当前位置:文档之家› 在AT45DB161实现YAFFS文件系统

在AT45DB161实现YAFFS文件系统

在AT45DB161实现YAFFS文件系统
在AT45DB161实现YAFFS文件系统

在AT45DB161实现YAFFS文件系统

YAFFS(Yet Another Flash File System)文件系统是专门针对NAND闪存设计的嵌入式文件系统。在YAFFS中,文件是以固定大小的数据块进行存储的,块的大小可以是512字节、1024字节或者2048字节。

YAFFS利用NandFlash提供的每个页面16字节或64字节的Spare区(备用区)空间来存放ECC和文件系统的组织信息,能够实现错误检测和坏块处理。这样的设计充分考虑了NandFlash以页面为存取单元的特点,将文件组织成固定大小的数据段,能够提高文件系统的加载速度(垃圾回收算法+贪心算法)。

YAFFS在文件进行改写时总是先写入新的数据块,然后删除旧的数据块,这样即使意外掉电,丢失的也只是这一次修改数据的最小写入单位,从而实现了掉电保护,保证了数据完整性。YAFFS目前有YAFFS、YAFFS2两个版本(YAFFS3还在研发阶段,没有面市),一般来说,YAFFS对小页面(512B+16B/页)有很好的支持,YAFFS2对更大的页面(2K+64B/页)支持更好。

YAFFS 分别用块号和 chunk id 标示块和 chunk 。它将空块(填满0xFF)当作空闲块或者已擦除块。这样,格式化一个YAFFS分区等价于擦除所有未损坏的块。因此YAFFS最少需要一些函数能够擦除块,读一个页,写一个页。

1.SPI接口的FLASH AT45DB161D

AT45DB161D是一款串行接口的FLASH存储器。AT45DB161D支持RapidS串行接口,适用于要求高速操作的应用。RapidS串行接口兼容SPI,最高频率可达66MHz。AT45DB161D的存储容量为17,301,504位,组织形式为4,096页,每页512或528页。除了主存储器外,AT45DB161D还包含2个512/528字节的SRAM缓冲区。缓冲区允许在对主存储器的页面重新编程时接收数据,也可写入连续的数据串。通过独立的“读-改-写”三步操作,可以轻松实现EEPROM仿真(可设置成位或字节)。为了实现简单的在系统重复编程,AT45DB161D并不需要高输入电压来支持编程。AT45DB161D可通过片选引脚(/CS)使能,并通过3-wire接口访问,3-wire由串行输入(SI),串行输出(SO),和串行时钟(SCK)组成。对于许多要求高容量,低引脚数,低电压和低功耗的商业级或工业级应用来讲,AT45DB161D是最佳的选择。

2.直接接口(Direct Interface)的相关文件

仅需要提取少量文件。使用yaffs的直接接口,你不需要所有的文件。你实际需要的文件列在下面,其余文件不需要编译。

direct/yaffsfs.c

yaffs_guts.c

direct/yaffscfg.c

yaffs_nand.c

yaffs_tagsvalidity.c

yaffs_checkptrw.c

yaffs_qsort.c

yaffs_tagscompat.c

yaffs_ecc.c

yaffs_packedtags2.c

3.YAFFS存储格式

YAFFS对文件系统上的所有内容(比如正常文件,目录,链接,设备文件等等)都统一当作文件来处理,每个文件都有一个页面专门存放文件头,文件头保存了文件的模式、所有者id、组id、长度、文件名、Parent Object ID等信息。因为需要在一页内放下这些内容,所以对文件名的长度,符号链接对象的路径名等长度都有限制。前面说到对于NAND FLASH上的每一页数据,都有额外的空间用来存储附加信息,通常NAND 驱动只使用了这些空间的一部分,YAFFS正是利用了这部分空间中剩余的部分来存储文件系统相关的内容。以512+16B为一个PAGE的NAND FLASH芯片为例,Yaffs文件系统数据的存储布局如下所示:

可以看到在这里YAFFS一共使用了8个BYTE用来存放文件系统相关的信息(yaffs_Tags)。这8个Byte 的具体使用情况按顺序如下:

其中Serial Number在文件系统创建时都为0,以后每次写具有同一ObjectID和ChunkID的page的时候都加一,因为YAFFS在更新一个PAGE的时候总是在一个新的物理Page上写入数据,再将原先的物理Page删除,所以该serial number可以在断电等特殊情况下,当新的page已经写入但老的page还没有被删除的时候用来识别正确的Page,保证数据的正确性。 ObjectID号为18bit,所以文件的总数限制在256K即26万个左右。

由于文件系统的基本组织信息保存在页面的备份空间中,因此,在文件系统加载时只需要扫描各个页面的备份空间,即可建立起整个文件系统的结构,而不需要像JFFS1/2 那样扫描整个介质,从而大大加快了文件系统的加载速度。

一个YAFFS设备是一个逻辑设备,它代表了一个物理设备的部分或整体。你可以认为它是一个Nand上的一个“分区”。比如,该分区可能覆盖整个NAND,也许只是一半,而另外一半就是另一个Yaffs_Device.它也可以用于你使用一个非flash设备(比如RAM)来测试的情况下。一个Yaffs_Device记录了起始和结束块。通过改变它的起始和结束块,你就可以在同一个物理设备上使用不止一个的Yaffs_Device。这里将需要你自己建立的Yaffs_Device结构的数据域列出,其他数据域由Yaffs自动创建。

int nDataBytesPerChunk

如其名,这是每一个chunk的字节数,还记得吧,在yaffs术语中,一个页就是一个chunk,因而它也是一页的字节数。它是数据字节数,即不包含OOB的数据。比如一页时2048字节+64字节的OOB,那么数值nDataBytesPerChunk为2048。

int nChunksPerBlock

物理Nand设备中每页包含的chunk(就是Nand上的页)的数目,最少是2。

int spareBytesPerChunk

空闲域(spare area)大小,比如:每个chunk(页)的OOB字节数。

int startBlock

该逻辑Yaffs_Device设备第一个块的块号(而字节地址),注意,yaffs需要第一个块是空闲的,因此你不可以设置该变量为0,如果设置为0,Yaffs会给它加1,并且会在结束块号上也加1,在你设置设备从块0开始,到最后一个块结束,这意味着yaffs试图写一个不存在的块,从而出现错误。

int endBlock

该逻辑Yaffs_Device设备的最后一个块号。如果startBlock为0,那么yaffs会使用endBlock+1,至少使startBlock+nReservedBlocks+2

int nReservedBlocks

这是YAFFS必须保留,用于垃圾回收和块错误恢复的可擦除块的数目。至少是2,但是5更好。如果你使用一个不会损坏的介质,比如RAM或者RAM盘,或者主机文件系统模拟,那么可以是2。

int nShortOpCaches

配置当前设备YAFFS Cache项的数目。0值表示不使用cache。对于大多数系统,推荐使用10到20之间的一个数值。不能大于YAFFS_MAX_SHORT_OP_CACHES定义的数值。

int useNANDECC

这是一个标志,用于指示是由yaffs执行ECC计算,还是由NAND驱动程序来执行ECC计算。(译者注:此数值取0,则使用yaffs来执行ECC计算,软件ECC计算。如果想要使用硬件ECC校验时,应该设置为1,并且在NAND驱动程序中加入硬件ECC校验的代码。)

void *genericDevice

这是一个指针,它应该指向任何数据,底层NAND驱动程序需要知道以从物理设备读、写。

int isYaffs2

我们使用的是否YAFFS2版本?

