当前位置:文档之家› 第四章 场效应管(FET)及基本放大电路

第四章 场效应管(FET)及基本放大电路

第四章  场效应管(FET)及基本放大电路
第四章  场效应管(FET)及基本放大电路

第四章 场效应管(FET )及基本放大电路

§4.1 知识点归纳

一、场效应管(FET )原理

·FET 分别为JFET 和MOSFET 两大类。每类都有两种沟道类型,而MOSFET 又分为增强型和耗尽型(JFET 属耗尽型),故共有6种类型FET (图4-1)。

·JFET 和MOSFET 内部结构有较大差别,但内部的沟道电流都是多子漂移电流。一般情况下,该电流与GS v 、DS v 都有关。

·沟道未夹断时,FET 的D-S 口等效为一个压控电阻(GS v 控制电阻的大小),沟道全夹断时,沟道电流D i 为零;沟道在靠近漏端局部断时称部分夹断,此时D i 主要受控于GS v ,而DS v 影响较小。这就是FET 放大偏置状态;部分夹断与未夹断的临界点为预夹断。

·在预夹断点,GS v 与DS v 满足预夹断方程:

耗尽型FET 的预夹断方程:P GS DS V v v -=(P V ——夹断电压) 增强型FET 的预夹断方程:T GS DS V v v -=(T V ——开启电压)

·各种类型的FET ,偏置在放大区(沟道部分夹断)的条件由表4-4总结。

表4-4 FET 放大偏置时GS v 与DS v 应满足的关系

·偏置在放大区的FET ,GS v ~D i 满足平方律关系:

耗尽型:

2

)

1(P GS DSS D V v I i -

=(DSS I ——零偏饱和漏电流)

增强型:2

)(T GS D V v k i -=*

· FET 输出特性曲线反映关系

参变量

GS V

DS D v f i )(=,该曲线将伏安平面分为可变电阻区

(沟道未夹断),放大区(沟道部分夹断)和截止区(沟道全夹断);FET 转移特性曲线反映在放大区的关系)(GS D v f i =(此时参变量DS V 影响很小),图4-17画出以漏极流向源极的沟道电流为参考方向的6种FET 的转移特性曲线,这组曲线对表4-4是一个很好映证。

二、FET 放大偏置电路

·源极自给偏压电路(图4-18)。该电路仅适用于耗尽型FET 。有一定稳Q 的能力,求解该电路工作点的方法是解方程组:

22() [FET ()]GS D DSS d GS T P GS S D v i I v i k v V V v R i

?

=-=-??

?=-?对于增强型,用关系式

·混合偏压电路(图4-20)。该电路能用于任何FET ,在兼顾较大的工作电流时,稳Q

的效果更好。求解该电路工作点的方法是解方程组:

???

??-+=D s CC GS i R R R R V v 212平方律关系式

以上两个偏置电路都不可能使FET 全夹断,故应舍去方程解中使沟道全夹断的根。

三、FET 小信号参数及模型

·迭加在放大偏置工作点上的小信号间关系满足一个近似的线性模型(图4-22低频模

型,图4-23高频模型)。

·小信号模型中的跨导

Q GS

D

m v i g ??=

m g 反映信号gs v 对信号电流d i 的控制。m g 等于FET 转移特性曲线上Q 点的斜率。

m g 的估算:耗尽管

D

DSS P m I I V g ||2

=

增强管D m kI g 2=

·小信号模型中的漏极内阻

Ds

ds D

Q

v r i ?=

?

ds r 是FET “沟道长度调效应”的反映,ds r 等于FET 输出特性曲线Q 点处的斜率的倒

数。

四、基本组态FET 小信号放大器指标

1.基本知识

·FET 有共源(CS )共漏(CD )和共栅(CG )三组放大组态。 ·CS 和CD 组态从栅极输入信号,其输入电阻i R 由外电路偏置电阻决定,i R 可以很大。 ·CS 放大器在其工作点电流和负载电阻与一个CE 放大器相同时,因其m g 较小,||

V A

可能较小,但其功率增益仍可能很大。

·CD 组态又称源极输出器,其1V A <。在三种FET 组态中,CD 组态输入电阻很大,而输出电阻较小,因此带能力较强。

·由于FET 的电压电流为平方关系,其非线性程度较BJT 的指数关系弱。因此,FET 放大器的小信号线性条件对GS v 幅度限制会远大于BJT 线性放大时对be v 的限制(be v <5mV )。

2.CS 、CD 和CG 组态小信号指标 由表4-6归纳总结。

表4-6 FET 基本组态放大器小结

§4.2 习题解答

4-1 图P4-1中的FET 各工作在什么区?

(a ) V P =-3V (b ) V P =-5V (c ) V P =4V

图P 4-1

(a )这是N-JFET 。 GS P V V <,∴沟道全夹断,FET 处于截止区。

(b )这是N-JFET 。 0GS P V V >>, (6V) (1V)DS GS P

V V V >-,∴沟道部分夹断,FET 处于放大

区。

(c )这是P-JFET 。 0GS V =, (8V) (4V)DS GS P

V V V <---,∴FET 偏置在放大区。

4-2 若某P 沟道JFET 的I DSS =-6mA ,V P =4V 。画出该管的输出特性曲线;指出电阻区和恒流区以及它们的分界线(即预夹断轨迹)。

[解] 由原方律公式先画转移特性

22

(1)6(1)4GS GS D DSS P V V

i I V =-=--

图P4-2-1 转移特性曲线

图P4-2-2 输出特性曲线

4-3 一支P 沟道耗尽型MOSFET 的I DSS =—6mA V P =4V ,另一支P 沟道增强型MOSFET

的V T =-4V .。试分别画出它们的输出特性曲线,标明电阻区和恒流区以及它们的分界线(即预夹断轨迹)。

[解] 曲线分别如图P4-3-1和P4-3-2所示。

图P4-3-1

图P4-3-2

4-5 设图P4-5中JFET 的I DSS 的绝对值都等于4mA ,且沟道部分夹断,求输出端的直流电压V O 。

(a )04106V V =-=-(b )04V V =(c )04V V =(d )04106V V =-+=

图P4-5

4-6 设图P4-6中的MOSFET 的P T V ,V 均为1V ,问它们各工作于什么区?

图P4-6

(a )N 沟道耗尽型MOSFET ,1P V =-V ,(2V)

GS P V V >,且 (6V) (3V)

DS GS P

V V V >-,

∴工作于放大区。

(b )N 沟道增强型MOSFET ,1T V =V , (2V) (1V)GS T V V >,且 (6V) (1V)

DS GS T

V V V >-,

∴工作于放大区。

(c )P 沟道耗尽型MOSFET ,1P V =V , (2V) (1V)GS T

V V >,∴工作于截止区。

(d )P 沟道增强型MOSFET ,1P V =-V , (2V) (1V)GS T

V V >-∴工作于截止区。

4-7 JFET 自给偏压放大器如图P4-7所示。设R D =12k Ω,R G =1M Ω,R S =470Ω,电源电压V DD =30V 。FET 的参数:I DSS =3mA ,V P =-2.4V 。

(1) 求静态工作点V GS 、I D 和V DS 。

(2) 当漏极电阻超过何值时FET 会进入电阻区?

[解] (1) 列联立方程

2(1)GS D DSS P GS s D V i I V V R i ?=-???=-?23(1) 2.4

0.47

GS D GS D V i V i ?=+????=-?

②代入①,并化简得

2

0.1151 2.17530D D i i -+= 图P4-7

1.5mA 17.4mA(,)D GS P I V V ?==?

