当前位置:文档之家› 几种OLED有源驱动电路中像素单元电路的分析

几种OLED有源驱动电路中像素单元电路的分析

几种OLED有源驱动电路中像素单元电路的分析
几种OLED有源驱动电路中像素单元电路的分析

第19卷 第6期2004年12月

液 晶 与 显 示

Chinese Jour nal of Liquid Cr ystals and Displays

Vol.19,No.6 Dec.,2004

文章编号:100722780(2004)0620462206

几种OLED 有源驱动电路中像素单元电路的分析

谢 强1

,李宏建

1,2*

,黄永辉1,代国章1,彭景翠

1

(1.湖南大学应用物理系,湖南长沙 410082;2.中南大学物理科学与技术学院,湖南长沙 410083)

摘 要:在有机电致发光器件两管单元有源驱动电路的基础上,分析了几种四管单元电流控制型和电压控制型的驱动电路,它们都能补偿TFT 阈值电压的漂移,但都有各自的优缺点:前者能准确地调节显示的灰度,但它的响应速度慢;后者的响应速度快,但不能准确地调节显示的灰度。关

词:OLED;有源驱动;阈值电压补偿

中图分类号:TN873.3;TN321.5 文献标识码:A

收稿日期:2004206229;修订日期:2004208223

基金项目:湖南省杰出青年科学基金资助项目(No.03JJY1008);中国博士后科学基金资助项目(No.2004035083) *通讯联系人

1 引 言

有机电致发光器件(OLED)作为新一代的显示器件,在手机、数码相机、车载显示、笔记本电脑及军事领域都具有广阔的应用前景[1],对以LCD 为主流的几乎所有平面显示产品都构成挑战和威胁,被业界公认为是最理想和最具发展前景的下一代显示技术。尤其是其具备柔性设计的神奇特征,使得令人神往的可折叠电视、电脑的制造成为可能,但只有结合良好的驱动技术才能将OLED 的特点表现出来。OLED 的驱动方式可分为无源驱动和有源驱动[2]。采用无源驱动时,随着屏幕的增大,显示密度的提高,OLED 中电极本身的电压降就必须考虑[3],且要在分配的时间内完成发射,必须及时地施加较大的电流到各像素上,这会大大耗损发光材料的使用寿命;另外,无源驱动需要瞬间高电流,这将造成较低的能量效率。因此,目前采用无源驱动OLED 显示器,已经接近其屏幕尺寸和分辨率的极限[4],而有源驱动技术则可解决上述问题。在有源驱动电路中,每个像素需要两个或两个以上的TFT [5],简单的模拟驱动电路是一种两管驱动方案[6],如图1所示。其中OLED 可放在源极和漏极,分别称为源极跟随型和恒定电流型。T 1是开关管,T 2是驱动管,C S

图1 两管TFT 驱动电路。(a)源极跟随结构;(b)恒

定电流跟随结构。

Fig.1 T wo 2TFT dr iving circuit.(a)sour ce follower config 2

ur at ion;(b)constant current configuration.

存储电容。当扫描线被选中时,开关管T 1打开,对电容C S 充电,当C S 电位超过T 2管阈值,T 2管导通,驱动OLED 发光。当扫描线未被选中

时,T 1管截止,这时电容C S 两端的电压降就是T 2管的栅极电压值,使T 2管继续导通,维持着电流驱动OLED 。在T 2管工作在饱和区的条件下,根据TFT 的I 2V 特性,恒定电流型可以克服负载OLED 参数的变化对栅源电压的影响。不过这种两管单元驱动电路的主要问题在于:各像素驱动管的阈值电压不一致将导致逐个显示屏亮度不均匀;另外,输入的数据值和发光亮度呈非线性关系,这给实现精确的灰度调节带来了一定的困难,而这些不足可以通过增加TFT 的个数来解决,本文对带阈值电压补偿的几种四管单元电流控制型驱动电路和电压控制型驱动电路进行分析。

2 电流控制型驱动电路

2.1 以电流镜像为基础的电流控制型驱动电路

图2是一个电流控制型驱动电路[7],它能很

好地补偿阈值电压的漂移。

图2 电流镜像为基础的电流控制型驱动电路F ig.2 Curr ent 2programmed driving circuit based on current

mir ror image

当扫描线上电压处于高电平,此像素被选中,晶体管T 1、T 2导通,I DATA 首先从数据线通过T 1管对电容C S 充电,当电容C S 两端电压达到一定值时,整个I DATA 通过T 2管流到T 3管。同时,由于T 3管和T 4管的栅极电压相等,根据电流镜像

原理,流过OLED 的电流I OLED =K 4

K 3

@I DA TA ,其

中K 3=L 3C OX3@W 3L 3,K 4=L 4C OX4@W 4

L 4

,这里

L 为场效应迁移率;C OX 为单位面积的绝缘层电容;W 和L 分别为MOS 管沟道宽度和长度。当此像素未被选中时,T 4管的栅极电压由电容C S 两端所存储的电压决定,维持着电流驱动OLED 。

类似于此类型的电流控制型驱动电路[8,9]也能很好地说明它的补偿特性,并从实验得出,这种电路具有很好的线性输出,能对显示的灰度作精

确性地调节,而且有很高的平板发光亮度,足以达

到1200cd/m 2。

2.2 分压式电流控制型驱动电路

如图3所示的电流驱动电路[10]

,包含4个P 型TFT 管和一个存储电容C S 。在阶段(1),扫描线为低电平,此像素被选中,T 1管和T 2管都打开,此时T 4管的栅源端连在一起,处于截止区,而T 3管的栅漏端连在一起,处于饱和区。电流I DATA 对C S 充电到电压V A 满足式I DATA =1

2K 3@(V A -V DD -V th3)2才停止,这里V th 为MOS 管的阈值电压。在阶段(2),扫描线为高电平,T 1管和T 2管关闭,T 3管的漏极和T 4管的源极连在一起,而它们的栅极也是连在一起的,根据流过它们的漏源电流相等,T 3管处于线性区,T 4管处于

饱和区,可得到流过OLED 的电流I OLED 为

K 4

K 3+K 4

@I D ATA 。同时通过实验也得出:此电路能补偿阈值电压的漂移,有好的线性输出,而且能准确地调节显示的灰度。

图3 分压式电流控制型驱动电路

Fig.3 Current 2progr ammed driving circuit based on dis 2

tributing voltage

3 电压控制型驱动电路

3.1 亚阈值电流补偿阈值电压变化的电压控制

型驱动电路

图4是一个四管单元驱动电路[11],其中

463

第6期 谢 强,等:几种OLED 有源驱动电路中像素单元电路的分析

OLED 等效为一个TFT 和一个电容的并联[8,12,13],在开始阶段(1),扫描线1和扫描线2均为高电平,T 2管、T 3管和T 4管均打开,数据线接地,T 1管的栅极和源极也接地。在补偿阶段(2),扫描线2变为低电平,T 4管关闭,V comp 加到数据线上,则T 1管的栅极电压变成V comp ,使晶体管T 1工作在亚阈值区,存储于电容C 1两端的电压V C 就是T 1管的阈值电压V th1。在数据输入阶段(3),T 4管打开,T 2管和T 3管关闭,数据线上输入电压V input 由于电容C 1两端的电压不能瞬时变化,T 1的栅极就跃变为V input +V th1,则驱动管T 1的栅源电势差就为V input ,补偿了TFT 阈值电压的漂移。当没扫描到此像素时,存储电

