当前位置:文档之家› Micro-dimpled surface by ultrasonic nanocrystal surface modi_cation and its

Micro-dimpled surface by ultrasonic nanocrystal surface modi_cation and its

Wear286–287 (2012) 136–144

Contents lists available at ScienceDirect

Wear

j o u r n a l h o m e p a g e:w w w.e l s e v i e r.c o m/l o c a t e/w e a

r

Micro-dimpled surface by ultrasonic nanocrystal surface modi?cation and its tribological effects

A.Amanov a,?,I.S.Cho b,Y.S.Pyoun a,C.S.Lee b,I.G.Park b

a Department of Mechanical Engineering,Sun Moon University,Asan336-708,South Korea

b Department of Hybrid Engineering,Sun Moon University,Asan336-708,South Korea

a r t i c l e i n f o

Article history:

Received13November2010 Received in revised form30May2011 Accepted2June2011

Available online 16 June 2011

Keywords:

Ultrasonic nanocrystalline surface modi?cation(UNSM)process

Micro-dimple

Sliding friction coef?cient

Sliding wear a b s t r a c t

It is well known that dimpled surface can improve tribological characteristics.The fundamental aim of the present research is to demonstrate the process of making micro-dimples by ultrasonic nanocrystalline surface modi?cation(UNSM)technology and to evaluate its effects on tribological characteristics.Ball-on-disk test was performed in order to reveal the in?uence of mechanism and micro-dimples.UNSM-treated surface is compared to ground surface and friction coef?cient of the UNSM-treated surface has been reduced by about25%,which is a signi?cant phenomenon in improving tribological properties of mating surfaces.Wear volume loss of UNSM-treated surface has also been reduced by about60%.Scanning electron microscopy(SEM)and surface roughness pro?le measurement were utilized to study the worn surface.

? 2011 Elsevier B.V. All rights reserved.

1.Introduction

Technological practice today,particularly in the spring-manufacturing,automotive and aerospace industries,is hardly imaginable without mechanical surface treatment processes.All surface treatment processes have been utilized in order to improve tribological properties and to prevent mechanical failures of mechanical components and parts.Mechanical failures of compo-nents and especially tribological failures,such as friction and wear related failures,are today one of the main reasons for unavail-ability,that is why these phenomena have raised tribologists interest.Recently,surface texturing on the micro-scale level has been introduced to improve friction and wear of tribological pairs. The associated researches were carried out mainly by use of exper-iments.One of these researches,for example,examined friction between a?attened steel ball and a laser textured steel disk, through which the positive effects of micro-dimples on the disk were found to be more apparent in situations with higher sliding speeds[1].In another work,roughness on different kinds of micro-dimpled surfaces on friction was investigated,which showed that the friction coef?cient varied considerably with surface textures [2].These researches give insight into the mechanism of lower-ing friction and wear rate with micro-dimples.Experiments about micro-dimple effects on tribological characteristics,however,are ?Corresponding author.Tel.:+82415302862;fax:+82415302307.

E-mail address:amanov@https://www.doczj.com/doc/8911493301.html,(A.Amanov).usually time-consuming and results from the experiments are sub-jected to change depending upon experiment conditions,thereby some dif?culties encountered in generalizing micro-dimple con-clusions from the experiments[3].

Surface texturing is an attractive approach for the improvement of tribological characteristics of mechanical components.Research works on various forms,sizes,and shapes of micro-dimples on mating surfaces for tribological applications have been carried out worldwide by various processes of making micro-dimples such as shot peening,ion beam texturing,laser surface texturing and so forth.In these latter days,besides these technologies,UNSM technology has been applied to the various mechanical compo-nents[4–6].Nakano et al.[7]reported that the friction coef?cient increased or decreased depending on the geometry of the micro-texture pattern,and the dimple pattern texture led to a lower friction coef?cient than the other pattern texture did,such as groove and mesh pattern textures.

The associated results showed that the lower friction coef?cient can be obtained because of the micro-dimple effect resulted in a greater separation between the mating surfaces.The improvement of the tribological performances with micro-dimples is attributed mainly to the fact that micro-dimples on UNSM-treated surfaces may play a role as lubricant reservoirs and help to promote reten-tion of a lubricating thin?lm between mating surfaces,thereby decreasing friction and wear rate.The commendable works, along with previously mentioned researches,help greatly to the improvement of tribological and mechanical properties of mating surfaces.

0043-1648/$–see front matter? 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.wear.2011.06.001

A.Amanov et al./Wear286–287 (2012) 136–144137

Nomenclature

P st normal static load

P dy dynamic load

P am amplitude of dynamic load

A amplitude

F total striking force

V NC/CNC lathe spindle speed

D specimen diameter

S feed-rate

r ball radius

f frequency

t time

R radius at which the ball/pin contacts the surface to be treated

n number of micro-dimples per unit area

H0appropriate constant associated with the hardness measurements

k constant for a given material

d mean grain size

2.Ultrasonic nanocrystal surface modi?cation treatment

2.1.Concept of UNSM treatment

The UNSM technology is a patented technology,which was developed and commercialized by DesignMecha Co.,Ltd.[4].UNSM is a method of metal improvement that utilizes ultrasonic energy. This technology has aroused considerable interest due to its eco-nomical effectiveness,possible?ne adjustment of effects upon the workpiece and because it is a safe,simple and effective method for application in production of machine components and machinery of various purposes.

The UNSM technology controls the quality,properties and characteristics of the surface,modi?es material properties in the treatment area,improves the fatigue and corrosion resistance,as well as the resistance to abrasion and contact failures,induces residual stresses and brings severe plastic deformations to the sur-face layers,stabilizes and improves static quality and reliability characteristics in mechanical engineering.

UNSM’s effectiveness has been illustrated on various metals and alloys such as aluminum,bronze,steels,titanium,copper,etc.This UNSM technology has also been applied to high temperature struc-tural materials.One of the main advantages of UNSM technology includes the fact that it can be used to create micro-dimples on the surface with a high productivity.2.2.Theory and process of making micro-dimples

In this UNSM technology process,not only the static load(P st), but also the dynamic load(P dy=P sin2?ft)are exerted to a work-piece surface as shown in Fig.1[5].A generator and piezoelectric transducer which are shown in Fig.2emit ultrasonic waves at 20kHz.The waves are ampli?ed when they travel through an acoustic booster.The dimension of the vibrating part,which con-tacts the surface,allows vibration amplitudes of10–100?m to be attained.A homogenous treatment is obtained on the treated sur-face.

The principle of UNSM is based on the instrumental conversion of harmonic oscillations of an acoustically tuned body into reso-nant impulses of ultrasonic frequency.The acoustically tuned body is brought to resonance by energizing an ultrasonic transducer.The energy generated from these high frequency impulses with the total force(F=P st+P dy)a workpiece surface20,000–40,000shots mm2[6].While striking it produces innumerable micro-dimples on a workpiece surface,demonstrates severe plastic deformation to the workpiece surface,induces nanocrystal structures.Each of these micro-dimples can serve either as a micro-hydrodynamic bearing in cases of full or mixed lubrication and a micro-reservoir for wear debris in lubricated conditions.

Generally silicon nitride ceramic(Si3N4)and/or tungsten car-bide(WC)balls and pins which have high spherical accuracy and smooth surface are used as the strike media as shown in Table1, and these balls and pins may be attached to the horn.The differ-ent sizes of balls made of Si3N4with a hardness of2300HV and the different sizes of pins made of WC with a hardness of1700HV are used.Typical pin and ball sizes are in the range of1.2–6mm in diameter and these can be chosen for different purposes depending strongly upon materials and mechanical properties of workpiece. Depending on the desired effects of treatment different balls and tip are applied.

Remarks:F=P st+P am sin2 ft;wherein:F is the total striking force;P st is the normal static load onto the tool;P am is the amplitude of dynamical load;A is the amplitude;V is the spindle speed(rpm); S is the feed rate(mm/rev);r is the ball radius;D is the specimen diameter.

