;将y =sin_x

的图象的横坐标伸长为原来的2倍,即可得y =sin_1

2

x 的图象.

(3)对于同一个x ,函数y =2sin x ,y =sin x ,y =1

2sin x 的函数值有什么关系?

提示:y =2sin_x 的函数值是y =sin_x 的函数值的2倍,而y =1

2sin_x 的函数值是y

=sin_x 的函数值的1

2

倍.

[课前反思]

(1)A 、ω、φ对函数y =A sin(ωx +φ)图象的影响: ;

(2)由函数y =sin x 的图象得到y =A sin(ωx +φ)的图象的途径: ;

(3)函数y =A sin(ωx +φ)中,A 、ω、φ的物理意义: .

[思考] 用“五点法”作正弦函数y =sin x 和余弦函数y =cos x 的图象时,“五点”具体指哪些点?

名师指津:用“五点法”作正弦函数y =sin_x 的图象时,“五点”是指(0,0),?

??

??π2,1,

(π,0),?

??

?

?3π2,-1,(2π,0);用“五点法”作余弦函数y =cos_x 的图象时,

“五点”是指(0,1),? ????π2,0,(π,-1),? ??

??3π2,0,(2π,1). 讲一讲

1.用“五点法”画函数y =2sin ?

????3x +π6的简图.

[尝试解答] 先画函数在一个周期内的图象.令X =3x +π6,则x =13?

????

X -π6,列表

用“五点法”作函数y =A sin(ωx +φ)图象的步骤

第一步:列表.

第三步:用光滑曲线连接这些点,得到一个周期内的图象. 练一练

1.已知f (x )=2sin ? ??

??x 2+π3. (1)在给定的坐标系内,用“五点法”作出函数f (x )在一个周期内的图象;

(2)写出f (x )的单调递增区间;

(3)求f (x )的最大值和此时相应的x 的值. 解:(1)列表:

作图:

(2)由2k π-π2≤x 2+π3≤2k π+π2,得4k π-5π3≤x ≤4k π+π

3,k ∈Z .所以函数f (x )

的单调递增区间为?

?????4k π-5π3,4k π+π3,k ∈Z .

(3)当x 2+π3=π2+2k π,即x =π

3

+4k π(k ∈Z )时,f (x )max =2.

讲一讲

2.由函数y =cos x 的图象如何得到函数y =-2cos ? ????2x +π6+2的图象?

[尝试解答] y =-2cos ? ????2x +π6+2=2cos ?

????2x +7π6+2.

y =2cos ?

?

?

??

2x +

7π6+2.

解决三角函数图象变换问题的关键是明确左右平移的方向和平移量以及横纵坐标伸缩的量,在变换中平移变换与伸缩变换的顺序不同得到解析式也不同,这点应特别注意.

练一练

2.如何由函数y =sin x 的图象得到函数y =3sin ?

????2x -π3+1的图象?

讲一讲

3.如图是函数y =A sin(ωx +φ)? ????A >0,ω>0,|φ|<π2的图象的一部分,求此函数的解析式.

[尝试解答] 法一:(逐一定参法)

由图象知A =3,T =5π6-? ????-π6=π,∴ω=2π

T =2,

∴y =3sin(2x +φ).

∵点? ????-π6,0在函数图象上,∴0=3sin ? ??

??-π

6

×2+φ

.

∴-π6×2+φ=k π,得φ=π

3+k π(k ∈Z ).

∵|φ|<π2,∴φ=π3.

∴y =3sin ? ????2x +π3.

法二:(待定系数法)

由图象知A =3.∵图象过点? ????π3,0和? ??

??5π6,0, ∴?????πω

3+φ=π,5πω6+φ=2π,解得????

?ω=2,φ=π3.

∴y =3sin ? ????2x +π3.

法三:(图象变换法)

由A =3,T =π,点? ????-π6,0在图象上,可知函数图象由y =3sin 2x 向左平移π6个单

位长度而得,

所以y =3sin 2?

????x +π6,

即y =3sin ?

????2x +π3.

由y =A sin(ωx +φ)的图象确定解析式的方法

(1)第一零点法:如果从图象可直接确定A 和ω,则选取“第一零点”(即“五点法”作图中的第一个点)的数据代入“ωx +φ=0”(要注意正确判断哪一点是“第一零点”)求得φ.

(2)特殊值法:通过若干特殊点代入函数式,可以求得相关待定系数A ,ω,φ.这里需要注意的是,要认清所选择的点属于五个点中的哪一点,并能正确代入列式.

(3)图象变换法:运用逆向思维的方法,先确定函数的基本解析式y =A sin ωx ,再根据图象平移规律确定相关的参数.

练一练

3.如图为函数y =A sin(ωx +φ)(A >0,ω>0) 的图象的一部分,试求该函数的解析式.

解:由图可得:A =3,T =2|MN |=π.从而ω=2π

T

=2,故y =3sin(2x +φ),将

M ? ??

??π3,0代入得sin ?

????2π3+φ=0,取φ=-2π3,得y =3sin ? ????2x -2π3. ——————————————[课堂归纳·感悟提

升]———————————————

1.本节课的重点是五点法作图、图象变换及由三角函数的图象确定解析式,难点是图象变换及由三角函数的图象确定解析式.

2.要掌握与函数y =A sin(ωx +φ)的图象有关的三个问题 (1)用“五点法”画函数y =A sin(ωx +φ)的图象,见讲1;

(2)三角函数图象变换,见讲2; (3)由函数图象确定解析式,见讲3.

3.本节课的易错点是由y =sin ωx 的图象变换得到y =sin(ωx +φ)的图象时,平移

的单位为????

??φω而不是|φ|.

课下能力提升(十一) [学业水平达标练]

题组1 “五点法”作图

1.函数y =sin ? ????2x -π3在区间????

??-π2,π上的简图是( )

解析:选 A 当x =0时,y =sin ? ??