<∴?该值使舍去 ∴ 1.5D I =mA ,0.47 1.50.71GS V =-?=-V ,()11.3DS DD D D S V V I R R =-+=V

(2)当0.71 2.4 1.69DS GS P V V V =-=-+=V 时,沟道预夹断。

此时,0()16.9DD D S V I R R -+= 30 1.69

18.870.4718.41.5D S R R k -=

-=-=Ω

∴18.4D R k >Ω时,FET 进入电阻区。

4-8 在图P4-8所示电路中,已知JFET 的I DSS =1mA ,

V P =-1V 。如果要求漏极到地的静态电压V DQ =10V ,求电阻R 1的阻值。

[解]

2410

0.2556DD DQ

D D

V V I R --=

=

=mA

① ②

由原方律关系

2

(1)GS D DSS P V I I V =-

20.25(1)GS V =+

∴10.5GS V ==-V

由1GS D V I R =-,∴

0.5

20.25GS D V R k I =-

==Ω 图P4-8

4-9 已知FET 的输出特性如图P4-9所示。(1)判断该管类型,并确定V P 和I DSS 的数

值(2)求V DS =10V ,I D =2mA 处的跨导g m 。

图P4-9

图P4-10

[解] (1) 0Ds V <,∴为P 沟道FET

又 5V 0V GS V >>,GS V 与DS V 反极性,故为JFET 结论:P 沟道JFET ,5P V =V ,4DDS I mA

(2

1.13m g =

ms 。

4-10 FET 放大电路图P4-10所示。FET 参数为:I DSS =2mA ,V P =-4V ,r ds 可忽略不

计。试估算静态工作点,并求A V 、R i 和R o 之值。

[解]

(1)估算工作点: 0GS V =, ∴2D DSS I I ==mA ,

20416DS DD D D V V I R =-=-=V

(2)画出交通通路,组态为CS 放大器。 图

P4-10-1

∴ ////v m ds D L A g r R R =-?

2//||DSS

D L

P I R R V =-

?

1.43=-。

5i G R R M ==Ω,0//2ds D D R r R R k ==Ω 。

4-11 在图P4-11所示共源放大器中,JFET 的参数为:I DSS =4.5mA ,V P =-3V ,r ds 可

忽略不计。试求:(1)静态工作点V GS 、I D 和V DS ;(2)中频段端电压增益A V 、输入电阻R i 和输出电阻R o 。

[解] (1)

11100

183600G DD R V V R R =

=?=+V

联立24.5(1)332GS D

GS D V i V i ?=+??

?

=-?

设2

213180D D i i -+=

∴2D I =mA ( 4.5D I =mA 舍去),1GS V =-V 图P4-11

()1827.6 2.8DS DD D D S V V I R R =-+=-?=(V )

(上式满足DS GS P V V V >-,即放大区条件)

(2

2m g =(ms )

∴//2 2.8 5.6v m D L A g R R =-?=-?=- 312// 2.083M i R R R R =+=Ω 0 5.6D R R k ==Ω

4-12 N 沟道JFET 共漏放大器如图P4-12所示,电路参数为:R 1=40k Ω,R 2=60k Ω,

R 3=2M Ω,R 4=20k Ω,负载电阻R L =80k Ω,电源电压V DD =30V ,信号源内阻R S =200k Ω。JFET 的I DSS =4mA ,V P =-4V ,r ds =40k Ω。试计算增量跨导g m ,并求端电压增益A V 、电流增益A i 、输入电阻R i 和输出电阻R o 。

[解]

(1)求D I 并计算m g :

2126

3018V 10G DD R V V R R =

=?=+

联立24(1)41820GS D GS D V i V i ?

=+??

?

=-?

得2

1.21mA(10022112001mA D D D i i i ?-+=?=?

?舍去)

1m g =

=(ms )。

(2)由共漏放大器公式

44////20//40//800.92

1////120//40//80m d s L

v m d s L g r R R A g r R R ?=

==+?+

312// 2.024M i R R R R =+=Ω

00441

//////40//1//20930()ds m

R R R r R g '====Ω

0/0.922024

23.3/80

L i I V i i L v R R A A v R R ?=

===

4-13 在图P4-13所示的共漏放大器电路中,若MOSFET 的2

/5.0V mA k -=,V T =-3V ,r ds =20k Ω,假定40=q kT ,I D =-5.85mA 。试求共漏放大电路中频段电压增益A V 和输出电阻R o 。

[解]

3.42m g =(ms )

33//// 3.42//20//1//2

1////1 3.42//20//1//2m ds L V m ds L g r R R A g r R R ?=

=

+?+ 2.20650.6881 2.2065==+

031

////20//0.292//1

ds m

R r R g == 224()=Ω

图P4-13

4-14 在图P4-7的CS 放大器中,输入信号v i 为正弦电压。试借助i D ~v GS 的平方律关系式分析:要使输出电压v o 的二次谐波振幅小于基波振幅的十分之一,输入电压最大振幅V im 是多少?

[解] 由图P4-7,取cos i im v V t ω=,∴cos GS GS im V V V t ω=+ 由平方律关系:

P4-12

2

cos (1)GS im D DSS P

V V t i I V ω+=-2

222cos cos (1)(1)GS im GS im DSS DSS DSS P P P P V V t V V t I I I V V V V ωω=---+

上式中D i 的基波电流振幅

12(1)DSS im GS m P P

I V V

I V V =

-

D i 的二次谐波电流振幅

2

22

2DSS im m

P I V I V =

由题设,令210.1m m I I ≤可得

0.4||im P GS V V V ≤-

上式可改写为

0.4|

i m V V ≤若12D DSS I I =

,2P V =-V

,则max 0.4566i V =?(mV )

该题表明:FET 放大器的非线性远不如BJT 放大器严重,故满足小信号条件所容许的gs

v 远大于be v

4-15 图P4-15是CD-CB 组合放大电路。T 1和 T 1的小信号参数分别为g m ,r ds 和β,

r be 。画出放大器中频段小信号等效电路并求A V 的表达式。

[解] 中频交流通路如图P4-15-1所示。 小信号模型如图P4-15-2所示: 列方程

0C b v R i β=

① i gs be b

v V r i =+

be be m gs b b b b ds E

r r g v i i i i r R β=++

+ ③

③代入②消去

gs

v 图P4-15

(1)b be be i b b be b

m m ds m E

i r r

v i i r i g g r g R β+=

+++ ④

011C m C

V be be be be i be be m

m m ds m E ds E

v R g R A r r r r v r r g g g r g R r R ββββ===

++++++++

[](1)m C ds E

ds E be E ds m ds E g R r R r R r R r g r R ββ=

++++

该题也可直接用公式计算:22////1////m E ds i C

V m E ds i be g R r R R A g R r R r β?????= ??

?

+?????,其中

21be i r

R β=+。

图P4-15-1

图P4-15-2

4-16 图P4-16是漏-栅反馈型FET 偏置电路。已知图中N 沟道增强型MOSFET 的参数

V T =2V ,k=0.25mA/V 2。问:

(1)要使I D =1mA ,漏极电阻R D 应取多大?

(2)这种偏置电路能否用于JFET 和耗尽型MOSFET ?为什么? [解]

(1)该FET 是N 沟道增强型MOST ,

DS GS GS T V V V V =>-

∴该电路肯定工作在放大区。

∴2

()D GS T i k v V =-

将1D I =mA 代入上式,求得4GS V =V 图P4-16 由偏置电路()GS D D DD DS V R I V V =-+= 将

4V 1mA

GS D V I =??

=?代入上式,求得16D R k =Ω。

(2)这种偏置不能用于JFET 。 它不能使GS V 与DS V 极性相反。这种偏置可用于耗尽型MOSFET ,但偏置范围受限。

4-17 由FET 和BJT 组成的混合跟随器如图P4-17所示。设电路满足条件:稳压管D Z

的动态电阻r d ≈0 ,R D >>r be ,β>>1。

(1)证明混合跟随器的电压增益A V 为

212

1S m S m S m V R g R g R g A ββ++=

(2)求电路输入电阻R i 的表达式。 [解]

(1)画交流通路如图P4-17-1所示

D be R r >>,故可不计D R (未画出)

利用条件 d m g s i g v (不计ds r ),0

g i

列方程:0212() () b m gs S i gs m gs S b m gs S b m gs v i g v R v v g v R i g v R i g v ββ?=+?

=+++??

=?