The assumed micro-dimple area is1–10?m2and depth is less than0.1?m.The number of micro-dimples,n in m?2is calculated by Eq.(1).

n?

f

2 R(V×S)

(1)

where f is the frequency[s?1],V is the machine spindle speed

[rev s?1],S is the feed rate[m rev?1],so that(V×S)is[m s?1]and

f/(V×S)is[m?1]whereas n is[m?2],r is the radius at which the

ball/pin contacts the surface to be treated.

Fig.1.(a)Process of making micro-dimples and(b)micro-dimpled surface.

138

A.Amanov et al./Wear 286–287 (2012) 136–144

Table 1

Different types,size and shape of pins and balls.

Materials

Diameter (mm)

Shape and type

Pin

Tungsten carbide (WC)

1.2~

4

Ball Silicon nitride (Si 3N 4)

3,4and

6

Fig.2.The main experimental set-up of the UNSM technology.

The exact dimensions of micro-dimples were measured using atomic force microscopy (AFM)[8].

2.3.Setting and application

The UNSM technology unit might be set on a numerical con-trol (NC)and/or computer numerical controlled (CNC)machines in different positions as required.In this study,UNSM technology pro-cess is performed on a standard NC lathe which is retro?tted with a piezoelectric-actuated tool positioning stage.The main experi-mental set-up of the UNSM technology is shown in Fig.2.

There are many fundamental parameters affecting the UNSM treatment process.These parameters might be precisely and highly controlled and optimised by NC/CNC machine and UNSM technol-ogy unit for each application for optimum bene?ts and they must be easily set.The specimens of this study were treated under basic parameters which are shown in Table 2.

The capability of UNSM technology to suppress crack initia-tion is mainly due to two effects.The impact of the strike leads to heavy work hardening in the surface layer with a concomitant increase in fatigue strength.Furthermore,UNSM technology pro-duces compressive residual stress in the surface layer.Typically,the amount and depth of these compressive stresses are signi?cantly

higher than those produced by standard manufacturing methods such as turning,drilling or cutting.The enhancement of fatigue lives through compressive residual stresses relates both to crack initia-tion and propagation.The increase in surface hardness depends on the hardening potential of the material as well as on the material condition.

The convenient and economical way of UNSM technology is also suitable for fabricating micro-dimpled surfaces over a large area.It is demonstrated that this UNSM technology is a versatile,accu-rate technology that has potential to be a cost-effective means for surface texturing of mechanical components.

As experience and various studies have demonstrated the improvements induced by the UNSM technology process,it is widely used to enhance the life of mechanical components operat-ing in highly stressed environment and other critical parts.Despite the important progress in understanding the process,some areas are not totally mastered yet and developed,productivity and effec-tiveness need to be developed in the near future.Being able to predict the effect of the process in set conditions is indeed the key to gain complete control over the process and to make it much more reliable.

3.Nanocrystallization mechanism

Nanocrystalline materials have attracted considerable interest because of their novel properties originating from a large vol-ume fraction of grain boundaries [9,10].Since Gleiter et al.[11]succeeded in synthesis of the ?rst piece of bulk nanocrystalline specimen by means of inert gas condensation and consolidation,various synthesis techniques have been developed for producing nanocrystalline materials,such as ball-milling [12],crystallization of amorphous solids [10],electrodeposition [13,14]and severe plastic deformation [15]so forth.However,it is still a challenge to prepare nanocrystalline materials for technological applica-tions [16].Tribological behaviors of nanocrystalline materials are important because of their perceived potential engineering applica-tions.Microstructural re?nement is expected to enhance hardness following the well-known Hall–Petch relationship [17,18].

Grain

Fig.3.Measured microhardness (a)and residual stress (b)as a function of depth from top surface for the ground and UNSM-treated specimens.

A.Amanov et al./Wear 286–287 (2012) 136–144

139

Table 2

UNSM treatment parameters.

Vibration frequency (kHz)

Amplitude (?m)

Load (N)

Spindle speed (rpm)

Feed rate (mm rev ?1)

Tip diameter (mm)

Number of shots per mm 2

20

30

60

30

0.07

2.38

21,840

re?nement has previously been shown to lead to a signi?cant enhancement of the wear resistance in nanocrystalline materials in many experimental studies.For the case of nanostructured WC–Co composites,for example,a reduction of WC grain size to 70nm nearly doubled the abrasive wear resistance over conventional cer-mets [19].Nanocrystalline aluminum alloys exhibit better wear resistance than that of conventional alloys [20].Systematic stud-ies of wear in pure nanocrystalline metals are rare,probably owing to the dif?culty in producing bulk pure nanocrystalline samples suitable for friction and wear tests [21–23].Actually,the failures of engineering materials such as friction,wear,erosion and fatigue often take place on the surface of materials [24].The surfaces of these materials are directly responsible for the working properties of the materials.If a nanocrystalline surface layer is produced on conventional metals and materials,it cannot only solve the dif?-culty of the fabrication of bulk nanocrystalline materials,but also improve the properties of conventional materials and save costs [25].

Understanding of the formation process of nanocrystallites dur-ing the UNSM process is crucial for development of the UNSM technology.A gradient size distribution from a few nanometers (in the top surface layer)to several micrometers is developed on the UNSM-treated specimen surface,which provides a unique opportunity to examine the microstructure characteristics at dif-ferent levels of surface layer.Therefore,the underlying mechanism for deformation-induced grain re?nement in the micrometer-nanometer regime can be deduced [26].Fig.5shows a schematic illustration of microstructure characteristics and distributions in the surface layer for a cross-sectional view of the

UNSM-treated

Fig.4.Cross-sectional EBSD observations of the ground (a)and UNSM-treated (b)specimens.

specimen surface.The thickness of the nanostructured surface layer (as well as the re?ned structure layer)depends very much upon the material and UNSM technology processing parameters (such as ball size,amplitude,load,NC/CNC machine feed rate and spindle speed).

The variation of microhardness along the depth from the ground and UNSM-treated surfaces in SAE 52100bearing steel was deter-mined in a cross-sectional specimen,as depicted in Fig.3(a).The hardness in the top nanocrystalline layer is about 840HV and it decreases gradually with depth.It is clear that the UNSM treatment increases signi?cantly the hardness of the bearing steel without causing any damages.

Fig.3(b)shows the distribution of residual stress along the depth from the top surface of the ground and UNSM-treated specimens.The classical sin 2?method was applied to the determination of residual stress along the specimen’s long axis,by using the diffrac-tion pattern of the Fe (211)crystal plane obtained by Cu K ?radiation.When the specimen was subjected to the UNSM treat-ment there was an increase of compressive residual stress of the plastic deformation up to ?900MPa.It is obvious that the com-pressive residual stress of the UNSM-treated surface is higher than that of untreated surface.The magnitude of compressive resid-ual stress decreased with increasing the distance from the surface.EBSD micrographs show that more surface plastic deformation is observed in the surface layer of the UNSM-treated surface com-paring to untreated surfaces as shown in Fig.4.The black dots on the micrographs in Fig.4,are points where the EBSD algorithm is unable to reconstruct the orientation from blurred Kikuchi lines.Grain size was measured by analyzing EBSD observations of the studied material using TSL OIM Analysis 5program (Software for EBSD data acquisition and processing).

Change of the grain layer on metal surface into a plastic defor-mation layer improves strength and hardness of metal surface layer signi?cantly.Owing to the plastic deformation in the surface layer induced by the UNSM,the coarse-grained structure in the surface layer is re?ned into the nanometer scale without changing the chemical compositions.UNSM technology has been successfully applied to bearing steel on which a nanostructured surface layer up to 100?m thick has been obtained in three layers as shown in Fig.5.The re?ned grain size is produced in the range from 50nm to 500nm in the top three surface layers and it is increased with increasing depth from the top surface which has a good correlation with the hardness value in Fig.3(a).The surface layers are work-hardened following the Hall–Petch relationship as shown in

Eq.

Fig.5.Schematic illustration of structure characteristics and distributions in the surface layer subjected to the UNSM.

140

A.Amanov et al./Wear 286–287 (2012) 136–144

Table 3

Test conditions.

Test parameters

Values

Normal force (N)

20,40,60,80and 100Rotational speed (rpm)100Sliding distance (m)

100Testing (scar)track radius (mm)45

Oil lubrication

Tonna oil 32,0.13Ns m ?2@40?C

(2).The hardness of materials,H,is dependent on grain diameter,d,in a similar way as the well-known Hall–Petch relationship and it expresses that the smaller the grain size,the harder the material.

