当前位置:文档之家› 3.5并联运行发电机的有功功率分配和频率调节

3.5并联运行发电机的有功功率分配和频率调节

3.5并联运行发电机的有功功率分配和频率调节
3.5并联运行发电机的有功功率分配和频率调节

任务3.5频率与有功功率的自动调节船舶电力系统中各种有功负荷与频率的关系,可分为功率与频率无直接关

系的负荷(如照明、电热、整流器等);功率与频率成正比,转矩基本恒定的

负荷(如机床、压缩机、卷扬机等);功率与频率的三次方成正比的负荷(如

吸风机、通风机、水泵等)。

由于在船舶电力系统中旋转机械占的比例较大,因此整个电力系统的有功

负荷与频率有密切的关系。当因某种原因造成电网频率下降时,负载从电网吸

收的有功功率,将随之下降;当频率上升时,负荷吸收的有功功率随之上升。

当原动机提供的机械功率小于(或大于)电网的负荷功率时,会引起船舶

电力系统频率的下降(或上升);而船舶电力系统频率的下降(或上升)又将

使总负荷从电网吸收的功率相应减少(或增加)。可见,在电力系统中,当功

率平衡被破坏而引起频率变化时,负载吸收功率的变化起着补偿的作用,使系

统能在另一个频率值下得到新的平衡,这种现象称为电力系统的负荷调节效应。负荷调节效应,对限制系统频率变化是有利的:但只依靠这个效应,频率的变

化将是很大的。为了保证系统的频率变化在―定的允许范围内,发电机组必须

配置调速器。

频率(转速)变化的主要原因是系统中有功功率不平衡,当原动机输出功

P与发电机功率F P相等时,不引起原动机的加速或减速,发电机组处于稳率T

P>T P时,原动机会减速;当F P<T P时,原动机会加速。定运行状态;当F

若几台发电机组并联运行,则总有功负荷的变化,不仅要引起频率的变化,而

且要引起发电机组之间有功功率的重新分配。

《钢质海船入级规范》对频率(转速)和有功功率的分率的分配的要求是:“带动发电机的柴油机须装有调速器。当加上或卸去最大梯级负荷时,电网的

瞬时频率变化应不大于额定频率的10%,恢复到稳态的时间不超过5S;当突然卸去额定负荷时,瞬时调速率可大于额定转速的10%,稳定调速率不大于额

定转速的5%;在空负荷状态下突然加上50%额定负荷,稳定后再加上余下的50%负荷时,其瞬时调速率不大于额定转速的10%,稳定调速率不大于额定转速的5%;稳定时间(即转速恢复到波动率为 1%范围的时间)不超过5s。”

《钢质海船入级规范》对有功功率分配的要求是:“并联运行的各交流发

电机组均应能稳定运行,且当负载在总额定负载的20%~l00%范围内变化时,各机组所承担的有功负载与总负载按机组定额比例分配值之差,应不超过下列

数值中的较小者:①最大机组额定有功功率的±15%;②最小机组额定有功功

率的±25%”。

1.双脉冲电液调速器基本工作原理框图

发电机组调速系统是属于定值控制系统。采用机械调速器的调速系统是按

转速偏差进行调节的反馈控制系统,其调节特性是比例控制的有差调节,即当有功功率增大时,所对应的原动机转速略有下降。目前,越来越多采用双脉冲调节器。双脉冲调节器接收两个信号:发电机的转速信号和发电机有功功率(主扰动量)信号。它具有良好的调速性能图3-5-1为双脉冲电液调速器原理框图。它由转速和功率检测环节、综合放大环节、PID 校正环节及电/液转换器等四部分组成。

设转速测量环节的输出电压为n U 、转速给定电压为pg U ,经比较放大后,其转速偏差为1K (R U n -n U )。功率测量环节输出电压为p U ,给定功率值为pg U ,经比较放大后:功率偏差值为2K (R U n -n U )当调节终了时,应满足

1K (R U n -n U )+2K (R U n -n U )=0

这种调速系统由于功差信号能参与原动机油门的控制,因此会降低调速过程中转速的波动范围,提高调速性能。

图3-5-1 双脉冲电液调速器原理框图

2.自动调频调载装置

船舶交流电站中由于各种原动机(蒸汽机、燃气轮机和柴油机)都是按额定转速发出最大功率和最高效率设计的,当转速发生变化时,就会使原动机的效率降低,更为严重的是在几台发电机并联运行时,将引起各机组有功负载分配不均匀。因此,船舶电站在正常工程时需要经常到当电站中发电机原动机的转速,以保持电网频率的稳定和各发电机按比例(当容量不相等时)或均匀(当同容量时)分配有功负载。现代船舶电站为了提高供电的质量,在电站中大多安装有自动调频调载装置。自动调频调载装置与调速系统相似,只是它的控制信号是频率差与功率差的合成信号,经放大、判别(增减速判别、是否固定偏差判别)后控制伺服电机,以调节原动机的油门的开度来调节发电机原动机的转速。

因为原动机本身都具有调速器,自动调频调载装置起辅助调节作用,所以它不需要迅速反应和频繁的动作,只是在调速器动作之后如果仍存在固定偏差时,由它再进行调节

自动调频调载装置是协助原动机调速器对电网电压的频率和有功功率进行调整的装置。自动调频调载装置不能改善调速器的动态性能,当动态过程结束,系统稳定后,由于调速器的有差特性及其不一致性等原因,船舶电力系统的频率和有功功率分配就会出现静差,自动调频调载装置只是根据这个静差来进行校正。为使自动调频调载装装置避开动态过程,一般采用延时来实现。当船舶电力系统频率或功率分配出现偏差时,首先由各发电机组的调速器按各自的调速特性进行一次调节,即动态调节;经5S延时后,再进行自动二次调节,以消除静态误差,使船舶电力系统维持恒频均功。

自动调频调载装置的基本功能是:能自动维持电力系统频率为额定值;能按参与并联运行各发电机组的容量以既定比例或其他既定自动方式式控制负荷分配;当接到“解列”指令时,能自动控制负荷转移,待其负荷接近零时,使其发电机的断路器自动分闸。

1)自动调频调载装置的基本组成

调整原动机转速及机组的负荷需要根据转速(频率)和负载(功率)的信号,来实现调节。尽管目前自动调频调载装置的品种很多,并且还在不断的更新换代,但其基本环节都是由频率变换器、有功功率变换器、有功功率分配器和调整器等组成。

