当前位置:文档之家› 实验用双管显微镜测量表面粗糙度

实验用双管显微镜测量表面粗糙度

实验用双管显微镜测量表面粗糙度
实验用双管显微镜测量表面粗糙度

实验二 用双管显微镜测量表面粗糙度

一、实验目的

1. 了解用双管显微镜测量表面粗糙度的原理和方法。

2. 加深对粗糙度评定参数轮廓最大高度Rz 的理解。

二、实验内容 用双管显微镜测量表面粗糙度的Rz 值。

三、测量原理及计量器具说明

参看图1,轮廓最大高度Rz 是指在取样长度lr 内,在一个取样长度范围内,最大轮廓

峰高Rp 与最大轮廓谷深Rv 之和称之为轮廓最大高度 。即 Rz = Rp + Rv

图1 图2 双管显微镜能测量80~1μm 的粗糙度,用参数Rz 来评定。双管显微镜的外形如图2

所示。它由底座1、工作台2、观察光管3、投射光管11、支臂7和立柱8等几部分组成。

双管显微镜是利用光切原理来测量表面粗糙度的,如图3所示。被测表面为P 1、P 2阶梯表

面,当一平行光束从450方向投射到阶梯表面上时,就被折成S 1和S 2两段。从垂直于光束

的方向上就可在显微镜内看到S 1和S 2两段光带的放大象1

S ′和2S ′。同样,S 1和S 2之间距离h 也被放大为1

S ′和2S ′之间的距离1h ′。通过测量和计算,可求得被测表面的不平度高度 h 。 图4为双管显微镜的光学系统图。由光源1发出的光,经聚光镜2、狭缝3、物镜4以

450方向投射到被测工件表面上。调整仪器使反射光束进入与投射光管垂直的观察光管内,

经物镜5成象在目镜分划板上,通过目镜可观察到凹凸不平的光带(图5 b )。光带边缘即工

件表面上被照亮了的h 1的放大轮廓象为h 1′,测量亮带边缘的宽度h 1′,可求出被测表面

的不平度高度h 1:1h =1h cos450=N h ′1cos450,式中 N —物镜放大倍数。

图 3 图 4

为了测量和计算方便,测微目镜中十字线的移动方向(图5a )和被测量光带边缘宽度h 1′成450斜角(图5b ),故目镜测微器刻度套筒上读数值h 1′与不平度高度的关系为:

1h ′′=020145

cos 45cos Nh h =′,所以h =N h N h 245cos 1021″=″,式中,N 21=C ,C 为刻度套筒的分度值或称为换算系数,它与投射角α、目镜测微器的结构和物镜放大倍数有关。

图 5(a) 图 5 (b)

四、测量步骤

1.微观不平度十点高度Rz 的测量

(1)根据被测工件表面粗糙度的要求,按表1选择合适的物镜组,分别安装在投射光管和观察光管的下端。

(2)接通电源。

(3)擦净被测工件,把它安放在工作台上,并使被测表面的切削痕迹的方向与光带垂直。当测量圆柱形工件时,应将工件置于V 型块上。

表1 物镜放大倍数N 总放大倍数 视场直径mm 物镜工作距离mm 测 量 范 围Rz μm

7X 60X 2.5 17.8 10—80

14X 120X 1.3 6.8 3.2—10

30X 260X 0.6 1.6 1.6—6.3

60X 520X 0.3 0.65

0.8—3.2 (4)粗调节:参看图2,用手托住支臂7,松开锁紧螺钉9,缓慢旋转支臂调节螺母10,使支臂7上下移动,直到目镜中观察到绿色光带和表面轮廓不平度的影象(图5b )。然后,将螺钉9固紧。要注意防止物镜与工件表面相碰,以免损坏物镜组。

(5)细调节:缓慢而往复转动调节手轮6,调焦环12和调节螺钉13,使目镜中光带最狭窄,轮廓影象最清晰并位于视场的中央。

(6)松开螺钉5,转动目镜测微器4,使目镜中十字线的一根线与光带轮廓中心线大致平行(此线代替平行于轮廓中线的直线)。然后,将螺钉5固紧。

(7)根据被测表面粗糙度级别,按国标GB1031—68规定选取取样长度和评定长度。

(8)旋转目镜测微器的刻度套筒,使目镜中十字线的一根线与光带轮廓一边的峰(或谷)相切,如图5b 实线所示,并从测微器读出被测表面的峰(或谷)的数值。在取样长度范围内测出最高点(最高的峰)和最低点(最低的谷)的数值。然后计算出Rz 的数值。

(9)纵向移动工作台,在测量范围长度内,共测出n (n 一般取5)个取样长度的Rz 值,取它们的平均值作为被测表面的轮廓最大高度。按下式计算:

n Rzi Rz n i ∑==1(平均)

2.单峰平均间距S 的测量

用测微目镜(图5b )中垂直线,对准光带轮廓的第一个峰,从工作台的纵向移动千分尺,读取第一个读数S1。向移动工作台,在取样长度范围内,用垂直线对准光带轮廓的第n 个单峰,从纵向千分尺上,读出第n 个单峰的读数Sn 。单峰平均间距S 按下式计算:

1

1??=?n S S S n n 根据上述计算结果,判断被测表面粗糙度Rz 值和S 值的适用性。

附:目镜测微器分度值C 的确定。

由前述可知,目镜测微器套筒上每一格刻度间距所代表的实际表面不平度高度的数值(分度值)与物镜放大倍率有关。由于仪器生产过程中的加工和装配误差,以及仪器在使用过程中可能产生的误差,会使物镜的实际倍率与表1所列的公称值之间有某些差异。因此,仪器在投入使用时以及经过较长时间的使用之后,或者在调修重新安装之后,要用玻璃标准

刻度尺来确定分度值C ,即确定每一格刻度间距所代表的不平度高度的实际数值。确定方法如下:

(1) 将玻璃标准刻度尺置于工作台上,

调节显微镜的焦距,并移动标准刻度尺,使在

目镜视场内能看到清晰的刻度尺刻线(图6)。

(2) 参看图2,松开螺钉5,转动目镜

测微器4,使十字线交点移动方向与刻度尺象

平行,然后固紧螺钉5。

(3)按表2选定标准刻度尺线格数Z ,

将十字线焦点移至与某刻线重合(图6中实 图 6

线位置),读出第一次读数n 1。然后,将十字线焦点移动Z 格(图6中虚线位置),读出第二次读数n 2,两次读数差为:A =12n n ?

