当前位置:文档之家› Wire textured multi-crystalline si solar cells created using self-assembled masks

Wire textured multi-crystalline si solar cells created using self-assembled masks

Wire textured multi-crystalline si solar cells created using self-assembled masks
Wire textured multi-crystalline si solar cells created using self-assembled masks

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

浅谈城市快速路总体设计的要点

浅谈城市快速路总体设计的要点 摘要:随着经济的快速发展,各个城市逐渐地加快自身城市建设的脚步,积极 完善相关的基础设施,在一定程度上提高了人民的生活质量。城市快速路的建设 是城市进一步发展的内在需求,因此,相关人员要加强对城市快速路的建设,解 决城市交通拥堵的现象,促进城市进行科学的发展,进而提高人民的生活水平。 关键词:城市;快速路;设计 引言 城市快速路建设是城市发展趋势之一,因此,相关人员应加强对快速路的建设,进而减少城市中的交通问题。相关人员应明确快速路设计工作在快速路建设 中的重要性,正确的认识到快速路总设计中存在的问题,并采取针对性的措施解 决相关问题,提高城市快速路的建设水平,以此加快城市的发展速度。 一、快速路的功能和作用 (一)快速路的建设对城市内部的作用 近年来,国民经济的快速提高导致我国人民所拥有的私家车的数量不断地增加,交通堵塞问题日益严重,由此可见,快速路建设是城市发展的趋势。设计人 员应明确快速路建设中应减少红路灯的建设,以增加立交桥的方式确保车辆的正 常行驶。城市道路的建设可以有效的提高城市经济的发展速度,并对城市土地规 划与城市建设具有重要的影响,因此,设计人员应保证相关设计的科学性。城市 快速的建设可以有效的解决城市车辆拥堵现象,逐渐地促进城市交通道路体系的 成熟,快速路不仅可以有效的连接城市与城市之间的交通,也可以在城市的内部 起到一定的作用,降低城市交通的压力,并可以在一定程度上带动城市房地产行 业的发展,以此提高城市发展的速度,推进城市经济增长[1]。 (二)快速路的建设对城市之间的作用 快速路在城市之间具有重要的作用,会在一定程度上降低城市之间往来的阻碍,并且可以促进旅游行业的发展,以此带动城市经济发展。快速路在建设中可 以促进城市之间工业化交流,确保城市间的工业化工厂可以进行频繁的经验交流,促进城市工业化发展互相进步。快速路的建设可以有效的加快城市之间人员流动 的速度,会使相关人员在流动中将部分较好的项目带入经济落后的城市中,以此 减少城市与城市之间的发展差距,进而降低我国的贫富差距,促进我国的平衡发展。建立快速路在发展过程中可以在一定程度上改变城市的发展环境,帮助城市 在发展中加强对外界的交流,学习其他城市的发展经验,以此提高城市的发展速 度[2]。 二、快速路设计过程中所遇到的问题 (一)快速路与辅路的衔接不当 虽然快速路在城市的内部发展及改善外部生存环境中具有重要的作用,但是 在快速路总设计工作中还存在着一定的问题,限制着快速路在城市发展中发挥其 重要的作用。快速路与辅路衔接不当,会导致快速路设计不合理,降低城市的规 划合理性。尤其在旧城区中施工存在着一定的难度,不科学的设计不仅会导致城 区的整体结构遭到破坏,也会导致原有的交通道路与快速路无法连接,阻碍城市 居民使用快速路。并且在快速路地基施工过程中可以能会对旧城区的地下管道及 地下线路造成破坏,这种情况增加了快速路与辅连接的难度,导致城市快速路的 建设速度降低[3]。另外,部分老旧城区的道路建设不完善,道路中存在着一定损坏,使得辅路无法与快速路完美的连接,对城市快速路建设总设计工作中造成一