H =H 0+k H

(2)

where k is the constant for a given material,H 0is appropriate

constant associated with the hardness measurements and d is the mean grain size.This relationship has been con?rmed in both the-ory and practice in many metallic materials with grain size in the micrometer scale [27].The key point for realizing the sur-face nanocrystallization of a bulk material is to introduce grain boundaries into the surface layers,so that its microstructure is transformed into nano-sized crystallites.UNSM is an effective tech-nology to realize the surface nanocrystal on metallic materials.

4.Tribological tests

In this experiment,upper ring of thrust ball bearing (No.51306)was used as a disk specimen (60mm in diameter and 5mm in thick-ness)utilizing a ball-on-disk test rig.The disk and ball materials used in this study were made of SAE 52100bearing steel and both are in the heat treated state (quenched and tempered).

The experimental tests were performed on the tribotester using ball-on-disk contact geometry.It is a good screening test for materi-als that will be subjected to continuous rolling/sliding and in order to simulate the same thrust ball bearing conditions using a ball with diameter of 11mm which came from thrust ball bearing.Table 3lists the experimental conditions of the ball-on-disk test.

After test,the contact surfaces of disk specimens were evalu-ated to determine the extent of the effect of applied normal load.In addition,detailed analyses of the tribological properties were performed.The friction coef?cient was determined through fric-tion force,and the amount of wear was quanti?ed by surface roughness pro?le of wear track generated during sliding.All speci-mens,used in this study,made to have the same surface roughness (R a =0.10?m)in order to eliminate roughness effect.The incipi-ent shape of micro-dimples was spherically shaped.The incipient

0.03

0.05

0.07

0.09

100

80

60

40

20

F r i c t i o n c o e f f i c i e n t

Applied load, N

Ground surface

UNSM-treated surface

Fig.6.Variations of the friction coef?cient with load for the UNSM-treated and

ground surfaces.

diameter and depth of micro-dimple were about 1.25and 0.07?m,respectively.

5.Results and discussions

5.1.Friction and wear behavior

The presence of such micro-dimples on parallel surfaces can par-ticularly reduce the friction coef?cient for cases with a smaller ratio of ?lm thickness to roughness (h/Rq),small roughness,or larger load.For the case of the larger ratio of ?lm thickness to roughness (h/Rq),larger roughness,or smaller load,the change in the fric-tion coef?cient for the parallel surfaces due to the micro-dimple

40

80

120

1600 20 40 60 8010

W e a r v o l u m e , 10-3m m -3

Applied load, N

Ground su rfac e

UNSM-treated sur face

Fig.7.Variations of the wear volume with load for the UNSM-treated and ground

surfaces.

0.04

0.06

0.08

0.1

0.12

1000

800

600

400

200

F i c t i o n c o e f f i c i e n t

Sliding distance, m

Ground surface

UNSM-treated surface

Fig.8.Variations of friction coef?cient as a function of sliding distance for the ground and UNSM-treated specimens.

00.2

0.40.60.811000

800600

400200

W e a r v o l u m e , m m 3

Sliding distance , m

Groun d su rfac e UNSM-treated surface

Fig.9.Variations of wear volume loss as a function of sliding time for the ground and UNSM-treated specimens.

A.Amanov et al./Wear286–287 (2012) 136–144

141

Fig.10.Magni?ed3D view(a)and pro?lometry(b)of the single micro-dimple.

effect depends on the combined in?uence of these factors[28]. Figs.6and7plot the friction coef?cient and wear volume loss as a function of load under a sliding distance of100m and rotating speed of100rpm of UNSM-treated and ground specimens,respec-tively.In addition,the improved friction and wear properties can be attributed to the strong surface layer with nano-size grains and a gradient variation in the microstructure and properties along the depth from top surface.

Figs.8and9have revealed the obviously different friction coef-?cient and wear volume loss of the ground and UNSM-treated specimens as a function of sliding distance under the same load of100N and sliding speed of100rpm,respectively.

Fig.10shows micro-dimples magni?ed3D view and pro?lom-etry in their initial state.Fig.10(b)gives evidence that bulges of micro-dimples(initial state)worn off at about500m sliding,after sliding distance of500m friction becomes stable only once these bulges have been worn.Rapoport et al.[29]reported that the sur-faces which were lapped to half of the height of bulges revealed the minimum friction coef?cient and wear loss.UNSM does leave sharp bulges as shown in Fig.10(b)which should wear off quickly, after which stable friction and wear occur as shown in Figs.8and9, respectively.The UNSM does not make an absolute smooth surface since the ball strikes to the workpiece surface.

Surface pro?le curve studies have revealed that wear volume loss correlates with surface?nishing,the hardness of the speci-men’s surface is an important parameter predicting wear behavior [30].The wear resistance is enhanced with increasing hardness of the nanocrystalline surface layer of the UNSM-treated surface as well as due to the grain size re?nement.The surface hardness of the ground surface disk specimen is720HV,but it is increased up to840HV after treating by UNSM technology.Wear volume loss of UNSM-treated and ground surfaces after test are assessed by worn surface pro?le curves as shown in Fig.11.As mentioned ear-lier,the surface roughness of the UNSM-treated and ground(less polished)surfaces before test made to have the same surface rough-ness(R a=0.10?m)in order to eliminate roughness effect.However, after test the roughness value is different due to the improved sur-face hardness of the UNSM-treated specimen as shown in Fig.11.

The interrupted experiment was carried out to observe the sur-face roughness of the UNSM-treated and ground surfaces in the intermediate stage of sliding distance after50m.The surface rough-ness pro?le for both specimens was measured as shown in Fig.12. The friction versus time?gure was shown above to investigate the friction coef?cient properties as a function of time.

Interrupted tests for the UNSM-treated specimen revealed the most interesting thing that wear track was somehow?lled

up Fig.11.Surface roughness pro?les along with3D topographies after test.(a)Ground surface roughness pro?le and(b)UNSM-treated surface roughness pro?le.

142 A.Amanov et al./Wear 286–287 (2012) 136–

144

Fig.12.Surface roughness pro?les after interrupted test for the ground and UNSM-treated specimens after sliding distance of 50m.(a)Ground surface roughness pro?le and (b)UNSM-treated surface roughness

pro?le.

Fig.13.Worn surface morphologies of the UNSM-treated (a)and ground surfaces (b)after

test.

Fig.14.A magni?ed SEM observation of the UNSM-treated surface after test.

20406080

1001000

500

200

100

50

25

P e r c e n t a g e , %

Sliding distance, m

Percentage of worn micro-dimple s

Fig.15.The percentage of micro-dimples erased as a function of the sliding distance.

A.Amanov et al./Wear286–287 (2012) 136–144

143 https://www.doczj.com/doc/8911493301.html,parison of SEM micrographs for the ground(a)and UNSM-treated surfaces under the load of1000N after sliding distance of100m.

with wear debris which transformed from the ball because UNSM-treated surface hardness(about840HV)was harder than ball hardness(about720HV).However,this did not happen on the ground surface at the same sliding distance of50m.So,UNSM-treated specimen surface slightly wears the softer ball,contrary to the ground surface.As a result,it can be said that when the ball and disk(the disk specimen is UNSM-treated)made of the same mate-rial interact with each other in relative motion,there is a signi?cant effect of the UNSM treatment on wear at short sliding distance due to improved surface hardness and induced residual stress of the disk specimen.Although wear properties of the counter-part(the ball)is important,it was impossible to quantify the wear properties of the ball since minor wear occurred on the ball surface.

5.2.Worn surfaces and wear mechanism

Fig.13shows SEM micrographs of the worn surfaces of the UNSM-treated and ground surfaces after test.The worn surface of UNSM-treated specimen,Fig.13(a),exhibits different surface mor-phology compared to the ground surface morphology as shown in Fig.13(b).Obviously,the ground surface morphology contained the worn scars and spots while UNSM-treated surface morphology is nearly?at,which indicates the remnant of the micro-dimples on the worn surface after test.Fig.14complements Fig.13(a)in order to see more clearly the remnant of the micro-dimples on the surface after test.