(1)频率变换器

频率变换器又称频率检测装置,用来检测电网的实际频率f,并将测量值∫与额定频率人进行比较得出偏差

Δf=f―f N(6―4―1) 式中:f为电网的实际频率;f N为电网的额定频率。

频率变换器将f N变换为相应的与频差成正比的直流电压信号,送到调整系统去进行综合比较。由于并联运行时电网频率是共同的,因此,每一套自动调频调载装置只需设置一个频率变换器。其方框图及所要求的输入、输出特性如图3-5-2所示。

图3-5-2 频率变换器及其特性

(2)有功功率变换器

有功功率变换器是用来测量每一台发电机输出的有功功率P,并将它转换成与之线形相关的直流电压U P,即

U P=K P P (3―5―1)

式中:U P为有功功率变换器输出电压,与P成正比;K P为功率变换系数(V/kw);P为发电机实际输出的有功功率。

功率变换器不仅能测出U和I的幅值,而且能测出U和I的相位差,使得Up=K P UIcosφ= K P P 方框图与输入输出特性如图3-5-3所示,由于功率变换器需测量每台发电照有功功率,因此,每台发电机都需要一个功率变换器:

图3-5-3 功率转换器及其特性

(3)有功功率分配器

有功功率分配器是一种有功分配运算电路,是为实现按比例或均匀分配有

功功率而设置的。运算环节主要由比较放大器和加法器组成,它的作用是根据

电网总的功率,计算每台发电机应承担的功率以及各台发电机实际承担的功率

值与平均值之差。

(4)调整器

调整器接受频差和功差信号,并根据它们的频差和功差信号的大小和极性,输出相应的脉冲调整信号,控制伺服电动机正转或反转调节发电机油门的开度,使有功功率均匀分配,从而保持电网的频率恒定。调整器原理框图如图3-5-4所示。

图3-5-4 调速器原理框图

由于要调整每台发电机组油门的大小,因此每台发发电机组需配置一个调整器。

调整器工作的特点是:判别综合信号的极性,决定调速方向,根据综合信号的大小,决定调速信号脉冲的周期(当脉冲宽度一定时)或者调速脉冲的宽度(当调速脉冲周期一定时);使每个调节过程的第一个调整信号有适当(如5S左右)的延时,避开动态过程;应有一定的不灵敏区。当输入未超过不灵敏区时,调整器不工作,这有利于防止系统过于频繁的工作。

加装自动调频调载装置后一般只要求功率分配之差在各发电机额定容定容量的±5%~±10%以内,频率差在电网额定频率的±1%。

2)自动调频调载方法

电网频率的自动调节和自动控制负荷分配,按其工作原理可分为有差调节法、虚有差法和主调发电机法等。

(1)有差调节法

有差调节法是仅依赖有差调速特性的调速器来稳定电网的频率和有功负荷分配的方法。

这种方法没有外加的再调节,因此不能保持频率恒定,有功负荷分配通常也不均匀。

(2)虚有差法

虚有差法是在并联运行的每一台发电机上,都装有对频差和功率差进行调整的控制系统的方法。在它的控制下,电网的频率保持为额定值,电力系统的负荷按每台发电机的容量成比例进行分配。虽然每台发电机组安装的调速器的调差系数不尽相同,但不影响调节结果。因为并联运行的机组具有有差特性,能够保证稳定的有功分配,系统能自动再次调节使频率保持恒定。

虚有差法调节的调频调载系统框图如图3-5-5所示,设各机组容量相等,系统按平均分配有功功率的原则进行调整,这时各功率变换器的功率变换系数K P均相同。各单元方框的输入输出方向如图中箭头所示:当Δf=0时,UΔf=0;当Δf>0时,UΔf>0;当Δf<0时,UΔf<0。当U STi>0时,T i输出减速信号;当U STi<0时,T i输出加速信号。

图3-5-5 虚有差法调节的调频调载系统

(3)主调发电机法

主调发电机法,是指在并联运行的发电机组中有一台机组上装有调频器,作为主调发电材机,其任务是当负荷变化而引起电网频率出现频差时,由它再次调节改变油门,维持电网的频率为额定值,并承担系统负荷的变化量。而其余的发电机则总是保持运行于接近额定值,称为基载发电机

因此,调频调载装置仅作为主调发电机的调频器,只检测电网的频差,并根据频差信号去调节主调发电机的调速特性来实现调频。而基载发电机的调速特性为有差特性:其工作点一次整定在额定频率,达到预定的负荷后,将不会再受调频器的控制。

柴油发电机组的并联运行

柴油发电机组的并联运行 摘要:柴油发电机组和UPS一样也可以并联运行,并且这种技术已在许多却门得到广泛应用。文中介绍柴油发电机组并联运行的技术条件、调控模式及应用实践。 柴油发电机组是由将燃烧柴油产生的热能转换为机械能的柴油发动机,和把机械能转为电能的同步发电机组成的。在电力网还未到达或供电保障性不强的地区,常用柴油发电机组发出性能与市电一样的电能供给用电设备。它也就成为市电电力网的得力助手。 现代,各种信息设备对供电提出了高质量、高可靠的要求。为此,UPS与柴油发电机组,以它们各自的特点相辅相成地构成的不间断供电系统成为最佳选择。在这里,UPS基本上是并联冗余应用的,而柴油发电机组也常是并联冗余运行的。 、 1并联运行的作用 大型的网络监控中心、银行结算中心、空中管制中心等,根据自身的工作性质和特点都对供电系统的性能和可靠性提出了很高的要求;采用两路市电供电、配置两组并联冗余运行的大功率UPS构成双总线系统、同时安装几台"N十l"模式并联冗余运行的柴油发电机组与UPS构成一个高可靠、高质量、智能化的不间断供电体系,已是普遍采用的技术方案。 柴油发电机组的作用是:一且两路市电都中断,UPS目口时将蓄电池的直流电逆变成交流电供给负载工作。然后并联冗余运行的柴油发电机组也部起动起来,通过自动转换开关(ATS)切换到直接给UPS 提供与市电一样的电能,从而使UPS又像平常那样依靠交流电不间断地给设备供电。这时"N+l"模式并联冗余运行的柴油发电机组不仅为UPS提供性能良好的电力,而且提供了高可靠的电能;假如运行中一台机组出现问题退出并联,其他机组会带上全部负载仍正常运行。可见并联冗余运行的机组完全代替了两路市电供电的功能。 通常情况下,并联冗余运行模式的柴油发电机组并不直接连接负载,而是通过UPS供给负载电能。柴油发电机组为增加原有机组的输出功率而采用并联运行的方式要比UPS多一些。它们常被用于市电电力供应保障性不强,一年总有几次停电或拉闸限电地区的工矿企业。由于现代机械制造技术的进步、机电一体化的广泛应用、智能控制技术的普及,现代柴油发电机组不仅制造精良,各项性能指标大为提高,运行的可靠性也大大增强。 通常情况下,只要按规范做好维护保养工作,作为备用发电机,在起动运行后柴油发电机组因故障停机的几率极其微小。在各类工厂新增设备后,原有柴油发电机组已不能满足后备供电需要时,考虑再增加一台同样的机组与其并联使输出功率增加一倍,不失为一种经济实用的选择。 作为扩容应用的并联柴油发电机组一般不考虑冗余而只强调均分负载,它们都是接近满负荷地直接驱动用电设备。 2并联运行的技术条件 从同步发电机的机械构造可以知道;三个一模一样的绕组按照空间360°三等分并且对称的安装在定子的机座上。这三个绕组——称为定子绕组或因为供给负载的电力由这里输出而被称为电枢绕组,它们在空间机械位置上已被确定为彼此之间120°电角的间隔。当同步发电机转子磁场(称为主磁场)的磁力线