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

(新)半导体材料发展现状及趋势 李霄 1111044081

序号:3 半导体材料的发展现状及趋势 姓名:李霄 学号:1111044081 班级:电科1103 科目:微电子设计导论 二〇一三年12 月23 日

半导体材料的发展进展近况及趋向 引言:随着全球科技的飞速发展成长,半导体材料在科技进展中的首要性毋庸置疑,半导体的发展进展历史很短,但半导体材料彻底改变了我们的生活,从半导体材料的发展历程、半导体材料的特性、半导体材料的种类、半导体材料的制备、半导体材料的发展。从中我们可以感悟到半导体材料的重要性 关键词:半导体、半导体材料。 一、半导体材料的进展历程 20世纪50年代,锗在半导体产业中占主导位置,但锗半导体器件的耐高温和辐射性能机能较差,到20世纪60年代后期逐步被硅材料代替。用硅制作的半导体器件,耐高温和抗辐射机能较好,非常适合制作大功率器件。因而,硅已经成为运用最多的一种半导体材料,现在的集成电路多半是用硅材料制作的。二是化合物半导体,它是由两种或者两种以上的元素化合而成的半导体材料。它的种类不少,主要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。此中砷化镓是除了硅以外研讨最深切、运用最普遍的半导体材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)构成合金InGaN、AlGaN,如许可以调制禁带宽度,进而调理发光管、激光管等的波长。三是非晶半导体。上面介绍的都是拥有晶格构造的半导体材料,在这些材料中原子布列拥有对称性和周期性。但是,一些不拥有长程有序的无定形固体也拥有显著的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方式来分类。从现在}研讨的深度来看,很有适用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低本钱太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有普遍的运用远景。四是有机半导体,比方芳香族有机化合物就拥有典范的半导体特征。有机半导体的电导特征研讨可能对于生物体内的基础物理历程研究起着重大推进作用,是半导体研讨的一个热点领域,此中有机发光二极管(OLED)的研讨尤为受到人们的看重。 二、半导体材料的特性 半导体材料是常温下导电性介于导电材料以及绝缘材料之间的一类功效材