表2 物镜标称倍率N

7 X 10X 30X 60X 标准刻度尺刻线格数Z 100 50 30

20 (4)计算测微器刻度套筒上一格刻度间距所代表的实际被测值(即分度值)C :

C =A

TZ 2,式中 T ——标准刻度尺的刻度间距(10μm )。 把从目镜测微器测得的十点读数的平均值h //乘上C 值,即可求得Rz 值:Rz =Ch //

思 考 题

1 . 为什么只测量光带一边的最高点(峰)和最低点(谷)?

2. 测量表面粗糙度还有哪些方法?其应用范围如何?

3. 用双管显微镜测量表面粗糙度为什么要确定分度值C ?如何确定?

光学显微镜的结构与使用方法

光学显微镜的结构与使用方法 【目的要求】 1、熟悉光学显微镜的主要构造及其性能。 2、掌握低倍镜及高倍镜的使用方法。 3、初步掌握油镜的使用方法。 4、了解光学显微镜的维护方法。 【实验原理】 光学显微镜(light microscope)是生物科学和医学研究领域常用的仪器,它在细胞生物学、组织学、病理学、微生物学及其他有关学科的教学研究工作中有着极为广泛的用途,是研究人体及其他生物机体组织和细胞结构强有力的工具。 光学显微镜简称光镜,是利用光线照明使微小物体形成放大影像的仪器。目前使用的光镜种类繁多,外形和结构差别较大,有些类型的光镜有其特殊的用途,如暗视野显微镜、荧光显微镜、相差显微镜,倒置显微镜等,但其基本的构造和工作原理是相似的。一台普通光镜主要由机械系统和光学系统两部分构成,而光学系统则主要包括光源、反光镜、聚光器、物镜和目镜等部件。 光镜是如何使微小物体放大的呢?物镜和目镜的结构虽然比较复杂,但它们的作用都是相当于一个凸透镜,由于被检标本是放在物镜下方的1~2倍焦距之间的,上方形成一倒立的放大实相,该实相正好位于目镜的下焦点(焦平面)之内,目镜进一步将它放大成一个虚像,通过调焦可使虚像落在眼睛的明视距离处,在视网膜上形成一个直立的实像。显微镜中被放大的倒立虚像与视网膜上直立的实像是相吻合的,该虚像看起来好像在离眼睛25cm处。 分辨力是光镜的主要性能指示。所谓分辨力(resolving power)也称为辨率或分辨本领,是指显微镜或人眼在25cm的明视距离处,能清楚地分辨被检物体细微结构最小间隔的能力,即分辨出标本上相互接近的两点间的最小距离的能力。据测定,人眼的分辨力约为100 μm。显微镜的分辨力由物镜的分辨力决定,物镜的分辨力就是显微镜的分辨力,而目镜与显微镜的分辨力无关。光镜的分辨力(R)(R值越小,分辨率越高)可以下式计算: 这里n为聚光镜与物镜之间介质的折射率(空气为1、油为1.5); 为标本对物镜镜口张角的半角,sin的最大值为1; 为照明光源的波长(白光约为0.5m)。放大率或放大倍数是光镜性能的另一重要参数,一台显微镜的总放大倍数等于目镜放大倍数与物镜放大倍数的乘积。 一、光学显微镜的基本构造及功能 (一)机械部分 1、镜筒:为安装在光镜最上方或镜臂前方的圆筒状结构,其上端装有目镜,下端与物镜转换器相连。根据镜筒的数目,光镜可分为单筒式或双筒式两类。单筒光镜又分为直立式和倾斜式两种。而双筒式光镜的镜筒均为倾斜的。镜筒直立式光镜的目镜与物镜的中心线互成45度角,在其镜筒中装有能使光线折转45度的棱镜。

表面粗糙度定义与检测

第五章表面粗糙度及其检测 学时:4 课次:2 目的要求: 1.了解表面粗糙度的实质及对零件使用性能的影响。 2.掌握表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.掌握表面粗糙度的标注方法。 4.初步掌握表面粗糙度的选用方法。 5.了解表面粗糙度的测量方法的原理。 重点内容: 1.表面粗糙度的定义及对零件使用性能的影响。 2.表面粗糙度的评定参数(重点是轮廓的幅度参数)的含义及应用场合。 3.表面粗糙度的标注方法。 4.表面粗糙度的选用方法。 5.表面粗糙度的测量方法 难点内容: 表面粗糙度的选用方法。 教学方法:讲+实验 教学内容:(祥见教案) 一、基本概念 1.零件表面的几何形状误差分为三类: (1)表面粗糙度:零件表面峰谷波距<1mm。属微观误差。 (2)表面波纹度:零件表面峰谷波距在1~10mm。 (3)形状公差:零件表面峰谷波距>10mm。属宏观误差。 图5-1 零件的截面轮廓形状 2.表面粗糙度对零件质量的影响: (1)影响零件的耐磨性、强度和抗腐蚀性等。 (2)影响零件的配合稳定性。 (3)影响零件的接触刚度、密封性、产品外观及表面反射能力等。 二.表面粗糙度的基本术语

1、取样长度lr : 取样长度是在测量表面粗糙度时所取的一段与轮廓总的走向一致的长度。 规定:取样长度范围内至少包含五个以上的轮廓峰和谷如图5-2所示。 图5-2 取样长度、评定长度和轮廓中线 1.评定长度ln : 评定长度是指评定表面粗糙度所需的一段长度。 规定:国家标准推荐ln = 5lr ,对均匀性好的表面,可选ln > 5lr, 对均匀性较差的表面,可选ln < 5lr 。 2.中线: 中线是指用以评定表面粗糙度参数的一条基准线。有以列两种: (1)轮廓的最小二乘中线 在取样长度内,使轮廓线上各点的纵坐标值Z (x )的平方和 为最小,如图5-2 a 所示。 (2)轮廓的算术平均中线 在取样长度内,将实际轮廓划分为上下两部分,且使上下面 积相等的直线。如图5-2 b 所示。 三.表面粗糙度的评定参数 国家标准GB/T3505—2000规定的评定表面粗糙度的参数有:幅度参数2个,间距参数1个,曲线和相关参数1个,其中幅度参数是主要的。 1、轮廓的幅度参数 (1) 轮廓的算术平均偏差Ra 在一个取样长度内,纵坐标Z (x )绝对值的算术平均值,如图5-3a 所示。 Ra 的数学表达式为: Ra = lr 1 lr x Z 0)(dx 测得的Ra 值越大,则表面越粗糙。一般用电动轮廓仪进行测量。