容C 1和C 2两端的电压降维持着T 1管的栅源电压,保持电流驱动OLED 。

其中V comp 可取使T 1管工作在亚阈值区的某一具体值或直接取V input ,取前者比取后者好,因T 1管工作在亚阈值区,它的栅源电压的大小就是V t h1,存储在C 1两端的电压就为V th1,恰好补偿了阈值电压V th1。而当V comp =V i nput ,在补偿阶段(2),存储在C 1两端的电压大小V C1不会恰好是V t h1,它会随着V i nput 的增大而线性增加[14~

16]

,在数据输入阶段,会产生新的阈值电压

的漂移,而且晶体管工作在亚阈值区时,能降低电

路的功耗。

图4 亚阈值电流补偿阈值电压变化的电压控制型驱动电路

Fig.4 Voltage 2programmed dr iving circuit with sub 2threshold current compensating the thr eshold voltage variations

3.2 放电式补偿阈值电压变化的电压控制型驱动电路

如图5所示的电压驱动电路[17],包含4个T FT,1个存储电容C S 。开始,SLT 和CTD 都为

低电平,T 1管关闭。在阶段(1),SLT 变为高电平,TNO 维持高电平,此时T 1管、T 2管和T 3管。均打开,则T 4管导通,同时CTD 也变为高电平,阻止电流流过OLED,这时从数据信号线

输入

图5 放电式补偿阈值电压变化的电压控制型驱动电路

Fig.5 Voltage 2programmed dr iving circuit with compensating the threshold voltage variat ions by releasing charge

464液 晶 与 显 示 第19卷

V DATA,T4管的源极电压变为V DATA,而它的栅极电压V A会充电到一个比V DATA大的值,维持着T4管的导通。在阶段(2),T NO变为低电平,关闭了T3管,SLT和CTD保持高电平,V D D、C S、T2管、T4管和T1管组成一条通路,使T4管的栅极电压V A通过C S的放电而降低,直到T4管进入亚阈值区,即V A降低到V D ATA+V th4的大小。之后SLT和CTD回到低电平,TNO回到高电平,T1管和T2管关闭,T3管打开,这时T4管的栅源电压V gs等于V D ATA,补偿了它的阈值电压漂移,而电容C S两端保持着V DATA+V t h的电压值直到下一个数据信号的来临。

同时实验也可得到:此电路在V D A TA=6.96 V,工作了10000h以后(相当于$V th= 2.9 V)[14],流过OLED电流的最大减少值只有6%,说明它成功地补偿了阈值电压的漂移

4电流控制型驱动电路和电压控制型驱动电路的比较

虽然本文所介绍的驱动电路都能很好地补偿阈值电压的漂移,但它们都有各自的优缺点。

在电压控制型驱动电路中,第一:由于OLED 很陡的I2V特性[18],一个很小的电压变化将引起输出电流的大的变化,随即影响到OLED发光亮度的变化,对灰度的准确性调节比较困难。第二: OLED可等效为一个TFT和一个电容的并联,由于工艺原因,它的阈值电压、载流子迁移率、串联电阻等参数是不同的。由于OLED中I2V的非线性关系,电压控制型驱动电路中就必须考虑这些影响,即使采用工艺上很难实现的恒定电流结构(如图1(b)),也只能克服阈值电压不同的问题。而在电流控制型驱动电路中由于是直接的电流驱动,输出和输入是线性关系,对电流的调节比较方便,能容易地实现亮度的均匀性和显示灰度的准确性调节。

在电流控制型驱动电路中,虽然能很好地调节显示的灰度,而且有高的输出亮度,但它也有自己的缺点。

电流控制型驱动电路一般模式如图6(a)所示,数据电流I D ATA必须先对存储电容C S充电直

到电压V A满足公式I D ATA=1

2

K1(V A-V B-

V t h1)2才停止(一般使驱动管T1工作在饱和区),当显示需要低亮度时,I D ATA很小,对存储电容C S 的充电时间会很大,可能会在再次扫描此像素时充电还没完成,使流过OLED的电流达不到预期值。虽然可像图3所示的驱动电路通过改变输入与输出的关系来提高I DATA,使充电时间变短,但这是以提高电路的功率为代价的。在电压控制的电路中,由于电压直接加到存储电容C S的两端,充电电流一开始会有一个瞬间的大电流对电容充电,极大地降低了充电时间。

图6(a)电流控制的一般模式;(b)电压控制的一般模式。Fig.6(a)General mode of current2pro grammed;(b)General mode of voltage2programmed.

在电流控制型驱动电路中,即使缩短了对存储电容的充电时间,对OLED的等效电容C的充放电时间也是很长的:第一:电流I ds通过T1管来使OLED发光时,必须先对电容C充电,直到电压V B的大小达到一定值时整个电流I ds才流过OLED的发光层。当低亮度显示时,所需的驱动电流I ds比较小,设大小为A安,一般可小到几微安数量级,而此时的电容可达5pF甚至更大,和几微安的电流相比很大,对电容C充电的时间比较大[12],而且当V B充电到大于OLED的等效晶

465

第6期谢强,等:几种OLED有源驱动电路中像素单元电路的分析

体管T的V th后,将有电流流过OLED,这时就只有部分电流来对电容C充电,使充电时间变得更长,能达到几百微秒,这会在下次扫描此像素时还没充电完,OLED的发光亮度就达不到预期值。而在如图6(b)所示电压控制型驱动电路中,低电压直接加到V g端,由于电容C两端的电压不能瞬时跃变,充电一开始会产生瞬间的大电流,随着充电的进行,V s电压升高,大电流慢慢地降低直到A安,到达稳定状态。比起电流控制型驱动电路中电流充电电流I ds一直是A安相比,充电时间要小得多。第二:在电流控制型驱动电路中,由于显示的需要,驱动OLED的电流存在由大变到小的过程,设由A安变小到B安,等效电容C将要通过等效晶体管T来放电,当T管导通时,它的放电快,当放电到T管处于亚阈值区时,它的等效电阻比较大,电容通过它放电就慢,而且这一过程一直有B安的电流要通过驱动管流向OLED,这会使放电时间更长,同样可能会在下次扫描此像素时还没放电完,影响OLED的发光亮度。在电压控制型驱动电路中,当V g变小时,此时V s 保持原来高亮度时比较大的电压值,使开始通过驱动管T1流向OLED的电流I ds非常小,但是随着放电过程中V s的减小,流向OLED的电流I ds 会慢慢增大直到B安,到达稳定状态。和电流控制型驱动电路的电流I ds一直都是B安相比,明显对电容C的放电影响要小些,它的放电时间也要短些。

对于上述这些问题,可通过采用其他类型的驱动电路或者增加TFT的数量来解决,如数字驱动电路方案[19],它的TFT仅仅作为模拟开关使用,这减轻了阈值电压不一致带来的影响,同时它的灰度也必须采用数字方法实现,这就能更精确地控制发光强度。也能从其他途径入手,对于TFT的分散性,可采用T FT工艺措施来克服,如晶化采用快速热退火或金属诱导横向结晶,减少阈值电压、载流子迁移率的波动[20];采用硅化工艺减少TFT的串联电阻[21]。对于灰度的控制,可采用空间灰度调制法和时间灰度调制法等等[22]。

5结语

有机电致发光器件必须结合好的驱动技术才能得到很好的发展,随着人们对高清晰、响应快速显示器件的需要,有源驱动电路已经成为显示器件中必不可少的部分。本文分别从电压控制和电流控制的角度分析了几个能很好地补偿阈值电压漂移的四管单元有源驱动电路,重点比较了它们各自的优缺点,能为有源驱动电路的研究做一定的参考。

参考文献:

[1]世界有机电致发光显示(OLED)产业现状及中国的投资机会[EB/OL].https://www.doczj.com/doc/8b11496500.html,.2002.9228.