③代入①和②

20

12

()()m gs m gs S V i gs m gs S m gs m gs g v g v R v A v v g v R g v g v R ββ+=

=

+++

2

12

(1)1(1)m S m S m S g R g R g R ββ+=+++

2

12

1m S m S m S g R g R g R ββ++

(2)

i i

i i o g G v v R i R ==

i G i o v R

v v =-2121i G m S i i m S m S v R g R v v g R g R ββ??????=??-??++??

122!11111m S m S m S G

G m S m S g R g R g R R R g R g R ββ??

++==+??

++??

图P4-17

图P4-17-1

§4.3 复习题解答

一、填空题

1.场效应管(FET )依靠( GS v )控制漏极电流i D ,故称为( 电压 )控制器件。 2.FET 工作于放大区,又称为( 饱和 )区或( 恒流 )区。此时i D 主要受( GS v )电压控制,而i D 几乎不随( DS v )电压的改变而变化。

①②③

3.N 沟道FET 放大偏置时,i D 的方向是从( 漏 )极到( 源 )极;P 沟道FET 放大偏置时,i D 的方向是从( 源 )极到( 漏 )极。

4.对偏置于放大区的六种类型的FET ,试填写下表:

5.写出FET 各个工作区域对应的沟道状态。

6.符号I DSS 的含义是( 零偏(0GS V =)饱和漏电流 )。

7.沟道预夹断是指沟道在( 靠近漏极端 )位置刚好消失的状态。此时,v DS 与v GS 满足的关系式称为( 预夹断 )方程。

8.耗尽 型FET 的小信号跨导定义为g m =( D GS

Q i v ??放大区

)。对于耗尽型管g m ≈

( )或( 21||

DSS GS P P I V V V ??

-??

?? );对于增强型管g m ≈( )。

9.在放大区,耗尽型管转移特性曲线近似满足的平方律关系式为(

2

1GS D DSS

P v i I V ??

=-???? ),而增强型管的平方律关系式为( 2

()D GS T i k v V =- )。

10.根据FET 在放大区的外特性,它的栅极、源极和漏极分别与BJT 的( 基 )极、

( 发射 )极和( 集电 )极相似。

11.在FET 分立元件放大电路中,常采用的偏置电路是( 源极自给偏压 )电路和( 混

合偏置 )电路。但(源极自偏)电路不能用于增强型MOSFET 。

12.FET 的基本放大组态:CS 组态、CD 组态和CG 组态,其放大特性分别与BJT 的( CE )组态、( CC )组态和( CB )组态相似。

13.FET 的( 沟道长度调制 )效应与BJT 的基区宽调效应相似。基区宽调效应使集电结反偏电压变化对各极电位有影响,而FET 的该反应使( DS v )电压的变化对i D 产生影响。

14.FET 的小信号参数( ds r )是沟道调制效应的反映。

二、纠错题

1.BJT 的饱和状态与FET 的饱和状态相似。

纠错:FET 的饱和状态对应BJT 的放大偏置状态。

2.P 沟道FET 的i

D 是从源极S 流向漏极D 的,因此在画该类型FET 的小信号等效电路时,受控电流源g m v gs 的指向应该从S 指向D ,如图F4-1。

纠错:小信号模型中的受控电流源g m v gs 是增量电流。

只要增量电压

gs v ,对任何FET ,增量电流g m v gs 一定是

从漏极流向源极。 图F4-1

3.既然结型FET 的源极S 和漏极D 相对于栅极G 是一种对称结构,S 和D 可以交换使用。那么漏极输出(CS 放大器)和源极输出(CD 放大器)性能就应该相同。

纠错:CS 放大器的输入电压i v 加在GS 之间,而CD 放大器i v 加在GD 之间,二者当然不能等同。

4.当导电沟道在近漏端被夹断后,沟道电流应该为零。

纠错:只有沟道全夹断,D i 才会为零。当沟道从未夹断向靠近漏级端夹断过渡时,D i 是递增的。当近漏端刚好夹断时,D i 达到一个饱和值,而不是零。

5.当CE 放大器的负载电阻和工作点电流与CS 放大器相同时,CE 放大器的电压增益总是大于CS 放大器,因此CE 放大器的功率增益会比CS 放大器高。

纠错:CS 放大器向信号源吸收的功率可能很小,故功率增益不会小。 6.图F4-2所示CS-CC 放大器有4处错误,试指明并在图上改正。

纠错:(1)G R 应接在栅极和地之间。(2)2T 改为NPN 管。(3)2T 的基极没有直流通路,应补充上、下偏置电路。(4)C R 多余,应短路去掉。

改正以后的电路如图F4-2-1所示。

图F4-2

图F4-2-1

7.既然图F4-3中I G =0,R G 可任意选择,那么R G 开路也是可

以的。

纠错:G R 开路,栅极便不能得到偏置电压。G R 使S R 上的电压加到GS 之间。

三、单选题

1.FET 沟道电流的性质是( A )。 A. 多子漂移电流

B. 少子漂移电流

图F4-3

C. 多子扩散电流

D. 少子扩散电流

2.图F4-4是( D )MOSFET 的输出特性曲线。 A. N 沟道耗尽型 B. P 沟道耗尽型 C. N 沟道增强型 D. P 沟道增强型

理由: 0DS v <,故为P 沟道, 3GS v <-V ,才存在沟道,故为增强型MOST 。 3.N 沟道JFET 工作于放大区的条件是( B )。 A.V P >V GS >0,V DS >V GS -V P B. V P V GS -V P C. V P

D. V P >V GS >0,V DS

图 F4-4

4.采用BJT 和场效应管FET 两级级联放大器。要求:① 输出电压稳定(即当负载变化时,输出电压变化减小);② R i 大;③ 反相放大器。以下四种组态中,( A )最能满足此条件。

A. CS-CC

B. CB-CD

C. CE-CD

D. CG-CC 理由:(1)CC 组态作输出级,其输出电阻小,使负载变化时,输出电压的变化小; (2)CS 组态的输入电阻由偏置电路决定,可以做得很大;

(3)CS 是反相放大器,CC 是同相放大器,∴CS-CC 级联为反相放大器。

5.下面4个FET 小信号放大电路中,电路( B )不可能有信号输出。

图 F4-5

理由:(b )中FET 是N 沟道增强型MOSFET ,而增强型MOSFET 不能采用源极自偏电路。

6.图F4-5中FET 的参数I DSS =1mA ,V P =-4V 。该电路中的FET 工作于( B )。

A. 截止区

B. 放大区

C. 可变电阻区

D. 恒压区

理由:图示FET 是N 沟道耗尽型MOSFET 。 0GS V =, 图F4-6

∴1D DSS I I ==mA ,∴10515DS V =-?=V 满足(5V) (4V)DS GS T

V V V >-,∴FET 工作在放大区。

第3章 场效应管及其放大电路习题解

第3章场效应管及其基本放大电路 3.1 教学内容与要求 本章介绍了场效应管的结构、类型、主要参数、工作原理及其基本放大电路。教学内容与教学要求如表1.1所示。 表3.1 第3章教学内容与要求 3.2 内容提要 3.1.1场效应晶体管 1.场效应管的结构及分类 场效应管是利用输入电压产生的电场效应来控制输出电流的,是电压控制型器件。工作过程中起主要导电作用的只有一种载流子(多数载流子),故又称单极型晶体管。场效应管有两个PN结,向外引出三个电极:漏极D、栅极G和源极S。 场效应管的分类如下: 2.场效应管的工作原理 (1)栅源控制电压的极性 对JFET,为保证栅极电流小,输入电阻大的特点,栅源电压应使PN结反偏。N沟道JFET:U GS<0;P 沟道JFET:U GS>0。 对增强性MOS管,N沟道增强型MOS管,参加导电的是电子,栅源电压应吸引电子形成反型层构成导