int inbandTags

是否为OOB区,如果不是,那么它为真,仅用于yaffs2

u32 totalBytesPerChunk

这个名字可能有点误导人,它应该等于nDataBytesPerChunk ,而非其名字暗示的nDataBytesPerChunk + spareBytesPerChunk。如果inbandTags为真,那么yaffs设置nDataBytesPerChunk,因此有足够的空闲空间存储数据,yaffs会在空闲域中正常存储。

write/readChunkWithTagsFromNAND,

markNANDBlockBad

queryNANDBlock

这些都是函数指针,你需要提供这些函数来给YAFFS,读写nand flash。

4.NAND Flash访问函数

int (*writeChunkWithTagsToNAND) (struct yaffs_DeviceStruct * dev, int chunkInNAND, const u8 * data, const yaffs_ExtendedTags * tags);

dev: 要写入的yaffs_Device逻辑设备.

chunkInNAND: 将chunk写入的页

Data: 指向需要写入的数据的指针

tags: 未压缩(打包)的OOB数据

Return: YAFFS_OK / YAFFS_FAIL

该函数将页(chunk)写入nand中,向nand中写入数据。数据和标签(tags)永远不应为 NULL.

chunkInNand 是将要写入的页的页号,而不是需要转换的地址。

int (*readChunkWithTagsFromNAND) (struct yaffs_DeviceStruct * dev, int chunkInNAND, u8 * data, yaffs_ExtendedTags * tags);

dev: 要写入的yaffs_Device逻辑设备.

chunkInNAND: 将chunk读入的页

Data: 指向需要读入的数据的缓冲区指针

tags: 指向未压缩(打包)的OOB数据的缓冲区指针

Return: YAFFS_OK / YAFFS_FAIL

该函数执行上一个函数的相反的功能,首先,读取数据和OOB字节,接着将这些输入放在一个由参数data指向的缓冲区中

int (*markNANDBlockBad) (struct yaffs_DeviceStruct * dev, int blockNo);

dev: 要写入的yaffs_Device逻辑设备.

blockNo: 要标记的块.

Return: YAFFS_OK / YAFFS_FAIL

int (*queryNANDBlock) (struct yaffs_DeviceStruct * dev, int blockNo, yaffs_BlockState * state, u32 *sequenceNumber);

dev: 要写入的Yaffs_Device逻辑设备.

blockNo: 要标记的块.

state: Upon returning this should be set to the relevant state of this particular block.

Sequance number: 该块的顺序号(The Sequence number),为0表示此块未使用

Return: YAFFS_OK / YAFFS_FAIL

它应检查一个块是否是有效的。如果在OOB中设置了坏块标记,那么*state应该被赋值为YAFFS_BLOCK_STATE_DEAD,*sequenceNumber赋值为0,然后返回YAFFS_FAIL。

如果该块没坏,那么应解压缩标签。标签解压缩后,若发现chunk已使用(查看tags.chunkUsed),则*sequenceNumber应赋值为tags.sequenceNumber,*state赋值为YAFFS_BLOCK_STATE_NEEDS_SCANNING,否则该块未使用,则*sequenceNumber赋值为0,*state赋值为YAFFS_BLOCK_STATE_EMPTY

5.YAFFS的缓存机制

由于NandFlash是有一定的读写次数的,所以在对一个文件进行操作的时候往往是先通过缓冲进行,对最后一次性写入NandFlash,这有效的减少了用户对NandFlash的频繁操作,延长了NandFlash的寿命。下面大致说一下YAFFS的缓存机制:

4.1.首先在yaffs_mount的时候会对yaffs_dev这个结构体进行注册,和缓冲部分相关的有:

dev->nShortOpCaches//这个变量决定了有多少个缓冲,因为缓冲会大量的占用堆栈的空间,所以在yaffs不建议缓冲的数量很大,即使你填一个很大的数,系统也不会超过YAFFS_MAX_SHORT_OP_CACHES的总数。

yaffs_ChunkCache *srCache;//缓冲区的首地址,dev->srCache = YMALLOC( dev->nShortOpCaches *

sizeof(yaffs_ChunkCache));下面介绍一下缓冲区这个结构体的组成:

typedef struct

{

struct yaffs_ObjectStruct *object;//一个缓冲区对应一个文件

int chunkId;

int lastUse; //通过lastUse来

int dirty; //标志了这一个缓冲区是否被使用

int nBytes;

__u8 data[YAFFS_BYTES_PER_CHUNK];//数据区

} yaffs_ChunkCache;

4.2.什么时候用到缓冲区?

用到缓冲区最多的地方显而易见是对已经创建的文件进行写操作。而且是需要写的大小和512不一致的时候,这是因为如果是刚好512的话,系统会直接写入NandFlash中。对于小于512的系统首先会调用

yaffs_FindChunkCache(in,chunk)这个函数来判断in这个object是否在缓冲区中存在。如果存在会调用已有缓冲区进行操作。当然如果是第一次对一个object进行操作,肯定在缓冲区中是不存在对应它的空间的,因此系统会调用yaffs_GrabChunkCache函数为此次操作分配一个缓冲区。

6.应用层接口

YAFFS为连接的应用程序提供了一组函数。大部分跟标准C库函数,如open/close一致,只是增加了

yaffs_前缀,如 yaffs_open. 这些函数定义在direct/yaffsfs.h中。

初始化yaffs来完成读写,你必须在每个你要使用的yaffs设备上调用yaffs_mount。比如yaffs_mount(”

/boot”)。这可以在系统启动的时候执行,如果存在一个操作系统,那么程序需要考虑这点。在你完成使用的时候,你也需要调用yaffs_umount函数,这样yaffs就会将它需要状态写入磁盘。如果读写文件的应用层接口已经存在,你可以根据相关的操作系统调用来封装相关的函数调用。

1 yaffs_mount( )

功能说明:加载指定器件。

输入参数:path 要加载的器件。

输出参数:无。

返回值:表明加载的状态。

调用的函数:yaffsfs_FindDevice( )、yaffs_GutsInitialise( )。

2 yaffs_open( )

功能说明:按照指定方式打开文件。

输入参数:path 文件的绝对路径;

Oflag 打开的方式;

Mode 文件许可模式。

输出参数:无。

返回值:句柄。

调用的函数:yaffsfs_GetHandle( )、yaffsfs_FindDirectory( )、yaffs_MknodFile( )、

yaffsfs_PutHandle( )、yaffs_ResizeFile( )、yaffsfs_FindObject( )。

3 yaffs_write( )

功能说明:根据打开文件的句柄,从指定数组处读指定字节写入文件中。

输入参数:fd 要写入的文件的句柄;

Buf 要写入的数据的首地址;