Percentage of worn micro-dimples as a function of sliding dis-tance was also studied using AFM and results are shown in Fig.15. The AFM observations revealed that micro-dimples were almost worn after sliding distance of1000m under the load of100N and sliding speed of100rpm.

The tests were conducted at different load in the range of 200–1000N to determine at which level of load surface damage will occur on the disk specimen surface.Fig.16illustrated that on both surfaces deamination spalling and oxides have appeared at higher load,but the UNSM-treated surface was worn less comparing with ground surface.

Another distinctive feature is that micro-dimples prevented from wearing were observed on the UNSM-treated surface after test.Nevertheless,the UNSM-treated surface exhibits consider-able lower friction coef?cient and wear volume loss than ground surface.The reason is ascribable to the higher hydrodynamic lift ensured by the micro-dimples regularly made on the contact area of specimen surface,thus capable of behaving as integrated pres-sure pockets.With the increase of the load,sliding caused repetitive work hardening,heavy plastic deformation in the worn surface giving rise to the formation of delaminating cracks which prop-agate subsequently to cause spalling of the material in the surface layer.Nanocrystalline structure was obtained in the surface layer of UNSM-treated specimen.Based on the cross-section view of surface layer observation,a grain size re?nement induced by plastic defor-mation by UNSM technology is proposed.Experimental evidences and analysis of the UNSM-treated surface indicate that micro-dimples and improved tribological characteristics are necessary for reduction of friction and wear.The minimum coef?cient of friction and maximum wear resistance are important scienti?cally as well as for the optimal design of mechanical components and material development.Surface nanocrystallization of materials provides a complementary process to the nanocrystallization process for bulk materials.So,increased hardness and induced compressive resid-ual stress possess excellent wear protection and micro-dimpled surface provide lift themselves as micro-hydrodynamic bearing to reduce the friction coef?cient.

6.Conclusions

In this study,micro-dimple and nanocrystalline surface layer were successfully produced on SAE52100bearing steel by UNSM technology.The process for making micro-dimples was described, and their effect on tribological characteristics was evaluated.The micro-dimples and the process of making them achieved the antic-ipated results.The following conclusions are summarized:

-The nanocrystalline surface layer of specimen is fabricated by means of UNSM technology,and the grain size increases with increasing depth from the treated surface.

-Friction and wear properties of the UNSM-treated surface are remarkably improved compared with the ground surface.

-The enhancement of the wear resistance of UNSM-treated surface is associated with high hardness of the nanocrystalline structure. -In the process of UNSM technology,the ultrasonic impact is the main carrier of the technical effect.

-The AFM observations revealed that micro-dimples were almost worn after sliding distance of1000m under the load of100N.

-With increasing investigations on the processing,properties and industrial applications of the UNSM technology it can be antici-pated to upgrade the engineering materials in the near future.The UNSM process is applicable to produce large number of micro-dimples on a workpiece surface.It is envisaged that with the continuing R&D effort more new applications may bene?t from UNSM technology in the future.

Acknowledgements

This research was supported by a grant(code#2010K000290) from the Center for Nanostructured Materials Technology under

144 A.Amanov et al./Wear286–287 (2012) 136–144

the21st Century Frontier R&D Programs of the Ministry of Educa-tion,Science,and Technology of Korea.

References

[1]Z.B.Wang,N.R.Tao,S.Li,W.Wang,G.Lui,J.Lu,K.Lu,Effect of surface nanocrys-

tallization on friction and wear properties in low carbon steel,Mater.Sci.Eng.

A352(2003)144–149.

[2]B.Bhushan,Handbook of Micro/Nano Tribology,CRC Press LLC,1999,ISBN0-

8493-8402-8.

[3]H.Haefke,Y.Gerbig,G.Dumitri,V.Romano,Microtexturing of functional

surfaces for improving their tribological performances,Proceedings of the International Tribology Conference,Nagasaki,2000,pp.217–221.

[4]DesignMecha Co.,https://www.doczj.com/doc/8911493301.html,rmation on:www.designmecha.co.kr.

[5]A.Amanov,Y.S.Pyoun,I.S.Cho,C.S.Lee,I.G.Park,The evaluation of the micro

tracks and micro dimples on tribological characteristics of thrust ball bearings, Int.J.Nanosci.Nanotechnol.11(1)(2011)701–705.

[6]Y.S.Pyoun,J.H.Park,C.M.Suh,I.H.Cho,C.S.Lee,I.G.Park,A.Amanov,J.Park,

Tribological characteristics of radial journal bearings by ultrasonic nanocrys-talline surface modi?cation technology,Int.J.Mod.Phys.B15–16(2010) 3011–3016.

[7]M.Nakano,A.Korenaga,A.Korenaga,K.Miyake,T.Murakami,Y.Ando,https://www.doczj.com/doc/8911493301.html,ami,

S.Sasaki,Applying micro-texture to cast iron surfaces to reduce the friction coef?cient under lubricated conditions,Tribol.Lett.28(2007)131–137.

[8]A.Amanov,Y.S.Pyoun,B.Zhang,J.H.Park,J.Nohava,Preliminary study of the

effect of micro-scale dimple size on friction and wear under oil-lubricated sliding contact,in:Proceedings of ASIATRIB2010,Australia,2010,p.18.

[9]H.Gleiter,Nanocrystalline materials,Prog.Mater.Sci.33(1989)223–315.

[10]K.Lu,Nanocrystalline metals crystallized from amorphous solids:nanocrystal-

lization,structure,and properties,Mater.Sci.Eng.R16(1996)161–221. [11]R.Birringer,H.Gleiter,H.P.Klein,P.Marquardt,Nanocrystalline materials,an

approach to a novel solid structure with gas like disorder,Phys.Lett.102A (1984)365–369.

[12]C.C Koch,Synthesis of nanostructured materials by mechanical milling:prob-

lems and opportunities,Nanostruct.Mater.9(1997)13–22.

[13]U.Erb,A.M.Elsherik,G.Palumbo,K.T.Aust,Synthesis,structure and proper-

ties of electroplated nanocrystalline materials,Nanostruct.Mater.2(4)(1993) 383–390.[14]L.Lu,M.L.Sui,K.Lu,Superplastic extensibility of nanocrystalline copper at room

temperature,Science287(2000)1463–1466.

[15]R.Z.Valiev,R.K.Islamgaliev,I.V.Alexandrov,Bulk nanostructured materials

from severe plastic deformation,Progr.Mater.2(45)(2000)103–189.

[16]K.Lu,J.Lu,Surface nanocrystallization(SNC)of metallic materials-presentation

of the concept behind a new approach,J.Mater.Sci.Technol.15(1999)193–197.

[17]E.O.Hall,The deformation and ageing of mild steel:III discussion of results,

Proc.Phys.Soc.Lond.B64(1951)p747.

[18]N.J.Petch,The cleavage strength of polycrystals,J.Iron Steel Inst.174(1953)

25–28.

[19]K.Jia,T.E.Fischer,Sliding wear of conventional and nanostructured cemented

carbides,Wear310(1997)203–204.

[20]M.Takagi,H.Ohta,T.Imura,Y.Kawamura,A.Inoue,Wear properties of

nanocrystalline aluminum alloys and their composites,Scr.Mater.44(2001) 2145–2148.

[21]X.L.Kong,Y.B.Liu,L.J.Qiao,Dry sliding tribological behaviors of nanocrystalline

Cu–Zn surface layer after annealing in air,Wear256(2004)747–753.

[22]F.A.Sadykov,N.P.Barykin,I.R.Aslanyan,Wear of copper and its alloys with

submicrocrystalline structure,Wear225–229(1999)649–655.

[23]S.V.Prasad,J.J.Nainaparampil,J.S.Zabinski,Lubricious zinc oxide?lms grown

by pulsed laser deposition:lateral force microscopy of wear surfaces,J.Mater.

Sci.Lett.19(2002)1979–1981.

[24]Y.B.Liu,J.D.Hu,Z.Y.Cao,P.K.Rohatgi,Wear resistance of laser processed

Al–Si–graphite,composites,Wear206(1997)83–86.