浅析城市快速路景观设计

浅析城市快速路景观设计 发表时间:2018-06-14T15:43:09.210Z 来源:《建筑学研究前沿》2018年第1期作者:聂丽娜 [导读] 城市快速路是一种具有中央隔离带、多车道、控制进出口、全立体式交叉的道路。 深圳市市政设计研究院有限公司广东深圳 518000 摘要:城市快速路是二十世纪城市化运动发展时提出的一种新型城市道路,是现代大城市中重要的交通设施。城市快速路景观应与城市的区域开发战略决策相呼应。城市快速路的建设使其周边土地使用性质发生变化,城市景观也随之改变,城市重心向着快速路服务范围所覆盖的区域扩展,形成了快速路沿线特有的城市景观。 关键词:城市快速路;景观设计;动态理念; 城市快速路是一种具有中央隔离带、多车道、控制进出口、全立体式交叉的道路。城市快速路的产生给传统城市道路景观设计观念带来了冲击和影响,同时也产生了一种新的、大尺度的城市道路景观设计需求。城市快速路景观给人的是一种动态的地域景观感受,是一种连续的印象流,人们不能驻足仔细欣赏细部,只能注意色彩、体型和天际线等大尺度感受。随着城市居民素质的提高,对城市快速路景观的艺术、生态、功能性提出了更高的要求,如何将不断扩展的道路交通与周边环境合理地融为一体,构筑快速路景观设计特色,成为城市景观营造的一个重要课题。本文以深圳市南坪三期快速路景观设计为例,探讨城市快速路景观设计理念,旨在为现代城市快速路景观设计发展提供有益的参考借鉴。 1项目概况 深圳南坪三期横跨龙岗区、坪山新区,西起水官高速横坪立交,东至聚龙路(规划外环高速公路田头互通立交),道路全长约22.88公里,是城市快速路。景观绿地构成包括中央隔离带、主辅分隔带(局部)、边侧绿带、立交节点等,景观面积约为91万平方米。 南坪三期快速路周边用地现主要为轻型工业用地、居住生活用地、农林渔畜牧产业用地、自然林地、水库。远期道路周边用地规划将以一类工业用地、二类居住用地、农业保护用地、公共绿地为主(见图1)。 图1 南坪三期总平面图 2设计原则 2.1以人为本,绿色导向:绿化景观设计通过园林植物的配置,保障道路交通安全、正确导向,有效减弱汽车眩光,降低司机的驾驶疲劳度等,创建舒适宜人的快速路交通环境,体现人文关怀。 2.2生态多样,满足绿量:构建多样性的植物群落,丰富生物栖息地,改善局部环境和气候。通过园林绿化乔木大体量运用,形成高架快速路的绿色屏障,减少对周边自然环境的影响。 2.3因地制宜,体现特色:选用适宜道路条件、与周边环境相协调、生长健壮、绿化效果稳定的园林植物,同时配合各段环境特色和设计主题进行绿化布置。 2.4方便管理,易于维护:绿化方式应有利于节水节能,方便人工修剪。并建立模块化景观系统方便以后的跟踪评估。 3总体构思 3.1对本项目理解:南坪三期快速路作为“深圳市高快速路网”的一部分,应与全市快速路整治方案统一协调,以提升整体城市形象。南坪一期周边的环境动感自然,其园林设计将看作穿行于城市郊野山林的一条“绿色丝带”。南坪二期的设计结合它的环境及其本身桥梁设计为主的特点,提出“创建穿插于城郊与城区之间的空中绿色走廊”。南坪三期在区位上和一、二期形成海、城、山空间的连贯。南坪三期周边用地性质多样,交通方式丰富,景观资源优势明显,水体山体自然景观富有张力,因此在绿化景观塑造上应发挥地域优势,重点展现人和车的景观参与,原生态的乡野气息以及景观空间的节奏和韵律感,使得整体绿化景观充满活力而变化丰富,成为城市区域之间极具生命力的脉络联系。 3.2南坪三期景观总体设计理念——打造“山、水、路”有机交汇,形成风景优美、安全愉悦的城市快速路景观。园林设计结合周边变化的环境,首先以安全导向、隔离屏障为支撑条件,再结合隧道口、匝道绿地等合理布置景观节点。同时尊重且合理利用环境现状,并满足土地利用规划对景观绿化的需求。然后深入对景观生态的思考,如物种生长栖息环境,地质、水文、气候条件,道路污染等方面。以及利用人车和景观的的动态视距关系,把控好空间尺度,让行进中的人们感受到节奏和韵律的跳动,使整个行进过程充满期待和愉悦。 4具体设计 快速路行驶下的汽车只有穿行于大尺度的景观空间,司乘人员才能产生融入自然的感觉而不是被排斥感,所以,动态中人的景观尺度感常是宜车的大尺度。车速增加,标段长度必须相应增加以保证视觉图案的完整性。车速在80km/h,标段长度适用800-1000m,通过时间36-45s。 4.1景观分段 景观分段有两个因素,一是南坪三期大环境使然,环境差异形成一定的景观区别;二是项目道路全长22.88公里,从景观上来分析,需要一个变化统一的的景观形式。因此景观大致分为龙岗景观段、坪山景观段,只是每一景观段有各自特点又相互联系。每一段有各自特点由不同环境决定,多表现在植物配置形式上;相互联系是指每一段在植物选择或配置上有相通之处。 龙岗景观段:水官高速横坪立交到碧岭隧道之间,路段长6.1Km,6座立交,1处隧道。设计突出“生态龙岗迎宾廊”为主题。通过开花或色叶植物为主的配置营造热情迎宾的气氛,植物主色调以红色开花乔木组团与黄色开花乔木组团,进行组团式跳跃种植。主要选择为木

