当前位置:文档之家› 光电组-北京理工大学-光电一队技术报告

光电组-北京理工大学-光电一队技术报告

第七届“飞思卡尔”杯全国大学生

智能汽车竞赛

技术报告

学校:北京理工大学

队伍名称:光电一队

参赛队员:曾龙宋文杰王先宇

带队教师:张幽彤冬雷

关于技术报告和研究论文使用授权的说明

本人完全了解第七届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:曾龙

宋文杰

王先宇

带队教师签名:张幽彤

冬雷

日期:2012.8.12

摘要

本文介绍了半年多来北京理工大学智能车队队员们在准备Freescale智能车大赛过程中的工作努力成果。智能车的硬件平台采用带MC9S12XS128处理器的S12环境,软件平台为CodeWarrior IDE4.7开发环境,车模采用大赛组委会统一提供的1:10的仿真车模。文中介绍了智能小车控制系统的软硬件结构和开发流程。

整个系统涉及车模机械结构调整、传感器电路设计及信号处理、控制算法和策略优化等多个方面。为了提高智能赛车的行驶速度和可靠性,试验了多套方案,并进行升级,结合Labview仿真平台进行了大量底层和上层测试,最终确定了现有的系统结构和各项控制参数。

关键字:智能车,激光管,模糊PID控制

第一章引言 (1)

1.1研究背景介绍 (1)

1.2系统方案介绍 (2)

1.3章节安排 (3)

第二章技术方案概要说明 (4)

2.1智能车系统分析 (4)

2.2智能车系统硬件结构设计 (4)

2.3智能车系统软件结构设计 (5)

第三章机械系统设计说明 (6)

3.1智能车的整体结构 (6)

3.2智能车运动学状态方程 (7)

3.3智能车前轮定位参数的选择 (9)

3.4智能车转向机构调整优化 (12)

3.5智能车后轮减速齿轮机构调整 (13)

3.6其它机械结构的调整 (14)

第四章硬件电路设计说明 (15)

4.1S12单片机最小系统 (15)

4.2路线识别电路设计 (18)

4.3电源管理电路设计 (20)

4.4电机驱动电路设计 (21)

4.5串行通讯接口电路 (22)

4.6速度检测模块 (22)

4.7现场调试模块 (24)

第五章软件设计说明 (25)

5.1总体控制流程图 (25)

5.2工作原理 (26)

5.3PID控制以及PID参数的整定 (26)

5.4小车控制策略 (28)

5.5光电智能车模糊PID控制方法 (28)

5.6软件开发环境 (29)

第六章模型车各项参数 (32)

第七章结论 (33)

7.1本系统的所具有的特点 (33)

7.2本系统存在的问题 (33)

7.3本系统可行的改进措施 (34)

参考文献 (35)

鸣谢 (36)

附录A模型车控制主程序代码 (37)

第一章引言

1.1研究背景介绍

教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国大学生数学建模、电子设计、机械设计、结构设计等大竞赛的基础上,经研究决定,委托教育部高等学校自动化教学指导分委会主办每年一度的全国大学生智能汽车竞赛,并成立了由教育部、自动化分教指委、清华大学、飞思卡尔半导体公司等单位领导及专家组成的“第一届‘飞思卡尔’杯全国大学生智能汽车邀请赛”组委会。该竞赛是为了提高大学生的动手能力和创新能力而举办的,具有重大的现实意义。与其它大赛不同的是,这个大赛的综合性很强,是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感、电子、电气、计算机和机械等多个学科交叉的科技创意性比赛,这对进一步深化高等工程教育改革,培养本新意识,培养硕士生从事科学、技术研究能力,培养博士生知识、技术创新能力具有重要意义。

以智能汽车为研究背景的科技创意性制作,是一种具有探索性的工程实践活动,其本质也是人类创造有用人工物的一种训练性实践,其过程属性是综合,而结果属性很可能是创造。通过竞赛,参赛的同学们培养了对已学过的基础与专业理论知识与实验的综合运用的能力;带着背景对象中的各种新问题,学习控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科新知识,包括来自不同学科背景大学生的相互学习,逐渐学会了在学科交叉、集成基础上的综合运用;若是以实用为目的,还必须考虑考虑可靠性、寿命、外观工业设计、集成科学与非科学,在具体约束条件下融合形成整体的综合运用。这样的训练是很有意义的。

在智能车的开发过程中,各参赛队伍需要改装竞赛车模,完成智能巡线小车的制作。在此过程中需要学习嵌入式系统开发环境与在线编程方法、单片机接口电路设计,自行设计并实现识别引导黑线的硬件电路、电机的驱动电路、车速反馈电路、智能车舵机控制电路以及能使小车在不驶出赛道的前提下可能快速行驶的控制策略与软件算法。第一届“飞思卡尔”杯全国大学生智能汽车邀请赛,已于2006年8月21日在清华大学顺利结束。为了使更多的高校、更

第六届全国大学生智能汽车竞赛技术报告

多的大学生参与到这一活动中来,第二届“飞思卡尔”杯全国大学生智能汽车竞赛原则上由全国有自动化专业的理工类高等本科学校约270余所参赛,每个参赛学校限2个队;分五个赛区进行预赛,各分赛区的优胜队参加决赛。第三届“飞思卡尔”杯全国大学生智能汽车竞赛将参赛规模扩大到每校四个队伍,比赛的普及性进一步提高。第四届“飞思卡尔”杯全国大学生智能汽车竞赛和第三届一样每校四个队伍,但参加全国竞赛每个赛区每个组别只能有一个队伍。到了第五届“飞思卡尔”杯全国大学生智能汽车竞赛增加了电磁组的组别,每个学校参赛队伍也增加到六支。第七届“飞思卡尔”杯全国大学生智能汽车竞赛仍然采用上一年的赛制和组别,但黑线改为在赛道两侧,增加了比赛的观赏性、技术性和实际性。

智能车的开发与设计涉及到多个专业领域,对于大学生综合素质的培养,知识面的拓展和分析问题解决问题的能力的提高很有意义,并且有利于提高大学生的动手能力、激发创新能力。此外,制作这样一个高性能智能小车的过程,也是需要同组成员相互协作、紧密配合的过程,在此过程中,团队成员的交流与合作也显得尤为重要。

本次比赛分为光电、摄像头和电磁组三个赛题组,在车模中使用透镜成像进行道路检测方法属于摄像头赛题组,使用电磁感应原理检测交流电产生磁场变化的检测方法属于电磁赛题组,除此之外则属于光电赛题组。论文中主要介绍光电赛题组的智能车制作。

1.2系统方案介绍

在方案设计的过程中,我们参阅了很多兄弟院校的往届大赛技术报告,如清华大学、北京科技大学。在国内,他们对智能车研究起步的比较早,例如清华大学首创记忆算法、北京科技大学创先使用激光管。但是,基于本次大赛的比赛要求,即车在三次机会内只要完整地跑下一圈便计入成绩,所以不能像之前一样采取跑一圈停车的策略。由车手根据在现场调试和试跑时的状况,通过按键,适当改变参数。因此今年不能使用清华首创的记忆算法,对于LED组来说,提高小车的速度和稳定性,其实际问题是如何更早且更好的提取到赛道信息。所以今年我们采取的策略是激光传感器加上人工调参,以此来实现目标。