电动机功率计算80146教学资料

电动机功率计算 80146

旋转装置的功率如何计算(转自中国机械CAD论坛) 旋转装置的功率如何计算(已解决) 如图,施加在转动链轮上的功率怎么计算,我算出来好小,肯定不对。 请费点力气帮我看看,谢谢! 回楼上的,工件不运动,就原地打转。 条件不充足啊,工件从静止到同速旋转要多长时间啊?5000Kg工件是固体吗?和其他物体在旋转过程中有接触吗? 我网上找了些公式,这么算不知道对不对—— 扭矩=工件重量X链轮半径X推力球轴承摩擦系数 X9.8=4500X0.115X0.0013X9.8=6.6 Nm 输入功率=扭矩X旋转速度/9549=6.6*4/9549=0.0027 kW 才2.7瓦???在这里,主要克服的是,启动转动惯性力 惯性力矩=转动惯量x角加速度,(M=Jβ), J=J1+J2+J3,J=mr^2/2 ,这里你的轴,链轮,还有下面的重物分别计算,也许你的重物不是圆柱型,简化力学模型,就当他是圆的好了 β=△w/△t, 物体是从0转速开始启动到4r/min的,w=2πn/60, △t是你的意愿,假设10秒,5秒的,这就好了 M=9549XN/n,M是你上面算出来的,N是功率,n是转速 最后再乘以减速器还有轴承的系数就好了, 如果按xushishujun给的公式计算的话!(假设t=1s) 扭矩M=25.5N.m

功率N=11W 这么小的扭矩和功率就能启动5000KG的重物旋转吗? 扭矩M=25.5N.m时,如果电机输出转速为940r/min,,电机功率为2.51kw 一台天车吊起10t重物后,你用手将重物旋转一下可能比较轻松,但要旋转快一点就费劲多了。 这就是转动惯量与角速度的相互作用的关系。 转动惯量=5000*1*1/2=2500 (kg*m^2) 角加速度=2*3.14*4/60/1=0.42 (rad/s^2) 惯性转矩=2500*0.42=1047 N*m 功率=1047*4/9549=0.44 kw 不知道算的对不,貌似也很小,可能不对? 我觉得先算扭矩,保证扭矩后再根据物件需要的运动速度,计算功率。还有克服摩擦的功率。 是应该按惯性矩去算,不过采用链式传动会对减速机冲击很大不是很好的选择多谢指点,前些时候有人提起过,但没说到冲击的点子上,看来是要改成齿轮的合适些。 可能应该是这样了,这个数值比较合理了,我是参照电动葫芦的行走电机的,呵呵,惭愧~ 各位好,我把我的计算过程在这里写一下吧 J=mr^2/2=(5000x1^2)/2=2500kgm^2 β=△w/△t=(2πn/60)/t=(2x3.14x4/60)/1=0.42rad/s^2 M'=Jβ=2500X0.42=1050Nm

同步电机课后习题参考答案

14-1水轮发电机和汽轮发电机结构上有什么不同,各有什么特点? 14-2 为什么同步电机的气隙比同容量的异步电机要大一些? 14-3 同步电机和异步电机在结构上有哪些异同之处? 14-4 同步发电机的转速为什么必须是常数?接在频率是50Hz电网上,转速为150r/min的水轮发电机的极数为多少? 14-5 一台三相同步发电机S N=10kV A,cosφN=0.8(滞后),U N=400V,试求其额定电流I N和额定运行时的发出的有功功率P N和无功功率Q N。 14-6 同步电机在对称负载下稳定运行时,电枢电流产生的磁场是否与励磁绕组匝链?它会在励磁绕组中感应电势吗? 14-7 同步发电机的气隙磁场在空载状态是如何激励的,在负载状态是如何激励的? 14-8 隐极同步电机的电枢反应电抗与与异步电机的什么电抗具有相同的物理意义? 14-9 同步发电机的电枢反应的性质取决于什么,交轴和直轴电枢反应对同步发电机的磁场有何影响? 答案: 14-3 2p=40 14-4 I N=14.43A,P N=8kW,Q N=6 kvar

15-1 同步电抗的物理意义是什么?为什么说同步电抗是与三相有关的电抗,而它的值又是每相的值? 15-2 分析下面几种情况对同步电抗有何影响:(1)铁心饱和程度增加;(2)气隙增大;(3)电枢绕组匝数增加;(4)励磁绕组匝数增加。 15-9 (1) * 0E =2.236, (2) *I =0.78(补充条件: X*S 非=1.8) 15-10 (1) *0E =1.771, 0E =10.74kV , 4.18=θ 15-11 0 2.2846E * =, 013.85kv E =,32.63θ= 15-12 012534.88v E =,57.42ψ=,387.61A d I =,247.7A q I = 16-1 为什么同步发电机的稳态短路电流不大,短路特性为何是一直线?如果将电机的转速降到0.5n 1则短路特性,测量结果有何变化? 16-2 什么叫短路比,它与什么因素有关? 16-3 已知同步发电机的空载和短路特性,试画图说明求取Xd 非和Kc 的方法。 16-4 有一台两极三相汽轮同步发电机,电枢绕组Y 接法,额定容量S N =7500kV A ,额定电压U N =6300V ,额定功率因数cos φN =0.8(滞后),频率f =50Hz 。由实验测得如下数据: 空载实验 短路实验测得N k I I =时,A 208fk =I ,零功率因数实验I =I N ,U =U N 时测得A 433fN0=I 试求:(1)通过空载特性和短路特性求出X d 非和短路比;(2)通过空载特性和零功率因数特性求出X σ和I fa ;(3)额定运行情况下的I fN 和u ?。 16-5 一台15000kV A 的2极三相Y 联接汽轮发电机, kV 5.10N =U ,8.0cos N =?(滞 09.2*** (2)额定负载时的励磁电流标么值。