??-π3=-32<0,故可排除B 、D ;当x =π6时,

sin ?

????2×π6-π3=sin 0=0,排除C.

2.作出函数y =32sin ? ????13x -π3在长度为一个周期的闭区间上的图象.

解:列表:

描点画图(

题组2 三角函数的图象变换

3.将函数y =sin 2x 的图象向右平移π

2个单位长度,所得图象对应的函数是( )

A .奇函数

B .偶函数

C .既是奇函数又是偶函数

D .非奇非偶函数

4.为了得到y =cos 4x ,x ∈R 的图象,只需把余弦曲线上所有点的( ) A .横坐标伸长到原来的4倍,纵坐标不变 B .横坐标缩短到原来的1

4倍,纵坐标不变

C .纵坐标伸长到原来的4倍,横坐标不变

D .纵坐标缩短到原来的1

4

倍,横坐标不变

解析:选B ω=4>1,因此只需把余弦曲线上所有的点的横坐标缩短到原来的1

4倍,纵

坐标不变.

5.为了得到函数y =sin ? ????2x -π3的图象,只需把函数y =sin ? ????2x +π6的图象( ) A .向左平移π

4个单位长度

B .向右平移π

4个单位长度

C .向左平移π

2个单位长度

D .向右平移π

2

个单位长度

解析:选B y =sin ? ????2x +π6x +φFy =sin ??????2(x +φ)+π6=sin ? ????2x -π3,即2x +2φ+

π6=2x -π3,解得φ=-π4,即向右平移π

4

个单位长度.→x +φFy =sin ??????2(x +φ)+π6=sin ? ????2x -π3,即2x +2φ+π6=2x -π3,解得φ=-π4,即向右平

移π

4

个单位长度. 6.把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )

解析:选A 变换后的三角函数为y =cos(x +1),结合四个选项可得A 选项正确. 7.已知函数f (x )的图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得的图象沿x 轴向左平移π2个单位长度,这样得到的图象与y =12

sin x 的图象相同,求

f (x )的解析式.

解:反过来想,

题组3 由图象确定函数的解析式

8.若函数y =sin(ωx +φ)(ω>0)的部分图象如图,则ω=( )

A .5

B .4

C .3

D .2

解析:选B 由函数的图象可得T 2=12·2πω=? ????x 0+π4-x 0=π

4

,解得ω=4.

9.如图是y =A sin(ωx +φ)(A >0,ω>0)的图象的一部分,则它的一个解析式为( )

A .y =23sin ? ????2x +π3

B .y =23sin ? ????

x 2+π4

C .y =23sin ? ????x -π3

D .y =23sin ?

?

???2x +2π3

解析:选D 由图象可知,A =23,T =5π12-? ????-7π12=π,∴ω=2,∴y =2

3sin(2x +φ).将

点? ????-π12,23代入上式,得23=23·sin ? ??

??-π6+φ,则φ-π6=π2,得φ=2π3,∴y =23

sin ?

????2x +2π3,故选D. 10.已知函数f (x )=sin(ωx +φ)(ω>0,0≤φ≤π)是R 上的偶函数,其图象关于点

M ?

????3π4,0对称,且在区间?

?????0,π2上是单调函数,求φ和ω的值. 解:由f (x )是偶函数,得f (-x )=f (x ), 即函数f (x )的图象关于y 轴对称,

∴f (x )在x =0时取得最值,即sin φ=1或-1. 依题设0≤φ≤π,∴φ=

π

2

. 由f (x )的图象关于点M 对称,可知 sin ?

????3π4

ω+π2=0,

3π4ω+π2=k π,k ∈Z ,解得ω=4k 3-2

3

(k ∈Z ), 又f (x )在?

?????0,π2上是单调函数,

所以T ≥π,即2π

ω≥π.

∴ω≤2.又ω>0,

∴k =1时,ω=2

3;k =2时,ω=2.

故φ=π2,ω=2或2

3

.

[能力提升综合练]

1.简谐运动y =4sin ? ????5x -π3的相位与初相是( )

A .5x -π3,π3

B .5x -π

3,4

C .5x -π3,-π3

D .4,π

3

解析:选C 相位是5x -π3,当x =0时的相位为初相即-π

3

.

2.已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π

3

是其图象的一条对称轴,则下面各式中符合条件的解析式为( )

A .y =4sin ? ????4x +π6

B .y =2sin ? ????2x +π3+2

C .y =2sin ? ????4x +π3+2

D .y =2sin ?

????4x +π6+2 解析:选D 由函数y =A sin(ωx +φ)+b 的最大值为4,最小值为0,可知b =2,A =2.由函数的最小正周期为

π2,可知2πω=π2,得ω=4.由直线x =π

3

是其图象的一条对称轴,可知4×π3+φ=k π+π2,k ∈Z ,从而φ=k π-5π

6,k ∈Z ,故满足题意的是y =

2sin ?

????4x +π6+2. 3.已知函数f (x )=2sin(ωx +φ)(ω>0)的图象关于直线x =π3对称,且f ? ????π12=0,

则ω的最小值为( )

A .2

B .4

C .6

D .8

解析:选A 函数f (x )的周期T ≤4? ????π3-π12=π,则2πω≤π,解得ω≥2,故ω的最

小值为2.

4.函数y =A sin(ωx +φ)(A >0,ω>0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 014)的值等于( )

A. 2 B .2+2 2 C.2+2 D.2-2 解析:选A 由图可知A =2,φ=0,T =8,

2πω=8,即ω=π4,∴f (x )=2sin π4

x . ∵周期为8,且f (1)+f (2)+…+f (8)=0,

∴f (1)+f (2)+…+f (2 014)=f (1)+f (2)+f (3)+f (4)+f (5)+f (6)=2sin π

4

+2sin π2+2sin 3π4+2sin π+2sin 5π4+2sin 3π

2

= 2.

5.如图所示的曲线是y =A sin(ωx +φ)(A >0,ω>0)的图象的一部分,则这个函数的解析式是________.