Nbyte 要写入的字节数。

输出参数:无。

返回值:写入了的字节数。

调用的函数:yaffs_WriteDataToFile( )、yaffsfs_GetHandlePointer( )、yaffsfs_GetHandleObject( )

4 yaffs_read( )

功能说明:根据打开文件的句柄,从文件中读出指定字节数据存入指定地址。

输入参数:fd 要读出的文件的句柄;

Buf 读出文件后要存入的数据的首地址;

Nbyte 要读出的字节数。

输出参数:无。

返回值:读出了的字节数。

调用的函数:yaffs_ReadDataFromFile( )、yaffsfs_GetHandlePointer( )

5 yaffs_close( )

功能说明:关闭已经打开的文件句柄,yaffs 有缓冲机制,当调用yaffs_close()关闭文件之后能够保证将内容写入nandflash。

输入参数:fd 需要关闭的文件的句柄;

输出参数:无。

返回值:无。

7.YAFFS在MQX的应用

YAFFS提供了直接调用模式,可以方便移植到 none-OS或者light-weighted OS中。附件是将YAFFS移植到Freescale MQX实时操作系统的源代码和工程,可以在FRDM-K64上运行。

测试表明YAFFS工作正常,能够完成创建目录,创建/删除文件,读/写文件操作等。

YAFFS非常适合none-OS或者是light-weighted OS,使用YAFFS需要关注的是RAM的消耗,适合小量文件(<20)。如果不想使用MQX默认的MFS(FAT32文件系统),YAFFS可以作为一个文件系统的备选方案。

(完整版)操作系统毕业课程设计说明书-基于Linux的模拟文件系统的设计与实现

中北大学 操作系统课程设计 说明书 学院、系:软件学院 专业:软件工程 学生姓名:徐春花学号: 设计题目:基于Linux的模拟文件系统的设计与实现 起迄日 期: 2014年6月14日- 2014年6月26日指导教薛海丽

师: 2014 年 6月 26 日 前言 简单地说,Linux是一套免费使用和自由传播的类Unix操作系统,它主要用于基于Intel x86系列CPU的计算机上。这个系统是由世界各地的成千上万的程序员设计和实现的。其目的是建立不受任何商品化软件的版权制约的、全世界都能自由使用的Unix兼容产品。 Linux不仅为用户提供了强大的操作系统功能,而且还提供了丰富的应用软件。用户不但可以从Internet上下载Linux及其源代码,而且还可以从Internet上下载许多Linux的应用程序。可以说,Linux本身包含的应用程序以及移植到Linux上的应用程序包罗万象,任何一位用户都能从有关Linux的网站上找到适合自己特殊需要的应用程序及其源代码,这样,用户就可以根据自己的需要下载源代码,以便修改和扩充操作系统或应用程序的功能。这对Windows NT、Windows98、MS-DOS或OS2

等商品化操作系统来说是无法做到的。 Linux具有:稳定、可靠、安全的优点,并且有强大的网络功能。其中有对读、 写进行权限控制、审计跟踪、核心授权等技术,这些都为安全提供了保障。在相关软 件的支持下,可实现WWW、FTP、DNS、DHCP、E-mail等服务,还可作为路由器 使用,利用IPCHAINSIPTABLE网络治理工具可构建NAT及功能全面的防火墙。 Linux是在GNU公共许可权限下免费获得的,是一个符合POSIX标准的操作系 统。Linux操作系统软件包不仅包括完整的Linux操作系统,而且还包括了文本编辑 器、高级语言编译器等应用软件。它还包括带有多个窗口管理器的X-Windows图形 用户界面,如同我们使用Windows NT一样,允许我们使用窗口、图标和菜单对系 统进行操作。 目录 1需求分析 (3) 1.1 功能介绍 (3) 1.2 目的及意义 (5) 1.2.1 目的 (5) 1.2.2 意义 (6) 1.3 设计成果 (7) 2总体设计 (8) 2.1功能介绍 (8) 2.2模块关联 (9) 3详细设计 (12)

简单文件系统的实现

简单文件系统的实现 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

第三章简单文件系统的实现 设计目的和内容要求 1.设计目的 通过具体的文件存储空间的管理、文件的物理结构、目录结构和文件操作的实现,加深对文件系统内部数据结构、功能以及实现过程的理解。 2.内容要求 (1)在内存中开辟一个虚拟磁盘空间作为文件存储分区,在其上实现一个简单的基于多级目录的单用户单任务系统中的文件系统。在退出该文件系统的使用时,应将该虚拟文件系统以一个Windows文件的方式保存到磁盘上,以便下次可以再将它恢复到内存的虚拟磁盘空间中。 (2)文件存储空间的分配可采用显式链接分配或其他的办法。 (3)空闲磁盘空间的管理可选择位示图或其他的办法。如果采用位示图来管理文件存储空间,并采用显式链接分配方式,那么可以将位示图合并到FAT 中。 (4)文件目录结构采用多级目录结构。为了简单起见,可以不使用索引结点,其中的每个目录项应包含文件名、物理地址、长度等信息,还可以通过目录项实现对文件的读和写的保护。 (5)要求提供以下操作命令: my_format:对文件存储器进行格式化,即按照文件系统的结构对虚拟磁盘空间进行布局,并在其上创建根目录以及用于管理文件存储空间等的数据结构。

●my_mkdir:用于创建子目录。 ●my_rmdir:用于删除子目录。 ●my_ls:用于显示目录中的内容。 ●my_cd:用于更改当前目录。 ●my_create:用于创建文件。 ●my_open:用于打开文件。 ●my_close:用于关闭文件。 ●my_write:用于写文件。 ●my_read:用于读文件。 ●my_rm:用于删除文件。 ●my_exitsys:用于退出文件系统。 3.学时安排 授课2学时,上机9学时。 4.开发平台 C或C++均可。 5.思考 (1)我们的数据结构中的文件物理地址信息是使用C语言的指针类型、还是整型,为什么 (2)如果引入磁盘索引结点,上述实现过程需要作哪些修改 (3)如果设计的是一个单用户多任务文件系统,则系统需要进行哪些扩充(尤其要考虑读写指针问题)如果设计的是一个多用户文件系统,则又要进行哪些扩充

busybox详解制作根文件系统

详解制作根文件系统 单击,返回主页,查看更多内容 一、FHS(Filesystem Hierarchy Standard)标准介绍 当我们在linux下输入ls / 的时候,见到的目录结构以及这些目录下的内容都大同小异,这是因为所有的linux发行版在对根文件系统布局上都遵循FHS标准的建议规定。 该标准规定了根目录下各个子目录的名称及其存放的内容: 制作根文件系统就是要建立以上的目录,并在其中建立完整目录内容。其过程大体包括: ?编译/安装busybox,生成/bin、/sbin、/usr/bin、/usr/sbin目录 ?利用交叉编译工具链,构建/lib目录 ?手工构建/etc目录 ?手工构建最简化的/dev目录 ?创建其它空目录 ?配置系统自动生成/proc目录 ?利用udev构建完整的/dev目录 ?制作根文件系统的jffs2映像文件 下面就来详细介绍这个过程。 二、编译/安装busybox,生成/bin、/sbin、/usr/bin、/usr/sbin目录