电机功率因数

什么是电机的功率因数 电网中的电力负荷如电动机、变压器等,属于既有电阻又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。 cosφ——功率因数; P——有功功率,kW; Q——无功功率,kVar; S——视在功率,kV。A; U——用电设备的额定电压,V; I——用电设备的运行电流,A。 功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。 (1)自然功率因数:是指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。 (2)瞬时功率因数:是指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。 (3)加权平均功率因数:是指在一定时间段内功率因数的平均值. 提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。 功率因数是交流电路的重要技术数据之一。功率因数的高低,对于电气设备的利用率和分析、研究电能消耗等问题都有十分重要的意义。 所谓功率因数,是指任意二端网络(与外界有二个接点的电路)两端电压U与其中电流I之间的位相差的余弦。在二端网络中消耗的功率是指平均功率,也称为有功功率,电路中消耗的功率P,不仅取决于电压V与电流I的大小,还与功率因数有关。而功率因数的大小,取决于电路中负载的性质。对于电阻性负载,其电压与电流的位相差为0,因此,电路的功率因数最大();而纯电感电路,电压与电流的位相差为π/2,并且是电压超前电流;在纯电容电路中,电压与电流的位相差则为-(π/2),即电流超前电压。在后两种电路中,功率因数都为0。对于一般性负载的电路,功率因数就介于0与1之间。 一般来说,在二端网络中,提高用电器的功率因数有两方面的意义,一是可以减小输电线路上的功率损失;二是可以充分发挥电力设备(如发电机、变压器等)的潜力。因为用电器总是在一定电压U和一定有功功率P的条件下工作。 可知,功率因数过低,就要用较大的电流来保障用电器正常工作,与此同时输电线路上输电电流增大,从而导致线路上焦耳热损耗增大。另外,在输电线路的电阻上及电源的内组上的电压降,都与用电器中的电流成正比,增大电流必然增大在输电线路和电源内部的电压损失。因此,提高用电器的功率因数,可以减小输电电流,进而减小了输电线路上的功率损失。 提高功率因数,可以充分利用供电设备和线路的容量,减小设备、线路中的损耗,电机的有效功率会提高。 1) 提高用电质量,改善设备运行条件,可保证设备在正常条件下工作,这就有利于安全生产。 2) 可节约电能,降低生产成本,减少企业的电费开支。例如:当cos?=0.5时的损耗是cos?=1时的4倍。 3) 能提高企业用电设备的利用率,充分发挥企业的设备潜力。 4) 可减少线路的功率损失,提高电网输电效率。 5) 因发电机的发电容量的限定,故提高cos?也就使发电机能多出有功功率。 在实际用电过程中,提高负载的功率因数是最有效地提高电力资源利用率的方式。 在现今可用资源接近匮乏的情况下,除了尽快开发新能源外,更好利用现有资源是我们解决燃眉之急的唯一办法。而对于目前人类所大量使用和无比依赖的电能使用,功率因数将是重中之重。 高功率因数,可提高电机设备出力。 对于3相电动机:P=√3UIcosφ所以功率因素从0.8提高到0.9,出力提高0.1UI√3其它:感应电动机的功率因数有两种,即自然功率因数和总功率因数。自然功率因数就是设备本身固有的功率因数,其值决定

电机转矩功率转速之间的关系及计算公式

电机转矩、功率、转速之间的关系及计算公式 电动机输出转矩: 使机械元件转动的力矩称为转动力矩,简称转矩。机械元件在转矩作用下都会产生 一定程度的扭转变形,故转矩有时又称为扭矩。 转矩与功率及转速的关系:转矩(T)=9550*功率(P)/转速(n)? 即:T=9550P/n 由此可推导出: 转矩=9550*功率/转速《===》功率=转速*转矩/9550 方程式中: P—功率的单位(kW); n—转速的单位(r/min); T—转矩的单位(N.m); 9550是计算系数。 电机扭矩计算公式 T=9550P/n 是如何计算的呢? 分析: 功率=力*速度即 P=F*V---——--公式【1】 转矩(T)=扭力(F)*作用半径(R) 推出F=T/R------公式【2】 线速度(V)=2πR*每秒转速(n秒)=2πR*每分转速(n分)/60=πR*n分/30------公式【3】 将公式2、3代入公式1得: P=F*V=T/R*πR*n分/30 =π/30*T*n分 -----P=功率单位W, T=转矩单位N.m, n分=每分钟转速单位转/分钟 如果将P的单位换成KW,那么就是如下公式: P*1000=π/30*T*n 30000/π*P=T*n 30000/3.1415926*P=T*n 9549.297*P=T*n 这就是为什么会有功率和转矩*转速之间有个9550的系数关系。。。 转矩的类型 转矩可分为静态转矩和动态转矩。 ※静态转矩 静态转矩是值不随时间延长而变化或变化很小、很缓慢的转矩,包括静止转矩、恒定转矩、缓变转矩和微脉动转矩。? 静止转矩的值为常数,传动轴不旋转; 恒定转矩的值为常数,但传动轴以匀速旋转,如电机稳定工作时的转矩; 缓变转矩的值随时间延长而缓慢变化,但在短时间内可认为转矩值是不变的; 微脉动转矩的瞬时值有幅度不大的脉动变化。 ※动态转矩 动态转矩是值随时间延长而变化很大的转矩,包括振动转矩、过渡转矩和随机转矩三种。 振动转矩的值是周期性波动的; 过渡转矩是机械从一种工况转换到另一种工况时的转矩变化 过程;随机转矩是一种不确定的、变化无规律的转矩。

功率因数的提高及其效果

功率因数的提高及其效果 在供电过程中,用户功率因数的高低,直接关系到电力网中的功率损耗和电能损耗,关系到供电线路的电压损失和电压波动,而且关系到节约电能和整个供电区域的供电质量。对广大厂矿企业来说,功率因数的高低是关系到电能质量和电网安全、经济运行的一个重要问题,应予以充分重视。本文集中讨论了影响电力系统功率因数的几个重要因素,提出了相应的解决措施,并结合我矿的实际情况,对利用并联移相电容提高电网的功率因数进行了探讨。 在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力,减少线路损失,改善电压质量,而且可以提高用户用电设备的工作效率。若能有效地搞好补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。 一、影响功率因数的主要因素 首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。影响功率因素主要是下面几个方面。