解析:由函数图象可知A =2,T =43? ????5π6-π12=π,即2π

ω=π,故ω=2.

又?

??

??5π6,0是五点法作图的第五个点,即2×5π6+φ=2π,则φ=π3.故所求函数的

解析式为y =2sin ?

????2x +π3.

答案:y =2sin ?

????2x +π3 6.已知函数f (x )=3sin ?

????ωx -π6(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴

完全相同.若x ∈?

?????0,π2,则f (x )的取值范围是________.

解析:由题意知,ω=2,因为x ∈??????0,π2,所以2x -π6∈??????-π6,5π6,故f (x )的最

小值为f (0)=3sin ? ????-π6=-32,最大值为f ? ??

??π3=3sin π2=3,所以f (x )的取值范围是

????

??-32,3.

答案:????

??-32,3 7.函数f (x )=A sin(ωx +φ)? ????A >0,ω>0,|φ|<π2的一段图象如图所示. (1)求f (x )的解析式;

(2)把f (x )的图象向左至少平移多少个单位长度,才能使得到的图象对应的函数为偶函数?

解:(1)A =3,2πω=43? ????4π-π4=5π,ω=2

5

.

由f (x )=3sin ? ????25x +φ过? ??

??π4,0,

得sin ?

??

??π10+φ=0,又|φ|<π2,故φ=-π10, ∴f (x )=3sin ? ??

??25x -π10. (2)由f (x +m )=3sin ??????25(x +m )-π10=3sin ? ????25x +2m 5-π10为偶函数(m >0), 知2m 5-π10=k π+π2,即m =52k π+3π

2,k ∈Z . ∵m >0,∴m min =3π2

.

故把f (x )的图象向左至少平移3π

2

个单位长度,才能使得到的图象对应的函数是偶函数.

8.已知曲线y =A sin(ωx +φ)(A >0,ω>0)上的一个最高点的坐标为? ??

??π2,2,由此点到相邻最低点间的曲线与x 轴交于点?

????3π2,0,若φ∈? ??

??-π2,π2.

(1)试求这条曲线的函数解析式; (2)写出函数的单调区间. 解:(1)依题意,A =2,T =4×?

??

??3π2-π2=4π,

∵T =2π|ω|=4π,ω>0,∴ω=12.∴y =2sin ? ????12x +φ.

∵曲线上的最高点为? ??

??π2,2,

∴sin ? ????12×π2+φ=1.∴φ+π4=2k π+π2.

∵-π2<φ<π2,∴φ=π4.∴y =2sin ? ????12x +π4.

(2)∴令2k π-π2≤12x +π4≤2k π+π

2,k ∈Z ,

∴4k π-3π2≤x ≤4k π+π

2

,k ∈Z .

∴函数f (x )的单调递增区间为??????4k π-3π2,4k π+π2(k ∈Z ).

令2k π+π2≤12x +π4≤3π

2+2k π,k ∈Z ,

∴4k π+

π2≤x ≤4k π+5π

2

,k ∈Z .∴函数f (x )的单调递减区间为????

??4k π+π2,4k π+5π2(k ∈Z ).

高中数学苏教版必修四学案:1.2.2 同角三角函数关系

第2课时三角函数线 学习目标 1.掌握正弦、余弦、正切函数的定义域. 2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切. 3.能利用三角函数线解决一些简单的三角函数问题.

知识点一有向线段 思考1比如你从学校走到家和你从家走到学校,效果一样吗? 思考2如果你觉得效果不同,怎样直观的表示更好? 梳理有向线段 (1)有向线段:规定了________(即规定了起点和终点)的线段称为有向线段. (2)有向直线:规定了正方向的直线称为有向直线. (3)有向线段的数量:根据有向线段AB与有向直线l的方向相同或相反,分别把它的长度添上______或______,这样所得的数,叫做有向线段的数量,记为AB. (4)单位圆:圆心在________,半径等于____________的圆. 知识点二三角函数线 思考1在平面直角坐标系中,任意角α的终边与单位圆交于点P,过点P作PM⊥x轴,过点A(1,0)作单位圆的切线,交α的终边或其反向延长线于点T,如图所示,结合三角函数的定义,你能得到sin α,cos α,tan α与MP,OM,AT的关系吗?

思考2三角函数线的方向是如何规定的? 思考3三角函数线的长度和方向各表示什么?梳理

知识点三正弦、余弦、正切函数的定义域 思考对于任意角α,sin α,cos α,tan α都有意义吗?梳理三角函数的定义域

类型一 三角函数线 例1 作出-5π 8的正弦线、余弦线和正切线. 反思与感悟 (1)作正弦线、余弦线时,首先找到角的终边与单位圆的交点,然后过此交点作x 轴的垂线,得到垂足,从而得到正弦线和余弦线. (2)作正切线时,应从点A (1,0)引单位圆的切线交角的终边或终边的反向延长线于一点T ,即可得到正切线AT . 跟踪训练1 在单位圆中画出满足sin α=1 2的角α的终边,并求角α的取值集合.

高中数学必修4三角函数教案

任意角的三角函数 一、教学目标 1、知识目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切) 的定义,根据定义探讨出三角函数值在各个象限的符号,掌握同一个角的不同三角函数之间的关系。 2、能力目标:能应用任意角的三角函数定义求任意角的三角函数值。 3、情感目标:培养数形结合的思想。 二、教材分析 1、教学重点:理解任意角三角函数(正弦、余弦、正切)的定义。 2、教学难点:从函数角度理解三角函数。 3、教学关键:利用数形结合的思想。 三、教学形式:讲练结合法 四、课时计划:2节课 五、教具:圆规、尺子 六、教学过程 (一)引入 我们已经学过锐角三角函数,知道他们都是以锐角为自变量,以比值 为函数值的函数,你能用直角坐标系中的终边上点的坐标来表示锐角 三角函数吗? 设锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,那么它 的终边在第一象限,在α的终边上任取一点P (a,b ),它与原点的距离 r=22b a +>0.根据初中学过的三角函数定义,我们有αsin =r b , r a αcos =