这些目录下存储的主要是常用命令的二进制文件。如果要自己编写这几百个常用命令的源程序,my god,这简直是一个噩梦!好在我们有嵌入式Linux系统的瑞士军刀——busybox,事情就简单很多。 1、从https://www.doczj.com/doc/8212345124.html,/下载busybox-1.7.0.tar.bz2 2、tar xjvf busybox-1.7.0.tar.bz2解包 3、修改Makefile文件 175 ARCH ?= arm 176 CROSS_COMPILE ?= arm-linux- 4、make menuconfig配置busybox busybox配置主要分两部分。 第一部分是Busybox Settings,主要编译和安装busybox的一些选项。这里主要需要配置:

LINUX文件系统制作详细

Linux文件系统制作流程 关键词:ARM Linux yaffs文件系统移植 Linux文件系统简介 Linux支持多种文件系统,包括ext2、ext3、vfat、ntfs、iso9660、jffs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了虚拟文件系统VFS(Virtual File System),为各类文件系统提供一个统一的操作界面和应用编程接口。 Linux下的文件系统结构如下: Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。 不同的文件系统类型有不同的特点,因而根据存储设备的硬件特性、系统需求等有不同的应用场合。在嵌入式Linux应用中,主要的存储设备为RAM(DRAM,

SDRAM)和ROM(常采用FLASH存储器),常用的基于存储设备的文件系统类型包括:jffs2,yaffs,cramfs,romfs,ramdisk,ramfs/tmpfs等。 >基于FLASH的文件系统 Flash(闪存)作为嵌入式系统的主要存储媒介,有其自身的特性。Flash的写入操作只能把对应位置的1修改为0,而不能把0修改为1(擦除Flash就是把对应存储块的内容恢复为1),因此,一般情况下,向Flash写入内容时,需要先擦除对应的存储区间,这种擦除是以块(block)为单位进行的。 闪存主要有NOR和NAND两种技术(简单比较见附录)。Flash存储器的擦写次数是有限的,NAND闪存还有特殊的硬件接口和读写时序。因此,必须针对Flash 的硬件特性设计符合应用要求的文件系统;传统的文件系统如ext2等,用作Flash的文件系统会有诸多弊端。 在嵌入式Linux下,MTD(Memory Technology Device,存储技术设备)为底层硬件(闪存)和上层(文件系统)之间提供一个统一的抽象接口,即Flash的文件系统都是基于MTD驱动层的(参见上面的Linux下的文件系统结构图)。使用MTD 驱动程序的主要优点在于,它是专门针对各种非易失性存储器(以闪存为主)而设计的,因而它对Flash有更好的支持、管理和基于扇区的擦除、读/写操作接口。 顺便一提,一块Flash芯片可以被划分为多个分区,各分区可以采用不同的文件系统;两块Flash芯片也可以合并为一个分区使用,采用一个文件系统。即文件系统是针对于存储器分区而言的,而非存储芯片。 1.jffs2 JFFS文件系统最早是由瑞典Axis Communications公司基于Linux2.0的内核为嵌入式系统开发的文件系统。JFFS2是RedHat公司基于JFFS开发的闪存文件系统,最初是针对RedHat公司的嵌入式产品eCos开发的嵌入式文件系统,所以JFFS2也可以用在Linux,uCLinux中。 Jffs2:日志闪存文件系统版本2(Journalling Flash FileSystem v2) 主要用于NOR型闪存,基于MTD驱动层,特点是:可读写的、支持数据压缩的、基于哈希表的日志型文件系统,并提供了崩溃/掉电安全保护,提供“写平衡”支持等。缺点主要是当文件系统已满或接近满时,因为垃圾收集的关系而使jffs2的运行速度大大放慢。 目前jffs3正在开发中。关于jffs系列文件系统的使用详细文档,可参考MTD补丁包中mtd-jffs-HOWTO.txt。 jffsx不适合用于NAND闪存主要是因为NAND闪存的容量一般较大,这样导致jffs为维护日志节点所占用的内存空间迅速增大,另外,jffsx文件系统在

实验四 ramdisk 根文件系统的制作

实验四ramdisk根文件系统的制作 一.实验目的 1.熟悉根文件系统组织结构; 2.定制、编译ramdisk根文件系统。 二.实验设备 1.硬件:EduKit-IV 嵌入式教学实验平台、Mini2410 核心子板、PC 机; 2.软件:Windows 2000/NT/XP、Ubuntu 8.04、其他嵌入式软件包。 三.实验内容 利用6.3 中的已经完成的文件系统,生成一个根文件系统镜像。 四.实验原理 ramdisk是内核初始化的时候用到的一个临时文件系统,是一个最小的linuxrootfs系统,它包含了除内核以外的所有linux系统在引导和管理时需要的工具,做为启动引导驱动,包含如下目录: bin,dev,etc,home,lib,mnt,proc,sbin,usr,var。还需要有一些基本的工具:sh,ls,cp,mv……(位于/bin 目录中);必要的配置文件:inittab,rc,fstab……位于(/etc目录种);必要的设备文件:/dev/tty*,/dev/console,/dev/men……(位于/dev目录中);sh,ls等工具必要的运行库:glibc。1.制作ramdisk根文件系统映像 1)单击菜单应用程序->附件->终端打开终端,设置环境变量: $ source /usr/local/src/EduKit-IV/Mini2410/set_env_linux.sh $ source /usr/crosstool/gcc-3.4.5-glibc-2.3.6/arm-linux/path.sh 2)执行命令切换到ramdisk实验目录下: $cd $SIMPLEDIR/6.4-ramdisk 3)运行脚本文件: $ sudosh ramdisk-install.sh shell 脚本命令说明: #!/bin/bash # # ramdisk-install.sh - Make ramdiskfilesystem. # # Copyright (C) 2002-2007

操作系统课程设计-模拟文件系统

目录 第1章需求分析 (1) 第2章概要设计 (1) 系统的主要功能 (1) 系统模块功能结构 (1) 运行环境要求 (2) 数据结构设计 (2) 第3章详细设计 (3) 模块设计 (3) 算法流程图 (3) 第4章系统源代码 (4) 第5章系统测试及调试 (4) 运行结果及分析 (4) 系统测试结论 (5) 第6章总结与体会 (6) 第7章参考文献 (6) 附录 (7)

第1章需求分析 通过模拟文件系统的实现,深入理解操作系统中文件系统的理论知识, 加深对教材中的重要算法的理解。同时通过编程实现这些算法,更好地掌握操作系统的原理及实现方法,提高综合运用各专业课知识的能力;掌握操作系统结构、实现机理和各种典型算法,系统地了解操作系统的设计和实现思路,并了解操作系统的发展动向和趋势。 模拟二级文件管理系统的课程设计目的是通过研究Linux的文件系统结构,模拟设计一个简单的二级文件系统,第一级为主目录文件,第二级为用户文件。 第2章概要设计 系统的主要功能 1) 系统运行时根据输入的用户数目创建主目录 2) 能够实现下列命令: Login 用户登录 Create 建立文件 Read 读取文件 Write 写入文件 Delete 删除文件 Mkdir 建立目录 Cd 切换目录 Logout 退出登录 系统模块功能结构