[2]李文连.有机电致发光显示屏技术[J].液晶与显示,2003,17(4):2592264.

[3]黄锡珉.有源矩阵OLED[J].液晶与显示,2003,18(3):1572160.

[4]尹盛,刘卫忠,刘陈,等.有机电致发光器件的驱动技术[J].液晶与显示,2003,18(2):1062111.

[5]Hatalis M K,Stewart M,T ang C W,et al.Polysilicon TFT active matrix organ i c EL display[A].Proc.SPIE[C].1997,3057:2772

281.

[6]Hattori Reij i,Tsukamizy T,Tsuchi ya R,et al.Current2wri ting acti ve2matrix circuit for organic light2emi tting diode di splay us ing a2Si B H thin2film2

transistors[J].IEICE T rans.Electron.,2000,E832C(5):7792782.

[7]Kumar A,Sakarya K,Servati P,et al.Design considerati ons for active matrix organic light emitting diode arrays[J].IEE Proc.Cir cuit

Devices Syst.,2003,150(4):3222328.

[8]H e Y,Hattori R,Kanicki J.Improved a2Si B H T FT pixel electrode circui ts for active2matrix organic light emitting displays[J].I EEE

Tr ans actions on Electron Devic es,2001,48(7):132221325.

[9]H e Y,Hattori R,Kanicki J.Current2source a2Si B H thin film transistor circuits for active2matri x organic li ght em i tting di splays[J].I EEE

Electr on Device Lett.,2000,21(12):5902592.

[10]Lee J H,Nam W J,Jung S H,et al.A new current scaling pixel circuit for AMOLED[J].I EEE Ele ctron Device Letters,2004,25(5):

2802282.

[11]Goh J C,Chung H J,Jang J,et al.A new pixel circuit for acti ve matrix oranic light em i tting diodes[J].IEEE Electr on Device Letters,

2002,23(9):5442546.

[12]Dawson R,Shen Z,Furest D A,et al.The impact of th e transient response of organic li ght emi tting diodes on the design of active matrix

466液晶与显示第19卷

OL ED displays[A].IEDM Tech.Dig.[C].1998.8752878.

[13]Si Y J,Zhao Y,Chen X F,et al .A si m ple and effective ac pixel driving circuit for active matrix OLED[J ].IEEE T rans actions on

Electron Device s ,2003,50(4):113721140.

[14]Tsukada T.T FT /LCD:liquid 2crystal displays addressed by th i n 2fi lm transistors[J].Japanese Tech nology Reviews,1996,29:67268.[15]Kaneko Y,Sansano A,T sudada T.Characterizati on of instabili ty in amorphous si licon thin 2film transistors [J].J .Appl.Phys.,1991,

69:730127305.

[16]Mohan N,Karim K S,Prakash S,et al .Stability issues in digital circuit i n amorphous silicon technol ogy [A].Proc.Canad ian Conf .

Electr ical Comp ute.E ng [C].2001,5832588.

[17]Goh J C,Jang J,Cho K S,et al.A new a 2Si B H th i n 2fi lm transi stor pixel circuit for active 2matrix organic light 2emitting diodes[J].I EEE

Electron Devic e Letters,2003,24(9):5832585.

[18]张彤,郭小军,赵毅,等.a 2Si TFT OLED 有源驱动阵列参数的优化与布图设计[J].液晶与显示,2003,18(5):3322337.[19]尹盛,程帅,沈亮,等.2英寸全彩色AM 2OLED 显示屏的驱动方案[J].现代显示,2003,37(3):43246.

[20]Havagimian H ,Mehlhaff J .Recent advances in rapid th ermal processing of polysicon TFT LCDs[A].IDRC Conf .Dige.[C].1997,522

56.

[21]Stewart M,Howell R S,Pires L,et al .Polysilicon TFT technology for active matrix OLED displays [J].IEEE T ransactions on Electron

Devices,2001,48(5):8452851.

[22]应根裕,胡文波,邱勇,等.平板显示技术[M].北京:人民邮电出版社,2002.

Analyses of Several Pixel Driving Circuits for AM 2OLED

XIE Qiang 1,LI H ong 2jian 1,2,HUANG Yong 2hui 1,DAI Guo 2zhang 1,PENG Jing 2cui 1

(1.Depar tment of App lied Phys ics,H unan Univers ity ,Changs ha 410082,China;

2.College o f Phys ics Science and Technology ,Central South Univers ity ,Changs ha 410083,China )

Abstract

Based on the two 2TFT pixel driving circuit for AM 2OLED,42TFT driving circuits which include cur 2rent 2programmed and voltage 2programmed were analyzed.Although they could compensate the threshold voltage variations,each of them has its advantages and disadvantages:the former could control the scale of the brightness well,but its disadvantage was slow response;the latter has fast response,but it could not control the scale of the brightness well.

Key words:OLEDs;active matrix;threshold 2voltage 2shift 2compensation

作者简介:谢强(1981-),男,江西人,-湖南大学微电子学与固体电子学专业硕士生,主要从事有机电致发光器件有源驱

动方面的研究。

467

第6期 谢 强,等:几种OLED 有源驱动电路中像素单元电路的分析

电路的基本分析方法

第2章电路的基本分析方法 电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。这些都是求解复杂电路问题的系统化方法。 本章的学习重点: ●求解复杂电路的基本方法:支路电流法; ●为减少方程式数目而寻求的回路电流法和结点电压法; ●叠加定理及戴维南定理的理解和应用。 2.1 支路电流法 1、学习指导 支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。支路电流法适用于支路数目不多的复杂电路。 2、学习检验结果解析 (1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路? 解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。应用支路电流法求解电路时,对于具有m条支路、n个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n-1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m-n+1个,对平面电路图而言,其网孔数即等于独立回路数。 2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支

并联均流电路的几种最常见分析方法

并联均流电路的几种最常见分析方法 先说说为什么需要均流输出阻抗法先来说一下第一种均流方法,输出阻抗法,droop法:3、主从设置法平均电流法平均电流法:平均电流法首先要得到一个平均电流,也就是总负载电流除以模块总数得到的电流值,各模块电流与该平均电流比较,如果模块电流大于平均电流就调低模块输出电压,反之调高模块输出电压,从而实现各模块输出电流一致。在平均电流法中,将所有模块的输出电流,通过一个峰值电流法峰值电流法就是在所有并联模块中,模块自动选举产生一位主模块,其余所有模块电流向该模块靠拢,企图达到主模块的电流(但永远却达不到) 平均电流均流法中,连接到均流母线的电阻换成二极管,就变成了峰值电流均流法,电路图如上图所示,假设有N个模块并联,模块输出电流对应的电压分别为V1\V2….Vn,很明显从上图可以看到,均流母线上体现的将是模块输出电流最大的模块的电压Vx(有一个二极管压降,即使将平均电流均流法中的四个电阻换成四个二极管,很明显A点电压将是最高电压减去一个二极管压降了)。这个模块我们称之为主模块,从上面电路图上可以看出,电路会调整所有模块输出电流向主模块对应的电流靠近,但由于均流母线电压与主模块电流对应的电压相差一个二极管压降,所以从模块输出电流永远是紧跟主模块,但超不过主模块。 与主从设置法比较,这种均流方式里面的主模块,是由并联模块自己选就产生的,所以这种均流方式,也称为民主均流模式。当主模块故障的时候,在其余模块里会再次选举产生一个模块作为主模块。系统仍可以正常工作。 下图为曾经采用过的一种峰值电流均流模式的具体电路。工作原理基本与3902类似,采用2.5V基准提供一个偏置电压,拉开主模块与从模块之间的差距,-2.5V的电平是为了让模块单独工作是,均流电路输出高电平,这样结合后面二极管,均流电路就不起作用了。 需要说明的是,由于偏置是2.5V提供的,所以在额定输出电流下,电流检测放大电路的