(一)异步电动机和电力变压器是耗用无功功率的主要设备 我矿绝大部分动力负荷都是异步电动机, 异步电动机转子与定子间的气隙是决定异步电动机需要较多无功的主要因素,而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。因此,在选择异步电动机时,既要注意它们的机械性能,又要考虑它们的电气指标,合理选择异步电动机的型号、规格和容量,使其处于经济运行状态,若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故而从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。其次,要提高异步电动机的检修质量,因为异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。 电力变压器的无功功率消耗,是由于变压器的变压过程是由电磁感应来完成的,是由无功功率建立和维持磁场进行能量转换的。没有无功功率,变压器就无法变压和输送电能。变压器消耗无功的主要成分是它的空载无功功率,提高变压器的功率因数就必须降低变压器的无功损耗,避免变压器空载运行或长期处于低负载运行状态。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。 (二)供电电压超出规定范围也会对功率因数造成很大的影响

电机功率计算公式

电机功率计算公式 选用的电机功率:N=(Q/3600)*P/(1000*η)*K 其中风量Q单位为m3/h,全压P单位为Pa,功率N单位为kW,η风机全压效率(按风机相关标准,全压效率不得低于0.7,实际估算效率可取小些,也可以取0.6,小风机取小值,大风机取大值),K为电机容量系数,参见下表。 1、离心风机 2、轴流风机:1.05-1.1,小功率取大值,大功率取小值。 选用的电机功率N=(Q/3600)*P/(1000*η)*K 风机的功率P(KW)计算公式为P=Q*p/(3600*1000*η0* η1) Q—风量,m3/h; p—风机的全风压,Pa; η0—风机的内效率,一般取0.75~0.85,小风机取低值、大风机取

高值。 η1—机械效率: 1、风机与电机直联取1; 2、联轴器联接取0.95~0.98; 3、用三角皮带联接取0.9~0.95; 4、用平皮带传动取0.85。 如何计算电机的电流: I=(电机功率/电压)*c 功率单位为KW 电压单位:KV C:0.76(功率因数0.85和功率效率0.9乘积)

解释一下风机轴功率计算公式:N=QP/1000*3600*0.8*0.98 Q是流量,单位为m3/h,p是全风压,单位为Pa(N/m2)。 注意:功率的基本单位是W,在动力学中,W=N.m/s。 QP的单位为N.m/h=W*3600。 风机轴功率一般用kW表示。 1000是将W换算为kW。 3600将小时换算为秒。 上述计算获取的是风机本身的输出功率,风机轴功率是指风机的输入功率,也等于电机的输出功率。风机输出功率除以转换效率就是风机的轴功率。 0.8是风机内效率估计值。 0.98是机械效率估计值。

发电机功率如何计算

设备容量统计出来后,根据实际情况选择需要系数Kx(一般取0.85-0.95),计算出计算容量Pj=KxP∑,自备柴油发电机组的功率按下式计算P=kPj/η式中: P—自备柴油发电机组的功率kw; Pj—负荷设备的计算容量kw; P∑—总负荷kw; η—发电机并联运行不均匀系数一般取0.9,单台取1; k—可靠系数,一般取1.1。 (2)按最大的单台电动机或成组电动机起动的需要,计算发电机容量P=(P∑-Pm)/η∑+ PmKCcosψm(KW) Pm—起动容量最大的电动机或成组电动机的容量(kw); η∑一总负荷的计算效率,一般取0.85; cosΨm —电动机的起动功率因数,一般取0.4; K—电动机的起动倍数; C—全压起动C=l.0,Y—△起动C=0.67,自耦变压器起动50%抽头C=0.25,65%抽头C==0.42,80%抽头C=0.64。 (3)按起动电动机时母线容许电压降计算发电机容量P=PnKCXd″(1/△E-1)(kw) Pn一造成母线压降最大的电动机或成组起动电动机组的容量(kw) K—电动机的起动电流倍数; Xd″—发电机的暂态电抗,一般取0.25; E—母线允许的瞬时电压降,有电梯时取0.20,无电梯时取0.25.在实际工作中,也可用系数法估算柴油发电机组的起动能力 工程实例:以某工程为例,该工程建筑面积10000m2,12层,为二类高层,保安性负荷主要为消防负荷,其容量为191kw,最大一台电动机为喷淋泵37kw,采用自耦降压80%抽头降压起动。 (1)按计算负荷计算P=kPj/η=1.1×191/1kw=210.1 kw (2)最大的单台电动机起动的需要计算P=(P∑-Pm)/η∑ +PmKCcosΨm =

大型同步发电机进相运行的分析

大型同步发电机进相运行的分析 刘俊宝 河北大唐国际王滩发电有限公司河北唐山063611 摘要:介绍了同步发电机进相得原理,综述了同步发电机主要考虑的端部发热温升、厂用电压限制、功角稳定、低了励限制等几方面的限制因素。同时,提出了同步发电机进相得注意事项,并论述了同步发电机进相运行时,操作人员的处理措施,为运行操作人员进行事故处理时提供了良好的理论基础。 关键词:同步发电机;进相运行;制约因素;事故处理 中图分类号:TB857文献标识码:A 同步发电机进相运行的原理 发电机正常运行时,向系统提供有功的同时还提供无功,定子电流滞后于端电压一个角度,此种状态即迟相运行.当逐渐减少励磁电流使发电机从向系统提供无功而变为从系统吸收无功,定子电流从滞后而变为超前发电机端电压一个角度,此种状态即进相运行.根据发电机的进相深度,发电机处于静态稳定或暂态稳定运行状况,未达到发电机诗词保护动作区,发电机可维持短时运行。 制约发电机进相运行的主要因素 1)发电机定子端部发热温升。 发电机进相运行,定子电流增加,定子发热增大;发电机进相,端部漏磁通变化比增大,使得端部发热最严重。当发热量大于散热量时,发电机定子线圈温度持续上升。 (2)电网功角稳定 在相同的有功出力下,进相程度(称为深度)越大,即功率因数角就越大,从而功角就越大。从发电机的运行特性来说,功角过大,就会导致发电机进入不稳定工作区域,故此一般发电机均设有关于功角的限制实际电网发电机的功角限制为70°。 (3)低励限制设定 由于励磁电流的减小,不得不提到最小励磁电流限制,一旦励磁电流小到一定的值,将导致发电机失磁运行或可能导致发电机进入不稳定区域(可能造成失步等)。 (4)厂用电电压的限制 发电机正常运行过程中即发有功也发无功,在滞相运行过程中发电机发出感性无功,感性无功在发电机的磁场中起增磁作用,当发电机进项运行后发电机吸收网上无功,此时发电机无功变为容性无功,在发电机磁场中起去磁作用,从而导致端电压下降,进而厂用电电压也大幅下降。 发电机进相运行的注意事项 (1)发电机进相运行时,发电机励磁调节器应运行在自动方式,发电机励磁调节器低励限制器及发电机失磁保护投运正常。 (2)发电机进相运行时,应根据中调要求,按值长命令调节发电机进相深度。若因网上电压高,发电机自动进相运行,应对发电机各参数加强监视。 (3)在增、减发电机励磁时,速度要缓慢,切忌快速大幅度调节,进相运行的限制值目前控制在-50Mvar和-80Mvar之间,且始终保持小于低励限制动作值。 (4)在降低发电机励磁时,若低励限制器动作,应立即停止降低发电机励磁,适当增加发电机励磁。 (5)发电机进相运行时,要注意监视发电机的静稳定情况,发电机各表记指示正