运行环境要求 操作系统windows xp ,开发工具vc++ 数据结构设计 用户结构:账号与密码结构 typedef struct users { char name[8]; char pwd[10]; }users; 本系统有8个默认的用户名,前面是用户名,后面为密码,用户登陆时只要输入正确便可进入系统,否则提示失败要求重新输入。 users usrarray[8] = { "usr1","usr1", "usr2","usr2", "usr3","usr3", "usr4","usr4",

基于busybox的根文件系统制作

龙源期刊网 https://www.doczj.com/doc/8212345124.html, 基于busybox的根文件系统制作 作者:李飞,武金虎,石颖博 来源:《电脑知识与技术》2010年第17期 摘要:Busybox是构建嵌入式Linux文件系统的必备软件,它是所有文件和设备节点的起始点,是决定系统能否正常启动的关键。通过busybox-1.1.3为例,进行配置、编译、安装等过程,从而形成简单的根文件系统映像文件,为以后嵌入式Linux系统的移植打下了良好的开端。 关键词:Busybox;嵌入式Linux;Linux操作系统;根文件系统;cramfs 文件系统 中国分类号:TP316.81文献标识码:A文章编号:1009-3044(2010)17-4655-02 Making Root File System Based on Busybox LI Fei, WU Jin-hu, SHI Ying-bo (College of Computer Science and Information, Guizhou University, Guiyang 550025, China) Abstract: Busybox is an essentiaL software to buiLd an embedded Linux fiLe system. It is the starting node point of aLL the fiLes and devices and the key whether the system can have a normaL start. Taking busybox-1.1.3 for exampLe, making a simpLe root image system fiLe by configuration compiLation and instaLLation Lays a good foundation for migration of the embedded Linux system. Key words: busybox; embedded linux; Linux OS; root file system; cramfs file system 1 根文件系统结构 根文件系统是所有文件和设备节点的起始点,包括系统所必须的各种工具软件、库文件、 脚本、配置文件等一系列的文件。一个基本的Linux根文件系统包含有以下的目录:dev、proc、bin、etc、usr、Lib、temp、var、usr等等目录。其中dev是设备文件节点目录,proc是挂载proc文件系统所用的目录,bin目录下面包含了系统的基本命令,etc目录是系统启动脚本所在的目录,Lib是系统默认的动态链接库目录,usr是用户目录,temp是临时目录,用来保存临时文 件,var目录包含系统运行时要改变的数据。以上都是根文件系统所必须的目录 2 Busybox简介 熟练嵌入式Linux的朋友对busybox一定不会陌生,它是标准Linux工具的一个单个可执行实现,被形象的称为嵌入式Linux系统中的“瑞士军刀”,因为它将许多常用的UNIX工具和命令 结合到一个单独的可执行程序中。虽然busybox中的这些工具相对于GNU常用工具功能有所

yaffs2文件系统制作

交叉编译器ARM-Linux-gcc4.1.2 开发板TX2440A Busybox-1.15.1.tar.bz2(在Linux中被称为瑞士军刀) mkyaffs2image工具 首先创建一个名字为root_2.6.31的文件夹,在其中创建如下文件夹 etc bin var dev home lib mnt proc root sbin sys tmp usr opt共14个文件夹 解压Busybox tar xjvf busybox 进入源目录,修改Makefile 第164行,CROSS_COMPILE=arm-linux- 第190行,ARCH=arm 执行#make men onfig进行配置 配置选项大部分都是保持默认的,只需要注意选择以下这几个选项,其他的选项都不用动:Busybox Setting---> Build Options---> [*]Build Busybox as a static binary(no shared libs) [*]Build with Large File Support(for accessing files>2GB) Installation Options--->

(./_install)Busybox installation prefix 进入这个选项,输入busybox的安装路径,如:../rootfs Busybox Library Tuning---> [*]vi-style line editing commands [*]Fancy shell prompts 要选择这个选项:“Fancy shell prompts”,否则挂载文件系统后,无法正常显示命令提示符:“[\u@\h\W]#” 配置完成以后 执行#make #make install 然后就会在上一级目录下生成rootfs文件夹,里面包含几个文件夹/bin/sbin/usr linuxrc 把这些文件全部复制到刚建好的root_2.6.31目录下, #cp–rf*../root_2.6.31 在dev目录下,创建两个设备节点: #mknod console c51 #mknod null c13 然后进入自己建立的etc目录 拷贝Busybox-1.15.2/examples/bootfloopy/etc/*到当前目录下。 #cp-r../../busybox-1.15.2/examples/bootfloopy/etc/*./ 包括文件:fstab init.d inittab profile

操作系统简单文件系统设计及实现

简单文件系统的设计及实现 一、实验目的: 1、用高级语言编写和调试一个简单的文件系统,模拟文件管理的工作过程。从而对各种文件操作命令的实质内容和执行过程有比较深入的了解 2、要求设计一个 n个用户的文件系统,每次用户可保存m个文件,用户在一次运行中只能打开一个文件,对文件必须设置保护措施,且至少有Create、delete、open、close、read、write等命令。 二、实验内容: 1、设计一个10个用户的文件系统,每次用户可保存10个文件,一次运行用户可以打开5个文件。 2、程序采用二级文件目录(即设置主目录[MFD])和用户文件目录(UED)。另外,为打开文件设置了运行文件目录(AFD)。 3、为了便于实现,对文件的读写作了简化,在执行读写命令时,只需改读写指针,并不进行实际的读写操作 4、算法与框图 ?因系统小,文件目录的检索使用了简单的线性搜索。 ?文件保护简单使用了三位保护码:允许读写执行、对应位为 1,对应位为0,则表示不允许读写、执行。 ?程序中使用的主要设计结构如下:主文件目录和用户文件目录( MFD、UFD); 打开文件目录( AFD)(即运行文件目录) 文件系统算法的流程图如下

三、工具/准备工作: 在开始本实验之前,请回顾教科书的相关内容。并做以下准备: 1) 一台运行Windows 2000 Professional或Windows 2000 Server的操作系统的计算机。 2) 计算机中需安装Visual C++ 6.0专业版或企业版 四、实验要求: (1)按照学校关于实验报告格式的要求,编写实验报告(含流程图); (2)实验时按两人一组进行分组,将本组认为效果较好的程序提交检查。

模拟实现文件系统,操作系统课程设计要点

某某大学 课程设计报告课程名称:操作系统课程设计 设计题目:模拟实现文件系统 系别:计算机系 专业:计算机科学与技术 组别: 学生姓名: 学号: 起止日期: 指导教师:

目录 目录 0 第一章需求分析 (1) 1.1 课程设计题目 (1) 1.2 课程任务及要求 (1) 1.3课程设计思想: (1) 1.4软硬件运行环境及开发工具: (2) 第二章概要设计 (3) 2.1流程图 (3) 2.2用到的原理 (3) 第三章详细设计 (4) 第四章调试与操作说明 (9) 4.1用户登陆界面 (9) 4.2创建文件界面 (9) 4.3删除文件界面 (10) 4.4退出界面 (10) 第五章课程设计总结与体会 (10) 第六章致谢 (11) 第七章参考文献 (11)