第2章电路的基本分析方法

第2章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Q,当他们并联起来的总电阻为 2.4 Q 这两个电阻的阻值分别为_4Q _和__6Q — 2. 下图所示的电路,A B之间的等效电阻R= 1Q 电路的等效电阻R A B=60Q R CD 5. _______________________________________________________ 下图所示电 路中的A B两点间的等效电阻为12KQ _______________________________ 图中所示 的电流l=6mA则流经6K电阻的电流为2mA ;图中所示方向的电压U为12V 此 6K电阻消耗的功率为24mW 。 4. 3.下图所示的电路, 下图所示电路,每个电阻的阻值均为30 Q, B o B之间的等效电阻R A E=3Q O 6Q 3Q 2Q 2 Q 2 Q 2Q

鼻s Ik 10k皐 A Q T 1 L__JI 1_ () --------------------- 10kQ知 ]6k j L + B O ------ o

6. 下图所示电路中,ab 两端的等效电阻为12Q , cd 两端的等效电阻为4 Q 8.下图所示电路中,ab 两点间的电压U ab 为io V 。 + iov a 24V 已知U F 3V, I S = 3 A 时,支路电流I 才等于2A 。 10. 某二端网络为理想电压源和理想电流源并联电路, 则其等效电路为 理想电压 源。 11. 已知一个有源二端网络的 开路电压为20V,其短路电流为5A,则该有源二端 网络外接4 Q 电阻时,负载得到的功率最大, 最大功率为 25W 12. 应用叠加定理分析线性电路时, 对暂不起作用的电源的处理,电流源应看作 开路,电压 7?下图所示电路a 、 6 Q a i — 5 Li b 间的等效电阻Rab 为4" 9.下图所示电路中, d 15 Q b Hi BO

第一章 直流电路及其分析方法

《电工与电子技术基础》自测题 第1章直流电路及其分析方法 判断题 1.1 电路的基本概念 1.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 2.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 3.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相同。 答案:X 4.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相反。 答案:V 5.电路中各物理量的正方向都可以任意选取。 [ ] 答案:V 6.某电路图中,已知电压U=-30V,则说明图中电压实际方向与所标电压方向相反。 答案:V 7.组成电路的最基本部件是:电源、负载和中间环节 [ ] 答案:V 8.电源就是将其它形式的能量转换成电能的装置。 [ ] 答案:V 9.如果电流的大小和方向均不随时间变化,就称为直流。 [ ] 答案:V 10.电场力是使正电荷从高电位移向低电位。 [ ] 答案:V 11.电场力是使正电荷从低电位移向高电位。 [ ] 答案:X 1.2 电路基础知识 1.所求电路中的电流(或电压)为+。说明元件的电流(或电压)的实际方向与参考方向一致;若为-,则实际方向与参考方向相反。[ ] 答案:V 2.阻值不同的几个电阻相并联,阻值小的电阻消耗功率小。[ ] 答案:X

答案:X 4.电路就是电流通过的路径。 [ ] 答案:V 5.电路中选取各物理量的正方向,应尽量选择它的实际方向。 [ ] 答案:V 6.电路中电流的实际方向总是和任意选取的正方向相同。 [ ] 答案:X 7.电阻是用来表示电流通过导体时所受到阻碍作用大小的物理量。[ ] 答案:V 8.导体的电阻不仅与其材料有关,还与其尺寸有关。 [ ] 答案:V 9.导体的电阻只与其材料有关,而与其尺寸无关。 [ ] 答案:X 10.导体的电阻与其材料无关,而只与其尺寸有关。 [ ] 答案:X 11.电阻中电流I的大小与加在电阻两端的电压U成正比,与其电阻值成反比。[ ] 答案:V 12.电阻中电流I的大小与加在电阻两端的电压U成反比,与其电阻值成正比。[ ] 答案:X 13.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较差的外特性。 [ ]答案:X 14.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较好的外特性。 [ ]答案:V 15.欧姆定律是分析计算简单电路的基本定律。 [ ] 答案:V 16.平时我们常说负载增大,其含义是指电路取用的功率增大。 [ ] 答案:V 17.平时我们常说负载减小,其含义是指电路取用的功率减小。 [ ] 答案:V 18.平时我们常说负载增大,其含义是指电路取用的功率减小。 [ ] 答案:X 19.平时我们常说负载减小,其含义是指电路取用的功率增大。 [ ] 答案:X 20.在串联电路中,电阻越大,分得的电压越大。 [ ] 答案:V 21.在串联电路中,电阻越小,分得的电压越大。 [ ] 答案:X 22.在串联电路中,电阻越大,分得的电压越小。 [ ] 答案:X 23.在串联电路中,电阻越小,分得的电压越小。 [ ] 答案:V 24.在并联电路中,电阻越小,通过的电流越大。 [ ] 答案:V 25.在并联电路中,电阻越大,通过的电流越大。 [ ]

【转帖】分析电路的四大常用方法

电子电路图用来表示实际电子电路的组成、结构、元器件标称值等信息。通过电路图可以知道实际电路的情况。这样我们在分析电路时,就不必把实物翻来覆去地琢磨,而只要拿着一张图纸就可以了。在设计电路时,也可以从容地纸上或电脑上进行,确认完善后再进行实际安装,通过调试、改进,直至成功。我们更可以应用先进的计算机软件来进行电路的辅助设计,甚至进行虚拟的电路实验,大大提高工作效率。 给大家总结了四大常用的分析电路的方法,以及每种方法适合的电路类型和分析步骤。 1、时间常数分析法 时间常数分析法主要用来分析R,L,C和半导体二极管组成电路的性质,时间常数是反映储能元件上能量积累快慢的一个参数,如果时间常数不同,尽管电路的形式及接法相似,但在电路中所起的作用是不同的。常见的有耦合电路,微分电路,积分电路,钳位电路和峰值检波电路等。 2、频率特性分析法 频率特性分析法主要用来分析电路本身具有的频率是否与它所处理信号的频率相适应。分析中应简单计算一下它的中心频率,上下限频率和频带宽度等。通过这种分析可知电路的性质,如滤波,陷波,谐振,选频电路等。 3、直流等效电路分析法 在分析电路原理时,要搞清楚电路中的直流通路和交流通路。直流通路是指在没有输入信号时,各半导体三极管、集成电路的静态偏置,也就是它们的静态工作点。交流电路是指交流信号传送的途径,即交流信号的来龙去脉。

在实际电路中,交流电路与直流电路共存于同一电路中,它们既相互联系,又互相区别。 直流等效分析法,就是对被分析的电路的直流系统进行单独分析的一种方法,在进行直流等效分析时,完全不考虑电路对输入交流信号的处理功能,只考虑由电源直流电压直接引起的静态直流电流、电压以及它们之间的相互关系。 直流等效分析时,首先应绘出直流等效电路图。绘制直流等效电路图时应遵循以下原则:电容器一律按开路处理,能忽略直流电阻的电感器应视为短路,不能忽略电阻成分的电感器可等效为电阻。取降压退耦后的电压作为等效电路的供电电压;把反偏状态的半导体二极管视为开路。 4、交流等效电路分析法 交流等效电路分析法,就是把电路中的交流系统从电路分分离出来,进行单独分析的一种方法。 交流等效分析时,首先应绘出交流等效电路图。绘制交流等效电路图应遵循以下原则:把电源视为短路,把交流旁路的电容器一律看面短路把隔直耦合器一律看成短路。