电沟道,所以U GS >0;同理,P 沟道增强型MOS 管,U GS <0。 对耗尽型MOS 管,因二氧化硅绝缘层里已经掺入大量的正离子(或负离子:N 沟道掺入正离子;P 沟道掺入负离子),吸引衬底的电子(或空穴)形成反型层,即U GS =0时,已经存在导电沟道,所以,栅源电压U GS 可正可负。 (2) 夹断电压U GS(off)和开启电压U GS(th) 对JFET 和耗尽型MOS 管,当|U G S |增大到一定值时,导电沟道就消失(称为夹断),此时的栅源电压称为夹断电压U GS(off)。N 沟道场效应管U GS(off ) <0;P 沟道场效应管U GS(off ) >0。 对增强型MOS 管,当?U GS ?增加到一定值时,才会形成导电沟道,把开始形成反型层的栅源电压称为开启电压U GS(th)。N 沟道增强型MOS 管U GS(th ) >0;P 沟道增强型MOS 管U GS(th ) <0。 (3) 栅源电压u GS 对漏极电流i D 的控制作用 场效应管的导电沟道是一个可变电阻,栅源电压u GS 可以改变导电沟道的尺寸和电阻的大小。当u DS =0时,u GS 变化,导电沟道也变化但处处等宽,此时漏极电流i D =0;当u DS ≠0时,产生漏极电流,i D ≠0,沿沟道产生了电位梯度使导电沟道变得不等宽。 当u GS 一定,?u DS ?增大到一定大小时,在漏极一侧导电沟道被夹断,称为预夹断。 导电沟道预夹断前,?u DS ?增大,?i D ?增大,漏源间呈现电阻特性,但u GS 不同,对应的电阻不同。此时,场效应管可看成受u GS 控制的可变电阻。 导电沟道预夹断后,?u DS ?增大,i D 几乎不变。但是,随u GS 变化,i D 也变化,对应不同的u GS ,i D 的值不同。即i D 几乎仅仅决定于u GS ,而与u DS 无关。栅源电压u GS 的变化,将有效地控制漏极电流i D 的变化,即体现了栅源电压u GS 对漏极电流i D 的控制作用。 3.效应管的伏安特性 效应管的伏安特性有输出特性和转移特性。 (1) 输出特性:指当栅源电压u GS 为常量时,漏极电流i D 与漏源电压u DS 之间的关系,即 常数==GS )(DS D u u f i (3-1) 场效应管有四个工作区域: 可变电阻区:导电沟道预夹断前,此时场效应管是一个受u GS 控制的可变电阻。 恒流区:导电沟道预夹断后,此时漏极电流i D 仅决定于u GS ,场效应管相当于一个栅源电压控制的电流源。场效应管作为放大器件应用时,都工作在该区域。 截止区:导电沟道被全部夹断,i D ≈0。 击穿区:?u DS ?太大,靠近漏区的PN 结被击穿,i D 急剧增加,很快会烧毁管子。不允许场效应管工作在击穿区。 (2) 转移特性:指当漏源电压u DS 为常量时,漏极电流i D 与栅源电压u GS 之间的关系,即 常数 ==DS )(GS D u u f i (3-2) 转移特性表示栅源电压u GS 对漏极电流i D 的控制作用。 4.场效应管的主要参数 (1) 直流参数:夹断电压U GS (off );开启电压U GS(th);饱和漏极电流I DSS ;直流输入电阻R GS(DC)。 (2) 交流参数:低频跨导g m ;极间电容。 (3) 极限参数:最大漏极电流I DM ;最大漏源电压U (BR)DS ; 最大栅源电压U (BR)GS ;最大耗散功率P DM 。 3.1.2场效应管放大电路 1. 场效应管的低频小信号模型 场效应管的低频小信号模型,如图3-1(a)所示,简化的低频小信号模型,如图3-1(b)所示。

场效应管放大电路13912

场效应管放大电路 一、选择填空(只填①、②…字样) 1.晶体管是依靠 ⑤ 导电来工作的 ⑦ 器件;场效应管是依靠 ① 导电来工作的 ⑥ 器件(①多数载流子,②少数载流子,③电子,④空穴,⑤多数载流子和少数载流子,⑥单极型,⑦双极型,⑧无极型)。 2.晶体管是 ② ;场效应管是 ① (①电压控制器件;②电流控制器件) 3.晶体管的输入电阻比场效应管的输入电阻 ③ (①大得多;②差不多;③小得多)。 4.晶体管的集电极电流 ② ;场效应管的漏极电流 ① (①穿过一个PN 结,② 穿过两个PN 结,③不穿过PN 结) 5.放大电路中的晶体管应工作在 ② ;场效应管应工作在 ① (①饱和区,②放大区,③截止区,④夹断区,⑤可变电阻区)。 6.绝缘栅型场效应管是利用改变 栅源两极 的大小来改变 沟道电阻 的大小,从而 达到控制 漏极电流 的目的;根据 栅源两极电压为零 时,有无 漏极电流 的差别,MOS 管可分为 耗尽 型和 增强 型两种类型。 7.NMOS 管最大的优点是 输入电阻较大 ;其栅—源电压的极性 为负 ,漏—源电压的极性 为正 ;对于增强型NMOS 管,这两种电压的极性 为正 ,对增强型PMOS 管这两种电压的极性为 负 。 8.耗尽型场效应管在恒流区的转移特性方程为()D GS DS i f u u ==常数,它们都是反映 栅源两端电 压 对 漏极电流 控制特性的。 9、当场效应管的漏极直流电流I D 从2mA 变为4mA 时,它的低频跨导g m 将 。 A.增大 B.不变 C.减小 答案:A 二、解答题 2.已知场效应管的输出特性曲线如图P1.22所示,画出它在恒流区的转移特性曲线。 图P1.22 解:在场效应管的恒流区作横坐标的垂线〔如解图P1.22(a )所示〕,读出其与各条曲线交点的纵坐标值及U GS 值,建立i D =f (u GS )坐标系,描点,连线,即可得到转移特性曲线,如解图P1.22(b )所示。

场效应管放大电路习题答案

第3章场效应管放大电路 3-1判断下列说法是否正确,用“√”和“×”表示判断结果填入空内。 (1)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证其R GS 大的特点。(?) (2)若耗尽型N沟道MOS管的U GS大于零,则其输入电阻会明显变小。(?) 3-2选择正确答案填入空内。 (1)U GS=0V时,不能够工作在恒流区的场效应管有 B 。 A. 结型管 B. 增强型MOS管 C. 耗尽型MOS管 (2)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将 A 。 A.增大 B.不变 C.减小 3-3改正图P3-3所示各电路中的错误,使它们有可能放大正弦波电压。要求保留电路的共源接法。 图P3-3 解:(a)源极加电阻R S。 (b)漏极加电阻R D。 (c)输入端加耦合电容。 (d)在R g支路加-V G G,+V D D改为-V D D 改正电路如解图P3-3所示。

解图P3-3 3-4已知图P3-4(a)所示电路中场效应管的转移特性和输出特性分别如图(b)(c)所示。 A 、R i和R o。(1)利用图解法求解Q点;(2)利用等效电路法求解 u 图P3-4

解:(1)在转移特性中作直线u G S =-i D R S ,与转移特性的交点即为Q 点;读出坐标值,得出I D Q =1mA ,U G S Q =-2V 。如解图P3-4(a )所示。 解图P3-4 在输出特性中作直流负载线u D S =V D D -i D (R D +R S ),与U G S Q =-2V 的那条输出特性曲线的交点为Q 点,U D S Q ≈3V 。如解图P3-4(b )所示。 (2)首先画出交流等效电路(图略),然后进行动态分析。 mA/V 12DQ DSS GS(off)GS D m DS =-=??=I I U u i g U Ω ==Ω==-=-=k 5 M 1 5D o i D m R R R R R g A g u & 3-5 已知图P3-5(a )所示电路中场效应管的转移特性如图(b )所示。求解 电路的Q 点和u A &。 图P3-5 解:(1)求Q 点: 根据电路图可知, U G S Q =V G G =3V 。 从转移特性查得,当U G S Q =3V 时的漏极电流 I D Q =1mA