[25]A.A Voevodin,J.P.O‘Neill,J.S.Zabinski,Nanocomposites tribological coatings

for aerospace applications,Surf.Coat.Technol.116–119(1999)36–45. [26]K.C.Ludema,Friction,wear,lubrication,in:A Textbook in Tribology,CRC Press

LLC,1996,ISBN0-8493-2685-0.

[27]https://www.doczj.com/doc/8911493301.html,samonie,J.L.Strudel,Mechanical properties of Ti–6Al–4V titanium alloy

with submicrocrystalline structure produced by severe plastic deformation,J.

Mater.Sci.21(1986)p.1837–1852.

[28]P.Wos,J.Michalski,Effect of initial cylinder liner honing surface roughness on

aircraft piston engine performances,Tribol.Lett.41(2011)555–567.

[29]L.Rapoport,A.Moshkovich,V.Per?lyev,https://www.doczj.com/doc/8911493301.html,psker,G.Halperin,Y.Itovich,I.

Etsion,Friction and wear of MoS2?lms on laser textured steel surfaces,Surf.

Coat.Technol.202(2008)3332–3340.

[30]M.Wakuda,Y.Yamauchi,S.Kanzaki,Y.Yashuda,Effect of surface texturing on

friction reduction between ceramic and steel materials under lubricated sliding contact,Wear254(2003)356–363.

【操作系统】Windows XP sp3 VOL 微软官方原版XP镜像

操作系统】Windows XP sp3 VOL 微软官方原版XP镜像◆ 相关介绍: 这是微软官方发布的,正版Windows XP sp3系统。 VOL是Volume Licensing for Organizations 的简称,中文即“团体批量许可证”。根据这个许可,当企业或者政府需要大量购买微软操作系统时可以获得优惠。这种产品的光盘卷标带有"VOL"字样,就取 "Volume"前3个字母,以表明是批量。这种版本根据购买数量等又细分为“开放式许可证”(Open License)、“选择式许可证(Select License)”、“企业协议(Enterprise Agreement)”、“学术教育许可证(Academic Volume Licensing)”等5种版本。根据VOL计划规定, VOL产品是不需要激活的。 ◆ 特点: 1. 无须任何破解即可自行激活,100% 通过微软正版验证。 2. 微软官方原版XP镜像,系统更稳定可靠。 ◆ 与Ghost XP的不同: 1. Ghost XP是利用Ghost程序,系统还原安装的XP操作系统。 2. 该正版系统,安装难度比较大。建议对系统安装比较了解的人使用。 3. 因为是官方原版,因此系统无优化、精简和任何第三方软件。 4. 因为是官方原版,因此系统不附带主板芯片主、显卡、声卡等任何硬件驱动程序,需要用户自行安装。 5. 因为是官方原版,因此系统不附带微软后续发布的任何XP系统补丁文件,需要用户自行安装。 6. 安装过程需要有人看守,进行实时操作,无法像Ghost XP一样实现一键安装。 7. 原版系统的“我的文档”是在C盘根目录下。安装前请注意数据备份。 8. 系统安装结束后,相比于Ghost XP系统,开机时间可能稍慢。 9. 安装大约需要20分钟左右的时间。 10. 如果你喜欢Ghost XP系统的安装方式,那么不建议您安装该系统。 11. 请刻盘安装,该镜像用虚拟光驱安装可能出现失败。 12. 安装前,请先记录下安装密钥,以便安装过程中要求输入时措手不及,造成安装中断。 ◆ 系统信息:

Windows7 SP1官方原版下载

Windows7 SP1官方原版 以下所有版本都为Windows7 SP1官方原版,请大家放心下载! 32位与64位操作系统的选择:https://www.doczj.com/doc/8911493301.html,/Win7News/6394.html 最简单的硬盘安装方法:https://www.doczj.com/doc/8911493301.html,/thread-25503-1-1.html 推荐大家下载旗舰版,下载后将sources/ei.cfg删除即可安装所有版本,比如旗舰,专业,家庭版。 ============================================ Windows 7 SP1旗舰版中文版32位: 文件cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso SHA1:B92119F5B732ECE1C0850EDA30134536E18CCCE7 ISO/CRC:76101970 cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso.torrent(99.63 KB, 下载次数: 326189) Windows 7 SP1旗舰版中文版64位: 文件cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso SHA1: 2CE0B2DB34D76ED3F697CE148CB7594432405E23 ISO/CRC: 69F54CA4 cn_windows_7_ultimate_with_sp1_x64_dvd_u_677408.iso.torrent(128.17 KB, 下载次数: 197053)

Microsoft 微软官方原版(正版)系统大全

Microsoft 微软官方原版(正版)系统大全 微软原版Windows 98 Second Edition 简体中文版 https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16446&page=1&extra=#pid125031 微软原版Windows Me 简体中文版 https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16448&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows 2000 Professional 简体中文版 https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16447&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Professional SP3 简体中文版 https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16449&page=1&extra=#pid125073微软原版Windows XP Media Center Edition 2005 简体中文版 https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16451&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows XP Tablet PC Edition 2005 简体中文版 https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16450&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(32位) https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16452&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Server 2003 R2 Enterprise Edition SP2 简体中文版(64位) https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16453&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(32位) https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16454&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版Windows Vista 简体中文版(64位) https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16455&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows7 SP1 各版本下载地址: https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=12387&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(32位) https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16457&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 Datacenter Enterprise and Standard 简体中文版(64位) https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16458&highlight=%CE%A2%C8%ED%D4%AD %B0%E6 微软原版 Windows Server 2008 R2 S E D and Web 简体中文版(64位) https://www.doczj.com/doc/8911493301.html,/viewthread.php?tid=16459&highlight=%CE%A2%C8%ED%D4%AD %B0%E6

windows正版系统+正版密钥

精心整理正版Windows系统下载+正版密钥 2010-05-3011:49 喜欢正版Windows系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工 具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows98第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q WindowsMillenniumEdition(WindowME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows2000PROSP4(简体中文) SerialNumber:XPwithsp3VOL微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小:字节 MD5:D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32:FFFFFFFF 邮寄日期(UTC):5/2/200812:05:18XPprowithsp3VOL微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版)

windows系统官网原版下载

微软MSDN官方(简体)中文操作系统全下载 这不知是哪位大侠收集的,太全了,从DOS到Windows,从小型系统到大型系统,从桌面系统到专用服务器系统,从最初的Windows3.1到目前的Windows8,以及Windows2008,从16位到32位,再到64位系统,应有尽有。全部提供微软官方的校验文件,这些文件都可以在微软官方MSDN订阅中得到验证,完全正确! 下载链接电驴下载,可以使用用迅雷下载,建议还是使用电驴下载。你可以根据需要在下载链接那里找到你需要的文件进行下载!太强大了!!! 产品名称: Windows 3.1 (16-bit) 名称: Windows 3.1 (Simplified Chinese) 文件名: SC_Windows31.exe 文件大小: 8,472,384 SHA1: 65BC761CEFFD6280DA3F7677D6F3DDA2BAEC1E19 邮寄日期(UTC): 2001-03-06 19:19:00 ed2k://|file|SC_Windows31.exe|8472384|84037137FFF3932707F286EC852F2ABC|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.12 (Simplified Chinese) 文件名: SC_Windows32_12.exe 文件大小: 12,832,984 SHA1: 1D91AC9EB3CBC1F9C409CF891415BB71E8F594F7 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_12.exe|12832984|A76EB68E35CD62F8B40ECD3E6F5E213F|/ 产品名称: Windows 3.2 (16-bit) 名称: Windows 3.2.144 (Simplified Chinese) 文件名: SC_Windows32_144.exe 文件大小: 12,835,440 SHA1: 363C2A9B8CAA2CC6798DAA80CC9217EF237FDD10 邮寄日期(UTC): 2001-03-06 19:21:00 ed2k://|file|SC_Windows32_144.exe|12835440|782F5AF8A1405D518C181F057FCC4287|/ 产品名称: Windows 98 名称: Windows 98 Second Edition (Simplified Chinese) 文件名: SC_WIN98SE.exe 文件大小: 278,540,368 SHA1: 9014AC7B67FC7697DEA597846F980DB9B3C43CD4 邮寄日期(UTC): 1999-11-04 00:45:00 ed2k://|file|SC_WIN98SE.exe|278540368|939909E688963174901F822123E55F7E|/ 产品名称: Windows Me 名称: Windows? Millennium Edition (Simplified Chinese) 文件名: SC_WINME.exe