电路的几种分析方法

几种常见电路分析方法浅析 摘要:对电路进行分析的方法很多,如叠加定理、支路分析法、网孔分析法、结点分析法、戴维南和诺顿定理等。根据具体电路及相关条件灵活运用这些方法,对基本电路的分析有重要的意义。现就具体电路采用不同方法进行如下比较。 关键词:电路分析电流源支路电流法网孔电流法结点分析法叠加定理戴维宁定理与诺顿定理 Several Commonly Used Analytical Methods in Circuit Abstract: on the circuit analysis methods, such as superposition theorem, branch analysis method, mesh analysis method, nodal analysis method, Thevenin and Norton's theorem. According to the specific circuit and related conditions of flexibility in the use of these methods, the basic circuit analysis has important significance. The specific circuit using different methods are compared. Key words :Circuit Analysis of voltage source current source branch current method mesh current method nodal analysis method of superposition theorem and David theorem and Norton theorem in Nanjing. 引言:每种电路的分析方法,一般都有其适用范围。应用霍夫定律求解适用于求多支路的电流,但电路不能太复杂;电源法等效变换法适用于电源较多的电路;节点电位法适用于支路多、节点少的电路;网孔分析法使适用于支路多、节点多、但网孔少的电路;戴维宁定理和叠加定理适用于求某一支路的电流或某段电路两端电压。上面例题的电路比较简单,可选择任意一种方法求解,对于一些比较复杂但有一

第二章电路的基本分析方法1

第二章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Ω,当他们并联起来的总电阻为 2.4Ω。这两个电阻的阻值分别为_ _4Ω___和__6Ω。 2. 下图所示的电路,A、B之间的等效电阻R AB= 1 Ω。 3. 下图所示的电路,A、B之间的等效电阻R AB= 3 Ω。 A 2Ω B 4. 下图所示电路,每个电阻的阻值均为30Ω,电路的等效电阻R AB= 60 Ω。 5. 下图所示电路中的A、B两点间的等效电阻为___12KΩ________.若图中所示的电流I=6mA,则流经6K电阻的电流为__2mA _____;图中所示方向的电压U 为____12V____.此6K电阻消耗的功率为__24mW_________。

U A 6. 下图所示电路中,ab 两端的等效电阻为 12Ω ,cd 两端的等效电阻为 4Ω 。 7.下图所示电路a 、b 间的等效电阻Rab 为 4 。 8. 下图所示电路中,ab 两点间的电压 ab U 为 10 V 。 9. 下图所示电路中,已知 U S =3V , I S = 3 A 时,支路电流I 才等于2A 。

3 Ω 1 10. 某二端网络为理想电压源和理想电流源并联电路,则其等效电路为理想电压源。 11.已知一个有源二端网络的开路电压为20V,其短路电流为5A,则该有源二端网络外接 4 Ω电阻时,负载得到的功率最大,最大功率为25W 。 12.应用叠加定理分析线性电路时,对暂不起作用的电源的处理,电流源应看作开路,电压源应看作短路。 13.用叠加定理分析下图电路时,当电流源单独作用时的I1= 1A ,当电压源单独作用时的I1= 1A ,当电压源、电流源共同时的I1= 。 2A 14.下图所示的电路中,(a)图中Uab与I的关系表达式为Uab= 3I ,(b) 图中Uab与I的关系表达式为Uab=3I+10 ,(c) 图中Uab与I的关系表达式为Uab=6(I+2)-10 ,(d)图中Uab与I的关系表达式为Uab=6(I+2)-10 。

交流电路参数的测定三表法的实验原理(精)

交流电路参数的测定三表法的实验原理 交流电路参数的测定三表法的实验原理 类别:电子综合 1.交流电路元件的等值参数R,L,C可以用交流电桥直接测得,也可以用交流电压表、交流电流表和功率表分别测量出元件两端的电压U、流过该元件的电流I和它消耗的功率P,然后通过计算得到。后一种方法称为“三表法”。“三表法”是用来测量50Hz频率交流电路参数的基本方法。 如被测元件是一个电感线圈,则由关系可得其等值参数为同理,如被测元件是一个电容器,可得其等值参数为2.阻抗性质的判别方法。如果被测的不是一个元件,而是一个无源一端口网络,虽然从U,I,P三个量,可得到该网络的等值参数为R=|Z|cos,X=|Z|sin,但不能从X的值判断它是等值容抗,还是等值感抗,或者说无法知道阻抗幅角的正负。为此,可采用以下方法进行判断。(1)在被测无源网络端口(入口处)并联一个适当容量的小电容。在一端口网络的端口再并联一个小电容C时,若小电容C=Zsinr,a,视其总电流的增减来判断。若总电流增加,则为容性;若总电流减小,贝刂为感性。图1(a)中,Z为待测无源网络的阻抗,C为并联的小电容。图1(b)是图1(a)的等效电路,图中G,B为待测无源网络的阻抗Z的电导和电纳,B为并联小电容C的电纳。在端电压有效值不变的条件下,按下面两种情况进行分析:①设B+B=B",若B增大,B"也增大,则电路中电流I单调地增大,故可判断B为容性。②设B+B=B",若B增大,而B"先减小再增大,则电流I也是先减小再增大,如图2所示,则可判断B为感性。由以上分析可见,当B为容性时,对并联小电容的值C无特殊要求;而当B为感性时,B<|2B|才有判定为感性的意义。B>|2B|时,电流单调增大,与B为容性时相同,但并不能说明电路是感性的。因此,B<|2B|是判断电路性质的可靠条件。由此可得定条件为 图1 阻抗与导纳变换示意图图2 负载并联电容后电流变化示意图(2)在被测无源网络的入口串联一个适当容量的电容C。若被测网络的端电压下降,则判为容性电路;反之,若端电压上升,则判为感性电路。判定条件为,式中X为被测网络的电抗,C为串联电容的值。(3)用“三压法”测Φ,进行判断。在原一端口网络入口处串联一个电阻r,如图3(a)所示,向量如图3(b)所示,由图可得r,Z串联后的阻抗角Φ为测得U,Ur,Uz,即可求得Φ

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

(整理)基本放大电路的分析方法.