第一章需求分析 1.1 课程设计题目 课程设计题目:模拟实现文件系统 1.2 课程任务及要求 要求:实现文件的建立、打开、删除、关闭、复制、读、写、查询等功能 给出实现方案(包括数据结构和模块说明等) 画出程序的基本结构框图和流程图 分析说明每一部分程序的设计思路 实现源代码 按期提交完整的程序代码和可执行程序 根据要求完成课程设计报告 总结 1.3课程设计思想: 模拟实现文件系统问题是一个经典的关于文件的处理问题,包括:实现文件的建立、打开、删除、关闭、复制、读、写、查询等功能。设计思想如下:1.在内存中开辟一个虚拟磁盘空间作为文件存储器,在其上实现一个多用户多目录的文件系统。 2.文件物理结构可采用显式链接或其他方法。 3.磁盘空闲空间的管理可选择位示图或其他方法。如果采用位示图来管理文件存储空间,并采用显式链接分配方式,则可以将位示图合并到FAT中。4.文件目录结构采用多用户多级目录结构,每个目录项包含文件名、物理地址、长度等信息,还可以通过目录项实现对文件的读和写的保护。目录组织方式可以不使用索引结点的方式,但使用索引结点,则难度系数为1.2。 5.设计一个较实用的用户界面,方便用户使用。要求提供以下相关文件操作:(1)具有login (用户登录)

在硬盘上制作根文件系统.doc

在硬盘上制作根文件系统 一、实验目标: 在硬盘上建立一个根文件系统,硬盘镜像文件的名称为:hdc-0.11.new.img 二、实验环境: 1、Vmware workation, bochs虚拟机,ultraedit编辑环境 2、用到的四个重要的镜像文件:bootimage-0.11-hd,hdc-0.1.img,并将他们放到 mylinux0.11文件夹中。 3、实验环境:redhat linux 三、实验理论依据: 1、Linux引导启动时,默认使用的文件系统是根文件系统。其中一般都包括以下一些子目录和文件: etc/ 目录主要含有一些系统配置文件; dev/ 含有设备特殊文件,用于使用文件操作语句操作设备; bin/ 存放系统执行程序。例如sh、mkfs、fdisk等; usr/ 存放库函数、手册和其它一些文件; usr/bin 存放用户常用的普通命令; var/ 用于存放系统运行时可变的数据或者是日志等信息。 存放文件系统的设备就是文件系统设备。Linux 0.11内核所支持的文件系统是MINIX 1.0文件系统。 2、inode 译成中文就是索引节点。每个存储设备或存储设备的分区(存储设备是硬 盘、软盘、U盘... ... )被格式化为文件系统后,应该有两部份,一部份是inode,另一部份是Block,Block是用来存储数据用的。而inode呢,就是用来存储这些数据的信息,这些信息包括文件大小、属主、归属的用户组、读写权限等。inode为每个文件进行信息索引,所以就有了inode的数值。操作系统根据指令,能通过inode 值最快的找到相对应的文件。每一个文件开头都是一个inode。 做个比喻,比如一本书,存储设备或分区就相当于这本书,Block相当于书中的每一页,inode 就相当于这本书前面的目录,一本书有很多的内容,如果想查找某部份的内容,我们可以先查目录,通过目录能最快的找到我们想要看的内容。

JFFS文件系统和YAFFS文件系统的比较

JFFS文件系统和YAFFS文件系统的比较 NAND flash文件系统JFFS2和YAFFS比较JFFS是由瑞典的Axis Communications Ab公司开发的(1999,以GNU发布),针对flash设备的特性为嵌入式设备开发的.(我边上的兄弟曾想去那里作毕业设计) JFFS1和JFFS2的设计中都考虑到了FLASH的特性特别是满足了上述3个条件,包括了垃圾回收,坏块管理等功能. 这两种文件系统属于LFS(Log-structured File System).这种文件系统的特点是一旦数据出错,容易恢复,但是系统运行是需要占用一定的内存空间,这些空间就是用来存储”log”的. JFFS的缺点就是加载时间太长,因为每次加载都需要将FLASH上的所有节点(JFFS的存储单位)到内存,这样也占用了可观的内存空间.除此之外,”circle log”设计使得在对文件数据进行所有的数据都会被重写,这样造成不必要的时间,同时也会减少FLASH的寿命. JFFS2对JFFS1作了些改进,比如所需的内存变少了,垃圾回收机制也优化了. 针对JFFS1,JFFS2的缺点,JFFS3出现了. YAFFS1 ">“Yet Another Flash File System”作者是新西兰的Charles Manning为一家名叫Alpha one 的公司(https://www.doczj.com/doc/8212345124.html,/)设计的,是第一个为NAND Flash设计的文件系统.共两个版本YAFFS1 和YAFFS2. YAFFS1支持512Bytes/Page的NAND Flash;后者YAFFS2支持2kBytes/Page的NAND Flash. YAFFS文件系统也属于LFS. 跟其他文件系统比较,它具有更好的可移植性,甚至可以使用在没有操作系统的设备上(called “YAFFS/Direct”). YAFFS采用模块化设计,虽然最初是用在linux系统上的,但是也已经移植到其他系统比如wince. 还有个突出的优点是它在mount的时候需要很少的内存.(如果是小页—512byte/page,每1MByte NAND大约需要4KBytes内存;大页需要大概1KBytes RAM/1MByte NAND) JFFS与YAFFS比较,两者各有长处. 一般来说,对于小于64MBytes的NAND Flash,可以选用JFFS;如果超过64MBytes,用YAFFS比较合适.

模拟文件系统

课程设计 课程名称计算机操作系统 题目名称模拟文件系统 专业班级2014级计算机科学与技术 (专升本)班 学生姓名宋欢乐、张焕、范孝礼 学号51402111042、51402111038、51402111043 指导教师邹青青 二○一四年十二月二十日

目录 1、引言 (2) 2、需求分析 (3) 3、概要设计 (4) 3.1 系统的主要功能 (4) (1) 主界面 (4) (2) Create 建立文件 (5) (3)Read 读取文件 (6) (4)Write 写入文件 (7) (5)Delete 删除文件 (9) (6)Mkdir 建立目录 (10) (7)Cd 切换目录 (11) (8)Logout 退出登录 (12) 3.2 系统模块功能结构 (12) (1)结构说明: (12) 3.3 运行环境要求 (13) 3.4 数据结构设计 (13) 3.5 数据结构说明 (14) (1)文件结构链表 (14) (2)函数介绍 (14) 4、详细设计 (15) 4.1 模块设计 (15) 4.2 算法流程图 (15) 5、系统源代码 (17) 见附录 (17) 6、系统测试及调试 (18) 6.1 运行结果及分析 (18) 6.2 系统测试结论 (22) 7、总结与体会 (23) 参考文献 (24) 附录系统的主要源代码 (25)