第一章引言1.3章节安排

本技术报告总共分为七个章节。

第一章节是引言,主要介绍研究背景、系统方案等。

第二章节是技术方案概要说明,主要内容是对整个技术方案的概述。

第三章节是机械系统设计说明,主要对小车的机械结构以及运动性能进行了分析,得出了一些小车在设计安装过程中应该要注意的问题。包括智能车前轮定位的调整、转向机构调整优化、后轮减速齿轮机构调整、其他机构的调整等。第四章节是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理、创新点和实现过程等。

第五章节是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。

第六章节是模型车的各项参数,包括车模基本尺寸,电路功耗以电容总容量等。第七章节是结论,对本模型车的特点、存在的问题、可行的改进措施等。

第二章技术方案概要说明

2.1智能车系统分析

在满足大赛要求的前提下,设计的智能小车应具有良好的自主道路识别能力和稳定性,并能以较快的速度行驶。因此,智能小车系统的设计主要包括以下两部分:

1、完成智能小车控制器的硬件电路设计,根据大赛要求,调整和改进智能车模的机械结构,最大限度的发挥小车的性能。

2、结合软件算法,使小车转向准确、稳定,能够安全通过各种弯道和十字交叉路口。

在保证智能车可靠运行的前提下,电路设计尽量简洁紧凑,以减轻系统负载,提高智能车的灵活性,同时应充分发挥创新原则,以简洁但功能完美为出发点,并以稳定性为首要前提,实现智能车快速运行。

作为能够自动识别道路运行的智能汽车,信息处理与控制算法至关重要,主要由运行在单片机中的控制软件完成。因此,控制软件的设计是智能车的核心环节。

2.2智能车系统硬件结构设计

经过分析整个智能车系统,可知系统完成的功能如图2.1所示。

图2.1系统硬件结构框图

第二章技术方案概要说明

其中MC9S12XS128是系统的核心部分。它负责接收赛道信息、小车速度等反馈信息,并对这些信息进行恰当的处理,形成合适的控制量来对舵机与驱动电机进行控制。舵机模块和电机驱动分别用于实现小车转向和驱动。

电源管理模块主要为单片机及路径识别电路、转向舵机、后轮驱动电路三大部分提供稳定的直流电源。

路径识别模块由S12的AD模块、传感器和外围电路组成。其功能是获取前方赛道的信息,以供S12作进一步分析处理。

速度检测模块由S12的增强型捕捉计数模块、传感器和外围电路组成,通过检测赛车的实时车速为赛车的车速控制提供控制量。

2.3智能车系统软件结构设计

如果说系统硬件对于智能车来说是它的骨架和躯体,那么软件算法就是它的思想。软件算法的优劣直接体现了智能车辆的“智能”高低。所以软件系统对于智能车来说至关重要。首先,赛车系统通过路径识别模块获取前方黑色引导线的信息,同时通过速度检测模块实时获取赛车的速度。利用连续路径识别算法求得赛车与黑线位置的偏差,接着采用P方法对舵机进行控制,根据检测到的实时车速,结合模糊控制策略对赛车速度进行恰当的控制调整,使赛车在符合比赛规则情况下沿赛道快速前进。赛车系统的软件流程如图所示。

图2.2系统控制流程图

第三章机械系统设计说明

智能小车的机械性能对于其行驶表现具有非常重要的影响,任何控制算法和软件程序都需要通过智能小车的机械结构来执行和实现。为使模型车在比赛中发挥出最佳性能,使其直线行驶稳定,入弯转向灵活,结合汽车理论相关知识对智能小车的运动特性进行分析,并据此对智能小车的底盘结构进行相应的调整和参数优化。

3.1智能车的整体结构

此次比赛选用的赛车车模采用1/10的仿真车模。赛车机械结构只使用竞赛提供车模的底盘部分及转向和驱动部分。控制采用前轮转向,后轮驱动方案。

具体车模数据如下:

表3-1车模基本尺寸参数

轴距197cm

前轮距124cm

后轮距136cm

车轮直径50cm

车长316mm

车宽172m

传动比18/76

第三章机械系统设计说明

3.2智能车运动学状态方程

在只考虑车辆的平面运动情况下,当转向时,车辆只做平面运动及平面旋转运动,如图3.2、3.3所示。

3.2

小车转向示意图

3.3转向平面图

由角速度的定义可知

2

r

V

w

T R

π

==

公式1 tan

L

R

α

=

公式2

第六届全国大学生智能汽车竞赛技术报告

可以将车辆的角速度ω表示如下:

t a n r v L ωα=公式3

其中,r v 为车辆后轮轴中心线速度,L 为车辆轴距,α为前轮转角。则小车方位偏差e θ为:

e θ=θωξ±=tan r v L α±θ

ξ公式4其中θξ为跟踪路径曲率变化对侧向偏差的影响,当跟踪路径为直线时其值为零。不考虑车辆侧滑时,车辆前轮轴中心处速度矢量f v 为:

f r v v L

ω=+×公式5则侧向偏差e

l cos sin e f f d l v e v θααξ=×?±公式6

其中d ξ表示路径曲率变化对侧向偏差变化率的影响。由公式4、公式6即构成状态变量为e l 及方向偏差α的赛车运动学状态方程:

10tan 100e e d r r l l v v e e L θθθξαξ?????????????=+±????????????????????

3.3智能车前轮定位参数的选择

为保证智能小车直线行驶稳定,转向轻便灵活并尽可能的减少轮胎磨损,需要对小车的前轮定位参数进行调整。小车的前轮定位参数主要包括:主销后倾角、主销内倾角、前轮外倾角和前轮前束。这四个参数反映了前轮、主销和前轴三者之

第三章机械系统设计说明

间在车架上的位置关系。

(1)主销后倾角

主销后倾角是指主销轴线与地面垂直线在汽车纵向平面内的夹角γ,如图3.4。主销后倾的作用是在车轮偏转后会产生一回正力矩,矫正车轮的偏转。后倾角γ越大,车速越高,车轮偏转后自动回正能力越强。但回正力过大,将会引起前轮回正过猛,加速前轮摆振,并导致转向沉重。通常后倾角值应设定在10--30。

模型车通过增减黄色垫片的数量来改变主销后倾角:每侧有4片垫片,前2后2,对应的后倾角为00;前1后3,后倾角为20--30;前0后4,后倾角为40--60。模型车转向灵活,可根据试验调试的结果,设定垫片按前1后3安装,将后倾角度设为30比较合适。