3.2 基本放大电路的分析方法 3.2.1 放大电路的静态分析 放大电路的静态分析有计算法和图解分析法两种。 (1)静态工作状态的计算分析法 根据直流通路可对放大电路的静态进行计算 (03.08) I = I B (03.09) C V =V CC-I C R c (03.10) CE I 、I C和V CE这些量代表的工作状态称为静态工作点,用Q表示。 B 在测试基本放大电路时,往往测量三个电极对地的电位V B、V E和V C即可确定三极管的工作状态。 (2)静态工作状态的图解分析法 放大电路静态工作状态的图解分析如图03.08所示。 图03.08 放大电路静态工作状态的图解分析 直流负载线的确定方法:

1. 由直流负载列出方程式V CE=V CC-I C R c 2. 在输出特性曲线X轴及Y轴上确定两个特殊点 V CC和V CC/R c,即可画出直流负载线。 3. 在输入回路列方程式V BE =V CC-I B R b 4. 在输入特性曲线上,作出输入负载线,两线的交点即是Q。 5. 得到Q点的参数I BQ、I CQ和V CEQ。 例3.1:测量三极管三个电极对地电位如图03.09所示,试判断三极管的工作状态。 图03.09 三极管工作状态判断 例3.2:用数字电压表测得V B=4.5V 、V E=3.8V 、V C =8V,试判断三极管的工作状态。 电路如图03.10所示 图03.10 例3.2电路图 3.2.2 放大电路的动态图解分析 (1) 交流负载线 交流负载线确定方法:

1.通过输出特性曲线上的Q点做一条直线,其斜率为1/R L'。 2.R L'= R L∥R c,是交流负载电阻。 3.交流负载线是有交流输入信号时,工作点Q的运动轨迹。 4.交流负载线与直流负载线相交,通过Q点。 图03.11 放大电路的动态工作状态的图解分析 (2) 交流工作状态的图解分析 动画 图03.12 放大电路的动态图解分析(动画3-1)通过图03.12所示动态图解分析,可得出如下结论: 1. v i→↑ v BE→↑ i B→↑ i C→↑ v CE→↓ |-v o|↑; 2. v o与v i相位相反; 3.可以测量出放大电路的电压放大倍数; 4.可以确定最大不失真输出幅度。 (3) 最大不失真输出幅度 ①波形的失真

电路一般分析方法步骤汇总

线性电路主要分析方法步骤汇总 网孔电流法的一般步骤 步骤: 1)确定网孔,假定网孔电流的绕行方向; 2)列写KVL方程; 3)联立求解。 说明: 1)对于含有电流源的支路: a)若在单一网孔支路上,少列一个方程; b)若在两网孔公共支路上,要假定电压变量,多列一个方程,即:网孔电流与电流源电流关系的方程; 2)对于含有受控源的支路: a)列方程时,受控源视为独立源; b)如果控制量不是网孔电流,则要补充一个方程,即:网孔电流与控制量之间关系的方程。 结点电压法的一般步骤 步骤: 1)选参考结点; 2)列写独立结点电压方程; 3)联立求解。 说明: 1)对于含有纯电压源的支路: a)如果电压源接在独立结点和参考点之间,这个独立结点电压就等于电压源电压,可以少解一个方程; b)如果电压源接在两个独立结点之间,则要在电压源支路假定电流变量,多列一个方程,即:结点电压与电压源电压之间的关系方程; 2)对于含有受控源的支路: a)列方程时,受控源视为独立源; b)如果控制量不是结点电压,则要补充一个方程,即:结点电压与控制量之间的关系方程。

一端口网络的戴维宁等效电路 (1) 开路电压Uoc 的计算 戴维宁等效电路中的电压源电压即为一端口开路电压Uoc ,电压源的极性与所求开路电压极性相同。计算Uoc 的方法视电路形式而定(结点电压法、网孔电流法)。 (2)等效电阻的计算 等效电阻为将一端口网络内部独立电源全部置零(电压源短路,电流源开路)后,所得无源一端口网络的输入电阻。 常用下列方法计算: A 、当网络内部不含有受控源时可采用电阻串、并联和△-Y 互换的方法计算等效电阻; B 、外加电源法(加压求流或加流求压):eq u R i =(此时一端 口内部独立电源全部置零) C 、开路电压,短路电流法:oc eq sc u R i =(此时一端口内部独立电源全部保留) 一阶电路初始值的计算 如何判断一阶电路?电路含有一个独立的动态元件;有带开 关的直流激励、或已知初始储能和直流激励、或有阶跃函数激励。 求初始值的步骤: 1. 由换路前电路(一般为稳定状态)求u C (0-)和i L (0-); 2. 由换路定律得 u C (0+) 和 i L (0+); 3. 画0+等效电路。 在0+时刻等效电路中,电容用u C (0+)的电压源替代,电感用i L (0+)的电流源替代。 4. 由0+电路求所需各变量的值即为0+值 三要素法求解一阶电路的步骤 1、求响应量的初始值; 2、求响应量的稳态值; 画出t →∞时稳态电路,其中电容和电感分别用开路和短路置

十种复杂电路分析方法

电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。对较复 杂的电路应先将原电路简化为等效电路,以便分析和计算。识别电路的方法很多,现结合具体实例介绍十种方法。 一、特征识别法 串并联电路的特征是;串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分别是等电势,两端之间等电压。根据串并联电路的特征识别电路是简化电路的一种最基本的方法。 例1 .试画出图1所示的等效电路。 阳b-oB Bo, 解:设电流由A端流入,在a点分叉,b点汇合,由B端流出。支路a—R1— b和a—R2 —R3(R4)—b各点电势逐次降低,两条支路的a、b两点之间电压相等,故知R3和R4并 联后与R2串联,再与R1并联,等效电路如图2所示。 二、伸缩翻转法在实验室接电路时常常可以这样操作,无阻导线可以延长或缩短,也可以翻过来转过去, 或将一支路翻到别处,翻转时支路的两端保持不动;导线也可以从其所在节点上沿其它导线滑动,但不能越过元件。这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。 例2 .画出图3的等效电路。

支路外边去,如图4。 再把连接a 、C 节点的导线缩成一点,把连接 b 、d 节点的导线也缩成一点,并把 R5连到 节点d 的导线伸长线上(图5)。由此可看出R2 R3与R4并联,再与R1和R5串联,接到 电源上。 三、电流走向法 电流是分析电路的核心。从电源正极出发 (无源电路可假设电流由一端流入另一端流出 ) 顺着电流的走向,经各电阻绕外电路巡行一周至电源的负极,凡是电流无分叉地依次流 过的电阻均为串联,凡是电流有分叉地分别流过的电阻均为并联。 例3 .试画出图6所示的等效电路。 口3 r-n-,囲 「Eb 尸「 A * -- a- ■D A D --- 1'— || — 圏6 图T 解:电流从电源正极流出过 A 点分为三路(AB 导线可缩为一点),经外电路巡行一周,由 D 点流入电源负极。第一路经 R1直达D 点,第二路经R2到达C 点,第三路经R3也到达 C 点,显然R2和R3接联在AC 两点之间为并联。二、三络电流同汇于c 点经R4到达D 点, 可知R2、R3并联后与R4串联,再与R1并联,如图7所示。 解:先将连接a 、c 节点的导线缩短, 并把连接 b 、 d 节点的导线伸长翻转到 R3- C — R4 圈3 bCd) Ra

三相交流电路电压、电流的分析与测量(含数据处理)

三相交流电路电压、电流的分析与测量 一、实验目的 1.掌握三相负载作星形联接、三角形联接的方法,验证这两种接法时线、相电压及线、相电流之间的关系。 2.充分理解三相四线供电系统中中线的作用。 二、原理说明 1.三相负载可接成星形(又称“Y”接)或三角形(又称"△"接),当三相对称负载作Y 形联接时,线电压U l是相电压U p 的倍。线电流I l等于相电流I p,即 U l=p I l=I p 当采用三相四线制接法时,,流过中线的电流I0=0,所以可以省去中线。 当对称三相负载作△形联接时,有 I1U1=Up 2.不对称三相负载作Y联接时,必须采用三相四线制接法,即Y0接法。而且中线必须牢固联接,以保证三相不对称负载的每相电压维持对称不变。 倘若中线断开,会导致三相负载电压的不对称,致使负载轻的那一相的相电压过高,使负载遭受损坏;负载重的一相相电压又过低,使负载不能正常工作。尤其是对于三相照明负载,无条件地一律采用Y0接法。 3.当不对称负载作△接时,Il≠,但只要电源的线电压Ul 对称,加在三相负载上的电压仍是对称的,对各相负载工作没有影响。 四、实验内容 1.三相负载星形联接(三相四线制供电) 按图6-3-3-1 线路组接实验电路。即三相灯组负载经三相自耦调压器接通三相对称电源,将三相调压器的旋柄置于三相电压输出为0V的位置,经指导教师检查后。方可合上三相电源开关,然后调节调压器的输出,使输出的三相线电压为220V,按表6-3-3-1数据表格所列各项要求分别测量三相负载的线电压、相电压、线电流(相电流)、中线电流、电源与负载