1、引言 计算机操作系统是计算机系统中不可缺少的基本系统软件,计算机操作系统是由硬件和软件两部分构成的。操作系统实际上是一个计算机系统中硬、软件资源的总指挥部。能有效的组织和管理计算机系统中的硬件和软件资源、合理的组织计算机工作流程,控制程序的执行、并向用户提供各种服务功能,使得用户能够合理、方便、有效的使用计算机,是整个计算机系统能高效运行的一组程序模块的集合。操作系统在计算机体系中张非常重要的地位。 在现代计算机管理中,总是把程序和数据以文件的形式存储在磁盘和磁带上,供所有的或指定的用户使用。为此,在操作系统中必须配置文件管理机构。文件管理的主要任务是对任务和系统文件进行管理,以方便用户使用,并保证文件的安全性。为此,文件管理应具有对文件存储空间的管理、目录管理、文件的读写管理,以及文件的共享与保护等功能。 从计算机诞生到现在虽然只经历了短短几十年的时间,但无论是在软件还是在硬件方面,计算机都有着飞跃式的发展。随着计算机应用不断增加,计算机上所需要存储的数据和程序也日益增多,早期的文件管理方式已经不能满足现在的需要。计算机操作系统是配置在计算机硬件上的第一层软件,是对硬件的首次扩充。他在计算机系统中占据了特别重要的地位。操作系统的主要功能是进行处理机管理功能,为了进一步了解文件管理功能,我们建立了一个文件模拟系统,要求编写程序,模拟实现文件系统中关于目录及文件的操作。

简单文件系统的实现

第三章简单文件系统的实现 3.1 设计目的和内容要求 1. 设计目的 通过具体的文件存储空间的管理、文件的物理结构、目录结构和文件操作的实现,加深对文件系统内部数据结构、功能以及实现过程的理解。 2.内容要求 (1)在内存中开辟一个虚拟磁盘空间作为文件存储分区,在其上实现一个简单的基于多级目录的单用户单任务系统中的文件系统。在退出该文件系统的使用时,应将该虚拟文件系统以一个Windows 文件的方式保存到磁盘上,以便下次可以再将它恢复到内存的虚拟磁盘空间中。 (2)文件存储空间的分配可采用显式链接分配或其他的办法。 (3)空闲磁盘空间的管理可选择位示图或其他的办法。如果采用位示图来管理文件存储空间,并采用显式链接分配方式,那么可以将位示图合并到FAT中。 (4)文件目录结构采用多级目录结构。为了简单起见,可以不使用索引结点,其中的每个目录项应包含文件名、物理地址、长度等信息,还可以通过目录项实现对文件的读和写的保护。 (5)要求提供以下操作命令: my_format:对文件存储器进行格式化,即按照文件系统的结构对虚拟磁盘空间进行布局,并在其上创建根目录以及用于管理文件存储空间等的数据结构。 my_mkdir:用于创建子目录。 my_rmdir:用于删除子目录。 my_ls:用于显示目录中的内容。 my_cd:用于更改当前目录。 my_create:用于创建文件。 my_open:用于打开文件。 my_close:用于关闭文件。

my_write:用于写文件。 my_read:用于读文件。 my_rm:用于删除文件。 my_exitsys:用于退出文件系统。 3.学时安排 授课2学时,上机9学时。 4.开发平台 C或C++均可。 5.思考 (1)我们的数据结构中的文件物理地址信息是使用C语言的指针类型、还是整型,为什么? (2)如果引入磁盘索引结点,上述实现过程需要作哪些修改? (3)如果设计的是一个单用户多任务文件系统,则系统需要进行哪些扩充(尤其要考虑读写指针问题)?如果设计的是一个多用户文件系统,则又要进行哪些扩充? 3.2 预备知识 3.2.1 FAT文件系统介绍 1.概述 FAT文件系统是微软公司在其早期的操作系统MS-DOS及Windows9x中采用的文件系统,它被设计用来管理小容量的磁盘空间。FAT文件系统是以他的文件组织方式——文件分配表(file allocation table,FAT)命名的,文件分配表的每个表项中存放某文件的下一个盘块号,而该文件的起始盘块号则保存在它的文件控制块FCB中。在文件分配表中,一般用FFFF来标识文件的结束;用0000来标识某个逻辑块未被分配,即是空闲块。为了提高文件系统的可靠性,在逻辑磁盘上通常设置两张文件分配表,它们互为备份。此外,文件分配表必须存放在逻辑磁盘上的固定位置,而根目录区通常位于FAT2之后,以便操作系统在启动时能够定位所需的文件,其磁盘布局如图3-1所示: 引导块FAT1FAT2根目录区数据区

嵌入式Linux根文件系统制作

实训项目四-嵌入四Linux系统根文件系统制作一. 项目实施目的 了解 UP-CUP2440 型实验平台Linux 系统下根文件系统结构 掌握根文件系统的搭建过程 掌握busybox、mkcramfs等工具的使用方法 二. 项目主要任务 使用busybox生成文件系统中的命令部分,使用mkcramfs工具制作CRAMFS 格式的根文件系统。 分析根文件系统etc目录下重要配置文件的格式及语法,熟悉根文件系统的启动过程 三. 基本概念 1.文件系统基本概念 Linux的一个最重要特点就是它支持许多不同的文件系统。这使Linux非常灵活,能够与许多其他的操作系统共存。Linux支持的常见的文件系统有:JFS、ReiserFS、ext、ext2、ext3、ISO9660、XFS、Minx、MSDOS、UMSDOS、VFAT、NTFS、HPFS、NFS、SMB、SysV、PROC等。随着时间的推移, Linux支持的文件系统数还会增加。Linux是通过把系统支持的各种文件系统链接到一个单独的树形层次结构中,来实现对多文件系统的支持的。该树形层次结构把文件系统表示成一个整个的独立实体。无论什么类型的文件系统,都被装配到某个目录上,由被装配的文件系统的文件覆盖该目录原有的内容。该个目录被称为装配目录或装配点。在文件系统卸载时,装配目录中原有的文件才会显露出来。在Linux 文件系统中,文件用i节点来表示、目录只是包含有一组目录条目列表的简单文件,而设备可以通过特殊文件上的I/O 请求被访问。 2.常见的嵌入式文件系统 嵌入式Linux系统一般没有大容量的磁盘,多使用flash存储器,所以多采用基于Flash(NOR和NAND)的文件系统或者RAM内存的文件系统。 (1)Flash根据结构不同分为 NOR Flash和NAND Flash。基于flash的文件系统主要有: jffs2:RedHat基于jffs开发的文件系统。

实验八 构建根文件系统

实验八构建根文件系统 一、实验目的 1、了解嵌入式Linux文件系统的作用和类型; 2、了解jffs2文件系统的优点和在嵌入式系统中的应用; 3、理解文件系统的挂载过程; 4、使用BusyBox制作一个根文件系统。 二、实验环境 预装redhat9.0(内核版本2.4.x)的pc机一台,XScale嵌入式实验箱一台(已构建嵌入式Linux系统),以太网线一根,交叉编译工具链,BusyBox软件包。 三、实验步骤 1、解压BusyBox软件包; 2、使用make menuconfig来配置BusyBox,修改交叉编译器前缀; Build Option [*] Build BusyBox as a static binary(no shared library) [*]Do you want to build BusyBox with a Cross ompile /usr/local/hybus-linux-R1.1/bin/arm-linux- Installation Option [*]Don't’t use /use Coreutils [*]ls