发电机的并列运行

发电机的并列运行 ??一、发电机并列运行的条件 ?1.待并发电机的电压有效值Uf与电网的电压有效值U相等或接近相等,允许相差±5%的额定电压值。 列。 ?2./秒以内。 ??? 时, ???3.待并发电机电压的相位与电网电压的相位相同,即相角相同。 ???在发电机并列时,如果两个电压的相位不一致,由此而产生的冲击电流可能达到额定电流的20~30倍,所以是非常危险的。冲击电流可分解为有功分量和无功分量,有功电流的冲击不仅要加重汽轮机的负担,还有可能使汽轮机受到很大的机械应力,这样非但不能把待并发电机拉入同步,而且可能使其它并列运行的发电机失去同步。

在采用准同期并列时,发电机的冲击电流很小。所以,一般应将相角差控制在10o 以内,此时的冲击电流约为发电机额定电流的0.5倍。 ???4.待并发电机电压的相序必须与电网电压的相序一致。 ???5.待并发电机电压的波形应与电网电压的波形一致。 ??? ???? ???1.发电机升压操作正常后,需要根据发电机及电力系统具体运行状况,将待并同期点的同期开关(控制屏5KP的“联络线同期开关”TK/或者是6KP的“发电机同期开关”TK)右转至“投”的位置,使同期母线带电。 ???2.将发电机同期闭锁开关STK置于“闭锁”位置,其1、3接点断开。与此同时,同步检查继电器TJJ进入闭锁状态。

???3.将6KP的“手动准同期开关”1STK左转至“粗调”位置,6KP的组合式三相同期表S就有了电压和周波的指示。此时,通过调整发电机的电压及频率,使之与电网的电压及频率相近或基本一致。 ???4.当发电机周波与电网周波相差在1.0周/秒以内时,将“手动准同期开关”1STK 右转至“细调”位置,则组合式三相同期表S的线圈得电,指针开始缓慢地顺时针 时101) ???5.

功率因数调整电费办法

功率因数调整电费办法

功率因数调整电费办法 鉴于电力生产的特点,用户用电功率因数的高低对发、供、用电设备的充分利用、节约电能和改善电压质量有着重要影响。为了提高用户的功率因数并保持其均衡,以提高供电用双方和社会的经济效益,特制定本办法。 功率因数的标准值及其适用范围 功率因数标准0.90,适用于160千伏安以上的高压供电工业用户(包括社队工业用户)、装有带负荷调整电压装置的高压供电电力用户和3200千伏安及以上的高压供电电力排灌站; 功率因数标准0.85,适用于100千伏安(千瓦)及以上的其他工业用户(包括社队工业用户),100千伏安(千瓦)及以上的非工业用户和100千伏安(千瓦)及以上的电力排灌站; 功率因数标准0.80,适用于100千伏安(千瓦)及以上的农业用户和趸售用户,但大工业用户未划由电业直接管理的趸售用户,功率因数标准应为0.85。

所规定的百分数增减电费。如用户的功率因数在“功率因数调整电费表”所列两数之间,则以四舍五入计算。 根据电网的具体情况,对不需增设补尝设备,用电功率因数就能达到规定标准的用户,或离电源点较近,电压质量较好、勿需进一步提高用电功率因数的用户,可以降低功率因数标准或不实行功率因数调整电费办法,但须经省、市、自治区电力局批准备,并报电网管理局备案。降低功率因数标准的用户的实际功率因数,高于降低后的功率因数标准时,不减收电费,但低于降低后的功率因数标准时,应增收电费。 表一以0.90为标准值的功率因数调整电费表 减收电费增收电费 实际功率因数月电费减少%实际功率因数月电费增加%实际功率因数月电费增加% 0.90 0.00 0.89 0.5 0.75 7.5 0.91 0.15 0.88 1.0 0.74 8.0 0.92 0.30 0.87 1.5 0.73 8.5 0.93 0.45 0.86 2.0 0.72 9.0 0.94 0.60 0.85 2.5 0.71 9.5 0.84 3.0 0.70 10.0 0.95~1.00 0.75 0.83 3.5 0.69 11.0

电机功率计算公式

电机功率计算公式 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

一,电机额定功率和实际功率的区别 是指在此数据下电机为最佳工作状态。 额定电压是固定的,允许偏差10%。 电机的实际功率和实际电流是随着所拖动负载的大小而不同; 拖动的负载大,则实际功率和实际电流大; 拖动的负载小,则实际功率和实际电流小。 实际功率和实际电流大于额定功率和额定电流,电机会过热烧毁; 实际功率和实际电流小于额定功率和额定电流,则造成材料浪费。 它们的关系是: 额定功率=额定电流IN*额定电压UN*根3*功率因数 实际功率=实际电流IN*实际电压UN*根3*功率因数 二,280KW水泵电机额定电流和启动电流的计算公式和相应规范出处 (1)280KW电机的电流与极数、功率因素有关一般公式是:电流=((280KW/380V)0.8.5机的电流怎么算 答:⑴当电机为单相电机时由P=UIcosθ得:I=P/Ucosθ,其中P为电机的额定功率,U为额定电压,cosθ为功率因数; ⑵当电机为三相电机时由P=√3×UIcosθ得:I=P/(√3×Ucosθ),其中P为电机的额定功率,U为额定电压,cosθ为功率因数。 功率因数