Windows7官方个版本正版镜像下载地址

Windows7官方个版本正版镜像下载地址 简体中文旗舰版: 32位:下载地址:ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7A45E81B 76199DDCCDDC4B509|/ SHA1:B589336602E3B7E134E222ED47FC94938B04354F 64位:下载地址:ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA757CE6D2D B78B6901F81A6907A|/ SHA1:4A98A2F1ED794425674D04A37B70B9763522B0D4 简体中文专业版: 32位:下载地址:ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|e812fbe758f 05b485c5a858c22060785|h=S5RNBL5JL5NRC3YMLDWIO75YY3UP4ET5|/ SHA1:EBD595C3099CCF57C6FF53810F73339835CFBB9D 64位:下载地址:ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|3474800521d 169fbf3f5e527cd835156|h=TIYH37L3PBVMNCLT2EX5CSSEGXY6M47W|/ SHA1:5669A51195CD79D73CD18161D51E7E8D43DF53D1 简体中文家庭高级版: 32位:下载地址:ed2k://|file|cn_windows_7_home_premium_x86_dvd_x15-65717.iso|2604238848|98e1eb474f9 2343b06737f227665df1c|h=GZ7FZE7XURI5HNO2L7H45AGWNOLRLRUR|/ SHA1:CBA410DB30FA1561F874E1CC155E575F4A836B37 64位:下载地址:ed2k://|file|cn_windows_7_home_premium_x64_dvd_x15-65718.iso|3341268992|9f976045631 a6a2162abe32fc77c8acc|h=QQZ3UEERJOWWUEXOFTTLWD4JNL4YDLC6|/ SHA1:5566AB6F40B0689702F02DE15804BEB32832D6A6 简体中文企业版: 32位:下载地址:ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA74E5735 3B2F35BC33E56BD5202|/ SHA1:50F2900D293C8DF63A9D23125AFEEA7662FF9E54 64位:下载地址:ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF115C2EE 28D74B178BE1A84AB3B|/ SHA1:EE20DAF2CDEDD71C374E241340DEB651728A69C4

如何在windows下安装原版mac系统

windows下安装苹果教程。最详细,最全面,最值得看的教程! 最详细,最适合新手的教程:如何原版安装mac 从windows到mac os(安装黑苹果目前最详细教程) 最近网上有不少如何安装苹果系统的教程,个人感觉都不错,但是有些地方还是不够详细,所以我决定写一个比较详细的教程。鉴于网上有不少类似的教程,所以我的这个安装方法中有不少是借鉴和总结他们的,在此不一一提出,但是对这些作者表示感谢和崇高的敬意。本教程较长,不要因此以为苹果的安装比较复杂,其实我只是让每一步叙述的更加详细,提供更多的方法处理安装,还有就是加入了大量的图片。由于本教程过于详细,所以比较适合新手阅读。 安装之前要做好失败的心理准备,新手建议先备份重要数据到别的机器,预防数据丢失。要有足够的耐心和毅力,敢于不断尝试,不自己实践过永远不知道自己电脑是不是能够成功安装,安装成功后的成就感只有自己知道,另外完成安装过程也是学习电脑知识的过程,祝各位能安装顺利。 以下是详细过程: 安装之前的准备: ################################################### ##################### 硬盘安装原版mac(以10.6.3零售版为例) 以下工具或软件下载地址在4楼和5楼,4楼提供10.6.3零售版115网盘下载,5楼提供帖子中所涉及的大部分软件的115网盘下载,126楼提供本教程的pdf格式的下载

所要准备的软件等: ①原版苹果镜像,推荐Mac.OS.X.10.6.3.Retail.dmg ②推荐bootthink2.4.6版本,另外也可以用变色龙,个人喜欢用bootthink 引导,感觉方便。 ③winPE或者windows原版安装光盘(设置C盘为活动分区用),推荐winPE,winPE的详细制作过程及制作需要的软件(附下载地址)下面有,另外一般的Ghost安装盘上都会有winPE的。 ④硬盘安装助手 ⑤XP必备DiskGenius:硬盘分区工具 (windows7可不用该工具,系统自带磁盘管理) ⑥Mac.OS.X.10.6.3.Retail的替换文件: 替换文件是让苹果系统可以安装在MBR分区上,即windows的分区,有想拿出整块硬盘安装mac的可以不用替换,如何替换看以下的安装过程。不替换的缺点:需要另外找硬盘备份自己硬盘上的所有数据资料,因为硬盘由MBR 分区转变为GPT时会损失所有数据。 ⑦HFS Explorer和Java VM(Java JRE虚拟机),,先安装Java VM (Java JRE虚拟机),才能正常使用HFS Explorer。 ⑧Macdrive或是TransMac,安装了Macdrive可以不用TransMac。 ⑨AMD,intel Atom和Pentium单核的CPU需要准备替换对应的内核 主板不能开启AHCI的还需要补丁i系列的处理器(i3,i5,i7)还需要替换10.3.1以上内核,因为2010年4月

Windows7_各个版本原版系统下载

Windows7 各个版本原版系统下载 + Win7旗舰精简版下载 + Win7激活工具 2010-07-16 23:03:24 标签:旗舰精简版原版工具系统 原创作品,允许转载,转载时请务必以超链接形式标明文章原始出处、作者信息和本声明。否则将追究法律责任。https://www.doczj.com/doc/8911493301.html,/382661/351083 以下是Windows系统的原版中文镜像(可用Oem7激活,激活根据再最底下) Windows7旗舰版32 位ed2k://|file|cn_windows_7_ultimate_x86_dvd_x15-65907.iso|2604238848|D6F139D7 A45E81B76199DDCCDDC4B509|/ Windows7旗舰版64 位ed2k://|file|cn_windows_7_ultimate_x64_dvd_x15-66043.iso|3341268992|7DD7FA75 7CE6D2DB78B6901F81A6907A|/ Windows7企业版32 位ed2k://|file|cn_windows_7_enterprise_x86_dvd_x15-70737.iso|2465783808|41ABFA7 4E57353B2F35BC33E56BD5202|/ Windows7企业版64 位ed2k://|file|cn_windows_7_enterprise_x64_dvd_x15-70741.iso|3203516416|876DCF1 15C2EE28D74B178BE1A84AB3B|/ Windows7专业版32 位ed2k://|file|cn_windows_7_professional_x86_dvd_x15-65790.iso|2604238848|E812FB E758F05B485C5A858C22060785|/ Windows7专业版64 位ed2k://|file|cn_windows_7_professional_x64_dvd_x15-65791.iso|3341268992|347480 0521D169FBF3F5E527CD835156|/

最全的微软msdn原版windows系统镜像和office下载地址集锦

最全的微软msdn原版windows系统镜像和office下载地址集锦 随着windows的发展,越来越多的人都热衷于微软的原版系统下载了,相比之前的版本比如winxp版本,windows vista/win7/win8/win8.1/后来的版本在安装方面也比较简单了,所以ghost系统正在渐渐的消失市场,即便如此,很多同学还是找不到微软原版的系统和office下载,今天亦是美网络特意归结了一下微软msdn原版系统和原版office各个版本的下载,希望对正在苦苦找寻原版系统的同学有所帮助。 说在前面的话: 1、本文提供的windows和office版本均为微软MSDN原版! 2、挑选系统版本,一般来说专业版(vol)更适合我们! 密钥获取:最新win8/8.1、office2013 key 密钥实时更新或请点击此处订阅网站内容,确认订阅后,激活方式将自动发送到您的邮箱当中!!! 以下地址建议使用迅雷下载(点击此处下载迅雷极速版) windows 10 技术预览版简体中文: 32位系统下载:

https://www.doczj.com/doc/8911493301.html,/W9TPI/FD54DF81A4CCF4511BA1445C606DDBA2/Wi ndowsTechnicalPreview-x86-ZH-CN.iso 64位系统下载:https://www.doczj.com/doc/8911493301.html,/W9TPI/FD54DF81A4CCF4511BA1445C606DDBA2/Wi ndowsTechnicalPreview-x64-ZH-CN.iso windows 8.1 Pro 专业版(VOL版)简体中文: 32位系统下载:ed2k://|file|cn_windows_8.1_professional_vl_with_update_x86_dvd_4048630.iso|308 6659584|41CAAB5DAC5643F6E0048576D609C19A|/ 64位系统下载:ed2k://|file|cn_windows_8.1_professional_vl_with_update_x64_dvd_4050293.iso|413 6626176|4D2363F9E06BFD50A78B1E6464702959|/ windows 8.1 Ent 企业版(VOL版)简体中文: 32位系统下载:ed2k://|file|cn_windows_8.1_enterprise_with_update_x86_dvd_4050277.iso|308994 4576|EEA035116570CFB1F6B6318559ED4A05|/ 64位系统下载:ed2k://|file|cn_windows_8.1_enterprise_with_update_x64_dvd_4048578.iso|414078 1568|8A3E13590D8A6EDF259574CB797FC75E|/