中点的电压,记录之。并观察各相灯组亮暗的变化程度,特别要注意观察中线的作用。 图6-3-3-1 三相负载星形联接的实验线路 2.负载三角形联接(三相三线制供电) 按图6-3-3-2改接线路,经指导教师检查合格后接通三相电源,调节调压器,使其输出线电压为220V,并按表6-3-3-2数据表格要求进行测试 5.用实验数据和观察到的现象,总结三相四线供电系统中中线的作用。 答:当三相负载不对称时,中线提供各相电流的回路。 6.不对称三角形联接的负载,能否正常工作?实验是否能证明这一点? 答:对于不对称负载作△接时,Il≠Ip,但只要电源的线电压Vl对称,加三相负载上的电压仍是对称的,对各相负载工作没有影响 7.根据不对称负载三角形联接时的相电流值作相量图,并求出线电流值,然后与实验测得的线电流作比较,分析之。

电路及其分析方法教学教案

第1章电路及其分析方法 电路的基本概念与基本定律 一、学时:10 学时 二、目的和要求: 1.掌握电路的基本概念与基本定律; 2.理解电压、电流参考方向的意义; 3.了解电路的有载工作、开路与短路状态并能理解电功率和额定值的意义; 三、重点: 1.电压、电流的参考方向; 2.基尔霍夫定律; 四、难点: 基本概念的理解。 五、教学方式:多媒体或胶片投影或传统方法 六、习题安排: 七、教学内容: 1.1 电路模型 1、电路的作用与组成部分(举例:如日光灯电路) (1)电路的作用 ①电能的传输与转换,如电力系统。 ②传递和处理信号,如扩音机。 (2)电路的组成部分 ①电源:是供应电能的设备。如发电厂、电池等。 ②负载:是取用电能的设备。如电灯、电机等 ③中间环节:是连接电源和负载的部分,起传输和分配电能的作用。如变压器、输电线等。 2、电路的模型 由理想化电路元件组成的电路即是实际电路的电路模型,如下图所示,3、电路的基本元件

(1)元件分类 按不同原则可将元件分成以下几类: A、线性元件与非线性元件 B、有源元件与无源元件 C、二端元件与多端元件 D、静态元件与动态元件 E、集中参数元件与分布参数元件 (2)元件符号 表1-1常用理想元件及符号 (3)电阻元件 电阻元件按其电压电流的关系曲线(又称伏安特性曲线)是否是过原点的直线而分为线性电阻元件(如上图a)和非线性电阻元件(如上图b)。按其特性是否随时间变化又可分为时变电阻元件和非时变电阻元件。本节重点介绍线性非时变电阻元件。 线性电阻元件是一个二端元件,其端电压u(t)和端电流i(t)取关联参考方向时,满足欧姆定律: u(t)=R i(t) i(t)=G u(t) 式中:R为线性电阻元件的电阻,G为线性电阻元件的电导,二者均为常量,其数值由元件本身决定,与其端电压和端电流无关。且 电阻的单位:欧姆(Ω);电导的单位:西门子(S)。 线性电阻的电阻值R就是线性电阻伏安特性中那条过原点的直线的斜率。当电阻值R=0时,伏安特性曲线与i轴重合,如下图所示。 此时不论电流i为何值,端电压u总为零,称其为“短路”。 当电阻值R=∞时,其伏安特性曲线与u轴重合如下图所示。 R=0时,不论端电压u为何值,电流i总为零,称其为“开路”或“断路”。电阻功率 在电阻元件取关联参考方向的情况下,电阻吸收的功率为 如电阻元件取非关联参考方向,电阻吸收的功率为 由以上两式知,无论电阻元件采用何种参考方向,任何时刻电阻吸收的功率都不可能为负值,也就是说电阻元件为耗能元件。

十种复杂电路分析方法

十种复杂电路分析方法 Jenny was compiled in January 2021

电路问题计算的先决条件是正确识别电路,搞清楚各部分之间的连接关系。对较复杂的电路应先将原电路简化为等效电路,以便分析和计算。识别电路的方法很多,现结合具体实 一、特征识别法 串并联电路的特征是;串联电路中电流不分叉,各点电势逐次降低,并联电路中电流分叉,各支路两端分别是等电势,两端之间等电压。根据串并联电路的特征识别电路是简化电路的一种最基本的方法。 例1.试画出图1所示的等效电路。 解:设电流由A端流入,在a点分叉,b点汇合,由B端流出。支路a—R1—b和a—R2—R3(R4)—b各点电势逐次降低,两条支路的a、b两点之间电压相等,故知R3和R4并联后与R2串联,再与R1并联,等效电路如图2所示。 二、伸缩翻转法 在实验室接电路时常常可以这样操作,无阻导线可以延长或缩短,也可以翻过来转过去,或将一支路翻到别处,翻转时支路的两端保持不动;导线也可以从其所在节点上沿其它导线滑动,但不能越过元件。这样就提供了简化电路的一种方法,我们把这种方法称为伸缩翻转法。 例2.画出图3的等效电路。 解:先将连接a、c节点的导线缩短,并把连接b、d节点的导线伸长翻转到R3—C—R4支路外边去,如图4。

再把连接a、C节点的导线缩成一点,把连接b、d节点的导线也缩成一点,并把R5连到节点d的导线伸长线上(图5)。由此可看出R2、R3与R4并联,再与R1和R5串联,接到电源上。 三、电流走向法 电流是分析电路的核心。从电源正极出发(无源电路可假设电流由一端流入另一端流出)顺着电流的走向,经各电阻绕外电路巡行一周至电源的负极,凡是电流无分叉地依次流过的电阻均为串联,凡是电流有分叉地分别流过的电阻均为并联。 例3.试画出图6所示的等效电路。 解:电流从电源正极流出过A点分为三路(AB导线可缩为一点),经外电路巡行一周,由D 点流入电源负极。第一路经R1直达D点,第二路经R2到达C点,第三路经R3也到达C 点,显然R2和R3接联在AC两点之间为并联。二、三络电流同汇于c点经R4到达D点,可知R2、R3并联后与R4串联,再与R1并联,如图7所示。 四、等电势法(不讲) 在较复杂的电路中往往能找到电势相等的点,把所有电势相等的点归结为一点,或画在一条线段上。当两等势点之间有非电源元件时,可将之去掉不考虑;当某条支路既无电源又无电流时,可取消这一支路。我们将这种简比电路的方法称为等电势法。 例4.如图8所示,已知R1=R2=R3=R4=2Ω,求A、B两点间的总电阻。 解:设想把A、B两点分别接到电源的正负极上进行分析,A、D两点电势相等,B、C两点电势也相等,分别画成两条线段。电阻R1接在A、C两点,也即接在A、B两点;R2接在