场效应管放大器实验报告

实验六场效应管放大器 一、实验目的 1、了解结型场效应管的性能和特点 2、进一步熟悉放大器动态参数的测试方法 二、实验仪器 1、双踪示波器 2、万用表 3、信号发生器 三、实验原理 实验电路如下图所示:

图6-1 场效应管是一种电压控制型器件。按结构可分为结型和绝缘栅型两种类型。由于场效应管栅源之间处于绝缘或反向偏置,所以输入电阻很高(一般可达上百兆欧)又由于场效应管是一种多数载流子控制器件,因此热稳定性好,抗辐射能力强,噪声系数小。加之制造工艺较简单,便于大规模集成,因此得到越来越广泛的应用。 1、结型场效应管的特性和参数 场效应管的特性主要有输出特性和转移特性。图6-2所示为N 沟道结 图6-2 3DJ6F 的输出特性和转移特性曲线 型场效应管3DJ6F 的输出特性和转移特性曲线。 其直流参数主要有饱和漏极电流I DSS ,夹断电压U P 等;交流参数主要有低频跨导 常数U △U △I g DS GS D m == 表6-1列出了3DJ6F 的典型参数值及测试条件。

表6-1 2、场效应管放大器性能分析 图6-1为结型场效应管组成的共源级放大电路。其静态工作点 2 P GS DSS D )U U (1I I - = 中频电压放大倍数 A V =-g m R L '=-g m R D // R L 输入电阻 R i =R G +R g1 // R g2 输出电阻 R O ≈R D 式中跨导g m 可由特性曲线用作图法求得,或用公式 )U U (1U 2I g P GS P DSS m -- = 计算。但要注意,计算时U GS 要用静态工作点处之数值。 3、输入电阻的测量方法 场效应管放大器的静态工作点、电压放大倍数和输出电阻的测量方法,与实验二中晶体管放大器的测量方法相同。其输入电阻的测量, S D DD g2 g1g1 S G GS R I U R R R U U U -+= -=

利用场效应管实现放大电路

利用场效应管实现放大电路 一、设计题目 设计一个场效应管放大器,要求电压增益大于40,输出阻抗小与500欧姆,电源电压15V,输出信号峰峰值不小于8 V,非线性失真度小于10%。 二、技术参数要求 1, 要求电压增益大于40 2,输出阻抗小与500欧姆 3,电源电压15V 4,输出信号峰峰值不小于8 V 5,非线性失真度小于10% 三、所用设备、仪器及清单 示波器一个、信号发生器一个、直流稳压电源一个、数字万用表一个、3DJ6F场效应管三个、47μF电容五个、面包板一个、电阻若干。 四、电路图 五、原理介绍

(1)转移特性栅极电压对漏极电流的控制作用称为转移特性,若用曲线表示,该曲线就称为转移特性曲线。它的定义是:漏极电压UDS恒定时,漏极电流ID同栅极电压UGS的关系,即结型场效应管的转移特性曲线如图所示。图中的Up为夹断电压,此时源极与漏极间的电阻趋于无穷大,管子截止。在UP电压之后,若继续增大UGS就可能会出现反向击穿现象而损坏管子。 (2)输出特性UDS与ID的关系称为输出特性,若用曲线表示,该曲线就称为输出特性曲线。它的定义是:当栅极电压UGS恒定时,ID随UDS的变化关系,即结型场效应管的输出特性曲线如图所示。结型场效应管的输出特性曲线分为三个区,即可变电阻区、饱和区及击穿区。当UDS较小时,是曲线的上升部分,它基本上是通过原点的一条直线,这时可以把管子看成是一个可变电阻。当UDS增加到一定程度后,就会产生预夹断,因此尽管UDS再增加,但IS基本不变。因此预夹断点的轨迹就是两种工作状态的分界线。把曲线上UDS=UGS-UP的点连接起来,便可得到预夹断时的轨迹。轨迹左边对应不同UGS值的各条直线,通称为可变电阻区;

场效应管及其放大电路例题解析

第3章 场效应管及其放大电路例题解析 例3.1 试将场效应管栅极和漏极电压对电流的控制机理,与双极型晶体管基极和集电极电压对电流的控制机理作一比较。 场效应管栅极电压是通过改变场效应管导电沟道的几何尺寸来控制电流。漏极电压则改变导电沟道几何尺寸和加速载流子运动。双极型三极管基极电压是通过改变发射结势垒高度来控制电流,集电极电压(在放大区)是通过改变基区宽度,从而改变基区少子密度梯度来控制电流。 例3.2 N 沟道JFET 的转移特性如图3.1所示。试确定其饱和漏电流I DSS 和夹断电压V P 。 解 由图3.1可至知,此JFET 的饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V 。 例3.3 N 沟道JFET 的输出特性如图3.2所示。漏源电压的V DS =15V ,试确定其饱和漏电流I DSS 和夹断电压V P 。并计算V GS =-2V 时的跨导g m 。 解 由图3.2可得:饱和漏电流I DSS ≈4mA ,夹断电压V P ≈-4V ,V GS =-2V 时,用作图法求得跨导近似为:ms g m 2.1) 2(14.16.2=----≈ 例3.4 在图3.3所示的放大电路中,已知V DD =20V ,R D =10k Ω,R S =10k Ω,R 1=200k Ω,R 2=51k Ω,R G =1M Ω,并将其输出端接一负载电阻R L =10 k Ω。所用的场效应管为N 沟道耗尽型,其参数I DSS =0.9mA ,V P =—4V ,g m =1.5mA /V 。试求:(1)静态值; (2)电压放大倍数。 解 (1) 画出其微变等效电路,如图3.4所示。其中考虑到rGS很大,可认为rGS开路,由电路图可知, V V V R R R V DD G 42010 )51200(105133 212=??+?=+= 并可列出 D D S G G S I I R V V 310104?-=-= 图3.1 图3. 2

04场效应管放大电路

返回>> 第四章场效应管放大电路 由于半导体三极管工作在放大状态时,必须保证发射结正偏,故输入端始终存在输入电流。改变输入电流就可改变输出电流,所以三极管是电流控制器件,因而三极管组成的放大器,其输入电阻不高。 场效应管是通过改变输入电压(即利用电场效应)来控制输出电流的,属于电压控制器件,它不吸收信号源电流,不消耗信号源功率,因此输入电阻十分高,可高达上百兆欧。除此之外,场效应管还具有温度稳定性好,抗辐射能力强、噪声低、制造工艺简单、便于集成等优点,所得到广泛的应用。 场效应管分为结型场效应管(JFET)和绝缘栅场效应管(IGFET),目前最常用的MOS管。 由于半导体三极管参与导电的两种极性的载流子,电子和空穴,所以又称为半导体三极管双极性三极管。场效应管仅依靠一种极性的载流子导电,所以又称为单极性三极管。 FET-Field Effect transistor JFET-Junction Field Effect transistor IGFET-Insulated Gate Field Effect Transistor MOS-Metal-Oxide-Semiconductor §1 结型场效应管 一、结构 结型场效应管有两种结构形式。N型沟道结型场效应管和P型沟道结型场效应管。以N沟道为例。在一块N型硅半导体材料的的两边,利用合金法、扩散法或其它工艺做成高浓度的P+型区,使之形成两个PN结,然后将两边的P+型区连在一起,引出一个电极,称为栅极G。在N型半导体两端各引出一个电极,分别作为源极S和漏极D。夹在两个PN结中间的N型区是源极与漏极之间的电流通道,称为导电沟道。由于N型半导体多数载流子是电子,故此沟道称为N 型沟道。同理,P型沟道结型场效应管中,沟道是P型区,称为P型沟道,栅极与N型区相连。电路符号如图所示,箭头方向可理解为两个PN结的正向导电方