在交流电路中,电压与电流之间的相位差(Φ)的余弦叫做功率因数,用符号 cosΦ表示,在数值上,功率因数是有功功率和视在功率的比值,即cosΦ=P/S 功率因数的大小与电路的负荷性质有关,如白炽灯泡、电阻炉等电阻负荷的功率因数为1,一般具有电感或电容性负载的电路功率因数都小于1。功率因数是电力系统的一个重要的技术数据。功率因数是衡量电气设备效率高低的一个系数。功率因数低,说明电路用于交变磁场转换的无功功率大,从而降低了设备的利用率,增加了线路供电损失。所以,供电部门对用电单位的功率因数有一定的标准要求。 (1) 最基本分析:拿设备作举例。例如:设备功率为100个单位,也就是说,有100个单位的功率输送到设备中。然而,因大部分电器系统存在固有的无功损耗,只能使用70个单位的功率。很不幸,虽然仅仅使用70个单位,却要付100个单位的费用。在这个例子中,功率因数是 (如果大部分设备的功率因数 小于时,将被罚款),这种无功损耗主要存在于电机设备中(如鼓风机、抽水机、压缩机等),又叫感性负载。功率因数是马达效能的计量标准。 (2) 基本分析:每种电机系统均消耗两大功率,分别是真正的有用功(叫千瓦)及电抗性的无用功。功率因数是有用功与总功率间的比率。功率因数越高,有用功与总功率间的比率便越高,系统运行则更有效率。 (3) 高级分析:在感性负载电路中,电流波形峰值在电压波形峰值之后发生。两种波形峰值的分隔可用功率因数表示。功率因数越低,两个波形峰值则分隔越大。保尔金能使两个峰值重新接近在一起,从而提高系统运行效率。 对于功率因数改善

电机功率计算公式

电机: 电机(英文:Electric machinery,俗称“马达”)是指依据电磁感应定律实现电能转换或传递的一种电磁装置。 电机在电路中是用字母M(旧标准用D)表示,它的主要作用是产生驱动转矩,作为用电器或各种机械的动力源,发电机在电路中用字母G表示,它的主要作用是利用机械能转化为电能。 电机功率计算公式: 电机功率算公式: 1、三相:P=1.732×UI×cosφU是线电压,某相电流。 当电机电压是380伏时,可以用以下的公式计算: 电机功率=根号3*0。38*电流*0。8 将1千瓦代入上式,可以得到电流等于1.9A。 2、P=F×v÷60÷η 公式中P功率(kW),F牵引力(kN),v速度(m/min),η传动机械的效率,一般0.8左右。 本例中如果取η=0.8,μ=0.1,k=1.25,则: P=F×v÷60÷η×k=0.1×400×60÷60÷0.8×1.25=62.5 kW 电机电流计算公式: 单相电机电流计算公式 I=P/(U*cosfi) 例如:单相电压U=0.22KV,cosfi=0.8则I=P/(0.22*0.8)=5.68P 三相电机电流计算公式

I=P/(1.732*U*cosfi) 例如:三相电压U=0.38KV,cosfi=0.8则 I=P/(1.732*0.38*0.8)=1.9P 根据经验220V:KW/6A、380V:KW/2A、660V:KW/1.2A、3000V:4KW/1A 功率包括电功率、机械功率。电功率又包括直流电功率、交流电功率和射频功率;交流功率又包括正弦电路功率和非正弦电路功率;机械功率又包括线位移功率和角位移功率,角位移功率常见于电机输出功率;电功率还可分为瞬时功率、平均功率(有功功率)、无功功率、视在功率。在电学中,不加特殊声明时,功率均指有功功率。在非正弦电路中,无功功率又可分为位移无功功率,畸变无功功率,两者的方和根称为广义无功功率。 功率可分为电功率,力的功率等。故计算公式也有所不同。 功率功率电功率计算公式:P=W/t=UI; 在纯电阻电路中,根据欧姆定律U=IR代入P=UI中还可以得到:P=I2R=(U2)/R 在动力学中:功率计算公式:1.P=W/t(平均功率)2.P=FV;P=Fvcosα(瞬时功率) 因为W=F(F力)×S(s位移)(功的定义式),所以求功率的公式也可推导出P=F·v:P=W/t=F*S/t=F*V(此公式适用于物体做匀速直线运动)

发电机功率因数调整详解

1.多数发电机的功率因数为0.8,个别的功率因数可达0.85或0.9。 一般情况下,功率因数由额定值到1.0的范围内变化时,发电机的出力可以保持不变,但为保持系统的静态稳定,要求功率因数不能超过0.95,也就是无功负荷不得小于有功负荷的1/3。当发电机的功率因数低于额定值时,由于转子电流增大,会使转子温度升高,此时,应调整负荷,降低发电机的出力。否则,转子温度可能超出极限值。所以,运行时值班人员必须注意调整负荷,使转于电流不超过在该冷却空气进口温度下的允许值。一般地,功率因数都是0.8-0.9左右吧!这个要根据这台机组所规定的功率因数参数和电网的要求。如果机组是调峰机组,可能白天和晚夜就不一样的,我们厂现在由供电局规定的,白天多发无功,晚上少发无功。 2. 由Q=UIsinΦ和P=UIcosΦ知,若机组发出的无功越多,功率因数就是减小,在发电机输出功率不变的情况下,机端的电压会升高。无功越多,励磁电流就会增大,机组的定、转子温度会有所升高,过高的话,两者的绝缘可能也会受到威胁呢.反之,如果功率因数过高,,机组所发的无功功率就是很少啦!机端电压也会降低,就会降低运行的稳定性很容易失步或有可能会造成机组进行运行呢? 所以机组运行时,注意机端电压在规定值和保证机组不进相运行就可以了。 3.为了保证机组的稳定运行,发电机的功率因数一般不应超过迟相0.95运行,或无功负荷应不小于有功负荷的1/3。在发电机自动调整励磁装置投入运行的情况下,必要时发电机可以在功率因数为1.0的情况下短时运行,长时间运行会引起发电机的振荡和失步。目前大机组基本上不允许进相运行,有的大机组正在进行进相试验,运行人员应根据本机组的情况及时调整。当功率因数低于额定值时,发电机出力应降低,因为功率因数越低,定子电流中的无功分量越大,转子电流也必然增大,这会引起转子电流超过额定值而使其绕组发生过热现象,试验证明,当功率因素等于0.7时,发电机的出力将减少8%。因此发电机在运行中,若其功率因数低于额定值时,值班人员必须及时调整,使出力尽量带到允许值,而转子电流不得超过额定值。 4.功率因数过高或过低对发电机运行有影响,主要是指在满负荷的情况下。 功率因数cosφ=有功功率/视在功率 当有功负荷满发时,cosφ过高即无功过低,减少系统的无功裕量,会影响发电机的稳定性。虽然提高了经济性,但从长远来看,这是以增加事故的概率换来的,一旦有突发事故发生,发电机可能经受不起小的扰动或震荡,有可能失步。 此外,无功过低将引起发电机端电压下降,使厂用电动机受影响。电动机吸取的电流上升,而使电压更低,形成恶性循环,可能导致整个系统失去稳定运行而崩溃。 cosφ过高还会增加发电机进相运行的机会,使发动机端部容易发热。 cosφ过低即无功过高,励磁电流上升,转子绕组温度上升,寿命缩短。 cosφ过低使得发电机端电压上升,铁芯内磁通密度增加,损耗也增加,铁芯温度上升。 当发电机在额定负荷下运行时,cosφ过低,发动机的励磁电流、定子电流增加,将使设备发热,增加了设备老化、开关跳闸等机会。