[*]cp [*]reboot [*]echo [*]mkdir [*]rm Editors [*]vi Login Utilities [*]getty 3、交叉编译BusyBox; make make install 4、建立BusyBox顶层目录结构 mkdir etc dev proc tmp lib var sys 5、在dev目录下创建必要的设备节点 (ram0,console,null,zero); mknod mdblock b 31 3 mknod console c 5 1 mknod null c 1 3 mknod zero c 1 5 cp –dpR /dev /_install/dev (假设busybox的安装目录为/_install)

Yaffs2文件系统中对NAND Flash磨损均衡的改进

Yaffs2文件系统中对NAND Flash磨损均衡的改进 摘要:针对以NAND Flash为存储介质时Yaffs2文件系统存在磨损均衡的缺陷,通过改进回收块选择机制,并在数据更新中引入冷热数据分离策略,从而改善NAND Flash的磨损均衡性能。实验借助Qemu软件建立Linux嵌入式仿真平台,从总擦除次数、最大最小擦除次数差值和块擦除次数标准差等方面进行对比。实验结果表明,在改进后的Yaffs2文件系统下NAND Flash的磨损均衡效果有明显提升,这有益于延长NAND Flash的使用寿命。 关键词: Yaffs2文件系统;NAND Flash;垃圾回收;冷热数据 0 引言 NAND Flash存储设备与传统机械磁盘相比,具有体积小、存储密度高、随机存储和读写能力强、抗震抗摔、功耗低等特点[1]。它被广泛用于智能手机、车载智能中心、平板电脑等智能终端中。近年来,以NAND Flash为存储介质的固态硬盘也得到越来越多的应用。目前Yaffs2文件系统(Yet Another Flash File System Two,Yaffs2)[1]是使用最多、可移植性最好的专用文件系统,在安卓、阿里云OS、Linux等嵌入式系统中都有使用。在Yaffs2文件系统下以NAND Flash为存储介质时存在磨损均衡的缺陷,可通过对回收块选择机制作改进和引入冷热数据分离策略来提高磨损均衡的效果。 1 Yaffs2和Nand Flash关系 这里以使用最多的Linux操作系统为实践,将Yaffs2文件系统移植到Linux操作系统中。Linux系统通常可以分为3层:应用层、内核层和设备层,其中支持NAND Flash设备的Yaffs2文件系统属于内核层,。 最上层用户应用程序通过VFS(Virtual File System)提供的统一接口,将数据更新等文件操作传递给Yaffs2。VFS代表虚拟文件系统,它为上层应用提供统一的接口。有了这些接口,应用程序只用遵循抽象后的访问规则,而不必理会底层文件系统和物理构成上的差异。然后Yaffs2通过MTD(Memory Technology Device)提供的统一访问接口对NAND Flash进行读、写和擦除操作,从而完成数据的更新或者存储操作。MTD代表内存技术设备,它为存储设备提供统一访问的接口。最终,在NAND Flash上以怎样的格式组织和存储数据由Yaffs2文件系统决定。 NAND Flash由若干块(block)组成,每个块又是由若干页(page)组成,页中含有数据区和附加区。NAND Flash的页根据状态不同,可以分为有效页、脏页、空闲页。有效页中存放有效数据,脏页中存放无效数据,空闲页是经过擦除后可以直接用于写入数据的页。NAND Flash在写入数据前需要执行擦除操作,因此数据不能直接在相同的位置更新。当一个页中数据需要更新时,必须将该页中有效数据拷贝到其他空闲页上再更新,并将原来页上的数据置为无效。随着时间的推移,许多无效页累积在存储器中使得空闲页逐渐减少。当存储器中的空闲空间不足时,启动垃圾回收操作,利用回收块选择机制从待回收块中选取满足要求的块来擦除,从而得到足够的空闲空间。NAND Flash中块的擦除次数有限,通常为10 000次~100 000次[2]。当某个块的擦除次数超过使用寿命时,该块将无法正常用于数据存储。因此,垃圾回收应利用合理的回收块选择机制,从待回收块中找到回收后能产生良好磨损均衡效果且付出较少额外代价的块来回收,从而获得足够的空闲空间用于数据更新操作。 2 Yaffs2在磨损均衡方面的缺陷 Yaffs2中回收块的选择机制[3]是从待回收块中找到有效数据最少的块来回收。回收过程中,Yaffs2能够减少有效数据的额外读和写操作。当数据更新处于均匀分布的情况下,Yaffs2表现出较好的磨损均衡效果。 但是,通常情况下数据的更新频率不同,有些数据经常更新,而有些数据很少更新。经

模拟实现单级目录、单级索引的索引文件系统

课程设计报告 课程名称操作系统课程设计 课题名称模拟实现单级目录、单级索引的索引文件系统 专业计算机科学与技术 班级 学号 姓名 指导教师周铁山 2012年1 月6日

湖南工程学院 课程设计任务书 课程名称操作系统课程设计 课题模拟实现单级目录、单级索引的索引文件系统专业班级 学生姓名 学号 指导教师周铁山 审批 任务书下达日期2013 年 1 月 2 日 任务完成日期2013年 1 月 6 日

计算机10级《操作系统课程设计》任务书 一、课程设计的性质和目的 操作系统课程设计是计算机专业的专业课程,通过课程设计使学生进一步巩固课堂所学知识,全面熟悉、掌握操作系统的基本设计方法和技巧,进一步提高分析问题、解决问题及上机操作能力,为将来从事计算机工作打下一定的专业基础。 二、设计课题 课题一:模拟实现单级目录的FAT文件系统 基本思路:用二进制文件空间模拟磁盘空间,用文件块操作模拟磁盘块操作。 基本设计要求:1、实现如下文件系统功能(过程或函数): a、挂载文件系统FILE *OPENSYS(char *filename); b、卸载文件系统int CLOSESYS(FILE *stream); c、显示目录void LISTDIR(void); d、建立文件int FCREA TE(char *filename); e、删除文件int FDELETE(char *filename); f、打开文件int FOPEN(char *filename); g、关闭文件int FCLOSE(int fileid); h、文件块读int FREAD(void *ptr, int n, int fileid); i、文件块写int FWRITE(void *ptr, int n, int fileid); j、判断文件结束int FEOF(int fileid); k、获取文件指针long FGETPOS(int fileid); l、设置文件指针int FSETPOS(int fileid, long offset); m、取得文件长度long FGETLEN(char *filename); 2、提供文件系统创建程序 3、有功能检测模块 4、为简化程序设计,假定目录区域大小固定。 文件系统空间划分: 可以使用的C语言文件操纵函数: FILE *fopen(const char *filename, const char *mode); int fclose(FILE *stream); int fseek(FILE *stream, long offset, int whence); long ftell(FILE *stream); size_t fread(void *ptr, size_t size, size_t n, FILE *stream); size_t fwrite(const void *ptr, size_t size, size_t n, FILE *stream);

相关主题
文本预览
相关文档 最新文档