快速路总体方案设计.doc

快速路总体方案设计 沿风河快速路是青岛市黄岛区路网的重要组成部分,是西客站商务区与中央活力区联系的便捷通道,同时也是西客站高铁交通枢纽实现对外集散道路快速通道。从项目背景、功能定位、主要技术标准、总体方案及关键节点等方面对沿风河快速路总体设计进行全面介绍。 项目背景;功能定位;总体设计;节点方案 1项目背景 沿风河快速路作为青岛市黄岛区城市路网的重要组成部分,是西客站商务区、中央活力区的快速联系通道和西客站高铁交通枢纽对外集散通道的组成部分,西端通过玉泉路与西客站商务区、西客站高铁交通枢纽便捷联系,东端通过海口路、世纪大道与中央活力区以及滨海大道进行沟通,可满足道路沿线组团交通功能需求。本文通过沿风河快速路工程总体方案的设计,对项目建设控制条件、交通功能进行分析,从关键节点比选等方面进行论述。 2功能定位与建设规模 2.1功能定位本工程名称为“沿风河快速路工程”,根据工程可行性研究报告批复,本工程共包含3部分,分别为玉泉路、风河路和海口路工程。其中工程名称中“沿风河快速路”为主管部门立项时所用名称,经前期规划、可行性研究阶段的详细论证和专家意见,风河路定位为城市主干路(连续流),玉泉路及海口路定位为城市主干路。风河路是服务西客站商务区及中央活力区2大功能区的快速联系通道,是风河南部片区内部的加密通道,是服务沿线到发交通重要通道,承载沿河慢行、景观功能载体。

2.2建设规模根据交通量预测与本工程的功能定位,风河路标准段采用双向6车道建设规模;重要节点相交时采用简易立交的形式。玉泉路标准段采用双向6车道建设规模。海口路(风河路—峄山河)近期双向4车道规模,远期结合交通增长情况,适时考虑拓宽为双向6车道。 3交通量预测 综合考虑各片区规划年限和道路交通量饱和设计年限,设计道路预计2018年建成,交通量预测以建成年为基准年,对主干路选取2038年作为预测年限。采用德国PTV公司的宏观仿真软件VISUM对周边片区交通需求预测进行建模研究,得到周边片区未来年总体路网的预测交通量。通过交通预测及通行能力分析,玉泉路、风河路标准段均采用双向6车道的建设规模,海口路标准段采用双向4车道的建设规模。远期道路的服务水平能维持在三级服务水平以上,在未来能够满足规划年限的交通需求[1]。 4主要技术标准 4.1道路等级风河路:城市主干路(连续流);玉泉路、海口路:城市主干路。4.2设计速度风河路:主线60km/h;玉泉路:50km/h;海口路(风河路—峄山河段):40km/h,与相接的南段道路一致。4.3最小净高机动车道:4.5m;非机动车道和人行道:2.5m。 5总体方案 5.1路线总体布置风河路西起玉泉路东至海口路,对风河路敷设在风河南岸、北岸线位进行了详细的比选,各方案主要特点如下。 5.1.1方案1:敷设在风河南岸方案风河南岸沿总体规划中

研究生《高等半导体器件物理》试题

2014级研究生《高等半导体器件物理》试题 1.简单说明抛物线性能能带和非抛物线性能带的能带结构以及各自 的特点、应用。 2.试描述载流子的速度过冲过程和弹道输运过程,以及它们在实际 半导体器件中的应用。 3.什么是半导体超晶格?半导体器件中主要的量子结构有哪些? 半导体超晶格:两种或者两种以上不同组分或者不同导电类型超薄层材料,交替堆叠形成多个周期结构,如果每层的厚度足够薄,以致其厚度小于电子在该材料中的德布罗意波的波长, 这种周期变化的超薄多层结构就叫做超晶格. 主要的量子结构:超晶格中, 周期交替变化的超薄层的厚度很薄,相临势阱中的电子波函数能够互相交叠, 势阱中的电子能态虽然是分立的, 但已被展宽. 如果限制势阱的势垒进度足够厚, 大于德布罗意波的波长, 那么不同势阱中的波函数不再交叠, 势阱中电子的能量状态变为分立的能级. 这种结构称之为量子阱( QW).在上述结构中,电子只在x 方向上有势垒的限制, 即一维限制,而在y , z 两个方向上是二维自由的. 如果进一步增加限制的维度,则构成量子线和量子点. 对于量子线而言, 电子在x , y 两个方向上都受到势垒限制; 对于量子点来说, 在x , y , z 三个方向上都有势垒限制. 我们通常将这些量子结构称为低维结构, 即量子阱、量子线和量子点分别为二维、一维和零维量子结构. 4.PHEMT的基本结构、工作原理以及电学特点。 5.隧道谐振二极管的主要工作特点,RITD的改进优势有哪些? 6.突变发射结、缓变基区HBT的工作原理、特点及其应用。 7.举例讨论半导体异质结光电器件的性能。