(2)主销内倾角

主销内倾角是指主销在汽车的横向平面内向倾斜一个β,即主销轴线与地面垂直线在汽车横向断面内的夹角,如图3.5。主销内倾角β也有使车轮自动回正的作用。当转向轮在外力作用下发生偏转时,由于主销内倾的原因,车轮连同整个汽车的前部将被抬起一定高度;当外力消失后,车轮就会在重力作用下恢复到原来的中间位置。另外,主销内倾还会使主销轴线延长线与路面的交点到车轮中心平面的距离减小,同时转向时路面作用在转向轮上的阻力力矩也会减小,从而可使转向操纵轻便,同时也减小了由于路面不平而从转向轮输出的力反馈。但其值不宜过小,即主销内倾角不宜过大,否则在转向时车轮主销偏转的过程中,轮胎与路面将产生较大的滑动,从而增加轮胎与路面间的摩擦阻力,不仅会使转向变得沉重,还将加速轮胎的磨损。通常汽车主销内倾角不大于80。

图3.5主销内倾角、前轮外倾角示意图

(3)前轮外倾角

第六届全国大学生智能汽车竞赛技术报告

通过车轮中心的汽车横向平面与车轮平面的交线与地面垂线之间的夹角α,称为“前轮外倾角”,如图3.5所示。轮胎呈现“八”字形张开时称为“负外倾”,而呈现“V”字形张开时称为“正外倾”。前轮外倾角一方面可以在汽车重载时减小或消除主销与衬套,轮毂与轴承等处的装配间隙,使车轮接近垂直路面滚动而滑动,同时减小转向阻力,使汽车转向轻便;另一方面还可以防止由于路面对车轮垂直反作用力的轴向分力压向轮毂外端的轴承,减小轴承及其锁紧螺母的载荷,从而增加这些零件的使用寿命,提高汽车的安全性。一般前轮外倾角为10左右。

模型车提供了序号为EX-19的配件来调节前轮外倾角:当所采用的配件上无数字4时前轮外倾角为00,当所采用的配件上有数字4时前轮外倾角约为10。由于本模型车主要用于竞速,在设计中必然要尽可能减轻重量,所以其底盘承重不大,且前轮外倾角只两档可调,故设定为00即可,关键是前轮前束要与之相匹配。

(4)前轮前束

当车轮有了外倾角后,在滚动时就类似于圆锥滚动,从而导致两侧车轮向外滚开。由于转向横拉杆和车桥的约束使车轮不可能向外滚开,车轮将在地面上出现边滚边向内滑移的现象,从而增加了轮胎的磨损。在安装车轮时,为消除车轮外倾带来的这种不良后果,可以使汽车两前轮的中心面不平行,并使两轮前边缘距离R 小于后边缘距离A,A-R之差称为“前轮前束”,如图3.6如示,一般前束值为1-12mm。像内八字样前端小后端大的称为“前束”,而像外八字一样后端小前端大的称为“后束”或“负前束”。

图3.6前轮前束示意图

模型车是由舵机带动左右横拉杆实现转向的。主销在垂直方向的位置确定后,改变左右横拉杆的长度即可改变前轮前束的大小。左杆短,可调范围为

第三章机械系统设计说明

10.8-18.1mm;右杆长,可调范围为29.2-37.6mm,由上述原理可知,前轮前束须与前轮外倾角相匹配,如前轮外倾角设定为0°,则前轮前束须为0mm或只有很小的前轮前束值。

第六届全国大学生智能汽车竞赛技术报告

3.4智能车转向机构调整优化

理想的转向模型,是指在轮胎不打滑时,忽略左右两侧轮胎由于受力不均产生的变形,忽略轮胎受重力影响下的变形时车辆的的转向建模。在这种理想的模型下,车体的转向半径可以计算得到。

图3.7智能车转向示意图

如图3.7,假设智能车系统为理想的转向模型,且其重心位于其几何中心。车轮满足转向原理,左右轮的轴线与后轮轴线这三条直线必然交于一点。

转向机构在车辆运行过程中有着非常重要的作用。合适的前桥和转向机构可以保证在车辆直线行驶过程中不会跑偏,能保证车辆行驶的方向稳定性;而在车辆转向时,合适的转向机构可以使车辆自行回到直线行驶状态,具有好的回正性。正是由于这些原因,转向系统优化设计成为智能车设计中机械结构部分的重点,直接关系到赛车能否顺利地完成比赛。在实际操作中,我们通过理论计算的方案进行优化,然后做出实际结构以验证理论数据,并在实际调试过程中不断改进。

在模型车制做过程中,赛车的转向是通过舵机带动左右横拉杆来实现的。转向舵机的转动速度和功率是一定,要想加快转向机构响应的速度,唯一的办法就是优化舵机的安装位置和其力矩延长杆的长度。由于功率是速度与力矩乘积的函数,过分追求速度,必然要损失力矩,力矩太小也会造成转向迟钝,因此设计时就要综合考虑转向机构响应速度与舵机力矩之间的关系,通过优化得到一个最佳的转向效果。经过最后的实际的参数设计计算,最后得出一套可以

第三章机械系统设计说明

稳定、高效工作的参数及机构。

如图3.8,我们最终设计的这套转向拉杆,我们综合考虑了速度与扭矩间的关系,并根据模型车底盘的具体结构,简化了安装方式,实现了预期目标。

图3.8转向连杆结构

3.5智能车后轮减速齿轮机构调整

模型车后轮采用RS-380SH电机驱动,电机轴与后轮轴之间的传动比为18:76(电机轴齿轮齿数为18,后轴传动齿数为76)。齿轮传动机构对车模的驱动能力有很大的影响。齿轮传动部分安装位置的不恰当,会大大增加电机驱动后轮的负载,会严重影响最终成绩。调整的原则是:两传动齿轮轴保持平行,齿轮间的配合间隙要合适,过松容易打坏齿轮,过紧又会增加传动阻力,浪费动力;传动部分要轻松、顺畅,不能有迟滞或周期性振动的现象。判断齿轮传动是否良好的依据是,听一下电机带动后轮空转时的声音。声音刺耳响亮,说明齿轮间的配合间隙过大,传动中有撞齿现象;声音闷而且有迟滞,则说明齿轮间的配合间隙过小,或者两齿轮轴不平行,电机负载变大。调整好的齿轮传动噪音很小,并且不会有碰撞类的杂音,后轮减速齿轮机构就基本上调整好了,动力传递十分流畅。

第六届全国大学生智能汽车竞赛技术报告

3.6其它机械结构的调整

另外,在模型车的机械结构方面还有很多可以改进的地方,比如说车轮、悬架、底盘、车身高度等。

模型车在高速的条件下(2.3m/s~3.5m/s),由于快速变化的加减速过程,使得模型车的轮胎与轮辋之间很容易发生相对位移,可能导致在加速时会损失部分驱动力。在实验中调试表明,赛车在高速下每跑完一圈,轮胎与轮辋之间通常会产生几个厘米的相对位移,严重影响了赛车的加速过程。为了解决这个问题,我们在实际调试过程中对车轮进行了粘胎处理,可以有效地防止由于轮胎与轮辋错位而引起的驱动力损失的情况。

此外,我们还对模型车的前后悬架弹簧的预紧力进行调节,选用不同弹性系统的弹簧等方法进行了改进,并且对车身高度,以及底盘的形状和质量、后轮的轮距等,都进行了相应的改进和调整,均取得了不错效果。