一显微镜的构造及使用方法

实验一显微镜的构造及使用方法 一、目的要求 1.了解显微镜的构造、性能及成像原理。 2.掌握显微镜的正确适用及维护方法。 二、实验器材 1.显微镜、纱布、绸布 2.酵母菌示教标本 三、普通光学显微镜简介 微生物的最显著的特点就是个体微小,必须借助显微镜才能观察到它们的个体形态和细胞结构。熟悉显微镜并掌握其操作技术是研究微生物不可缺少的手段。 显微镜可分为电子显微镜和光学显微镜两大类。光学显微镜包括:明视野显微镜、暗视野显微镜、相差显微镜、偏光显微镜、荧光显微镜、立体显微镜等。其中明视野显微镜为最常用普通光学显微镜,其它显微镜都是在此基础上发展而来的,基本结构相同,只是在某些部分作了一些改变。明视野显微镜简称显微镜。 (一)显微镜的构造 普通光学显微镜的构造可以分为机械和光学系统两大部分。 图1-1 显微镜构造 1.目镜 2.镜筒 3. 转换器 4. 物镜 5. 载物台 6. 聚光器 7. 虹彩光圈 8. 聚光镜调节钮9.反光镜10. 底座11. 镜臂12. 标本片移动钮 13. 细调焦旋钮14. 粗调焦旋钮15.电源开关16.光亮调节钮17.光源 1.机械系统: (1)镜座Base:在显微镜的底部,呈马蹄形、长方形、三角形等。 (2)镜臂Arm:连接镜座和镜筒之间的部分,呈圆弧形,作为移动显微镜时的握持部分。 (3)镜筒Tube:位于镜臂上端的空心圆筒,是光线的通道。镜筒的上端可插入接目镜,下面可与转换器相连接。镜筒的长度一般为160mm。显微镜分为直筒式和斜筒式; 有单筒式的,也有双筒式的。 (4)旋转器Nosepiece:位于镜筒下端,是一个可以旋转的圆盘。有3~4个孔,用于安

练习使用光学显微镜

练习使用光学显微镜 蔡清柑 1、教学目标 ①知识目标:正确说明显微镜的结构与功能 ②能力目标:能独立、规范地使用显微镜,能观察到清晰的物像;在认识、使用显微镜的过程中发现问题,并尝试解决问题; ③情感目标:认同显微镜的规范操作方法,养成爱护显微镜的习惯,初步形成实事求是的科学态度。 2、教学重点、难点的分析: ①教学重点显微镜的使用方法。 ②教学难点规范使用显微镜,并观察到物象。 3、课前准备 教师:准备显微镜,并逐个检查(准备两个不同倍数的目镜);两种标本(写有“上”字的玻片;永久装片),纱布,显微镜的使用课件;课前每班培训几名学生,以便课上帮助教师辅导其他学生。 4、教学程序 4.1导入新课复习显微镜的结构名称及其用途。(让学生指着显微镜说出结构名称及其用途)(展示图片:细胞图)让学生了解细胞非常小(提示图中物象之所以看的很清楚是被放大了百倍以上)而且形状各异。应该要会使用显微镜。 4.2新课过程 1、认识材料和用具引导学生观察实验桌上显微镜、玻片标本、擦镜纸、纱布等。

2、取镜和安放右手握,左手托;略偏左,安目镜。指导学生看书35页及课件展示:取镜和安放。强调安放目镜时,手指不要触摸镜头,对学生进行爱护显微镜的教育。 3、显微镜的构造学生四人一组,看书对照实物回顾显微镜各部分名称。 4、显微镜的使用教师对学生的回答进行鼓励,引出显微镜的使用。介绍两种观察标本: (1)写有“上”字的玻片;(2)永久装片 5、对光要求学生先看书,然后指导学生动手观察。按照先看到一个白亮的视野→放入标本→-看到清晰像的顺序。 (1)低倍物镜对准通光孔。(2)左眼看,右眼睁。(注:两眼都睁开)(3)转动反光镜,看到明亮视野。(注:双手转动反光镜) 6、观察学生边看书或课件展示自学边操作显微镜进行观察。 (1)标本放在载物台上,压住,正对通光孔。 (2)镜筒先下降,直到接近标本。 (3)左眼注视目镜,使镜筒缓缓上升,直到看清物像。 7、强调 ⑴用低倍物镜(4×,即最短的物镜)对准通光孔。 ⑵转动转换器的手法要正确,对学生进行爱护显微镜的教育。 ⑶镜筒先下降后上升,镜筒下降时,眼睛一定要看着物镜,以免压碎标本。 ⑷左眼看目镜,右眼睁开是为了画图。引导学生继续观察。 8、讨论并回答问题: ⑴视野中“上”字是否倒置,其物像比实际大小放大了多少倍? ⑵若视野中“上”字位于左上方,怎样操作才能将其移至视野中央? ⑶物像放大倍数越大,视野会越暗还是越亮? ⑷物像放大倍数越大,视野中看到的细胞数目越多还是越少?

试验三表面粗糙度测量

实验三 表面粗糙度测量 实验3—1 用双管显微镜测量表面粗糙度 一、实验目的 1. 了解用双管显微镜测量表面粗糙度的原理和方法。 2. 加深对粗糙度评定参数轮廓最大高度Rz 的理解。 二、实验内容 用双管显微镜测量表面粗糙度的Rz 值。 三、测量原理及计量器具说明 参看图1,轮廓最大高度Rz 是指在取样长度lr 内,在一个取样长度范围内,最大轮廓峰高Rp 与最大轮廓谷深Rv 之和称之为轮廓最大高度 。 即 Rz = Rp + Rv 图1 图2 双管显微镜能测量80~1μm 的粗糙度,用参数Rz 来评定。 双管显微镜的外形如图2所示。它由底座1、工作台2、观察光管3、投射光管11、支臂7和立柱8等几部分组成。 双管显微镜是利用光切原理来测量表面粗糙度的,如图3所示。被测表面为P 1、P 2阶梯表面,当一平行光束从450方向投射到阶梯表面上时,就被折成S 1和S 2两段。从垂直于 光束的方向上就可在显微镜内看到S 1和S 2两段光带的放大象1 S '和2S '。同样,S 1和S 2之间距离h 也被放大为1S '和2S '之间的距离1h '。通过测量和计算,可求得被测表面的不平度高度 h 。 图4为双管显微镜的光学系统图。由光源1发出的光,经聚光镜2、狭缝3、物镜4以 450方向投射到被测工件表面上。调整仪器使反射光束进入与投射光管垂直的观察光管内,经物镜5成象在目镜分划板上,通过目镜可观察到凹凸不平的光带(图5 b )。光带边缘即工件表面上被照亮了的h 1的放大轮廓象为h 1′,测量亮带边缘的宽度h 1′,可求出被测表面的不平度高度h 1:

1h =1h cos450=N h '1cos450 式中 N —物镜放大倍数。 图 3 图 4 为了测量和计算方便,测微目镜中十字线的移动方向(图5a )和被测量光带边缘宽度h 1′成450斜角(图5b ),故目镜测微器刻度套筒上读数值h 1′与不平度高度的关系为: 1h ''=0 20145cos 45cos Nh h =' 所以 h =N h N h 245cos 1 021"= " 式中, N 21 =C ,C 为刻度套筒的分度值或称为换算系数,它与投射角α、目镜测微器的结构和物镜放大倍数有关。 (a ) (b) 图 5 四、测量步骤 1. 根据被测工件表面粗糙度的要求,按表1选择合适的物镜组,分别安装在投射光管和观察光管的下端。 2. 接通电源。 3. 擦净被测工件,把它安放在工作台上,并使被测表面的切削痕迹的方向与光带垂直。当测量圆柱形工件时,应将工件置于V 型块上。

表面粗糙度的测量方法

表面粗糙度的测量方法 众所周知,表面粗糙度表征了机械零件表面的微观几何形状误差。对粗糙度的评定,主要分为定性和定量两种评定方法,所谓定性评定就是将待测表面和已知的表面粗糙度比较样块相互比较,通过目测或者借助于显微镜来判别其等级;而定量评定则是通过某些测量方法和相应的仪器,测出被测表面的粗糙度的主要参数,这些参数是Ra,Rq,Rz,Ry ; 他们代表的意义是:Ra 是轮廓的算术平均偏差,即在取样长度内被测轮廓偏距绝对值之和的算术平均值。 Rq 是轮廓的均方根偏差:在取样长度内轮廓偏距的均方根值。 Rz 是微观不平度的10点高度:在取样长度内5个最大的轮廓峰高与5个最大的轮廓谷深的平均值之和。 Ry 是轮廓的最大高度:在取样长度内轮廓的峰顶线与轮廓谷底线中线的最大距离。 目前常用的表面粗糙度测量方法主要有样板比较法,光切法,干涉法,触针法等。 1. 比较法它是在工厂里常用的方法,用眼睛或放大镜,对被测表面与粗糙度样板比较,或用手摸靠感觉来判断表面粗糙度的情况;这种方法不够准确,凭经验因素较大,只能对粗糙度参数值较大情况,给个大概范围的判断。 2. 光切法它是利用光切原理来测量表面粗糙度的方法。在实验室中用光切显微镜或者双管显微镜就可实现测量,它的测量准确度较高,但它是与对Rz,Ry 以及较为规则的表面测量,不适用于对测量粗糙度较高的表面及不规则表面的测量。 3. 干涉法它是利用光学干涉原理测量表面粗糙度的一种方法。这种方法要找出干涉条纹,找出相邻干涉带距离和干涉带的弯曲高度,就可测出微观不平度的实际高度;这种方法调整仪器比较麻烦,不太方便,其准确度和光切显微镜差不多;

4. 触针法它是利用仪器的测针与被测表面相接触,并使测针沿其表面轻滑过测量表面粗糙度的测量方法。采用这种方法的仪器最广泛的就是电动轮廓仪,它的特点是:显示数值直观,可测量许多形状的被测表面,如轴类,孔类,锥体,球类,沟槽类工件,测量时间少,方便快捷。 它可分为便携式和台式电动轮廓仪,便携式仪器可在现场进行测量,携带方便;带记录仪的电动轮廓仪,可绘制出表面的轮廓曲线,带微机的轮廓仪可显示轮廓的形状情况,并有打印机打印出数据和表面的轮廓线,便于分析和比较。它的测量范围较大:Ra 值一般在0.02—50μm 。 这里我们对电动轮廓仪的原理和仪器常见的故障排除方法进行讨论; 电动轮廓仪的工作原理采用的是触针法。仪器利用驱动箱拖动电感传感器在工件表面上以一定的速度滑行,电感传感器触针随同被测表面轮廓的峰谷起伏,产生上下位移,这个线值位移量引起传感器内测量桥路两臂中电感量的变化,从而使得电桥输出与触针位移成比例的条幅信号,这个微弱的电信号经过电子装置放大整流后,成了代表工件截面轮廓的信号。 将它输入记录仪,就得到了截面轮廓的放大图;或者把信号通过适当的环节进行滤波和计算后,由电表直接读出Ra 参数评定的表面粗糙度的值。 电动轮廓仪由底座,驱动箱,传感器,控制器,放大器或电子装置,记录仪等附件组成。 使用电动轮廓仪测量前,要对仪器预热,对一般测量件,预热5分钟左右;对精密件,预热约20-30分钟。对于不同形状的工件表面,选用不同的测量附件,例如对平和外圆柱表面,采用基本传感器,控制器,V型块和合适的滑块,并选好合适的行程长度,截止转换开关位置等。对于阶梯表面的测量,选用凹坑传感器;滑块选用凹坑专用滑块;对于曲轴表面的测量,选用传感器和控制器是基本的;滑块用直角附件中的专用滑块;这里不一一列举了。 在掌握了它的测量方法的同时,对该仪器设备的维护也是非常重要的,对底座上的立柱位置,驱动箱,传感器,控制器,放大器电子装置的相关位置定期检查,对仪器出现的常见故障也能够排除;常见的故障如下:

表面粗糙度测量系统

. 精密仪器专业课程设计说明书 姓名: 学号:U200910840 班级:测控0903班 指导老师: 2013年3月22日

目录 一、需求分析 (2) 1、设计题目 (2) 2、粗糙度定义 (2) 3、系统性能要求 (2) 二、设计方案及原理 (4) 1、系统原理 (4) 2、系统分析 (5) 3、系统说明 (5) 三、传感器选型 (6) 四、系统工作台设计 (7) 1、导轨及支承结构选型 (7) 2、传动机构选型 (9) 3、电机选型 (11) 4、光栅尺选型 (13) 5、限位开关选型 (14) 6、工作台精度分析 (15)

五、信号处理电路设计 (17) 1、正弦波发生 器 (17) 2、信号跟随及反相电 路 (19) 3、比较器电路 (19) 4、信号输入及带通滤波电路 (20) 5、相敏检波电路 (21) 6、低通滤波电路 (22) 7、工频陷波电路 (22) 六、设计不足及可扩展之处 (24) 七、总结 (26) 附录参考文献 (27) 一、需求分析 1、设计题目 二维表面粗糙度自动测量系统 2、粗糙度定义