第四章 场效应管(FET)及基本放大电路要点

第四章 场效应管(FET )及基本放大电路 §4.1 知识点归纳 一、场效应管(FET )原理 ·FET 分别为JFET 和MOSFET 两大类。每类都有两种沟道类型,而MOSFET 又分为增强型和耗尽型(JFET 属耗尽型),故共有6种类型FET (图4-1)。 ·JFET 和MOSFET 内部结构有较大差别,但内部的沟道电流都是多子漂移电流。一般情况下,该电流与GS v 、DS v 都有关。 ·沟道未夹断时,FET 的D-S 口等效为一个压控电阻(GS v 控制电阻的大小),沟道全夹断时,沟道电流D i 为零;沟道在靠近漏端局部断时称部分夹断,此时D i 主要受控于GS v ,而DS v 影响较小。这就是FET 放大偏置状态;部分夹断与未夹断的临界点为预夹断。 ·在预夹断点,GS v 与DS v 满足预夹断方程: 耗尽型FET 的预夹断方程:P GS DS V v v -=(P V ——夹断电压) 增强型FET 的预夹断方程:T GS DS V v v -=(T V ——开启电压) ·各种类型的FET ,偏置在放大区(沟道部分夹断)的条件由表4-4总结。 表4-4 FET 放大偏置时GS v 与DS v 应满足的关系 ·偏置在放大区的FET ,GS v ~D i 满足平方律关系: 耗尽型: 2 ) 1(P GS DSS D V v I i - =(DSS I ——零偏饱和漏电流) 增强型:2 )(T GS D V v k i -=*

· FET 输出特性曲线反映关系 参变量 G S V DS D v f i )(=,该曲线将伏安平面分为可变电阻区 (沟道未夹断),放大区(沟道部分夹断)和截止区(沟道全夹断);FET 转移特性曲线反映在放大区的关系)(GS D v f i =(此时参变量DS V 影响很小),图4-17画出以漏极流向源极的沟道电流为参考方向的6种FET 的转移特性曲线,这组曲线对表4-4是一个很好映证。 二、FET 放大偏置电路 ·源极自给偏压电路(图4-18)。该电路仅适用于耗尽型FET 。有一定稳Q 的能力,求解该电路工作点的方法是解方程组: 22() [FET ()]GS D DSS d GS T P GS S D v i I v i k v V V v R i ? =-=-?? ?=-?对于增强型,用关系式 ·混合偏压电路(图4-20)。该电路能用于任何FET ,在兼顾较大的工作电流时,稳Q 的效果更好。求解该电路工作点的方法是解方程组: ??? ??-+=D s CC GS i R R R R V v 212平方律关系式 以上两个偏置电路都不可能使FET 全夹断,故应舍去方程解中使沟道全夹断的根。 三、FET 小信号参数及模型 ·迭加在放大偏置工作点上的小信号间关系满足一个近似的线性模型(图4-22低频模 型,图4-23高频模型)。 ·小信号模型中的跨导 Q GS D m v i g ??= m g 反映信号gs v 对信号电流d i 的控制。m g 等于FET 转移特性曲线上Q 点的斜率。 m g 的估算:耗尽管 D DSS P m I I V g ||2 = 增强管D m kI g 2= ·小信号模型中的漏极内阻 Ds ds D Q v r i ?= ? ds r 是FET “沟道长度调效应”的反映,ds r 等于FET 输出特性曲线Q 点处的斜率的倒 数。 四、基本组态FET 小信号放大器指标 1.基本知识 ·FET 有共源(CS )共漏(CD )和共栅(CG )三组放大组态。 ·CS 和CD 组态从栅极输入信号,其输入电阻i R 由外电路偏置电阻决定,i R 可以很大。 ·CS 放大器在其工作点电流和负载电阻与一个CE 放大器相同时,因其m g 较小,|| V A

(整理)场效应管及其放大电路.

第2章基本放大电路 2.11 场效应管及其放大电路 场效应晶体管是利用电场效应来控制电流的一种半导体器件,即是电压控制元件。它的输出电流决定于输入电压的大小,基本上不需要信号源提供电流,所以它的输入电阻高,且温度稳定性好。 按结构不同场效应管有两种: 结型场效应管 绝缘栅型场效应管 本节仅介绍绝缘栅型场效应管 按工作状态可分为:增强型和耗尽型两类 每类又有N沟道和P沟道之分 2.11.1绝缘栅场效应管 1.增强型绝缘栅场效应管 (1)N沟道增强型管的结构

由于金属栅极和半导体之间的绝缘层目前常用二氧化硅,故又称金属-氧化物-半导体场效应管,简称MOS场效应管。 (2)N沟道增强型管的工作原理 由结构图可见,N+型漏区和N+型源区之间被P型衬底隔开,漏极和源极之间是两个背靠背的PN 结。

当U GS > 0 时,P型衬底中的电子受到电场力的吸引到达表层,填补空穴形成负离子的耗尽层; 当U GS U GS(th)后,场效应管才形成导电沟道,开始导通,若漏–源之间加上一定的电压U DS,则有漏极电流I D产生。在一定的U DS下漏极电流I D的大小与栅源电压U GS有关。所以,场效应管是一种电压控制电流的器件。 在一定的漏–源电压U DS下,使管子由不导通变为导通的临界栅源电压称为开启电压U GS(th)。(3)特性曲线

(4)P沟道增强型 2.耗尽型绝缘栅场效应管 ?如果M O S管在制造时导电沟道就已形成,称为耗尽型场效应管。 (1)N沟道耗尽型管 由于耗尽型场效应管预埋了导电沟道,所以在U GS= 0时,若漏–源之间加上一定的电压U DS,也

实验十三基于Multisim的场效应管放大器电路设计

南昌大学实验报告 学生姓名:学号:专业班级:生医091 实验类型:□验证□综合□设计□创新实验日期:20110615 实验成绩:实验十三基于Multisim的场效应管放大器电路设计 一、实验目的: 1、场效应管电路模型、工作点、参数调整、行为特征观察方法 2、研究场效应放大电路的放大特性及元件参数的计算 3、进一步熟悉放大器性能指标的测量方法 二、实验原理: 1.场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 和双极型晶体管相比场效应管的不足之处是共源跨导gm。值较低(只有ms级),MOS管的绝缘层很薄,极容易被感应电荷所击穿。因此,在用仪器测量其参数或用烙铁进行焊接时,都必须使仪器、烙铁或电路本身具有良好的接地。焊接时,一般先焊S极,再焊其他极。不用时应将所有电极短接。 2.偏置电路和静态工作点的确定 与双极型晶体管放大器一样,为使场效应管放大器正常工作,也需选择恰当的直流偏置电路以建立合适的静态工作点。 场效应管放大器的偏置电路形式主要有自偏压电路和分压器式自偏压电路(增强型MOS管不能采用自偏压电路)两种。 三、实验内容及步骤 1.场效应管共源放大器的调试 (1)连接电路。按图2.4.1在模拟电路实验板上插接好电路,场效应管选用N沟道结型管

3DJ6D,静态工作点的设置方式为自偏压式。直流稳压电源调至18V并接好(注意:共地) (2)测量静态工作点 调节电阻R使V D为2.43V左右,并测量此时的Vg、Vs ,填入表2.4.1,并计算。 表2.4.1静态工作点 将函数发生器的输出端接到电路的输入端。使函数发生器输出正弦波并调=2mV,f=lkHz。用示波器观察输出波形,(若有失真,应重调静态工作点,使波形不失真),并用示波器测量输出电压Vo,计算Av (4)测量输入及输出阻抗 用换算法测量放大器的输入电阻,在输入回路串接已知阻值的电阻R,但必须注意,由于场效应管放大器的输入阻抗很高,若仍用直接测量电阻R两端对地电Vs 和Vi进行换算的方法,将会产生两个问题: (1)由于场效应管放大器Ri高,测量时会引人干扰; (2)测量所用的电压表的内阻必须远大于放大器的输入电阻Ri,否则将会产生较大的测量误差。为了消除上述干扰和误差,可以利用被测放大器的隔离作用,通过测量放大器输出电压来进行换算得到Ri。图为测量高输入阻抗的原理图。方法是:先闭合开关S(R=0),输入信号电压Vs,测出相应的输出电压V01,然后断开S,测出相应的输出电压V02,因为两次测量中和是基本不变的,所以 R i=V O2/(V O1-V O2)R 输出电阻测量:在放大器输入端加入一个固定信号电压Vs ,分别测量当已知负载R L断开和接上的输出电压V0和V0L。则 R0=(V0 / V0L -1)R L