Windows软件正版、原版和盗版的区别

Windows软件正版、原版和盗版的区别 我们先了解一下什么是激活模块和激活码 激活模块是软件生产商为了保护知识产权对软件产品进行锁定的模块,主要是锁定软件的功能或使用期限等。 激活码是验证解锁这一激活模块的钥匙,可实现使用该软件的全部功能、使用权和提供官方的技术支持等。 什么是正版? 根据微软官方的释义,正版 Windows 是由 Microsoft 授权和发布的 Windows 副本,经过授权,由 Microsoft 或受信任伙伴提供支持, 我的解释是可以通过微软正版Windows软件网络验证的,或者微软正式授权的都可以叫正版。 但是这个正版的范围比较大,比如你买了一张盗版精简Windows7的光盘或者上网下载了各种修改版的系统,只要使用激活码成功在正版Windows软件中心通过了认证,这也可以叫做正版。 正版有什么好处? 使用 Windows 的正版副本能帮助你避免数据遭受盗版软件带来的安全威胁,它允许访问 Microsoft 及其合作伙伴提供的支持以及访问更新和下载,从而可以在电脑中获得最大收益。 正版主要是可以得到微软的技术支持。 什么是原版? 原版只的是微软官方发售的零售版光盘复制的副本,并不一定可以通过微软正版Windows软件网络验证。 为什么说不一定可通过正版验证呢?因为如果你安装时使用的激活码未能通过微软软件正版授权许可,或者被微软查封,那么这个系统就是盗版。原版软件只包含了软件本身,并不代表此软件成功安装后就可通过验证,它和激活码是两个概念 原版有什么好处? 原版软件保证了软件本身的性能安全及稳定,并且包含了全部功能及组件,并不存在恶意插件、流氓软件、病毒和木马等。

windows正版系统+正版密钥

正版Windows 系统下载+正版密钥 2010-05-30 11:49 喜欢正版Windows 系统 这是我收集N天后的成果,正版的Windows系统真的很好用,支持正版!大家可以用激活工具激活!现将本收集的下载地址发布出来,希望大家多多支持! Windows 98 第二版(简体中文) 安装序列号:Q99JQ-HVJYX-PGYCY-68GM3-WXT68 安装序列号:Q4G74-6RX2W-MWJVB-HPXHX-HBBXJ 安装序列号:QY7TT-VJ7VG-7QPHY-QXHD3-B838Q Windows Millennium Edition (Window ME)(简体中文) 安装序列号:HJPFQ-KXW9C-D7BRJ-JCGB7-Q2DRJ 安装序列号:B6BYC-6T7C3-4PXRW-2XKWB-GYV33 安装序列号:K9KDJ-3XPXY-92WFW-9Q26K-MVRK8 Windows 2000 PRO SP4(简体中文) SerialNumber: BCJTW-2M9JH-M8HHT-KWWWM-3444Y MD5:599d35359320db8c58c7f55da11d3458 Windows XP with sp3 VOL 微软原版(简体中文) 文件名:zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070.iso 大小: 630237184 字节

MD5: E74D72F3D90456003E9E02BA0FB7DA61 SHA1: D142469D0C3953D8E4A6A490A58052EF52837F0F CRC32: FFFFFFFF 邮寄日期(UTC):5/2/2008 12:05:18 AM 下载地址:ed2k://|file|zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-74070%20(E https://www.doczj.com/doc/8911493301.html,).iso|630237184|EC51916C9D9B8B931195EE0D6EE9B40E| Windows XP pro with sp3 VOL 微软原版(简体中文)正版密钥: MRX3F-47B9T-2487J-KWKMF-RPWBY(工行版)(强推此号!!!) QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) QHYXK-JCJRX-XXY8Y-2KX2X-CCXGD(广州政府版) MFBF7-2CK8B-93MDB-8MR7T-4QRCQ(北京政府版) T72KM-6GWBP-GX7TD-CXFT2-7WT2B(上海政府版) DG8FV-B9TKY-FRT9J-6CRCC-XPQ4G(上海政府版) BCJTW-2M9JH-M8HHT-KWWWM-3444Y(英文版) CD87T-HFP4C-V7X7H-8VY68-W7D7M(英文版) RFYPJ-BKXH2-26FWP-WB6MT-CYH2Y(英文版) 7HPVP-8VHPV-G7CQ3-BTK2R-TDRF3(英文版) DRXKM-94K47-38QVX-F8K7R-2H7CD(日文版) FCKGW-RHQQ2-YXRKT-8TG6W-2B7Q8(韩文版) VMXC2-M9HKH-DRYGC-FHQ7H-BJY33(0408版) CM3HY-26VYW-6JRYC-X66GX-JVY2D(可用) DP7CM-PD6MC-6BKXT-M8JJ6-RPXGJ(可用) F4297-RCWJP-P482C-YY23Y-XH8W3(可用) HCQ9D-TVCWX-X9QRG-J4B2Y-GR2TT(可用) M6TF9-8XQ2M-YQK9F-7TBB2-XGG88(可用) HH7VV-6P3G9-82TWK-QKJJ3-MXR96(可用) TDWGX-DMF97-BJYDQ-X9DJV-CYHWQ(可用) T8FMX-Q4HQJ-3JW77-JGPDC-FY9DG(可用) G6X78-XG4KV-3MXT7-FT8YM-F3YW3(可用) OEM版: 华硕: 家庭版: KR63J-B34MB-CVP9K-T478G-8Y3XG 联想: 家庭版: PWBPT-6PGKF-TP6MY-299P4-CPXQG (XXXXX-119-0001544-XXXXX) 专业版: FCDGH-QW3DJ-VBC6C-9BYTX-4GKQJ (XXXXX-119-0001553-XXXXX) VF4HT-MPWB8-TWV6R-K6QM4-W6JCM

Windows系统原版镜像下载地址

Win8.1下载地址 Windows 8.1 Pro VL (x86) - DVD (Chinese-Simplified) Win8.1简体中文专业版 32位文件名 cn_windows_8_1_pro_vl_x86_dvd_2972620.iso 大小2.84GB 下载地址: ed2k://|file|cn_windows_8_1_pro_vl_x86_dvd_2972620.iso|3049981952|5B396C3A0BA99 617647D9AFE8403AFA5|/ Windows 8.1 Pro VL (x64) - DVD (Chinese-Simplified)Win8.1简体中文专业版 64位文件名cn_windows_8_1_pro_vl_x64_dvd_2971907.iso 大小3.76GB 下载地址 ed2k://|file|cn_windows_8_1_pro_vl_x64_dvd_2971907.iso|4032598016|1FDA520B3E888 0E2FB00B20439E0826E|/ Windows 8.1 Enterprise (x86) - DVD (Chinese-Simplified)Win8.1简体中文企业版 32位 文件名cn_windows_8_1_enterprise_x86_dvd_2972257.iso 文件大小2.84GB 下载地址 ed2k://|file|cn_windows_8_1_enterprise_x86_dvd_2972257.iso|3050842112|6B60ABF82 82F943FE92327463920FB67|/ Windows 8.1 Enterprise (x64) - DVD (Chinese-Simplified)Win8.1简体中文企业版 64位 文件名cn_windows_8_1_enterprise_x64_dvd_2971863.iso 文件大小3.76GB 下载地址 ed2k://|file|cn_windows_8_1_enterprise_x64_dvd_2971863.iso|4039327744|08BAF1832 0B8FFC58D4C35BCC7A32012|/ 安装密钥 核心版 334NH-RXG76-64THK-C7CKG-D3VPT 专业版 XHQ8N-C3MCJ-RQXB6-WCHYG-C9WKB win10下载地址 Win10正式版32位简体中文版(含家庭版、专业版) ed2k://|file|cn_windows_10_multiple_editions_x86_dvd_6846431.iso|3233482752|B5C706594 F5DC697B2A098420C801112|/