表面粗糙度是指加工表面上具有的较小间距和峰谷所组成的微观几何形状特性,一般是由所采用的加工方法或其它外部因素造成,它是评定机械零件表面质量的重要指标之一。根据定义,非切削加方法所获得的表面微观几何形状特性属于表面粗糙度的范畴,但是,零件表面的物理特性(如表面应力、硬度、光亮程度、颜色及斑纹等)和表面缺陷(如硬伤、划伤、裂纹、毛刺、砂眼及鼓包等)则不属于表面粗糙度的范畴。零件表面粗糙度的形成,首先要受加工方法的影响。这是因为零件表面的粗糙度,主要来自金属被加工时切削工具的切削刀刃在其上留下的切削痕迹。不同的加工方法、机床的精度、振动及调整状况、工件的装夹、塑性变形和刀具与工件之间的摩擦、操作技术以及加工环境的温度、振动等主要因素,都会不同程度地直接影响零件加工表面的粗糙度。 综上所述,切削加工方法不同,所得的零件加工表面粗糙度也不同。由于表面粗糙度是在切削加工过程中上述诸种因素共同作用的结果,而且这些因素的作用过程是极其复杂和不断变化的,因此,即使采用一种加工方法,在同样的切削条件下,加工出同一批零件,甚至同一零件的同一表面上的不同部位,所得的表面粗糙度也不尽相同。 3、系统性能要求 1>工作台运行范围25mm; 2>运行速度:最大达1mm/s; 3>工作台定位分辨率<0.002mm; 4>垂直分辨率:+-0.01um;

表面粗糙度误差的测量与检验

《机械零件测量与检验》 表面粗糙度误差的测量与检验——电子教案 数控技术专业 名师课堂资源开发小组 2016年2月

项目四:零件表面粗糙度误差的测量与检验 请对矩形花键套零件的表面粗糙度进行检测。如图13-1 图13-1 矩形花键套 一、零件表面粗糙度的分析 外图13-1为矩形花键套,从零件图样分析可得,该零件表面粗糙度要求较高的有7 70js 圆柱面Ra1.6,其次为Ra3.2,其余为Ra6.3.。 表面粗糙度的相关专业术语及知识点 零件的表面结构原于产品几何技术规范(GPS),其几何特征只能用微米(um)级的参数来描述,通常要用光学量仪才能确定其精度等级。 表面结构含粗糙度轮廓、波纹度轮廓和原始轮廓三个方面的内容,国家标准规定采用轮廓法确定相应的参数。表面结构的粗糙度感觉零件的加工、检验中使用较普遍,是本章节重点介绍的内容。 1、表面结构国家标准 国家标准规定用轮廓法确定表面结构(粗糙度、波纹度和原始轮廓),对有关术语、定义、参数和表面结构的标注作出了明晰的规范。现行使用的国家标准有:GB/T 3503-2009、GB/T 1031-2009和GB/T 131-2006。 GB/T 3503-2009 产品几何技术规范(GPS)表面结构轮廓法术语、定义及表面结构参数。代替GB/T 3505-1983、GB/T 3505-2000。 GB/T 1031-2009 产品几何技术规范(GPS) 表面结构轮廓法表面粗糙度参数及其数值。代替GB/T 1031-1995。现行国家标准对原标准中的一些参数、代号作出修改,例如:将“轮廓最大高度”参数代号“Ry”改成为“Rz”;“轮廓微观不平度的平均间距”参数代号“Sm”改为“Rsm”;“取样长度”代号由“L”改为“Lr”。 GB/T 131-2006 产品几何技术规范(GPS) 技术产品文件中表面结构的表示法代替了GB/T 131-1993。

表面粗糙度试验及其测量方法

表面粗糙度 表面粗糙度(surface roughness)是指加工表面具有的较小间距和微小峰谷的不平度。其两波峰或两波谷之间的距离(波距)很小(在1mm以下),它属于微观几何形状误差。表面粗糙度越小,则表面越光滑。 高度特征参数 ?轮廓算术平均偏差R a:在取样长度(lr)内轮廓偏距绝对值的算 术平均值。在实际测量中,测量点的数目越多,Ra越准确。 ?轮廓最大高度R z:轮廓峰顶线和谷底线之间的距离。 在幅度参数常用范围内优先选用Ra 。在2006年以前国家标准中还有一个评定参数为“微观不平度十点高度”用Rz表示,轮廓最大高度用Ry表示,在2006年以后国家标准中取消了微观不平度十点高度,采用Rz表示轮廓最大高度。间距特征参数 用轮廓单元的平均宽度 Rsm 表示。在取样长度内,轮廓微观不平度间距的平均值。微观不平度间距是指轮廓峰和相邻的轮廓谷在中线上的一段长度。 形状特征参数 用轮廓支承长度率Rmr(c) 表示,是轮廓支撑长度与取样长度的比值。轮廓支承长度是取样长度内,平行于中线且与轮廓峰顶线相距为c的直线与轮廓相截所得到的各段截线长度之和。 表面粗糙度符号:

表面粗糙度

0.025~6.3微米的表面粗糙度。 光切法 双管显微镜测量表面粗糙度,可用作Ry与Rz参数评定,测量范围0.5~50。 干涉法 利用光波干涉原理(见平晶、激光测长技术)将被测表面的形状误差以干涉条纹图形显示出来,并利用放大倍数高(可达500倍)的显微镜将这些干涉条纹的微观部分放大后进行测量,以得出被测表面粗糙度。应用此法的表面粗糙度测量工具称为干涉显微镜。这种方法适用于测量Rz和Ry为0.025~0.8微米的表面粗糙度。

简明指导--用光切显微镜测量表面粗糙度

实验 用光切显微镜测量表面粗糙度 一、 目的与要求 1、学习光切显微镜测量表面粗糙度的原理和方法; 2、了解微观不平度十点高度Rz 的实际含义。 二、 测量原理 光切显微镜是利用光切法来测量表面粗糙度的,其原理如图3-1所示。由光源发出的光经过聚光镜2,穿过狭缝3形成带状光束。光束再经物镜4以45度角射向工件5,在凹凸不平的表面上呈现出曲折光带,再以45度角反射,经物镜6到达分划板7上。从目镜看到的曲折亮带,有两个边界,光带影像边界的曲折程度表示影像的峰谷高度h ?。h ?与表面凸起的实际高度h 之间的关系为 式中,M 为物镜6的放大倍数。 在目镜视场里,高度h ?是沿45度方向测量的,若在目镜测微器7的读数值为H ,则h ?与H 的关系为 h ?=Hcos45?,将前后两式代入可得,M H M H h 2245 cos 0 = = ,令 E M =21,则 H E h ?=。系数E 作为目镜测微器装在光切显微镜上使用时的分度值。E 值与物镜 的放大倍数M 有关,一般它已由仪器说明书给定。