第四章硬件电路设计说明

本方案的电路设计采用模块化的设计思想。这种情况下可以有效地防止因为某一种电路的损坏而使得整个PCB板子无法利用的结果,同时还可以有计划的排列各个模块板子的位置,使得小车的重心更加的合适,更加的优化。

4.1S12单片机最小系统

以MC9S12XS128为核心的单片机系统的硬件电路设计主要包括以下几个部分:时钟电路、电源电路、复位电路、BDM接口[1]。其中各个部分的功能如下:

1、时钟电路给单片机提供一个外接的16MHz的石英晶振。

2、电源电路主要是给单片机提供5V电源。

3、复位电路在电压达到正常值时给单片机一个复位信号。

4、BDM接口让用户可以通过BDM头向单片机下载和调试程序。

如图4.1.1,本系统采用的是标准的MC9S12系列单片机的时钟电路,通过把一个16MHz的外部晶振接在单片机的外部晶振输入接口EXTAL和XTAL 上,然后利用MC9S12XS128内部的压控振荡器和锁相环(PLL)把这个频率提高到32MHz,作为单片机工作的内部总线时钟。

图4.1.1外部振荡电路

第六届全国大学生智能汽车竞赛技术报告

图4.1.2是PLL模块的滤波电路,VDDPLL引脚由单片机内部提供2.5V 电压。其中C24、C25和R2的值是根据晶振、REFDV寄存器和SYNR寄存器计算得出的。XFC实际上是压控振荡器(VCO)的电压控制端,通过锁相环电路编程,以数字方式锁定VCO的控制端电压。如果不加如图的滤波器,或电容、电阻的值取得不合适,VCO的控制端电压就会抖动,使整个系统工作不正常。

图4.1.2PLL的滤波电路

MC9S12系列的单片机内部使用3V电压,I/O端口和外部供电电压为5V。如图4.1.3,L4、C31、C32和C34构成的滤波电路可以改善系统的电磁兼容性,降低系统对电源的高频干扰。为了显示系统已经通电,在此加入指示灯电路,电阻R10是限流电阻。

图4.1.3电源电路

光电实验报告

长春理工大学 光电信息综合实验一实验总结 姓名:__________ 学号:S1******* 指导教师:__________ 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。 2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,弓I起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc)为+5V时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1 : 表光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 光敏电阻伏安特性实验数据 型号:G5528 电压 (U) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 照度 (Lx) 50 电流 (mA 0 0.05 0 .11 0. 17 0.2 4 0.29 0.35 0 .42 0. 48 0.5 4 0.6 100 电流 (mA 0 0.09 0 .19 0.: 28 0.3 8 0.48 0.58 0 .67 0. 77 0.8 7 0.95 150 电流 (mA 0 0.12 0 .24 0.: 37 0.4 9 0.62 0.74 0 |.87 0. 98 1.1 2 1.19 表2-2光敏电阻伏安特性实验数据 光敏电阻光照 特 光照度 (Lx) 20 40 60 80 电流mA 0.37 0.52 0.68 0.78 寺性实验数据 100 120 140 160 180 0.88 1.00 1.07 1.18 1.24

《典型光电成像器件电路设计》

《典型光电成像器件电路设计》 课程编号: 课程名称:典型光电成像器件电路设计——高压、选通电源设计 学分:1学时:1周 选修课程:模拟电子技术,电路原理 一、目的与任务 本课程目的是针对微光检测技术中常用的距离选通技术,设计适合像管供电的高压电源和带距离选通功能的电源,帮助测控技术与仪器、电子科学与技术(光电子方向)的学生掌握光电成像技术中供电电源的设计方法。 二、教学内容及学时分配 1.设计要求,高压电源和选通电源原理讲解(1天) 2.电源参数选择与仿真分析(1天) 3.硬件电路调试(2天) 4.实验结果验收(1天) 三、考核与成绩评定 考核:在1周的实验课中用1天时间进行2人一组的考核验收。 成绩根据3方面情况最终评定: 1.学生的实验操作情况 2.学生的实验报告完成情况 3.学生的实验出勤情况 成绩评定按百分制,验收考核占总成绩的40%,平时表现、实验报告占总成绩的40%,创新性占20%,60分为及格。 四、大纲说明 1.本大纲是根据我校电子科学与技术(光电子)、光电信息科学与工程、光电信息工程专业培养计划及其知识结构要求,并适当考虑专业特色而制定的。 2.在保证基本教学要求的前提下,教师可以根据实际情况,对内容进行适当的调整和删节。 3.本大纲适合光电类相关专业。 五、教材、参考书 选用教材:江月松.光电技术与实验[M].北京:北京理工大学出版社,2000.

参考书: [1]胡士凌,孔得人.光电电子技术[M].北京:北京理工大学出版社,1996. [2]童诗白,华成英.模拟电子技术基础(第三版)[M].北京:高等教育出版社出版社,2001. [3]白廷柱,金伟其.光电成像原理与技术[M].北京:北京理工大学出版社,2006. 编写教师:高昆 责任教授签字: 教学院长签字:

飞思卡尔智能汽车设计技术报告

第九届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:武汉科技大学队 伍名称:首安二队参赛 队员:韦天 肖杨吴光星带队 教师:章政 0敏

I

关于技术报告和研究论文使用授权的说明 本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

II

目录 第一章引言 (1) 1.1 概述 (1) 1.2 内容分布 (1) 第二章系统总体设计 (2) 2.1 设计概述 (3) 2.2 控制芯片的选择 (3) 2.3 线性 CCD 检测的基本原理 (3) 2.3 系统结极 (5) 第三章机械系统设计 (7) 3.1 底盘加固 (7) 3.2 轮胎处理 (7) 3.3 四轮定位 (8) 3.4 差速器的调整 (12) 3.5 舵机的安装 (13) 3.6 保护杆的安装 (15) 3.7 CCD的安装 (16) 3.8 编码器的安装 (17) 3.9 检测起跑线光电管及加速度计陀螺仪的安装 (18) 第四章硬件系统设计 (19) 4.1 最小系统版 (20) 4.2 电源模块 (21) 4.3 CCD模块 (22) 4.4 驱动桥模块 (23) 4.5 车身姿态检测模块 (24) 4.7 测速模块 (24) 4.8 OLED液晶屏及按键、拨码 (25) 第5章程序设计 (27)

光电阴极实验报告..