a b αtan =,取r=1,则a b tan αa,cos αb,αsin ===,引入单位圆概念。 (二)新课 1、设α是以任意角,它的终边与单位圆交于P (x,y ),那么: (1) y 叫做α的正弦,记作αsin , 即y αsin =; (2) x 叫做α的余弦,记作αcos ,即x αcos =; (3) x y 叫做α的正切,记作αtan ,即x y αtan =)0(≠x . 注:用单位圆定义的好处就在于r=1,点的横坐标表示余弦值,纵坐标 表示正弦值。 2、根据任意角的三角函数定义,得到三种函数值在各象限的符号。 通过观察发现:第一象限全为正,第二象限只有正弦为正,第三象限只有正切为正,第四象限只有余弦为正。总结出一条法则:一全正,二正弦,三正切,四余弦。 注:这有利于培养学生观察和思考的能力,以方便记忆。 3、利用勾股定理可以推出:1cos sin 22=+αα,根据三角函数定义,当)(2z k k ∈+≠π πα时,有αα αtan cos sin =。这就是说同一个角α的正弦、余弦的平方和等于1,商等于角α的正切。 4、例题 例1求 3 5π的正弦、余弦和正切值。 解:在直角坐标系中,作3π5=∠AOB ,易知AOB ∠的终边与单位圆的交点 坐标为)2 3,21 (-,所以

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

【2019A新教材高中数学必修第一册】5.2.1 三角函数的概念 导学案

5.2.1 三角函数的概念 1.借助单位圆理解任意角三角函数的定义; 2.根据定义认识函数值的符号。理解诱导公式一; 3.能初步运用定义分析和解决与三角函数值有关的一些简单问题。 1.教学重点:任意角的三角函数(正弦函数、余弦函数、正切函数)的定义; 2.教学难点:任意角的三角函数概念的建构过程,解决与三角函数值有关的一些简单问题。 一、设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 二、三角函数的定义域。 三角函数 定义域 αsin =y αcos =y αtan =y 三、诱导公式 =+)2sin(παk ;=+)2(cos παk ; =+)2(tan παk 。Z k ∈ 一、探索新知 探究一.角α的始边在x 轴非负半轴,终边与单位圆交于点P 。当πα=时,点P 的坐标是什么?当

322ππα或= 时,点P 的坐标又是什么?它们唯一确定吗? 探究二 :一般地,任意给定一个角α,它的终边OP 与单位圆交点P 的坐标能唯一确定吗? 1.任意角的三角函数定义 设角, 是一个任意角,R ∈αα它的终边与单位圆交于点),(P y x 。 那么(1) 的正弦函数。叫做α记作 ,;sin α=y 即 (2) 的余弦函数。 叫做α记作 ,;cos α=x 即 (3) 的正切。叫做α记作 ;tan α=x y 即 )0(tan ≠=x x y α是 以角为自变量,以单位圆上点的纵坐标与横坐标的比值为函数值的函数,称为 (tangent function)。 正弦函数,余弦函数,正切函数都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将他们称为三角函数. 通常将它们记为:正弦函数 R x x y ∈=,sin 余弦函数 R x x y ∈=,cos 正切函数 )(2,tan Z k k x x y ∈+≠=ππ 探究三:在初中我们学了锐角三角函数,知道它们都是以锐角为自变量。以比值为函数值的函数,设)2 ,0(π ∈x ,把按锐角三角函数定义求得的锐角x 的正弦记为1z ,并把按本节三角函数定义求得的 x 的正弦记为1y 。1z 与1y 相等吗?对于余弦、正切也有相同的结论吗?

高三数学一轮复习第11讲三角函数的图像与性质教案

三角函数的图像与性质

π??

据正弦函数单调性写出函数的值域(如本例以题试法(2)); (3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在给定区间上的值域(最值)问题(如例1(2)). 以题试法 1. (1)函数y = 2+log 1 2 x +tan x 的定义域为________. (2)(2012·山西考前适应性训练)函数f (x )=3sin ? ????2x -π6在区间??????0,π2上的值域为( ) A.??????-32,32 B.??????-32,3 C.??????-332,332 D.???? ??-332,3 解析:(1)要使函数有意义 则????? 2+log 1 2 x ≥0, x >0,tan x ≥0, x ≠k π+π2 ,k ∈Z ?? ???? 0

高三数学三角函数经典练习题及复习资料精析

1.将函数()2sin 2x f x =的图象向右移动02π???? << ?? ? 个单位长度, 所得的部分图象如右图所示,则?的值为( ) A .6 π B .3 π C .12 π D .23 π 2.已知函数()sin 23f x x π??=+ ?? ? ,为了得到()sin 2g x x =的图象,则 只需将()f x 的图象( ) A .向右平移3π个长度单位 B .向右平移6 π个长度单位 C .向左平移6π个长度单位 D .向左平移3 π 个长度单位 3.若113sin cos αα +=sin cos αα=( ) A .13- B .13 C .13-或1 D .13或-1 4.2014cos()3 π的值为( ) A .12 B . 3 2 C .12- D .32 - 5.记cos(80),tan 80k -?=?那么= ( ). A 2 1k -.2 1k - C 2 1k -.2 1k k -- 6.若sin a = -45 ,a 是第三象限的角,则sin()4 a π +=( ) (A )-7210 (B ) 7210 (C )2 - 10 (D ) 210