三、测量仪器光切显微镜 1、基座,2、立柱,3、横臂,4、手轮,5、横臂紧固螺丝,6、微调手轮,7、手柄,8、照明灯,9、插座,10、摄影装置,11、测微目镜,12、物镜组,13、快门线,14、百分尺,15、工作台紧固螺丝,16、壳体,17、V型块,18、座标工作台。19、测微目镜紧固螺丝,20、摄影选择旋钮,21、对焦辅助旋钮 四、测量步骤 1、按工作粗糙度的估计值,选择适当放大倍数的物镜并装在仪器上; 2、将被测工作置于工作台上; 3、通过变压器接通电源; 4、调整仪器,其步骤如下: (1)松开横臂紧固螺丝5,转动横臂3及手轮4,使镜头对准被测量表面上方,然后锁紧横臂紧固螺丝5; (2)调节微调手轮6,上下移动壳体16,使目镜视场中出现切削痕纹; (3)转动工作台,使加工痕纹与投射在工作表面上的光带垂直,然后交错调整微调手轮6、对焦辅助旋钮21,直到获得最清晰光带为止; (4)松开测微目镜紧固螺丝19,转动目镜,使目镜中的十字线的水平线与光带大致平行。 5、转动目镜测微计,使十字线的水平线分别与光带上边缘的五个峰顶和五个谷底相切。

实验三 表面粗糙度的测量

实验三表面粗糙度的测量 一.实验目的 1.学习用针描法测量表面粗糙度的原理和方法。 2.了解2205型表面粗糙度测量仪的组成及性能。 二.实验原理 针描法是用测针直接在被测表面划过从而测出工件的表面粗糙度的方法。 测量工件表面粗糙度时,搭在工件表面的传感器探出的极其尖锐的棱锥形金刚石测针沿被测表面滑行,由于被测表面的轮廓峰谷起伏,引起测针的上下位移,从而使线圈的电感量发生变化,经过放大及电平转换后进入数据采集系统,计算机自动地将采集的数据进行数字滤波和计算,并将测量结果及图形在显示器上显示或打印输出。其特点是:测量迅速方便,测值精确度高,自动化程度高。 三.实验内容 用针描法测量工件的表面粗糙度。 四.实验仪器 实验仪器为2205型表面粗糙度测量仪,该仪器由传感器、驱动箱、电箱、底座、计算机及打印机组成,能测量26个表面粗糙度参数,测量范围:0.001 ~ 50μm,示数误差:Ra、Ry、Rz<5%。 五.实验步骤 1.使用前的准备和检查 选用与被测表面相适合的传感器并可靠地安装在驱动箱上;检查接线是否正确,然后接通电源,顺序是:电箱、计算机。 注意:通电时绝对禁止拔插电缆! 2.在Win98启动完成后,双击名为“2205”的图标,运行表面粗糙度测量软件,进入“表面粗糙度测量系统主屏幕”界面,分别输入“编号”、“工件名、“操作员” 等基本属性。

3.将被测工件轻放在工作台上的定位块上,仔细调整升降手轮,使传感器上的测针与被测表面接触,直到使电箱前面板中部的测针位移指示器指示处于两个红带之间(最好在中间的黄灯附近)。 4.将传感器向上抬离被测工件,同时将驱动箱上的启动手柄向左扳到“返回”位置,然后再把启动手柄向右扳到“启动”位置。 5.单击“测量”按钮,显示“测量主程序”窗口,单击“启动测量”按钮,系统开始测量:屏幕上端的窗口显示被测对象的表面轮廓,并自动计算所有的表面粗糙度 参数显示在“测量参数显示栏中”。 6.单击 “打 印” 按 钮, 显示 “打 印程 序”

零基础光学显微镜使用方法

零基础光学显微镜使用方法 编撰:杨历佳 我在本文中主要介绍的内容有:光学显微镜的组成、各部件的作用和原理、具体的操作方法及注意事项、保养和清洁。 普通光学显微镜按物镜放大倍数可以分10倍、40倍和100倍等。根据微生物等样本的大小,选择不同的放大倍数。例如要观察真菌(如酵母菌等)10×10就可以看的很清楚;如果要观察细菌的话至少要用到10×40;想要看的更为清楚就要用100倍的油镜来看,使用油镜时需要滴加香柏油。一般的镜检用400倍(10×40)基本上就足够了。 光学显微镜的组成结构 光学显微镜主要包括:物镜、目镜、反光镜、粗/细准焦螺旋、遮光器、盖玻片和载玻片等部件。如图:

1、物镜: 显微镜的放大作用主要取决于物镜,是显微镜最重要的光学部件,利用光线使被检物体第一次成像。物镜质量的好坏直接影响显微镜映像质量,它是决定显微镜的分辨率和成像清晰程度的主要部件。所以对物镜的质量和校正很重要,它是衡量一台显微镜质量的首要标准。 物镜刻有“10×”符号的为低倍镜,刻有“40×”符号的为高倍镜,刻有“100×”符号的为油镜。 以40×物镜为例,物镜上的数字分别为:40/0.65和160(∞)/0.17 (1)40表示物镜的放大倍数:放大倍数是指眼睛看到的像的大小与对应标本大小的比值。它指的是长度的比值而不是面积的比值。例:放大倍数为100×,指的是长度是1μm的标本,放大后,像的长度是100μm。要是以面积计算,则放大了10,000倍。显微镜的总放大倍数等于物镜和目镜放大倍数的乘积; (2)0.65为数值孔径(mm),数值孔径越大,样本观察的分辨率和放大率越大,视场宽度与工作距离越小。 数值孔径的定义是:物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。 (3)160为镜筒长度(mm),∞指无穷大。机械镜筒长(镜筒长度)是指从物镜的安装定位处到显微镜镜筒上端面的距离,标准定为160mm; (4)0.17为所需盖玻片的标准厚度单位(mm); 工作距离(物距): 样本调准焦点时,物镜前端与试样或盖玻片顶面的距离。 10倍物镜有效工作距离为6.5mm,40倍物镜有效工作距离为0.48mm。