安装Windows7原版系统教程

安装Windows7原版系统教程 一、需要的硬件:u盘一个(需要格式化)。 二、需要的软件: 1、下载windows ISO格式镜像文件。该文件可以看做是Windows系统的安装文件。 下载地址: ed2k://|file|cn_windows_7_ultimate_with_sp1_x86_dvd_u_677486.iso|2653276160|7503E 4B9B8738DFCB95872445C72AEFB|/ 2、去自己的电脑品牌官网下载电脑对应的有线和无线网卡驱动做为备用,因为新装的系统 是没有网卡驱动的,如果不提前下载下来会导致装完系统没法上网。 下载以后放到除了C盘意外的盘符或者u盘中备用。 3、下载winrar解压软件。 下载地址: https://www.doczj.com/doc/8911493301.html,/plus/download.php?open=2&id=8196&uhash=673c01a1f23336e96 033e2b2 下载以后放到除了C盘意外的盘符或者u盘中备用。 4、下载UltraISO并安装。 下载地址: https://www.doczj.com/doc/8911493301.html,/alading/anquan_soft_down_ub/11522 注册码用户名:王涛注册码:7C81-1689-4046-626F 如果注册码失效,自行百度一个可用的。 三、装系统的步骤 1、制作启动盘 1)打开ultraISO,选择文件,选择打开,选择之前下载的window7 ISO格式的镜像。如图: 2)把准备的u盘插入电脑,点击ultraISO的启动,点击写入硬盘映像。

弹出对话框里,选择你的u盘,点击写入。(写入过程u盘会全盘格式化,备份好有用的文件) 写入完成以后,你的u盘就是一个系统启动盘了。

微软MSDN官方原版windows8简体中文正式版(3264位)下载

微软MSDN官方原版windows8简体中文正式版(32/64位)下载 北京时间8月16日凌晨,微软如约 向MSDN付费用户提供了windows8 的下载(点击查看)。MSDN版微软 操作系统,一直是公认为“微软原版”, Jeff从来都是建议安装微软原版 windows8。windows8时代就此开启! 下面就分享微软MSDN官方原版 windows8简体中文正式版下载并提供相关文件信息: Windows 8 (包含专业版和Core版)MSDN官方原版简体中文(建议下载) 32位(x86): 文件名:cn_windows_8_x86_dvd_915414.iso SHA1:0C4A168E37E38EFB59E8844353B2535017CBC587 下载地址: ed2k://|file|cn_windows_8_x86_dvd_915414.iso|2679801856|9AF10141BFD61BC66D9D64597 58D7749|/ 附:安装密匙 Core版:BN3D2-R7TKB-3YPBD-8DRP2-27GG4 FB4WR-32NVD-4RW79-XQFWH-CYQG3 专业版: NG4HW-VH26C-733KW-K6F98-J8CK4 XKY4K-2NRWR-8F6P2-448RF-CRYQH 64位(x64): 文件名:cn_windows_8_x64_dvd_915407.iso SHA1:A87C4AA85D55CD83BAE9160560D1CB3319DD675C 下载地址: ed2k://|file|cn_windows_8_x64_dvd_915407.iso|3652950016|5C7F8C212BD3A1827866563773 A431C2|/ Windows 8 企业版((Eterprise)MSDN官方原版简体中文 32位(x86): 文件名:cn_windows_8_enterprise_x86_dvd_917682.iso SHA1:951565D8579C5912FB4A407B3B9F715FBDB77EFE 下载地址: ed2k://|file|cn_windows_8_enterprise_x86_dvd_917682.iso|2597502976|7B6541942A16EB54 BC81E84558DF09DF|/ 64位(x64): 文件名:cn_windows_8_enterprise_x64_dvd_917570.iso SHA1:1280BC3A38A7001FDE981FA2E465DEB341478667 下载地址: ed2k://|file|cn_windows_8_enterprise_x64_dvd_917570.iso|3560837120|8CAE8064C4B8F9CD 84941B4FF4A34722|/ Windows 8 批量授权版本(Pro VL )MSDN官方原版简体中文 32位(x86): 文件名:cn_windows_8_pro_vl_x86_dvd_917720.iso SHA1:EEEF3C3F6F05115C7F7C9C1D19D6A6A6418B5059

windows xp官方原版

1)近日,照牛排在野猪尖分享了雨林木风最后4个系统的下载地址,以及深度系统全系列MD5值及下载地址,喜欢雨林木风及深度的朋友,可以选择下载。尽管雨林木风和深度的系统经过优化会有一些优势,但毕竟是修改过的,有这样或那样的问题。我还是喜欢微软原版的系统,稳定。本文将分享微软原版Windows XP Pro With SP3 VOL MSDN简体中文专业版的下载地址、MD5值及序列号。 2)2008年5月2日,微软推出Windows XP Pro With SP3 VOL MSDN简体中文专业版,这是最经典也是我最喜爱的操作系统之一。我在MSDN(微软开发者网络)的网站上查到,Windows XP Pro With SP3 VOL MSDN简体中文版的全名叫Windows XP Professional with Service Pack 3 (x86) - CD VL (Chinese-Simplified),更详细的信息如下: 文件名: zh-hans_windows_xp_professional_with_service_pack_3_x86_cd_vl_x14-740 70.iso 文件大小:601 MB (630,237,184 字节) 发布日期 (UTC):5/2/2008 12:05:18 AM 上次更新日期 (UTC):2/19/2010 11:36:41 AM SHA1:D142469D0C3953D8E4A6A490A58052EF52837F0F MD5:E74D72F3D90456003E9E02BA0FB7DA61 3)微软官方原版Windows XP Pro With SP3 VOL MSDN简体中文专业版的迅雷下载地址为: thunder://QUFodHRwOi8vc29mdC51c2Fpa2EuY24vJUU2JTkzJThEJUU0JUJEJTlDJUU 3JUIzJUJCJUU3JUJCJTlGL3dpbmRvd3MvV2luZG93c1hQL1ZMLUltYWdlL01TRE4vemgt aGFuc193aW5kb3dzX3hwX3Byb2Zlc3Npb25hbF93aXRoX3NlcnZpY2VfcGFja18zX3g4N l9jZF92bF94MTQtNzQwNzAuaXNvWlo 电驴下载地址为: ed2k://|file|zh-hans_windows_xp_professional_with_service_pack_3_x86_ cd_vl_x14-74070%20(https://www.doczj.com/doc/8911493301.html,).iso|630237184|EC51916C9D9B8B931195EE0D 6EE9B40E| 只要复制上面任何一个下载地址,并启动迅雷新建任务即可开始下载。这是一个ISO镜像文件,下载后,请用校验工具(点此下载)验证一下MD5值。你可以把镜像刻录到光盘,也可以解压后从硬盘安装。 4)至于微软原版Windows XP Pro With SP3 VOL MSDN简体中文专业版的序列号(CD-KEY,即密钥,俗称SN),我在用工行版的正版序列号: MRX3F-47B9T-2487J-KWKMF-RPWBY。你也可以尝试以下VOL版XP序列号: QC986-27D34-6M3TY-JJXP9-TBGMD(台湾交大学生版) HCQ9D-TVCWX-X9QRG-J4B2Y-GR2TT(https://www.doczj.com/doc/8911493301.html,) DP7CM-PD6MC-6BKXT-M8JJ6-RPXGJ CM3HY-26VYW-6JRYC-X66GX-JVY2D

相关主题
文本预览
相关文档 最新文档