场效应管放大电路

第四章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 4.1 结型场效应管 4.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对应关系: 栅极g—基极b;源极s—发射极e;漏极d—集电极c夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的

结构示意图和它在电路中的代表符号

如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N 区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS-V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。 (b)若同时在漏源-极间加上固定的正向电压v DS,则漏极电流i D将受v GS的控制,|v GS|增大时,沟道电阻增大,i D减小。 (c)上述效应也可以看作是栅-源极间的偏置电压在沟道两边建立了电场,电场强度的大小控制了沟道的宽度,即控制了沟道电阻的大小,从而控制了漏极电流i D的大小。 v DS对i D的影响 设v GS值固定,且V P

场效应管放大电路设计

* 课程设计报告 题目:场效应管放大电路设计 学生姓名: *** 学生学号: ******** 系别:电气信息工程院 专业:通信工程 届别: 2014届 指导教师: ** 电气信息工程学院制 2013年3月

场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 场效应管电路模型、工作点、参数调整、行为特征观察方法 1.2 研究场效应放大电路的放大特性及元件参数的计算 1.3 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1 场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免PN结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET 是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P 沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体MOS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015 之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。它属于电压控制型

场效应管放大电路设计

* 课程设计报告题目:场效应管放大电路设计 学生姓名:学生学号: *** ******** 系专届别: 业: 别: 电气信息工程院 通信工程 2014届 指导教师:** 电气信息工程学院制 2013年3月

**师范学院电气信息工程学院2014届通信工程专业课程设计报告 场效应管放大电路设计 学生:** 指导教师:** 电气信息工程学院通信工程专业 1、课程设计任务和要求: 1.1 1.2 1.3场效应管电路模型、工作点、参数调整、行为特征观察方法研究场效应放大电路的放大特性及元件参数的计算 进一步熟悉放大器性能指标的测量方法 2、课程设计的研究基础: 2.1场效应管的特点 场效应管与双极型晶体管比较有如下特点: (1)场效应管为电压控制型元件; (2)输入阻抗高(尤其是MOS场效应管); (3)噪声系数小; (4)温度稳定性好,抗辐射能力强; (5)结型管的源极(S)和漏极(D)可以互换使用,但切勿将栅(G)源(S)极电压的极性接反,以免P N结因正偏过流而烧坏。对于耗尽型MOS管,其栅源偏压可正可负,使用较灵活。 场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管。场效应管,FET是一种电压控制电流器件。其特点是输入电阻高,噪声系数低,受温度和辐射影响小。因而特别使用于高灵敏度、低噪声电路中。场效应管的种类很多,按结构可 分为两大类:结型场效应管、JFET和绝缘栅型场效应管IGFET。结型场效应管又分为N沟道和P沟道两种。绝缘栅场效应管主要指金属一氧化物—半导体M OS场效应管。MOS管又分为“耗尽型”和“增强型”两种,而每一种又分为N沟道和P沟道。结型场效应管是利用导电沟道之间耗尽区的宽窄来控制电流的输入电阻105---1015之间,绝缘栅型是利感应电荷的多少来控制导点沟道的宽窄从而控制电流的大小、其输入 阻抗很高(其栅极与其他电极互相绝缘)以及它在硅片上的集成度高,因此在大规模 集成电路中占有极其重要的地位。由多数载流子参与导电,也称为单机型晶体管。

场效应管放大电路.(DOC)

第三章场效应管放大电路 本章内容简介 场效应管是利用改变外加电压产生的电场强度来控制其导电能力的半导体器件。它具有双极型三极管的体积小、重量轻、耗电少、寿命长等优点,还具有输入电阻高、热稳定性好、抗辐射能力强、噪声低、制造工艺简单、便于集成等特点。在大规模及超大规模集成电路中得到了广泛的应用。场效应管的分类根据结构和工作原理的不同,场效应管可分为两大类:结型场效应管(JFET)和绝缘栅型场效应管(IGFET)。 (一)主要内容: ?结型场效应管的结构及工作原理 ?金属-氧化物-半导体场效应管的结构及工作原理 ?场效应管放大电路的静态及动态性能分析 (二)教学要点: ?了解结型场效应管和MOS管的工作原理、特性曲线及主要参数 ?掌握用公式法和小信号模型分析法分析其放大电路的静态及动态性能 ?了解三极管及场效应管放大电路的特点 (三)基本要求: 介绍结型场效应管和MOS管的工作原理、特性曲线,重点介绍用公式法和小信号模型分析法分析其放大电路静态及动态性能。

3.1 结型场效应管 3.1.1 JFET的结构和工作原理 1. 结构 在一块N型半导体材料的两边各扩散 一个高杂质浓度的P+ 区,就形成两个不对 称的PN结,即耗尽层。把两个P+区并联在 一起,引出一个电极g,称为栅极,在N 型半导体的两端各引出一个电极,分别称 为源极s和漏极d。 场效应管的与三极管的三个电极的对 应关系: 栅极g—基极b;源极s—发射极e;漏极d —集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。 如果在一块P型半导体的两边各扩散一 个高杂质浓度的N+区,就可以制成一个P沟 道的结型场效应管。P沟道结型场效应管的 结构示意图和它在电路中的代表符号 如图所示。 2. 工作原理 v GS对i D的控制作用 为便于讨论,先假设漏-源极间所加的电压v DS=0。 (a) 当v GS=0时,沟道较宽,其电阻较小。 (b) 当v GS<0,且其大小增加时,在这个反偏电压的作用下,两个PN结耗尽层将加宽。由于N区掺杂浓度小于P+区,因此,随着|v GS| 的增加,耗尽层将主要向N沟道中扩展,使沟道变窄,沟道电阻增大。当|v GS| 进一步增大到一定值|V P| 时,两侧的耗尽层将在沟道中央合拢,沟道全部被夹断。由于耗尽层中没有载流子,因此这时漏-源极间的电阻将趋于无穷大,即使加上一定的电压v DS,漏极电流i D也将为零。这时的栅-源电压v GS称为夹断电压,用V P表示。在预夹断处:V GD=V GS -V DS =V P 上述分析表明: (a)改变栅源电压v GS的大小,可以有效地控制沟道电阻的大小。

场效应管及其放大电路

第3章 场效应管及其放大电路 场效应晶体管(简称场效应管)是一种利用电场效应来控制电流的半导体器件。这种器件不仅具有体积小、重量轻、耗电省、寿命长等特点,而且还具有输入电阻高、噪声低、热稳定性好、抗辐射能力强和制造工艺简单等优点,因而大大扩展了其应用范围,特别是在大规模和超大规模集成电路中得到了广泛的应用。 根据结构的不同,场效应管可以分为两大类:结型场效应管(JFET )和金属-氧化物-半导体场效应管(MOSFET )。 本章首先介绍场效应管的结构、工作原理、特性曲线及主要参数,然后介绍场效应管放大电路的电路组成及其工作原理。 3.1 结型场效应管 3.1.1 结型场效应管的结构和工作原理 1.结构结型场效应管的结构示意图如图3-1(a )所示。从图中可以看出,在N 型半导体两侧是两个高掺杂的P 区,从而形成两个PN 结。两侧P 区从内部相连后引出一个电极称为栅极,用G 表图3-1 N 沟道结型场效应管 (a )结构 (b )符号示;从N 型半导体两端分别引出的两个电极称为源极和漏极,用S 和D 表示;两个PN 结中间的 · 94·