从一个电路的多种解法探讨电路的分析方法

摘要:电路是物理教学中的重要内容,其中涉及到大量的物理专业知识,是对自然界中电力学知识点的探究与学习。在同一个电路之中,电路分析思维、角度的不同,会产生多种不同的解法。通过对线性电阻电力运行情况的基本分析,了解到多种解法的分析都存在着联系,每个思维方式与动态、稳定的电路系统都是相互适用的。为此,本文就从一个电路的多种解法谈电路的分析方法进行了分析与探究。 关键词:电路;多种解法;计算 在线性电阻电路系统之中,元件的相关参数、电路系统结构等是重要前提,在此状态下进行激励,定会产生一定的影响,是当前电路分析的重要突破口。通常意义上,电路分析的方法主要包括支路电流法、等效变换法、叠加原理、网孔电流法、节点电压法、戴维南定理、诺顿定理七种,在本文中挑选了其中五种进行分析[1]。在电力学领域都得到了广泛的应用。在学习这些电路分析法时,由于思维抽象,电路相关参数计算复杂,成为学生学习的重要阻力。因此,以下就这些方法进行具体的分析。 如图1所示,此为线性电路,其中各部分元件所对应的参数已知,对1ω电阻上所存在的电流参数进行求解。在图1中,设置了足够的电流源与电压源,虽然从表面上看难度不大,但是这是无法利用欧姆定律来进行求解的,该电路相对复杂,可选择很多方式进行求解。 1、支路电流法 支路电流法是将支路电流作为未知量而展开的电路分析,对电路系统中电压与电流的关系予以了解,还要对电路系统中回路的kvl与支点部分的kcl约束关系进行控制。此外,还应设立方程组,可对各个支路部分的电流进行合理的计算。如图1所示,若电压为12v的电压源与电阻值为2ω的电阻进行串联,电流的参考方向为i1,在那两个节点处列出kcl方程:i1+3=i,与此同时,在左边应列kvl方程:2i1+1i-12=0[2]。将列出的这两个方程进行联立,最终求解出电流值为i=6a。在使用支路电流法时,必须及时掌握网孔、节点与支路的个数,保证支路的数量与支路电流参数个数的一致性,若节点为n个,kcl方程的数量为n-1,若网孔的数量为m,kvl方程的数量就为m个。通过此方式所罗列出的方程数量与未知量的数量一致,最终将结果求解出来即可。若在求解的过程中,遇到该电路中存在一定的电流源,也就确定了某支路的电流,在列kvl方程时必须要将电流源的回路进行避开处理,运用此方式保证未知量的数量不会增加,计算更为简便。 2、等效交换法 对于所有实际存在的电源而言,其可使用内阻理想电压源串联与并联的模型进行表示。由此可见,若同属一个电路,实际电流与电压源能实现等效交换,一个电流源和电阻的并联与一个电压源和一个电阻的串联是相互等效存在的[3]。将图1中电压为12v的电压源与电阻值为2ω的电阻串联,与方向向上的6a电流源和电阻值为2ω的电阻的并联进行等效,等效连接如图2所示。其次,应将两个并联在一起的电流源进行合并处理,合并后电流方向为向上,电流值为9a,如图3所示。对图3进行分析,以计算出电流值 i=9×2/(2+1)=6a。为了保证电流值的有效计算,应及时画好等效图,在电压源和电流源变换的前后处,应注意电路模型在参考方向上的设置,应始终保持相反的状态。 3、叠加原理 叠加原理是指在线性电路中,在同一电路中存在多个电源,这些电源会作用在电压或电流之上,运用此方式也等同于电源分别单独作用在该支路上所产生的电压或电流的代数和[4]。若12v的电压源单独运行时,进而产生等效图4,i′=12/(2+1)=4a;若3a电流源进行单独运行时,会产生等效图5,i"=3×2/(2+1)=2a。最终,将这两个进行叠加,i=i'+i"=4a+2a=6a。不过,此方法仅仅能用来计算现行电路中所产生的电流与电压,无法对功率进行计算。叠加操作时,要对电压与电流的参考方向进行确定,并最终求出代数和。若电流或电压的参考方

电路的基本分析方法

第2章电路的基本分析方法 学习要点 掌握支路电流法、节点电压法、叠加定理、等效电源定理等常用的电路分析方法,重点是叠加定理和戴维南定理 理解电路等效的概念,掌握用电路等效概念分析计算电路的方法 了解受控源的概念以及含受控源电阻电路的分析计算 了解非线性电阻电路的图解分析方法,理解静态电阻和动态电阻的意义 电路的基本分析方法 2.1 简单电阻电路分析 2.2 复杂电阻电路分析 2.3 电压源与电流源的等效变换 2.4 电路定理 2.5 含受源电阻电路的分析 2.6 非线性电阻电路的分析 2.1 简单电阻电路分析 电阻电路:只含电源和电阻的电路 简单电阻电路:可以利用电阻串、并联方法进行分析的电路。应用这种方法对电路进行分析时,一般先利用电阻串、并联公式求出该电路的总电阻,然后根据欧姆定律求出总电流,最后利用分压公式或分流公式计算出各个电阻的电压或电流。 2.1.1 电阻的串联 n 个电阻串联可等效为一个电阻 12n R R R R =++Λ+ 分压公式 k k k R U R I U R == 两个电阻串联时 1112R U U R R = + 2 212 R U U R R =+ R +U 1- + U 2 -+U n -+U 1-+U 2-

2.1.2 电阻的并联 n 个电阻并联可等效为一个电阻 121111 n R R R R =++Λ+ 分流公式 k k k U R I I R R = = 两个电阻并联时 2 112R I I R R = + 1 212 R I I R R = + 2.2 复杂电阻电路分析 复杂电路电阻:不能利用电阻串并联方法化简,然后应用欧姆定律进行分析的电路。解决复杂电路的方法:一种是根据电路待求的未知量,直接应用基尔霍夫定律列出足够的独立方程式,然后联立求解出各未知量;另一种是应用等效变换的概念,将电路化简或进行等效变换后,再通过欧姆定律、基尔霍夫定律或分压、分流公式求解出结果。 2.2.1 支路电流法 支路电流法是以支路电流为未知量,直接应用KCL 和KVL ,分别对节点和回路列出所需的方程式,然后联立求解出各未知电流。 一个具有b 条支路、n 个节点的电路,根据KCL 可列出(n -1)个独立的节点电流方程式,根据KVL 可列出b -(n -1)个独立的回路电压方程式。 图示电路 (1) 支路数b=3,支路电流有1I 、2I 、3I 三个。 I n n R U U S2

电工技术第二章 电路的分析方法习题解答

第二章电路的分析方法 本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。 1.线性电路的基本分析方法 包括支路电流法和结点电压法等。 (1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。适用于支路较少的电路计算。 (2)结点电压法:在电路中任选一个结点作参考结点,其它结点与参考结点之间的电压称为结点电压。以结点电压作为未知量,列写结点电压的方程,求解结点电压,然后用欧姆定理求出支路电流。本章只讨论电路中仅有两个结点的情况,此时的结点电压法称为弥尔曼定理。 2 .线性电路的基本定理 包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。 (1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。 ①“除源”方法 (a)电压源不作用:电压源短路即可。 (b)电流源不作用:电流源开路即可。 ②叠加定理只适用于电压、电流的叠加,对功率不满足。 (2)等效电源定理 包括戴维宁定理和诺顿定理。它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。在分析复杂电路某一支路时有重要意义。 ①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 ②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 3 .含受控源电路的分析 对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。 4.非线性电阻电路分析

相关主题
文本预览
相关文档 最新文档