电机效率与功率因数

什么是电动机的功率因数? 异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cosψ来表示。 电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。因此,电动机应避免空载运行,防止“大马拉小车”现象。 什么是电动机的输入功率和输出功率 电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1表示。而电动机转轴上输出的机械功率,称为输出功率,一般用P2表示。在额定负载下,P2就是额定功率Pn。 电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。 什么是电动机的效率 电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为,常用百分数表示,即: 效率高,说明损耗小,节约电能。但过高的效率要求,将使电动机的成本增加。一般异步电动机在额定负载下其效率为75~92%。异步电动机的效率也随着负载的大小而变化。空载时效率为零,负载增加,效率随之增大,当负载为额定负载的0.7~1倍时,效率最高,运行最经济。

电机功率计算公式

电机电流计算公式: 单相电动机电流计算公式 I=P/(U*cosfi) 例如,如果单相电压U=0.22kv,cosfi=0.8,则I=P/(0.22*0.8)=5.68p 三相电动机电流计算公式 I=P/(1.732*U*cosfi) 例如,如果三相电压U=0.38kv,cosfi=0.8,则I=P/(1.732*0.38*0.8)=1.9p 根据经验,220V:kW/6A,380V:kW/2a,660V:kW/1.2a,3000V:4kw/1a 电机功率计算公式:(常用三相电机功率计算) P1=1.732*U*I*cosφ 其中P1(W)为三相电动机的功率,u(V)为线电压,I(a)为线电流,cosφ功率因数通常为0.8 计算公式为:P2=3*P1

这是三相电源Y接线的三倍功率。 [导读]电动机的功率应根据生产机械所需的功率来选择,使电动机在额定负荷下尽可能地运行。选择时要注意以下两点: 电动机的功率应根据生产机械所需功率选择,使电动机在额定负荷下尽可能地运行。选择时要注意以下两点: ①如果电机功率过小,会出现“小马拉车”现象,导致电机长期过载,其绝缘层会因受热而损坏,甚至导致电机烧毁。 ②如果电机功率过大,机械输出功率不能得到充分利用,功率因数和效率都不高,不仅给用户和电网带来损失,而且还会浪费电能。最重要的是,所有的传动元件对于传动功率来说都会过大,造成传动元件选择过多,严重浪费设备投资。 电机电流计算公式: 单相电动机电流计算公式 I=P/(U*cosfi)

例如,如果单相电压U=0.22kv,cosfi=0.8,则I=P/(0.22*0.8)=5.68p 三相电动机电流计算公式 I=P/(1.732*U*cosfi) 例如,如果三相电压U=0.38kv,cosfi=0.8,则I=P/(1.732*0.38*0.8)=1.9p 根据经验,220V:kW/6A,380V:kW/2a,660V:kW/1.2a,3000V:4kw/1a 电机功率计算公式:(常用三相电机功率计算) P1=1.732*U*I*cosφ 其中P1(W)为三相电动机的功率,u(V)为线电压,I(a)为线电流,cosφ功率因数通常为0.8 计算公式为:P2=3*P1 这是三相电源Y接线的三倍功率。 电动机功率计算方法详细说明 7.jpg公司

水电站调整电机功率因数

调整电机功率因数 合理调整电机功率因数,保证系统的无功需求,是电站运行的一项重要工作。本文主要讲述发电机在各种运行工况下,如何调整功率因数,使电站既多发有功,又满足了系统的无功需求,以提高电站的经济效益问题。 关键词:水电站功率因数调整在水电站的运行工作中,发电机的功率因数是经常调整的一个参数,怎样根据水电站季节性水量变化较大、发电机负荷不均的特点,合理地调整发电机功率因数,满足系统无功负荷的需求,解决在满负荷运行时发电机端电压偏高的问题。对水电站的安全运行及提高电站的经济效益,有着重要的意义。 博爱县丹东水电站是丹河流域梯级开发的一座引水式水电站,电站总装机容量为3130kW,其中有两台为1250kW和一台630kW水轮发电机组。发电机额定电压为6.3kV,发电机功率因数为0.8,三台发电机均为同步发电机。电站年发电量1400万kW·h。1995年与大电网并网,同时电站有独立的自供区。每年上网与自供负荷的比例为三比一。 由于电站的供电系统有两个部分组成,电站必须合理调整发电机的功率因数,以满足两个系统对无功的需求。在电站自供区内,共安装有变压器容量3000kVA,变压器近40台,而且多为老式高耗能变压器,用电负荷变化大,无功负荷需求量也大。10kV线路上和400V

低压用户均未安装电容器。如用安装电容器来补偿无功,提高自供区内线路的功率因数,一次性投资大,电容器运行维护费用高,经常还会出现"过补"现象。因此通过对电站发电机功率因数进行适时调整,补充自供区线路的无功负荷,提高线路的经济运行,较为合理。并网负荷的功率因数,电力部门的要求也十分严格,规定功率因数必须为0.8。如少发无功处罚、多发无功奖励,奖罚以0.8为标准,低0.01奖当月上网电费的0.1%,高0.01罚当月上网电费的0.5%,即奖一罚五的规定。电力部门的规定虽然十分严格,但我们电站在不同季节,根据水量和负荷变化的特点,合理地调整发电机的功率因数,每年不但保证自供区无功负荷的需要,而且还受电网多发无功的奖励。 合理调整发电机的功率因数,必须注意几个问题,即针对不同运行季节的特点,正确地进行调整。 对于径流式没有调节能力的小水电站,在雨季水量充足时,电站内多台机组都能满负荷运行,这时应把发电机的功率因数调到0.85~0.9左右,让发电机多发有功,少发无功。《发电机运行规程》中规定:功率因数以0.8为宜,不得超过0.95,必要时方可在功率因数为1的情况下运行。说明功率因数调整稍高一点符合规程要求。另一方面,在满足负荷运行时,功率因数不宜调得太低。这是因为,当发电机的功率因数从额定值到零的范围内变动时,它的有功出力应根据转子电流的允许值而适当降低,因功率因数愈低,定子电流的无功分

相关主题
文本预览
相关文档 最新文档