光电阴极实验报告 院系:电子工程与光电技术学院 专业:真空电子技术 班级: 09046201 姓名:李子龙(0904620114) 唐少拓(0904620119) 张伦(0904620124) 完成时间: 2013.1.10 指导老师:张俊举

实验一 光电阴极光谱响应测试 1. 实验目的 通过本实验,了解光电阴极工作原理,掌握相关实验器件的使用方式,学会测试光电阴极的光谱响应 实验原理 光电阴极的光谱响应,或者光谱响应特性,是阴极的光谱灵敏度随入射光谱的分布。具体来说,若照射到阴极面上的单色入射光的辐射功率为()λW ,阴极产生的光电流为()λI ,则阴极的光谱灵敏度为 将阴极对应入射光谱中每一单色光的光谱灵敏度连成一条曲线,便得到了光谱响应曲线。 本实验采用图2所示的实验装置,实验基本框图如图1。用单色仪对光源辐射进行分光,用光电阴极测量单色光,得到输出电流()λI ,根据表标定的光功率用公式) () ()(λλλW I S = 计算后得到光电阴极的光谱响应度,最后画出光谱响应曲线。 图1 光电阴极光谱响应度测试装置 2. 实验仪器简介 1. 由光源(氙灯、氘灯和溴钨灯) 2. 电源 3. 光栅单色仪 4. 光电流计 5. 工控机等组成

实验器件及其相关: a)光源 在进行光谱响应测试时,首先要选取合适的辐射源。本测试辐射源选用GY-9型氢氘灯(GY-10高压球形氙灯)和GY-1型溴钨灯,以获得相应范围的单色光,通过组合使用,能够在200~1600nm范围内有合适的光功率。实物如图3.1所示: 图2 测试所需光源及其电源外形图 氘灯/氙灯用来产生近紫外光谱,溴钨灯则产生可见及近红外范围内的光谱,测试时,根据测试要求选用其中的一种或几种。 b)光栅单色仪 光栅单色仪的作用是将复色光色散,从而得到光谱范围内的单色光,其突出的优点是波段范围宽广,在全波段色散均匀,单色光的波长可以达到非常精确的程度。本测试实验所采用的是北京赛凡光电公司的71SW301型光栅单色仪。实物如图3所示:

光电检测实验报告

光电检测试验报告 专业:应用物理学 姓名:叶长军 学号:10801030125 指导教师:王颖 实验时间:2011.4 重庆理工大学光电信息学院

实验一 光敏电阻特性实验 实验原理: 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻。光敏电阻采用梳 状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 内光电效应发生时,光敏电阻电导率的改变量为: p n p e n e σμμ?=???+??? ,e 为 电荷电量,p ?为空穴浓度的改变量,n ?为电子浓度的改变量,μ表示迁移率。当两端加上电压U 后,光电流为:ph A I U d σ=??? 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,表明 电阻值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。 图1-2光敏电阻的伏安特性曲线 图1-3 光敏电阻的光照特性曲线 实验仪器: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(做光照特性测试,由用户自备或选配) 实验步骤: 1. 测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表欧姆档测得的电阻值为 暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻R 亮,暗电阻 与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。 2. 光敏电阻的暗电流、亮电流、光电流 按照图1-5接线,分别在暗光及有光源照射下测出输出 电压暗和U 亮,电流L 暗=U 暗/R,亮电流L 亮=U 亮/R ,亮电流 与暗电流之差称为光电流,光电流越大则灵敏度越高。 3. 光敏电阻的伏安特性测试 按照上图接线,电源可从直流稳压电源+2~+12V 间选用, 每次在一定的光照条件下,测出当加在光敏电阻上电压 为 +2V ;+4V ;+6V ;+8V ;+10V ;+12V 时电阻R 两端的电压U R ,

光电效应实验报告

大学物理实验报告 学生:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出

金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有 大学物理实验报告 学生:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量

光电信息技术实验报告(DOCX 42页)

光电信息技术实验报告(DOCX 42页)

华中科技大学 实验课程学生实验报告 实验课程名称光电信息技术实验 专业班级光电1107班 学生姓名李悌泽 学号 u201115116 课程负责人陈晶田、黄鹰

目录 实验一阿贝原理实验 (3) 实验二激光平面干涉仪实验 (7) 实验三用原子力显微镜(AFM)进行纳米表面形貌分析10 实验四光电直读光谱仪实验 (14) 实验五光谱法物质成分分析实验 (20) 实验六光电透过率实验 (24) 实验七摄像机原理与视频图像叠加实验 (29) 实验八、光谱透过率实验 (33) 实验九红外报警器的设计与调试 (42)

实验一阿贝原理实验 一、实验目的 1.熟悉阿贝原理在光学测长仪器中的应用。 二、实验原理 1.阿贝比较原则: 此为万能工具显微镜的结构图,其特点是标准件与被测件轴线不在一条线上,而处于平行状况。产生的阿贝误差如下:

只有当导轨存在不直度误差,且标准件与被测件轴线不重合才产生阿贝误差。阿贝误差按垂直面、水平面分别计算。 在违反阿贝原则时,测量长度为l的工件引起的阿贝误差是总阿贝误差的l/L。为避免产生阿贝误差,在测量长度时,标准件轴线应安置在被测件轴线的延长线上。 2.阿贝测长仪 阿贝测长仪中,标准件轴线与被测件轴线为串联型式,无阿贝误差,为二阶误差。

三、实验内容 1.用万能工具显微镜进行测长实验 测量1角,5角硬币及圆形薄片的直径,用数字式计量光栅读数,每个对象测量10次,求算术平均值和均方根值。 实验步骤: 瞄准被测物体一端,在读数装置上读数,再瞄准物体另一端,在读书装置上再读一个数据,两次读数之差即为物体长度。 2.阿贝测长仪进行长度测量实验 采用传统目视法读数,实验步骤同上。 四、实验数据与分析 1.万能工具显微镜数据结果

飞思卡尔智能车竞赛光电组技术报告

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告 学校:中北大学 伍名称:ARES 赛队员:贺彦兴 王志强 雷鸿 队教师:闫晓燕甄国涌

关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:2014-09-15日

摘要 本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。软件上以经典的PID算法为主,辅以小规Bang-Bang 算法来控制智能车的转向和速度。在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅 助调试。关键字:智能车摄像头控制器算法。

目录 1绪论 (1) 1.1 竞赛背景 (1) 1.2国内外智能车辆发展状况 (1) 1.3 智能车大赛简介 (2) 1.4 第九届比赛规则简介 (2) 2智能车系统设计总述 (2) 2.1机械系统概述 (3) 2.2硬件系统概述 (5) 2.3软件系统概述 (6) 3智能车机械系统设计 (7) 3.1智能车的整体结构 (7) 3.2前轮定位 (7) 3.3智能车后轮减速齿轮机构调整 (8) 3.4传感器的安装 (8) 4智能车硬件系统设计 (8) 4.1XS128芯片介绍 (8) 4.2传感器板设计 (8) 4.2.1电磁传感器方案选择 (8) 4.2.2电源管理模 (9) 4.2.3电机驱动模块 (10) 4.2.4编码器 (11) 5智能车软件系统设 (11) 5.1程序概述 (11) 5.2采集传感器信息及处理 (11) 5.3计算赛道信息 (13) 5.4转向控制策略 (17) 5.5速度控制策略 (19) 6总结 (19)