7 .若 55 2) 4 sin(2cos -=+ π αα,且)2 ,4(ππα∈,则α2tan 的值为( ) A .3 4- B .4 3- C .4 3 D .3 4 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是 ( ) A .)(x f 的周期为π B .)(x f 在)0,2 (π-上单调递减 C .)(x f 的最大值为2 D .)(x f 的图象关于直线π=x 对称 9.如图是函数2(ωφ),φ<2 π的图象,那么 A.ω=11 10,φ=6 π B.ω=10 11,φ6π C.ω=2,φ=6 π D.ω =2,φ6 π 10.要得到函数sin(4)3 y x π=-的图象,只需要将函数sin 4y x =的 图象( ) A .向左平移3 π个单位 B .向右平移3 π 个单位 C .向左平移12π个单位 D .向右平移12 π个单位 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中数学教案三角函数的图象与性质

高中数学教案三角函数的图象及性质 精编习题 三角函数的图象及性质 一、知识网络 二、高考考点 (一)三角函数的性质 1、三角函数的定义域,值域或最值问题; 2、三角函数的奇偶性及单调性问题;常见题型为:三角函数为奇 函数(或偶函数)的充要条件的应用;寻求三角函数的单调区间;比较大小的判断等. 3、三角函数的周期性;寻求型三角函数的周期以及 难度较高的含有绝对值的三角函数的周期. (二)三角函数的图象 1、基本三角函数图象的变换; 2、型三角函数的图象问题;重点是“五点法”作草

图的逆用:由给出的一段函数图象求函数解析式; 3、三角函数图象的对称轴或对称中心:寻求或应用; 4、利用函数图象解决应用问题. (三)化归能力以及关于三角函数的认知变换水平. 三、知识要点 (一)三角函数的性质 1、定义域及值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y=sinx,y=tanx;偶函数:y=cosx. (2)型三角函数的奇偶性 (ⅰ)g(x)=(x∈R) g(x)为偶函数 由此得; 同理,为奇函数 . (ⅱ) 为偶函数;为奇函 数 . 3、周期性 (1)基本公式

(ⅰ)基本三角函数的周期y=sinx,y=cosx的周期为;y=tanx,y=cotx的周期为 . (ⅱ)型三角函数的周期 的周期为; 的周期为 . (2)认知 (ⅰ)型函数的周期 的周期为; 的周期为 . (ⅱ)的周期 的周期为; 的周期为 . 均同它们不加绝对值时的周期相同,即对y=的解析式施加绝对值后,该函数的周期不变.注意这一点及(ⅰ)的区别. (ⅱ)若函数为型两位函数之和,则探求周期适于“最小公倍数法”. (ⅲ)探求其它“杂”三角函数的周期,基本策略是试验――猜想――证明. (3)特殊情形研究

高中数学三角函数模型的简单应用学案苏教版必修

§1.6三角函数模型的简单应用 【学习目标 细解考纲】 1、会用三角函数解决一些简单的问题,体会三角函数是描述周期变化现象的重要函数模型. 2通过对三角函数的应用,发展数学应用意识,求对现实世界中蕴涵的一些数学模型进行思考和作出判断. 【知识梳理 双基再现】 1、三角函数可以作为描述现实世界中_________现象的一种数学模型. 2、|sin |y x =是以____________为周期的波浪型曲线. 3、如图所示,有一广告气球,直径为6m ,放在公司大楼上空,当行人仰望气球中心的仰角030BAC ∠=时,测得气球的视角01β=,若θ很小时,可取sin θθ≈,试估算该气球离地高度BC 的值约为( ). A .72cm B .86cm C .102cm 【小试身手 轻松过关】 1、设()y f t =是某港口水的深度关于时间t (时)的函数,其中024t ≤≤,下表是该港口某一天从0至24时记录的时间与水深的关系. 经长期观察,函数()y f t =的图象可以近似地看成函数sin()y k A t ω?=++的图象. 根据上述数据,函数()y f t =的解析式为( ) A .123sin ,[0,24]6t y t π=+∈ B .123sin(),[0,24]6 t y t ππ=++∈ C .123sin ,[0,24]12t y t π=+∈ D .123sin(),[0,24]122 t y t ππ=++∈ 2、如图,是一弹簧振子作简谐运动的图象,横轴表示振动的时间,纵轴表示振子的位移,则这个振子振动的函数解析式是____________. 3、如图是一向右传播的绳波在某一时刻绳子各点的位置图,经过 12 周期后,乙点的位置将移至( ) A .甲 B .乙 C .丙 D .丁

高中数学三角函数教案

高中数学三角函数教案 一、教学目标 1.掌握任意角的正弦、余弦、正切函数的定义包括定义域、正负符号判断;了解任意 角的余切、正割、余割函数的定义. 2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概 念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验. 3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的 辩证唯物主义世界观. 4.培养学生求真务实、实事求是的科学态度. 二、重点、难点、关键 重点:任意角的正弦、余弦、正切函数的定义、定义域、正负符号判断法. 难点:把三角函数理解为以实数为自变量的函数. 关键:如何想到建立直角坐标系;六个比值的确定性α确定,比值也随之确定与依赖性比值随着α的变化而变化. 三、教学理念和方法 教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模 仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程. 根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、 讲练结合”的方法组织教学. 四、教学过程 [执教线索: 回想再认:函数的概念、锐角三角函数定义锐角三角形边角关系——问题情境:能推广 到任意角吗?——它山之石:建立直角坐标系为何?——优化认知:用直角坐标系研究锐角三 角函数——探索发展:对任意角研究六个比值与角之间的关系:确定性、依赖性,满足函数 定义吗?——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析对应法则、定义域、值域与正负符号判定——例题与练习——回顾小结——布置作业]

广州艺术生高考数学复习资料3三角函数性质与图像

三角函数性质与图像 知识清单: .......... 函数s i n ()y A x ω?=+的图像和性质以函数sin y x =为基础,通过图像变换来把握.如①sin y x =????→图例变化为 ②sin()y A x ω?=+(A >0,ω>0)相应地, ①的单调增区间2,22 2 k k ππππ??-++?? ? ? ??? →变为 222 2 k x k π π πω?π- +++≤≤ 的解集是②的增区间. 注:⑴)sin(?ω+=x y 或cos()y x ω?=+(0≠ω )的周期ω π 2= T ; ⑵sin()y x ω?=+的对称轴方程是2 x k π π=+ (Z k ∈),对称中心(,0)k π; cos()y x ω?=+的对称轴方程是x k π=(Z k ∈) ,对称中心1(,0) 2 k ππ+; )tan(?ω+=x y 的对称中心( 0,2πk ). 课前预习 1.函数sin cos y x x =-的最小正周期是 2π . 2. 函数1 π2sin()23 y x =+ 的最小正周期T = 4π . 3.函数sin 2 x y =的最小正周期是2π