参考文献: 1.沃纳,半导体器件电子学,电子工业出版社,2005 2.施敏,现代半导体器件物理,科学出版社,2002 3.王良臣等,半导体量子器件物理讲座(第一讲~第七讲),物理(期刊),2001~2002

院士讲材料——半导体材料的发展现状与趋势汇总

主持人: 观众朋友,欢迎您来到CETV学术报告厅,最近美国的一家公司生产出一千兆的芯片,它是超微技术发展史上的一个分水岭,个人电脑业的发展,也将步入一个新的历史阶段,对整个信息业来说,它的意义不亚于飞行速度突破音速的极限,当然整个技术上的突破,也要依赖于以硅材料为基础的大规模集成电路的进一步微型化,50年代以来,随着半导体材料的发现与晶体管的发明,以硅为主的半导体材料,成为整个信息社会的支柱,成为微电子、光电子等高技术产业的核心与基础,这个情况,将会持续到下个世纪的中叶,当然,面对更大信息量的需求,硅电子技术也有它的极限,将会出现新的、替补性的半导体材料。关于半导体材料的发展现状与发展趋势,请您收看中国科学院王占国院士的学术报告。 王占国: 材料已经成为人类历史发展的里程碑,从本世纪的中期开始,硅材料的发现和硅晶体管的发明以及五十年代初期的以硅为基的集成电路的发展,导致了电子工业大革命。今天,因特网、计算机的到户,这与微电子技术的发展是密不可分的,也就是说以硅为基础的微电子技术的发展,彻底地改变了世界的政治、经济的格局,也改变着整个世界军事对抗的形式,同时也深刻影响着人们的生活方式。今天如果没有了计算机,没有了网络,没有了通信,世界会是什么样子,那是可想而知的。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。 70年代超晶格概念的提出,新的生长设备,像分子束外延和金属有机化合物化学汽相淀积等技术的发展,以及超晶格、量子阱材料的研制成功,使半导体材料和器件的设计思想发生了彻底的改变。就硅基材料的器件和电路而言,它是靠P型与N型掺杂和PN结技术来制备二极管、晶体管和集成电路的。然而基于超晶格、量子阱材料的器件和电路的性质,则不依赖于杂质行为,而是由能带工程设计决定的。也就是说,材料和器件的光学与电学性质,可以通过能带的设计来实现。设计思想从杂质工程发展到能带工程,以及建立在超晶格、量子阱等半导体微结构材料基础上的新型量子器件,极有可能引发新的技术革命。从微电子技术短短50年的发展历史来看,半导体材料的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 现在,我来讲一讲几种重要的半导体材料的发展现状与趋势。我们首先来介绍硅单晶材料。硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。根据预测,到2000年底,它的规模将达到60多亿平方英寸,整个硅单晶材料的产量将达到1万吨以上。目前,8英寸的硅片,已大规模地应用于集成电路的生产。到2000年底,或者稍晚一点,这个预计可能会与现在的情况稍微有点不同,有可能完成由8英寸到12英寸的过渡。预计到2007年前后,18英寸的硅片将投入生产。我们知道,直径18英寸相当于45厘米,一个长1米的晶锭就有几百公斤重。那么随着硅单晶材料的进一步发展,是不是存在着一些问题亟待解决呢?我们知道硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂

中国半导体材料行业市场调研报告

2011-2015年中国半导体材料行业市场调 研及投资前景预测报告 半导体材料是指电阻率在10-3~108Ωcm,介于金属和绝缘体之间的材料。半导体材料是制作晶体管、集成电路、电力电子器件、光电子器件的重要基础材料,支撑着通信、计算机、信息家电与网络技术等电子信息产业的发展。电子信息产业规模最大的是美国。近几年来,中国电子信息产品以举世瞩目的速度发展,半导体材料及应用已成为衡量一个国家经济发展、科技进步和国防实力的重要标志。 中国报告网发布的《2011-2015年中国半导体材料行业市场调研及投资前景预测报告》共十六章。首先介绍了半导体材料相关概述、中国半导体材料市场运行环境等,接着分析了中国半导体材料市场发展的现状,然后介绍了中国半导体材料重点区域市场运行形势。随后,报告对中国半导体材料重点企业经营状况分析,最后分析了中国半导体材料行业发展趋势与投资预测。您若想对半导体材料产业有个系统的了解或者想投资半导体材料行业,本报告是您不可或缺的重要工具。 本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。 第一章半导体材料行业发展概述 第一节半导体材料的概述 一、半导体材料的定义 二、半导体材料的分类 三、半导体材料的特点 四、化合物半导体材料介绍 第二节半导体材料特性和制备 一、半导体材料特性和参数 二、半导体材料制备

第三节产业链结构及发展阶段分析 一、半导体材料行业的产业链结构 二、半导体材料行业发展阶段分析 三、行业所处周期分析 第二章全球半导体材料行业发展分析 第一节世界总体市场概况 一、全球半导体材料的进展分析 二、全球半导体材料市场发展现状 三、第二代半导体材料砷化镓发展概况 四、第三代半导体材料GaN发展概况 第二节世界半导体材料行业发展分析 一、2010年世界半导体材料行业发展分析 二、2011年世界半导体材料行业发展分析 三、2011年半导体材料行业国外市场竞争分析 第三节主要国家或地区半导体材料行业发展分析 一、美国半导体材料行业分析 二、日本半导体材料行业分析 三、德国半导体材料行业分析 四、法国半导体材料行业分析 五、韩国半导体材料行业分析 六、台湾半导体材料行业分析 第三章我国半导体材料行业发展分析 第一节2010年中国半导体材料行业发展状况 一、2010年半导体材料行业发展状况分析 二、2010年中国半导体材料行业发展动态 三、2010年半导体材料行业经营业绩分析 四、2010年我国半导体材料行业发展热点 第二节2011年半导体材料行业发展机遇和挑战分析一、2011年半导体材料行业发展机遇分析

几种半导体材料的现状与发展趋势

几种半导体材料的现状与发展趋势 摘要:本文重点对半导体硅材料,gaas和inp单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料等目前达到的水平和器件应用概况及其发展趋势作了概述。 关键词:半导体材料量子线量子点材料 上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和gaas激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。 一、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(cz-si)单晶的直径和减小微缺陷的密度仍是今后cz-si发展的总趋势。目前直径为8英寸(200mm)的si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(ic’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ulsi生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅ic’s的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,soi材料,包括智能剥离(smart cut)和simox材料等也发展很快。目前,直径8英寸的硅外延片和soi材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅mos集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、sio2自身性质的限制。尽管人们正在积极寻找高k介电绝缘材料(如用si3n4等来替代sio2),低k介电互连材料,用cu代替al引线以及采用系统集成芯片技术等来提高ulsi的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和dna生物计算等之外,还把目光放在以gaas、inp为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容gesi合金材料等,这也是目前半导体材料研发的重点。 二、gaas和inp单晶材料 gaas和inp与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。 目前,世界gaas单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(vgf)和水平(hb)方法生长的2-3英寸的导电gaas衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的si-gaas 发展很快。美国莫托罗拉公司正在筹建6英寸的si-gaas集成电路生产线。inp具有比gaas更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的inp单晶的关键技术尚未完全突破,价格居高不下。