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:专业班级:应用物理学111班班级编号:S008实验时间:13时 00 分第3周星期三座位号: 07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现 象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电 子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回 路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量, 如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。 按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号: 07 教师编号:T003成绩: 此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频 率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。 南昌大学物理实验报告 学生姓名:黄晨学号:59 专业班级:应用物理学111班班级编号:S008实验时间:13时 00 分第3周星期三座位号: 07 教师编号:T003成绩: 四、实验步骤 1.调整仪器,接好电源,按下光源按钮,调节透镜位置,让光汇聚到单色 仪的入射光窗口,用单色仪出光处的挡光片2挡住光电管窗口,调节单色仪 的螺旋测微器,即可在挡光片上观察到不同颜色的光。 2、用单色仪入口光窗口处的挡光片1挡住单色仪的入口,移开挡光片2,将 单色仪与光电管部分的黑色的链接套筒连接起来形成暗盒,将测量的放大器 “倍率”旋钮置于(10^-5),对检流计进行调零。 3、按下测量按钮借给光电管接上电压,电压表会有读数,此式检流计会有 相应的电流读数,此时所读得得即为光电管的暗电流。 4、旋转电压调节的旋钮,仔细记录从不同电压下的相应的暗电流。让出射

光电效应的应用

University 《近代物理实验》课程论文 光电效应的应用 学院: 专业: 学号: 学生姓名: 指导教师: 二〇一四年五月

光电效应的应用 1887年赫兹在做电磁波的发射与接收实验中,他发现当紫外光照射到接收电极的负极时,接收电极间更易于产生放电,即光生电。1900年普朗克在研究黑体辐射问题时,将能量不连续观点应用于光辐射,提出了“光量子”假说,从而给予了光电效应正确的理论解释。1905年爱因斯坦应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部实验结果。密立根经过十年左右艰苦的实验研究,于1916年发表论文证实了爱因斯坦方程的正确性,并精确地测定了普朗克常数。 光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。如今光电效应已经广泛地应用于现代科技及生产领域,利用光电效应制成的光电器件(如光电管、光电池、光电倍增管等)已广泛用于光电检测、光电控制、电视录像、信息采集和处理等多项现代技术中。 1.光控制电器 在工业制造上,大部分光电控制的设备都要用到光控制电器。它包括电磁继电器、光电管、放大电路和电源等部件。如下图所示,当有光照在光电管K上时,便产生了电流,经过放大器后,使电磁铁M磁化,从而把衔铁N吸住。而当K上没光照射时,光电管电路就没有了电流,这时M和N便会自动离开。在实际的应用中,为了使射出的光线是一束平行光,我们把光源装在平行光管内,这样的平行光管在工程上称为发射头。光电管(多数情况下是用光敏二极管)也装在一个光管内(管末端装有聚光透镜),这种管在工程上称为接受头。 利用光电管制成的光控制电器,可以用于自动控制,如自动计数、自动报警、自动跟踪等等。如记录生产线上的产品件数。我们把产品放在传送带上,跟着传送带一起运动。在传送带的两则分别装上发射头和接收头。发射头所发射的平行光正好射入接收头。这时从发射头发出的光线射入接收头时,电路中所产生的电流,经过放大器放大,使电磁铁M磁化,吸引衔铁N,这时计数器的齿轮被卡住,计数器不发生动作。每逢产品把光线挡住的时候,电路中的电流就会消失,电磁铁自动放开衔铁,使计数器的齿轮转过一齿。这样,计数就自 动地把产品的数目记录下来。]1[ 2.光电倍增管在电视图像中应用

飞思卡尔智能车光电组技术报告

第十届全国大学生“飞思卡尔”杯华 北赛 智能汽车竞赛 技术报告 目录 目录 (11) 第一章方案设计 (11) 1.1系统总体方案的选定 (11) 1.2系统总体方案的设计 (11) 1.3 小结 (22) 第二章智能汽车机械结构调整与优化 (33) 2.1智能汽车车体机械建模 (33) 2.2 智能汽车传感器的安装 (44) 2.2.1速度传感器的安装 (44) 1 / 26

2.2.2 线形CCD的安装 (55) 2.2.3车模倾角传感器 (55) 2.3重心高度调整 (55) 2.3.1 电路板的安装 (66) 2.3.2 电池安放 (66) 2.4 其他机械结构的调整 (66) 2.5 小结 (66) 第三章智能汽车硬件电路设计 (77) 3.1主控板设计 (77) 3.1.1电源管理模块 (77) 3.1.2 电机驱动模块 (88) 3.1.3 接口模块 (99) 3.2智能汽车传感器 (1010) 3.2.1 线性CCD传感器 (1010) 3.2.2 陀螺仪 (1010) 3.2.3 加速度传感器 ............................ 错误!未定义书签。错误!未定义书签。 3.2.3 编码器 (1111) 3.3 键盘,数码管....................................... 错误!未定义书签。错误!未定义书签。 3.4液晶屏 (1212) 3.5 小结 (1212) 第四章智能汽车控制软件设计 (1313) 4.1线性CCD传感器路径精确识别技术 (1313) 4.1.1新型传感器路径识别状态分析 (1414)

光电效应实验报告

光电效应 【实验目的】 (1)了解光电效应的规律,加深对光的量子性的认识。 (2)测量普朗克常量h。 【实验仪器】 ZKY-GD-4光电效应实验仪,其组成为:微电流放大器,光电管工作电源,光电管,滤色片,汞灯。如下图所示。 【实验原理】 光电效应的实验原理如图1所示。入射光照射到光电管阴极K上,产生的光电子在电场 的作用下向阳极A迁移构成光电流,改变外加电压,测量出光电流I的大小,即可得出光电管的伏安特性曲线。 光电效应的基本实验事实如下: (1)对应于某一频率,光电效应的I-关系如图2所示。从图中可见,对一定的频率, 有一电压U0,当≦时,电流为零,这个相对于阴极的负值的阳极电压U0,被称为截止电压。 (2)当≧后,I迅速增加,然后趋于饱和,饱和光电流IM的大小与入射光的强度P成

正比。 (3)对于不同频率的光,其截止电压的值不同,如图3所示。 (4)截止电压U0与频率的关系如图4所示,与成正比。当入射光频率低于某极限值 (随不同金属而异)时,不论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于,在开始照射后立即有光电子产生,所经过的时间至多为秒的数量级。 按照爱因斯坦的光量子理论,光能并不像电磁波理论所想象的那样,分布在波阵面上,而是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为的光子具有能量E = h,h为普朗克常数。当光子照射到金属表面上时,一次被金属中的电子全部吸收,而无需积累能量的时间。电子把这能量的一部分用来克服金属表面对它的吸引力,余下的就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程: (1) 式中,A为金属的逸出功,为光电子获得的初始动能。 由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低时也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电流才为零,此时有关系: (2) 阳极电位高于截止电压后,随着阳极电位的升高,阳极对阴极发射的电子的收集作用越强,光电流随之上升;当阳极电压高到一定程度,已把阴极发射的光电子几乎全收集到阳极,再增加时I不再变化,光电流出现饱和,饱和光电流的大小与入射光的强度P成正比。