4.函数]),0[)(26 sin( 2ππ ∈-=x x y 为增函数的区间是]6 5, 3 [ ππ 5.函数22cos()( )3 6 3 y x x π π π=- ≤≤的最小值是1 6.为了得到函数)6 2sin(π-=x y 的图象,可以将函数x y 2cos =的图象向左平移3 π 个单位长度 7.将函数sin y x =的图象上各点的横坐标扩大为原来的2倍,纵坐标不变,再把所得图象上所有点向左平移 3 π 个单位,所得图象的解析式是y=sin( 2 1x+ 6 π ). 8. 函数sin y x x =+ 在区间[0, 2 π ]的最小值为___1___. 9.已知f (x )=5sin x cos x -35cos 2 x + 3 2 5(x ∈R ) ⑴求f (x )的最小正周期;y=5sin(2x-3π ) T=π ⑵求f (x )单调区间;[k 12 π π- ,k π+ 12 5π], [k 12 5ππ+ ,k π+ 12 11π]k Z ∈ ⑶求f (x )图象的对称轴,对称中心。x=1252ππ+k ,( 0,6 2π π+ k ) k Z ∈ 典型例题 例1、三角函数图像变换 将函数1 2cos()3 2 y x π=+的图像作怎样的变换可以得到函数cos y x =的图像? 变式1:将函数cos y x =的图像作怎样的变换可以得到函数2cos(2)4 y x π =-的图像? 例2、已知简谐运动π π()2sin 32f x x ????? ?=+< ? ???? ?的图象经过点(01),,则该简谐运动的最 小正周期T 和初相?分别为6T =,π6 = 例3、三角函数性质 求函数34sin(2)2 3 y x ππ= + 的最大、最小值以及达到最大(小)值时x 的值的集合.; 变式1:函数y =2sin x 的单调增区间是[2k π-2 π ,2k π+ 2 π ](k ∈Z ) 变式2、下列函数中,既是(0, 2 π)上的增函数,又是以π为周期的偶函数是( B) (A)y =lg x 2 (B)y =|sin x | (C)y =cos x (D)y=x 2sin 2 变式3、已知? ? ???? ∈2, 0πx ,求函数)12 5cos( )12 cos( x x y +--=ππ 的值域y=2sin (x+ 6 π )?? ? ??2,22 变式4、已知函数12 ()log (sin cos )f x x x =- y=log 2 1()4 sin(2π -x ) ⑴求它的定义域和值域;(2k 4 52,4 πππ π+ + k ) k ∈Z ?? ? ?? ?+∞- ,21

高中数学教师备课必备系列(三角函数(一)专题9 三角函数图像与性质

专题九三角函数图像与性质.正弦函数、余弦函数、正切函数的图像 .三角函数的单调区间: 的递增区间是,递减区间是 ; 的递增区间是,递减区间是, 的递增区间是, .函数 最大值是,最小值是,周期是,频率是,相位是,初相是;其图象的对称轴是直线,凡是该图象与直线的交点都是该图象的对称中心。 .由=的图象变换出=(ω+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进

行图象变换。 利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现无论哪种变形,请切记每一个变换总是对字母而言,即图象变换要看“变量”起多大变化,而不是“角变化”多少。 途径一:先平移变换再周期变换 (伸缩变换) 先将=的图象向左(>)或向右(<=平移||个单位,再将图象上各点的横坐标变为原来的 倍(ω>),便得=(ω+)的图象。 途径二:先周期变换(伸缩变换)再平移变换。 先将=的图象上各点的横坐标变为原来的倍(ω>),再沿轴向左(>)或向右(<=平移 个单位,便得=(ω+)的图象。 .由=(ω+)的图象求其函数式: 给出图象确定解析式(ω)的题型,有时从寻找“五点”中的第一零点(-,)作为突破口, 要从图象的升降情况找准 ..第一个零点的位置。 .对称轴与对称中心: 的对称轴为,对称中心为; 的对称轴为,对称中心为; 对于和来说,对称中心与零点相联系,对称轴与最值点联系。 .求三角函数的单调区间:一般先将函数式化为基本三角函数的标准式,要特别注意、的正负利用单调性三角函数大小一般要化为同名函数,并且在同一单调区间; .求三角函数的周期的常用方法: 经过恒等变形化成“、”的形式,在利用周期公式,另外还有图像法和定义法。 .五点法作(ω)的简图: 五点取法是设ω,由取、、π、、π来求相应的值及对应的值,再描点作图。 四.典例解析