N 型区域称为导电沟道,这种结构称为N 沟道场效应管,图3-1(b )是它的代表符号。场效应管分N 沟道和P 沟道两种,图3-2所示为P 沟道场效应管。从场效应管代表符号中的箭头方向可以区分是N 沟道还是P 沟道。 2.工作原理下面以N 沟道结型场效应管为例,讨论场效应管的工作原理。图3-3表示的是N 沟道结 型场效应管加入偏置电压后的接线图。 图3-2 P 沟道结型场效应管 (a )结构 (b )符号图3-3 N 沟道结型场效应管 的工作原理 图3-4 u G S 对导电沟道的影响 正常工作时,场效应管中的PN 结必须外加反向电压。对于N 沟道场效应管,当u G S <0,栅极电流几乎为0,场效应管呈现高达几十兆欧以上的输入电阻。如果在漏极(D )和源极(S )之间加一正极性电压u D S ,N 沟道中的多数载流子(电子)将在电场作用下从源极向漏极流动,形成漏极电流i D 。i D 的大小受u G S 的控制,当栅源电压u G S 改变时,由于PN 结的反向电压改变,两个PN 结的耗尽层将改变,导致导电沟道的宽度改变,也即沟道电阻的大小随之改变,从而使电流i D 发 生改变。 为了进一步说明u G S 对i D 的控制作用,先假设u D S =0的情况。从图3-4中可以看出,当u G S · 05·

场效应管基本放大电路

场效应管基本放大电路 1.场效应管放大器偏置电路与直流分析 场效应管和品休三极管一样,也可以构成三种基本纽态:共源、共栅、共 漏放大器。在放大电路中,场效应管工作在饱和区,所以必须给场效应管加 上一定的直流他置。下面以N沟道结型场效应管为例进行为论。 (1)自偏压共源放大电路共源放大电路如图3—5所示。其直流通路 如图3—6所示。 只为源极电阻,Rg为栅极电阻,提供直流通路,Rd为漏极电阻。由于场 效应管栅极电流为零,所以加钽电容在栅源极间的电压是由电阻R上压降通过只g 提供的,这种形式的偏置电路称为自偏压偏置电路。 根据电路写出方程 (2)分压式自偏压共源放大电路分压式自偏压共源放大电路如图

所示。其直流通路如图3—8所示。 共源、共栅和共希迪电子漏放大器分别与共射、共基和共集放大器相对应。归纳起来,主要有以下特点: ①共源、共栅放大器的放大倍数较大,共漏放大器的放大倍数小于l但 接近于1,可作为跟随器使用,而共源放大器输出电压和输入电压反相; ②共栅放大器的输入电阻最小; ③共漏放大器的输出电阻最小。cjmc%ddz 真正好的朋友,从来不需要这些表面功夫。走在这漫漫俗尘,形如微尘的我们,每天忙碌的像只蝼蚁,哪有时间去整那些虚假的表面文章。那些沉淀在岁月里的真情实意,哪一个不是无事各自忙,有事时,却又从不问回报几何的真心相助?

至于那些平日里看上去可以一起打闹,一起吃喝,一起厮混,看似好成一片的人,或许,只是你在多少次的四目相对之时,动了真心,存了真义,是你默默认定对方可称朋友,有困难的时候是你愿意伸以援手,但未必对方一样。 多少看似热情的人,内心是薄情的。而多少看似淡漠的人,内心实则一片温热。那些表面热诚的人,总是相安无事各自好,一旦你有事需要援助,别说大事,就是小事需代劳,你都会发现原来不过情比纸薄,对方远比你自己想的要现实的多。 有些人,自从与你接近,内心就存有一份自己的打算。定是你于他而言,多少有些可用之处。正所谓无事献殷勤,非奸即盗。在这个功利心弥漫的世态下,没有哪一份意外的热情不无所图。不仅是职场如此,男人如此,就连女人也不能免俗。 接孩子的时候,被困高层电梯下不来,一个电话打来,希望能帮忙照看一下放学的孩子。实在的人总是把别人毫不见外的信任,当作是一种荣幸,于是想都不用想就能一口答应。可当你有事需要对方只是代笔签个字这样的举手之劳时,对方都能各种不情愿各种推脱,至此你终是发现,原来人与人之间真不是一杯换一盏的事儿。关键时刻,还是得找那些看似平时不联系,但一开口能力范围之内就愿意为你想办法的人。 多少人天真的以为,认识的人越多,人脉就越广,自己就越厉害,其实,那些所谓的人脉,不过廉价。倘若你没有同等的利用价值,谁会与你建立起所谓的交际?最是谈钱伤感情,也最是感情不值钱。别结识了比自己优秀比自己有能力的人,就觉得有了依靠有了光环,自己不足够优秀,结识谁都没有用。在你困难需求的时候,你开口求助,能够推脱敷衍那算给面子,对你闭门不见佯装不熟也是情理之中。 日久见人心,患难见真情。平时是平时,别把平时当真情。这世上多少人变脸如翻书,有求于你一个样,各自安好一个样,最是有求于他嘴脸陋,让你瞬间就明白,何谓人情凉薄。 随着年龄的增长,人心的不再纯澈,人与人之间的交往就不再那么的纯粹而真心了。也正是因为如此,才更要珍惜那些默默守护在你生活中的朋友。别看平时忙的少有见面,少有聊天,就连微信,都少有私信。但有事儿的时候,只一声招呼,谁能出力都会挺身而出,义不容辞。 真正好的朋友,从来不需要这些表面功夫。走在这漫漫俗尘,形如微尘的我们,每天忙碌的像只蝼蚁,哪有时间去整那些虚假的表面文章。那些沉淀在岁月里的真情实意,哪一个不是无事各自忙,有事时,却又从不问回报几何的真心相助? 至于那些平日里看上去可以一起打闹,一起吃喝,一起厮混,看似好成一片的人,或许,只是你在多少次的四目相对之时,动了真心,存了真义,是你默默认定对方可称朋友,有困难的时候是你愿意伸以援手,但未必对方一样。 多少看似热情的人,内心是薄情的。而多少看似淡漠的人,内心实则一片温热。那些表面热诚的人,总是相安无事各自好,一旦你有事需要援助,别说大事,就是小事需代劳,你都会发现原来不过情比纸薄,对方远比你自己想的要现实的多。 有些人,自从与你接近,内心就存有一份自己的打算。定是你于他而言,多少有些可用之处。正所谓无事献殷勤,非奸即盗。在这个功利心弥漫的世态下,没有哪一份意外的热情不无所图。不仅是职场如此,男人如此,就连女人也不能免俗。 接孩子的时候,被困高层电梯下不来,一个电话打来,希望能帮忙照看一下放学的孩子。实在的人总是把别人毫不见外的信任,当作是一种荣幸,于是想都不用想就能一口答应。可当你有事需要对方只是代笔签个字这样的举手之劳时,对方都能各种不情愿各种推脱,至此你终是发现,原来人与人之间真不是一杯换一盏的事儿。关键时刻,还是得找那些看似平时不联系,但一开口能力范围之内就愿意为你想办法的人。 多少人天真的以为,认识的人越多,人脉就越广,自己就越厉害,其实,那些所谓的人脉,不过廉价。倘若你没有同等的利用价值,谁会与你建立起所谓的交际?最是谈钱伤感情,也最是感情不值钱。别结识了比自己优秀比自己有能力的人,就觉得有了依靠有了光环,自己不足够优秀,结识谁都没有用。在你困难需求的时候,你开口求助,能够推脱敷衍那算给面子,对你闭门不见佯装不熟也是情理之中。 日久见人心,患难见真情。平时是平时,别把平时当真情。这世上多少人变脸如翻书,有求于你一个样,各自安好一个样,最是有求于他嘴脸陋,让你瞬间就明白,何谓人情凉薄。 随着年龄的增长,人心的不再纯澈,人与人之间的交往就不再那么的纯粹而真心了。也正是因为如此,才更要珍惜那些默默守护在你生活中的朋友。别看平时忙的少有见面,少有聊天,就连微信,都少有私信。但有事儿的时候,只一声招呼,谁能出力都会挺身而出,义不容辞。

相关主题
文本预览
相关文档 最新文档