生活中的光电系统实例

生活中的光电系统实例 ——《光电技术与实验》姓名:王泽颖学号:20080244 班级:01410801 光电产业的分类 关于光电产业的分类,目前没有统一的标准。根据国内外科技和产业界的一般看法,光电产业可划分为九类行业,即光电元器件、光电显示、光输入/输出、光存储、光通信、激光、光伏发电、半导体照明、光电周边产品(主要是光电产品专用制造设备等)。 北京光机电一体化产业基地 北京以位于通州区的北京经济技术开发区为主,建立光机电一体化产业基地。光机电一体化产业是北京市发展奥运经济的重点行业和主导产业之一,在加速推进建设光机电一体化基地的同时,重点发展数控机床及先进制造设备,激光加工设备;智能化仪器仪表及设备、机器人、印刷设备;新一代医用治疗诊断仪;和光电子器件;数码摄像机、数码投影机等;和微电子制造专用设备等。充分发挥京东方、清华紫光、联想和北大方正等一批知名企业的带动作用,尽快形成产业规模,满足国民经济和奥运会等体育赛事的需要。 生活中的光电系统应用实例——太阳能路灯 刚刚过去的这个暑假,因为每天要骑半小时车去北航那边学英语,所以路上有很多时间观察生活。在途中的一条比较宽敞,采光充足的马路上,有一列太阳能路灯。太阳能电池板几乎与正午时最强的光线垂直,以便采集到最多的光能。这便是光电转换的一个典型例子。太阳能路灯的主要原理是光伏发电。 光伏发电的工作原理 光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。光伏发电的优点是少受地域限制,因为阳光普照大地

全息照相实验实验报告(全面)

物理与光电工程学院 光电信息技术实验报告 姓名:张皓景 学号:20111359069 班级:光信息科学与技术专业2011级2班实验名称:全息照相实验 任课教师:裴世鑫

一、实验目的 1.了解光学全息照相的基本原理及其主要特点。 2.学习全息照相的拍摄方法和实验技术。 3.了解全息照相再现物像的性质、观察方法。 二、实验仪器 三、实验装置示意图 5底片 图1 全息照相光路 四、实验原理 全息照相是一种二步成像的照相技术。第一步采用相干光照明,利用干涉原理,把物体

在感光材料(全息干版)处的光波波前纪录下来,称为全息图。第二步利用衍射原理,按一定条件用光照射全息图,原先被纪录的物体光波的波前,就会重新激活出来在全息图后继续传播,就像原物仍在原位发出的一样。需要注意的是我们看到的“物”并不是实际物体,而是与原物完全相同的一个三维像。 1.全息照相的纪录——光的干涉 由光的波动理论知道,光波是电磁波。一列单色波可表示为: 2cos(t )r x A πω?λ=+- (1) 式中,A 为振幅,ω 为圆频率,λ 为波长,φ 为波源的初相位。 一个实际物体发射或反射的光波比较复杂,但是一般可以看成是由许多不同频率的单色光波的叠加: 12cos(t )n i i i i i r x A πω?λ==+- ∑ (2) 因此,任何一定频率的光波都包含着振幅(A )和位相(ωt+φ-2πr/λ)两大信息。 全息照相的一种实验装置的光路如图(1)所示。激光器射出的激光束通过分光板分成两束,一束经透镜扩束后照射到被摄物体上,再经物体表面反射(或透射)后照射到感光底片(全息干版)上,这部分光叫物光。另一束经反射镜改变光路,再由透镜扩大后直接投射到全息干版上,这部分光称为参考光。由于激光是相干光,物光和参考光在全息底片上叠加,形成干涉条纹。因为从被摄物体上各点反射出来的物光,在振幅上和相位上都不相同,所以底片上各处的干涉条纹也不相同。强度不同使条纹明暗程度不同,相位不同使条纹的密度、形状不同。因此,被摄物体反射光中的全部信息都以不同明暗程度和不同疏密分布的干涉条纹形式记录下来,经显影、定影等处理后,就得到一张全息照片。这种全息照片和普通照片截然不同,一般在全息照片上只有通过高倍显微镜才能看到明暗程度不同、疏密程度不同的干涉条纹。由于干涉条纹密度很高,所以要求记录介质有较高的分辨率,通常达1000 条线/毫米以上,故不能用普通照相底片拍摄全息图。 2.全息照相的再现——光的衍射 由于全息照相在感光板上纪录的不是被摄物的直接形象,而是复杂的干涉条纹,因此全息照片实际上相当于一个衍射光栅,物象再现的过程实际是光的衍射现象。要看到被摄物体的像,必须用一束同参考光的波长和传播方向完全相同的光束照射全息照片,这束光叫再现光。这样在原先拍摄时放置物体的方向上就能看到与原物形象完全一样的立体虚像。如图2 所示把拍摄好的全息底片放回原光路中,用参考光波照射全息片时,经过底片衍射后有三部分光波射出。 0 级衍射光——它是入射再现光波的衰减。 +1 级衍射光——它是发散光,将形成一个虚像。如果此光波被观察者的眼睛接收,就等于接收了原被摄物发出的光波,因而能看到原物体的再现像。

-光电定向实验报告

光电定向实验 李康华 (哈尔滨工业大学威海校区光电科学系,威海264209) 摘要:采用四象限探测器作为光电定向实验,学习四象限探测器的工作原理和特性,同时掌握四象限探测器定向的工作方法。实验中,四象限探测器的四个限区验证了具有完全一样的光学特性,同时四象限的定向具有较良好的线性关系。 关键词:光电定向四象限探测器 1、引言 随着光电技术的发展,光电探测的应用也越来越广泛,其中光电定向作为光电子检测技术的重要组成部分,是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域得到了广泛的应用。光电定向方式有扫描式、调制盘式和四象限式,前两种用于连续信号工作方式,后一种用于脉冲信号工作方式。,由于四象限光电探测器能够探测光斑中心在四象限工作平面的位置,因此在激光准直、激光通信、激光制导等领域得到了广泛的应用[1]. 本光电定向实验装置采用激光器作为光源,四象限探测器作为光电探测接收器,采用目前应用最广泛的一种光电定向方式现直观,快速定位跟踪目标方位。定向原理由两种方式完成:1、硬件模拟定向,通过模拟电路进行坐标运算,运算结果通过数字表头进行显示,从而显示出定向坐标;2、软件数字定向,通过AD 转换电路对四个象限的输出数据进行采集处理,经过单片机运算处理,将数据送至电脑,由上位机软件实时显示定向结果。 本实验系统是根据光学雷达和光学制导的原理而设计的,利用其光电系统可以直接、间接地测定目标的方向。采用650nm激光器做光源,用四象限探测器显示光源方向和强度。通过实验,可以掌握四象限光电探测器原理,并观测到红外可见光辐射到四象限探测器上的位置和强度变化。并利用实验仪进行设计性实验等内容,将光学定向应用到各领域中[2]。 2、实验原理 2.1、系统介绍 光电定向是指用光学系统来测定目标的方位,在实际应用中具有精度高、价格低、便于自动控制和操作方便的特点,因此在光电准直、光电自动跟踪、光电制导和光电测距等各个技术领域得到了广泛的应用。采用激光器作为光源,四象限探测器作为光电探测接收器,根据电子和差式原理,实现可以直观、快速观测定位跟踪目标方位的光电定向装置,是目前应用最广泛的一种光电定向方式。该