高中数学学案:三角函数的最值问题

高中数学学案:三角函数的最值问题 1. 会通过三角恒等变形、利用三角函数的有界性、结合三角函数的图象,求三角函数的最值和值域. 2. 掌握求三角函数最值的常见方法,能运用三角函数最值解决一些实际问题. 1. 阅读:必修4第24~33页、第103~116页、第119~122页. 2. 解悟:①正弦、余弦、正切函数的图象和性质是什么?②三角函数y =A sin (ωx +φ)(A>0,ω>0)的最值及对应条件;③两角和与差的正弦、余弦、正切公式是什么?辅助角公式是否熟练?④二倍角公式是什么?由倍角公式得到的降幂扩角公式是什么?必修4第123页练习第4题怎么解? 3. 践习:在教材空白处,完成必修4第131页复习题第9、10、16题. 基础诊断 1. 函数f(x)=sin x,x ∈? ????π6,2π3的值域为? ?? ??12,1__. 2. 函数f(x)=sin x -cos ? ?? ??x +π6的值域为3]__. 解析:因为f(x)=sin x -cos (x +π6)=sin x -32cos x +12sin x =32sin x -32cos x =3sin (x -π6), 所以函数f(x)=sin x -cos (x +π6)的值域为[-3,3]. 3. 若函数f(x)=(1+3tan x)cos x,0≤x<π2,则f(x)的最大值为__2__. 解析:f(x)=(1+3tan x)cos x =cos x +3sin x =2sin ? ????x +π6.因为0≤x<π2,所以π6≤x +π6<2π3,所以sin ? ????x +π6∈???? ??12,1, 所以当sin ? ?? ??x +π6=1时,f(x)有最大值2. 4. 函数y =2sin 2x -3sin 2x 范例导航 考向? 形如y =a sin 2x +b cos x +c 的三角函数的最值

高中数学任意角的三角函数教案

§1.2.1 任意角的三角函数 教学目标 <一> 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函数的定义域和诱导公式(一)。 <二> 能力目标 1、理解并掌握任意角的三角函数的定义。 2、树立映射观点,正确理解三角函数是以实数为自变量的函数。 3、通过对定义域,三角函数值的符号,诱导公式一的推导,提高学生分析、探究、解决问题的能力。 <三> 德育目标 1、使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式。 2、学习转化的思想,培养学生严谨治学、一丝不苟的科学精神。 教学重难点 任意角的正弦、余弦、正切的定义 (包括这三种三角函数的定义域和函数值在各象限的符号),以及这三种函数的第一组诱导公式。 教学过程 问题1:你能回忆一下初中里学过的锐角三角函数(正弦,余弦,正切)的定义吗? 锐角三角函数定义

问题2:在终边上移动点P的位置,这三个比值会改变吗? 在直角坐标系中,以原点O为圆心,以单位长度为半径的圆叫单位圆 即:锐角三角函数可以用单位圆上的点的坐标来表示 推广: 我们也可以利用单位圆定义任意角三角函数(正弦,余弦,正切) 任意角的三角函数定义: 设α是一个任意角,它的终边与单位圆交于点P(x,y),则: 正弦,余弦,正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数. (由于角的集合与实数集之间可以建立一一对应关系,因此三角函数可以看成是自变量为实数的函数.)

所以三角函数可以记为: 我们把角X的正弦、余弦、正切统称为三角函数 问题3:如何求α角的三角函数值? 求α角的三角函数值即求α终边与单位圆交点的纵、横坐标或坐标的比值。例1: 解: 例2: 事实上: 三角函数也可定义为: 设α是一个任意角,它的终边经过点P(x,y),则

(完整版)高中数学必修一三角函数图像性质总结(精华版)

x ?正弦、余弦、正切函数图象和性质 正弦函数、余弦函数、正切函数的图像 -5 3 7 ~2~ ” - 丁1 T V x 2*伽 -4 -7 -3 ' 、一 -2 -3 - -1 o '2 5 3 J. ‘ 4 2 2 2

y=ta nx J J J 1 Jr jr y y ; 1 1 / / / I ? r / / / y\ y=cotx 1 1 1 \ i 1 ! i I 1 3f-2 1 f J 1 J f f o 2 f I \ I i 1 I L o I I X2 1 三角函数的性质 1定义域与值域 2、奇偶性 (1)基本函数的奇偶性奇函数:y = sinx , y= tanx ;偶函数:y= cosx. ⑺八黒 ' -型三角函数的奇偶性 (i)g(x 丄^ 丁(x€ R) (x)为偶函数- U 山呂in(曲+ 训+ e二匕T +—〔七W E) 由此得- 同理或劝=丿血(阪+呦〔肚丘)为奇函数u 如卩二0吕貯=匕吋上亡£)丘)Q..I —「二一L> : C 2. ■■■ □ 为偶函数;.匚」一⑺一".S 为奇函数 O 炉=Rr+ —(h e 7) 3、周期性 1)基本公式 (i)基本三角函数的周期y= sinx , y= cosx 的周期为; y = tanx , y = cotx 的周期为;T? (ii)—",:'型三角函数的周期 尹=」幻n(购+ 朝 +匕尸=+炉)+上的周期为同 y=cosx

P =」tan (处: + &) +匕尸二(处卄洞+& 的周期为91 . (2)认知 (i ) ?卜巳-,?| 型函数的周期 y = pisin (伽+ 剑| j = A cos(d&r+ 4?)| 的周期为 7T y = |j4tan(dft + 训,y=血 ot 〔伽 + 训 的周期为 ? = |了(曲+卩)+円往无0)的周期 》=|£血(血工+朝胡』=|1(:0£(处+?+上| y = |^tan(&r + ^) +円 j =凶诃(你+昉+刈 的周期为’; 7T 的周期为'? 均同它们不加绝对值时的周期相同,即对 数 的周期不变?注意这一点与(i )的区别? (ii ) 若函数为-’二 型两位函数之和,则探求周期适于“最小公倍数法”. (iii ) 探求其它“杂”三角函数的周期,基本策略是试验一一猜想一一证明 ? (3)特殊情形研究 y 二门」 彳J 的解析式施加绝对值后,该函 JT (i) y = tanx — cotx 的最小正周期为 ; y = sin z|+|co5z| 7T 的最小正周期为二; 7T (iii ) y = sin 4X + cos 4x 的最小正周期为 二. 由此领悟“最小公倍数法”的适用类型,以防施错对象 . 4、单调性 (1) 基本三角函数的单调区间(族) 依从三角函数图象识证“三部曲”: ① 选周期:在原点附近选取那个包含全部锐角,单调区间完整,并且最好关于原点对称的 一个周期; ② 写特解:在所选周期内写出函数的增区间(或减区间); ③ 获通解:在②中所得特解区间两端加上有关函数的最小正周期的整数倍,即得这一函数 的增区间族(或减区间族) 循着上述三部曲,便可得出课本中规范的三角函数的单调区间族 . 揭示:上述“三部曲”也适合于寻求简单三角不等式的解集或探求三角函数的定义域 (2) 』— 丁 型三角函数的单调区间