表面粗糙度光学测量方法研究进展_王政平

传感器与微系统(T ransducer and M i c rosyste m T echno l og i es)2007年第26卷第9期 表面粗糙度光学测量方法研究进展 王政平,张锡芳,张艳娥 (哈尔滨工程大学理学院,黑龙江哈尔滨150001) 摘要:表面粗糙度对工件的性能有很大的影响,由于机械、电子及光学工业的飞速发展,对精密机械加 工表面的质量及结构小型化的要求日益提高,使得表面粗糙度测量显现出越来越重要的地位。采用光学 方法测量表面粗糙度具有非接触、无损伤、测量精度高等优点。介绍了用光散射法、像散法、散斑法、光干 涉法、光学触针法测量表面粗糙度的原理及研究进展,讨论了上述方法各自的优缺点,对表面粗糙度测量 的发展方向进行了预测。 关键词:表面粗糙度测量;光学测量;非接触测量 中图分类号:TG84文献标识码:A文章编号:1000-9787(2007)09-0004-03 Progress on opticalm easure ment of surface roughness WANG Zheng-ping,Z HANG X-i fang,Z HANG Y an-e (Sc i ence Schoo,l H arb i n En gi neer i ng Un i versity,H arb i n150001,Ch ina) Abstract:T he function of the wo rkp iece i s h i ghly influenced by its surface roughness.W it h the rapi d deve l op m ent o f t he m echanica,l electron ic and optica l i ndustries,the qua lity o f surface and m i ni m ized-structure o f prec isi on m echanis m are h i ghly dem anded,wh i ch m akes surface roughness m easure m en t take on mo re and m ore i m po rtant positi on.O ptica l me t hods of m easuri ng surface roughness have m any advantages such as non-con tact,non-da m ag e and h i gh prec i s i on etc.T he pr i nciples and advances of scatte ri ng m ethod,speckle m e t hod,i nterfero m e tric m ethod, optical sty l us m et hod w i dely used for roughness m eas u re m ent are rev i ewed,the me rits and shortcom ings o f them are d i scussed,the ir deve l oping trends are forecasted. K ey word s:surface roughness m easurement;optical m easure m ent;non-contact m easure m ent 0引言 表面粗糙度对机器零件表面性能的影响从1918年开始就受到关注。1927年,报道了用触针测量表面粗糙度的方法[1]。 近年来,随着机械、电子及光学工业的飞速发展,对精密机械加工表面的质量及结构小型化的要求日益提高,使得表面粗糙度的测量具有越来越重要的地位。对激光核聚变驱动器、磁盘、光盘、X射线光学元件、大功率激光窗口及同步辐射器元件的表面粗糙度要求,均已达到了纳米级要求。这些需求极大地促进了表面粗糙度测量技术的发展。传统的表面粗糙度测量方法可分为接触式测量(又可分为二维和三维触针式)与非接触式测量方法(分为光学法和其他方法)两大类。其中,光学法又可分为直接测量法和间接测量法。直接测量法又分为电镜法(用扫描探针显微镜[2]、原子力显微镜[3]、扫描电子显微镜[4]、扫描隧道显微镜[5]、干涉显微镜[6]等设备实现)和干涉法(偏振干涉、外差干涉和多光束干涉等方法);间接测量方法 收稿日期:2007-01-11有散射法、散斑法、光学触针法、衍射法[1]、光纤传感法[7]等。本文介绍光散射法、像散法、散斑法、干涉法、光触针法的研究进展。 1光散射法 用光散射法测量表面粗糙度常用的理论模型可分为衍射模型和微小镜面模型。其中,衍射模型由Beck m ann P等人[8]提出,适用于中等或比较光滑表面粗糙度测量,通过对散射场的统计来表征表面性质,是目前应用最广泛的理论(常采用标量积分理论处理)。微小镜面模型则适用于描述光在较粗糙表面的散射。 基于衍射模型的方法主要包括镜反射率法、散射光角分布法、核环比法、全积分散射法(total i ntegrated scattering, T IS)、Four i er谱分析法[9]、X射线漫散射法[10]、超声散射法[11]、微波散射功率测定法[12]、红外散射法[13]等。 其中,镜反射率法是通过测量镜面反射方向的光能,从而确定物体表面粗糙度。该方法可由光导纤维来实现。 B rod m ann R等人[14]报道的散射光角分布法用参数S N 4

表面粗糙度及表面形状的测量

度与表面形状误差 尽管测量表面在基本长度范围内的法线方 向上变化是很明显的,但要区别粗糙度与表面 形状误差(包括波度)也是较复杂的,特别是 当表面形状误差或波度数值与表面粗糙度数值很接近时。使用不同的测量方法,形状误差或 波度可能与表面粗糙度的数值互相交叠,分辨 不清。所以实际测量时,应使二者互相减掉以 利于单独读出表面粗糙度数值或单独读出表面形状误差数值。例如,只测粗糙度时,读出的 数据应是在基本长度内的表面不规则性。简单的机械法,常为划针表面光度仪,但将仪器测 头安装在一个小滑轨上,骑在零件表面,记录 划针相对导轨移动的位移,以表面高低的平均 值作为所测数据,表面波动变化比所记录的高 低变化小得多。另一个方法是在记录过程中或记录后过滤位移信号以组成相应于长波表面位移(指形状误差或波度);电子过滤法就可用于 去除粗糙度信号,用来只测量形状误差或波度 并且可以定量显示出数值。 3几种表面粗糙度的描述方法 最常用的表面粗糙度的描述方法是平均表 面粗糙度法,用符号Ra表示,定义为表面中线 平均高度的算术平均值,中线指曲线上部和下 部面积相等的分界线。如图3所示,用公式表 示 图3表面粗糙度定义图 R a=1L∫L0 y(x) dx 均方根偏差法定义表面粗糙度用符号Rq 表示,用公式表示 R2q=1L∫L0y2(x)dx 对许多表面讲Ra与Rq很接近。用单个数 据来描述表面形状,不可避免地要丢失一些重 要信息。例如Ra和Rq没给出不规则表面形状和表面空间的信息,对于完整地描述表面形貌 来讲,需要对表面高度分配的可能性及穿过表 面的高峰与低谷的空间分配作出测量。 描述表面高低分配方法与波幅密度函数 P(y)有关,P(y)是任意点处偏离平均线的高 度值。数值P(y)Δy为在平均线上落在y与y +Δy之间的表面形状百分比,如图4所示,它 是一条波动曲线,此曲线对应一条对称于平均 线位置的波幅密度曲线,对称的波幅密度函数 说明表面形状的信息。粗糙度Rq是波幅密度函

实验三 表面粗糙度测量实验

实验三表面粗糙度测量实验 一、实验目的 1.了解JB-1C型粗糙度测量仪测量表面粗糙度的原理和方法。 2.加深对粗糙度评定参数R a、R y、R max、R t、R zd、R z、R3z、R p、S m、S、T p的理解。 二、实验内容 用JB-1C型粗糙度测量仪测量表面粗糙度的R a、R y、R max、R t、R zd、R z、R3z、R p、S m、S、T p值。 三、实验设备 JB-1C型粗糙度测量仪。 四、实验原理 1大理石座2升降装置3升降手轮4传感装置5传感器6连接电缆7电器箱8可调节工 作台9电源线10支撑架 JB-1C粗糙度测量仪属于接触式的粗糙度测量,它属于感应式位移传感的原理。在这个系统里,一个金刚石触针被固定在一移动极板上(铁氧体极板),在被测表面上移动。在零位状态时,这些极板离开定位于传感器外壳上的两个线圈,有一定的距离,且有一高频的震荡信号在这两个线圈内流动。如果铁氧体极板与线圈间的距离改变了(由于传感器的金刚石触针在一粗糙表面移动),线圈的电感发生变化,而测量仪的微机系统,则对此的变化,进行采集、数据转移处理后,在液晶屏上显示出被测物表面的粗糙度参数。 本设备测量的粗糙度参数说明如下: 1.取样长度(截止波长)λc:它是用来判断具有表面粗糙度特征的一段基准线长度,在轮廓的走向上量取。本测量仪分为λc=0.25mm、0.8mm、 2.8mm三档。2.平定长度(测量长度)L n:它是测量过程中有效的行程长度,一般取样长λc 的3至7倍。