电磁组-华南理工大学-Crusader技术报告

第七届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:华南理工大学 队伍名称:Crusader 参赛队员:施尚军 陈迪 王艺霖 带队老师:陈安

关于技术报告和研究论文使用授权的说明 本人完全了解第七届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

目录 第一章引言 (1) 1.1 概述 (1) 1.2 系统框架图及车模 (1) 第二章硬件设计 (3) 2.1 电源模块 (3) 2.2 K10最小系统模块 (4) 2.2.1 电源稳压电路 (4) 2.2.2 J-TAG调试接口 (4) 2.2.3 单片机外部接口 (5) 2.2.4 其他外围电路 (5) 2.3 加速度及陀螺仪模块 (6) 2.4 电磁传感器运放电路 (7) 2.5 电机驱动模块 (8) 2.6 速度检测模块 (9) 2.7 调试模块 (10) 2.7.1 无线调试模块 (10) 2.7.2 液晶调试模块 (10) 2.7.3 拨码开关 (11) 第三章软件设计 (12) 3.1 程序流程图 (12) 3.2 自平衡环节 (12) 3.3 赛道检测 (15) 3.4 软件滤波 (17) 3.5 PID控速 (18)

3.6 上位机分析数据 (19) 第四章车模主要技术参数 (21) 第五章结论 (22) 参考文献 (23)

光电效应实验报告

佛山科学技术学院 实验报告 课程名称实验项目 专业班级姓名学号 指导教师成绩日期年月日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面 即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫 光电子,由光子形成的电流叫光电流,使电子逸出某种金属表 面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD为光电管,它 是一个抽成真空的玻璃管,管内有两个金属电极,K为光电管阴 极,A为光电管阳极;G为微电流计;V为电压表;R为滑线变 阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A迁移 形成光电流,由微电流计G可以检测光电流的大小。调节R可使A、K之间获得连续变化的电压AK U,改变 AK U,测量出光电流I的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。 图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的 AK -I U关系如图2(a)所示。从图中可见,对一定的频率,有一 图1 光电效应实验示意图

实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题

光电课程设计报告

课程设计总结报告 课程名称:《光电技术》课程设计学生姓名:汤备 系别:物理与电子学院专业:电子科学与技术指导教师:徐代升 2010年07 月02日

目录 一、设计任务书 (3) 1、课题 (3) 2、目的 (3) 3、设计要求 (3) 二、实验仪器 (3) 三、设计框图及整体概述 (4) 四、各单元电路的设计方案及原理说明 (4) NE定时器构成多谐振荡器作调制电源 (5) 1、用555 NE电路结构 (5) (1)555 NE定时器组成的多谐振荡器 (5) (2)由555 (3)发射端电路 (6) LF放大器构成接收放大电路 (7) 2、用353 (1)光放大器 (7) (2)光比较放大器 (7) 五、调试过程及结果 (8) 1、调试的过程及体会 (8) 2、调试结果 (9) 六、设计、安装及调试中的体会 (9) 七、对本次课程设计的意见及建议 (9) 八、参考文献 (10) 九、附录 (10) 1、整体电路图 (10) 2、课程设计实物图 (10) 3、元器件清单 (11)

一、设计任务书 1、课题 光电报警系统设计与实现。 2、目的 本课程设计的基本目的在于巩固电子技术、光电技术、感测技术以及传感器原理等方面的理论知识,从系统角度出发,培养综合运用理论知识解决实际问题的能力,并养成严谨务实的工作作风。通过个人收集资料,系统设计,电路设计、安装与调试,课程设计报告撰写等环节,初步掌握光电系统设计方法和研发流程,逐步熟悉开展工程实践的程序和方法。 3、设计要求 (1)基本要求 NE构成占空比为0.5多谐振荡器作发光二极管的调制电源,并对参用555 LM构成比较放大器进行报警电路设计;画出所数选择进行分析说明;选用324 做实验的全部电路图,并注明参数;记录调试完成后示波器输出的各测量点电压波形。 (2)扩展要求(选做) 分析影响作用距离的因素,提出提高作用距离的措施;设想光电报警系统的应用场合,并根据不同应用提出相应电路的设计方案。如需要闪烁报警,电路如何设计? 二、实验仪器 多功能面包板………………………………………………………………1块TDS.60MHz.1Gs s双通道数字存储波示器………………………1台1002 YB A A直流稳压电源…………………………………………………1台 17333 万用表………………………………………………………………………1台

第十一届智能车技术报告_上海交通大学

第十一届“恩智浦”杯全国大学生 智能汽车竞赛 技术报告 学校:上海交通大学 队伍名称:思源致远 参赛队员:张兆瑞 郭恒 于欣禾 带队教师:王冰 王春香

目录 目录.........................................................................................................................................V 第一章引言 (2) 1.1摘要 (2) 1.2章节安排 (2) 第二章整体方案设计 (3) 2.1车体结构 (3) 2.2硬件电路 (3) 2.3控制算法 (3) 第三章机械结构 (4) 3.1车模重心调节 (4) 3.2编码器安装 (4) 第四章电路设计 (5) 4.1总述 (5) 4.2电源模块 (5) 4.3主控模块 (6) 4.4驱动模块 (6) 4.5PCB图绘制 (7) 第五章算法设计 (8) 5.1概述 (8) 5.2赛道识别算法 (8) 5.3速度控制算法 (8) 第六章总结 (10) 第七章主要技术参数 (11)

第一章引言 1.1摘要 全国大学生智能汽车竞赛至今已举办十届,通过十年间全国各地参赛队员的不断探索,较为传统的光电组已经形成了一套较为完整的体系,各类识别及控制算法均已较为成熟。 本设计为“恩智浦”杯第十一届全国大学生智能汽车竞赛的循迹行驶的方案,赛题组别为光电组。本文主要介绍了从方案设计到硬件制作最后控制算法实现的过程,整个系统涉及硬件电路设计、控制方案、整车机械架构等多个方面。最后通过长期的算法改进及参数调试测试了方案的可行性,并提升了控制算法的鲁棒性及整套系统的稳定性。 1.2章节安排 在本文中,将详细介绍机械设计、硬件电路及软件设计的调试与实现过程。其中机械设计包括重心调节以及各部分的安装等影响,硬件电路则包括各个子模块的功能、设计与实现。而算法部分则系统的讲述了车模信息的采集、路径处理算法、舵机和电机控制策略等。 其中,第一章是讲述了智能车竞赛的背景和本文章节安排;第二章讲述了车模的整体设计;第三章分析硬件结构对于小车的影响;第四章是从各模块出发,详细讲述了硬件电路各部分功能;第五章讲述了车模的软件算法设计从基础训先控制和速度算法控制两个方面;第六章项目总结;第七章是车模的主要技术参数。

相关主题
文本预览
相关文档 最新文档