2018版高中数学三角函数1.2.1任意角的三角函数一导学案新人教A版

1.2.1 任意角的三角函数(一) 学习目标 1.通过借助单位圆理解并掌握任意角的三角函数定义,了解三角函数是以实数为自变量的函数.2.借助任意角三角函数的定义理解并掌握正弦、余弦、正切函数值在各象限内的符号.3.通过对任意角的三角函数定义的理解,掌握终边相同的角的同一三角函数值相等. 知识点一 任意角的三角函数 使锐角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,在终边上任取一点P ,作PM ⊥x 轴于M ,设P (x ,y ),|OP |=r . 思考1 角α的正弦、余弦、正切分别等于什么? 答案 sin α=y r ,cos α=x r ,tan α=y x . 思考2 对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关. 思考3 在思考1中,当取|OP |=1时,sin α,cos α,tan α的值怎样表示? 答案 sin α=y ,cos α=x ,tan α=y x . 梳理 (1)单位圆 在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. (2)定义 在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么: ①y 叫做α的正弦,记作sin α, 即sin α=y ; ②x 叫做α的余弦,记作cos α,即cos α=x ; ③y x 叫做α的正切,记作tan α,即tan α=y x (x ≠0). 对于确定的角α,上述三个值都是唯一确定的.故正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,统称为三角函数.

高一数学三角函数教案

高一数学三角函数教案 高一数学《三角函数》教案如下: 已知三角函数值求角反正弦,反余弦函数 目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。 过程: 一、简单理解反正弦,反余弦函数的意义。 由 1在R上无反函数。 2在上, x与y是一一对应的,且区间比较简单 在上,的反函数称作反正弦函数, 记作,奇函数。 同理,由 在上,的反函数称作反余弦函数, 记作 二、已知三角函数求角 首先应弄清:已知角求三角函数值是单值的。 已知三角函数值求角是多值的。 例一、1、已知,求x 解:在上正弦函数是单调递增的,且符合条件的角只有一个 ∴ 即 2、已知 解:,是第一或第二象限角。 即。 3、已知

解: x是第三或第四象限角。 即或 这里用到是奇函数。 例二、1、已知,求 解:在上余弦函数是单调递减的, 且符合条件的角只有一个 2、已知,且,求x的值。 解:, x是第二或第三象限角。 3、已知,求x的值。 解:由上题:。 介绍:∵ ∴上题 例三、见课本P74-P75略。 三、小结:求角的多值性 法则:1、先决定角的象限。 2、如果函数值是正值,则先求出对应的锐角x; 如果函数值是负值,则先求出与其绝对值对应的锐角x, 3、由诱导公式,求出符合条件的其它象限的角。 四、作业:P76-77 练习 3 习题4.11 1,2,3,4中有关部分。 高一数学《三角函数的周期性》教案如下: 一、学习目标与自我评估 1 掌握利用单位圆的几何方法作函数的图象 2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期 3 会用代数方法求等函数的周期

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

(完整版)高一数学三角函数的图像和性质练习题

高一数学 三角函数的图像和性质练习题 1.若cosx=0,则角x 等于( ) A .k π(k ∈Z ) B . 2π+k π(k ∈Z ) C .2π+2k π(k ∈Z ) D .-2π+2k π(k ∈Z ) 2.使cosx=m m -+11有意义的m 的值为( ) A .m ≥0 B .m ≤0 C .-1<m <1 D .m <-1或m >1 3.函数y=3cos ( 52x -6π)的最小正周期是( ) A .5 π2 B .2π5 C .2π D .5π 4.函数y=2sin 2x+2cosx -3的最大值是( ) A .-1 B .21 C .-21 D .-5 5.下列函数中,同时满足①在(0, 2π)上是增函数,②为奇函数,③以π为最小正周期的函数是( ) A .y=tanx B .y=cosx C .y=tan 2x D .y=|sinx| 6.函数y=sin(2x+π6 )的图象可看成是把函数y=sin2x 的图象做以下平移得到( ) A.向右平移π6 B. 向左平移 π12 C. 向右平移 π12 D. 向左平移π6 7.函数y=sin(π4 -2x)的单调增区间是( ) A. [kπ-3π8 , kπ+3π8 ] (k∈Z) B. [kπ+π8 , kπ+5π8 ] (k∈Z) C. [kπ-π8 , kπ+3π8 ] (k∈Z) D. [kπ+3π8 , kπ+7π8 ] (k∈Z) 8.函数 y=15 sin2x 图象的一条对称轴是( )

A.x= - π2 B. x= - π4 C. x = π8 D. x= - 5π4 9.函数 y=15 sin(3x-π3 ) 的定义域是__________,值域是________,最小正周期是________,振幅是________,频率是________,初相是_________. 10.函数y=sin2x 的图象向左平移 π6 ,所得的曲线对应的函数解析式是____ _____. 11.关于函数f(x)=4sin(2x+π3 ),(x∈R),有下列命题: (1)y=f(x)的表达式可改写为y=4cos(2x-π6 ); (2)y=f(x)是以2π为最小正周期的周期函数; (3)y=f(x)的图象关于点(-π6 ,0)对称; (4)y=f(x)的图象关于直线x=-π6 对称;其中正确的命题序号是___________. 12. 已知函数y=3sin (21x -4 π). (1)用“五点法”作函数的图象; (2)说出此图象是由y=sinx 的图象经过怎样的变化得到的; (3)求此函数的最小正周期; (4)求此函数的对称轴、对称中心、单调递增区间. 13. 如图是函数y =A sin(ωx +φ)+2的图象的一部分,求它的振幅、最小正周期和初 相。

相关主题
相关文档 最新文档