3.算术平均粗糙度值R a :它是取样长度λc 内轮廓偏距绝对值的算术平均值。 c a dx x Y R λ?= 1 )( 4.轮廓最大高度R y :它是在取样长度λc 内轮廓峰顶线和谷底线之间的距离。分别用R max 、R t 表示。 5.平均峰谷高度R zd :在已滤波的轮廓上,五个等量相邻的单元测量长度中单个高度的算术平均值。 6.十点高度R z :在测量长度(评定长度)内,五个最高的轮廓峰值和轮廓谷值的绝对高度的平均值之和。 5 5 1 5 1 ∑∑==+= i i Vi pi z Y Y R 7.平均的中等峰谷高度R 3z :五个相邻的单元测量长度上,各个中等的峰到谷高度的平均值。 8.中线以上最大峰高R p :在测量长度L n 内最高峰到中线之间的距离。 9.轮廓微观不平度的平均间距S m :在取样长度轮廓不平度的间距的平均值。

实验三-普通光学显微镜的使用方法及细菌的革兰氏染色法

实验三-普通光学显微镜的使用方法及细菌的革兰氏染色法

实验三普通光学显微镜的使用及细菌的简单染色、革兰氏染色法 生科15.2 周罡201500181104 【实验目的】 1.复习光学显微镜的结构、各部分的功能和使用方法。 2.学习并掌握油镜的原理和使用方法。 3.掌握利用显微镜观察不同微生物的基本技能,了解球菌、杆菌、放线菌、酵母、真菌在光学显微镜下的基本形态特征。 4.学习并掌握微生物的制片及简单染色的基本要求。 5.学习并掌握革兰氏染色法。 6.了解革兰氏染色原理。 7.巩固显微镜操作技术及无菌操作技术。【实验原理】 (一)普通显微镜的基本原理 1.基本原理 现代普通光学显 微镜利用目镜和物镜 两组透镜系统来昂达 成像,故又称为复式显 微镜。它们包括机械部

分和光学部分两部分。机械部分包括镜座、镜臂、镜筒、载物台、物镜转换器、粗调节螺旋、细调节螺旋、标本夹等。光学部分包括接目镜、接物镜、反光镜、光圈(虹采)、聚光镜(集光器)等。 显微镜的放大效能(分辨率)是由所用光波长短和物镜数值口径决定,缩短使用的光波波长或增加数值口径可以提高分辨率,可见光的光波幅度比较窄,紫外光波长短可以提高分辨率,但不能用肉眼直接观察。所以利用减小光波长来提高光学显微镜分辨率是有限的,提高数值口径是提高分辨率的理想措施。要增加数值口径,可以提高介质折射率,当空气为介质时折射率为1,而香柏油的折射率为1.51,和载片玻璃的折射率(1.52)相近,这样光线可以不发生折射而直接通过载片、香柏油进入物镜,从而提高分辨率。显微镜总的放大倍数是目镜和物镜放大倍数的 乘积,而物镜的放大倍数越高,分辨率越高。 2.油镜微生物学使用的显微镜的物镜通 常有低倍镜(10×)、高倍镜(40×)和油镜(100×),油镜是三者中放大倍数最大的,油镜的焦距和工作距离最短,油镜与其他物镜不同的是载玻片与

测量表面粗糙度的方法

OU1300 测量表面粗糙度的方法 使用说明书

一、概述 OU1300型表面粗糙度测量仪是适合于生产现场环境和移动测量需要的一种手持式仪器,可测量多种机加工零件的表面粗糙度,可根据选定的测量条件计算相应的参数,并在显示器上显示出全部测量参数和轮廓图形。该仪器它操作简便,功能全面,测量快捷,精度稳定,携带方便,能测量最新国际标准的主要参数,本仪器全面严格执行了国际标准。测量参数符合国际标准并兼容美国、德国、日本、英国等国家的标准。适用于车间检定站、实验室、计量室等环境的检测。 1.1 主要特点 ●机电一体化设计,体积小,重量轻,使用方便; ●采用 DSP 芯片进行控制和数据处理,速度快,功耗低; ●大量程,多参数 Ra,Rz,Rq,Rt。 ●高端机器增加 Rp,Rv,R3z,R3y,RzJIS,Rsk,Rku,Rsm,Rmr 等参数; ●128×64 OLED 点阵显示器,数字/图形显示;高亮无视角; ●显示信息丰富、直观、可显示全部参数及图形; ●兼容 ISO、DIN、ANSI、JIS 多个国家标准; ●内置锂离子充电电池及充电控制电路,容量高、无记忆效应; ●有剩余电量指示图标,提示用户及时充电; ●可显示充电过程指示,操作者可随时了解充电程度 ●连续工作时间大于 20 小时 ●超大容量数据存储,可存储 100 组原始数据及波形。 ●实时时钟设置及显示,方便数据记录及存储。 ●具有自动休眠、自动关机等节电功能 ●可靠防电机走死电路及软件设计 - 1 -

●显示测量信息、菜单提示信息、错误信息及开关机等各种提示说明信息; ●全金属壳体设计,坚固、小巧、便携、可靠性高。 ●中/英文语言选择; ●可连接电脑和打印机; ●可打印全部参数或打印用户设定的任意参数。 ●可选配曲面传感器、小孔传感器、测量平台、传感器护套、 接长杆等附件。 1.2 测量原理 本仪器在测量工件表面粗糙度时,先将传感器搭放在工件被测表面上,然后启动仪器进行测量,由仪器内部的精密驱动机构带动传感器沿被测表面做等速直线滑行,传感器通过内置的锐利触针感受被测表面的粗糙度,此时工件被测表面的粗糙度会引起触针产生位移,该位移使传感器电感线圈的电感量发生变化,从而在相敏检波器的输出端产生与被测表面粗糙度成比例的模拟信号,该信号经过放大及电平转换之后进入数据采集系统,DSP 芯片对采集的数据进行数字滤波和参数计算,测量结果在显示器上给出,也可在打印机上输出,还可以与PC 机进行通讯。 1.3 仪器各部分名称 传感器 - 2 -

相关主题
文本预览
相关文档 最新文档