浅论城市快速路系统规模及其规划布局

第14卷第3期1997年9月 武汉城市建设学院学报 J.WU HAN U RBAN CON STRU CT I ON I N ST ITU T E V o l.14N o.3 Sep.1997 浅论城市快速路系统规模及其规划布局Ξ 李泽民 (城市道路与交通工程系) 摘 要 在借鉴国内几个著名大城市快速路系统规划成果的基础上,着重对快速路系统规划中的 互通式立交、出入匝道的最小间距以及辅道设计等进行了研讨.此外,对尚待深化研究的快速路系 统的合理规模问题,进行了初次探讨,提出了校核、判断其规模合理性的方法及算式,这对准备进 行快速路网规划的其他大城市,避免规模不当,将不无裨益. 关键词 快速路系统;合理规模;交叉口;匝道 分类号 U412.12;U412.366.2 随着改革开放的深化与国民经济的持续、快速协调发展,我国许多特大城市人口、用地规模日益扩大,中长距客、货运车流大幅度增加,致使现状路网普遍出现高峰交通时的拥阻.因此,调整并扩充改善现有常规路网,规划并建设快速骨干交通系统,从根本上缓解交通困扰已为人们所共识.限于轨道交通投资大,建设周期长,没有二三十年以上的努力,难以取得实效,因而,国内一些经济实力较强的京、沪、津、穗以及深圳等大城市近几年把重点放在规划、建设快速干道系统方面,并初步取得明显的交通效益. 1 快速干道系统的规划布局 我国特大城市干道网布局,除带状发展的深圳市外,大多系多环放射式,其内核旧城区则多为方格网式.因此,结合城市总体规划与用地布局以及城市重点扩展方向,快速路宜布设在中、外环(包括较大内环)及主要出入放射性干道上.过小的内环,由于其包容地区建筑密集、路网密度大而路幅窄,实施快速穿越难度大,并且难以发挥其疏解客流的效益.国内已建成通车的快速内、中环线,如北京近29km的二环,约48km的三环快速路以及上海长达47.5km的内环与长8km的南北向高架快速路(成都路),其疏解客、货车效益十分明显;正在建设的广州快速高架内环线长度也达26km.综合实践效果分析,笔者认为:适于布置快速内环的最小长度为26~30km,其包容范围约为35~50km2,居住人口多在100~150万人之间. 快速干道的设计车速,由于内、中环线通过城市建成区,受用地条件限制,不得不采取高架与地面隔离相结合的方式,一般可取60~80km h;沟通中心城区与联系近郊卫星城镇、开发区并与城市对外交通线衔接的快速外环,则应为80km h,甚至局部可成为高速外环.法国巴黎的高速外环设计车速达100km h;华盛顿的外环则为88km h;伦敦的M25环城高速公路 Ξ收稿日期:1997204230. 李泽民,男,1923年生,教授;武汉,武汉城市建设学院城市道路与交通工程系(430074).

半导体材料发展简史

半导体材料的发展简史 半导体材料是半导体工业的基础,它的发展对半导体工业的发展具有极大的影响。如果按化学成分及内部结构,半导体材料大致可以分为以下几类:一是元素半导体材料,包括锗(Ge)、硅(Si)、硒(Se)、硼(B)等。20世纪50年代,锗在半导体工业中占主导地位,但锗半导体器件的耐高温和抗辐射性能较差,到20世纪60年代后期逐渐被硅材料取代。用硅制造的半导体器件,耐高温和抗辐射性能较好,特别适宜制作大功率器件。因此,硅已成为应用最多的一种半导体材料,目前的集成电路大多数是用硅材料制造的。 二是化合物半导体,它是由两种或两种以上的元素化合而成的半导体材料。它的种类很多,重要的有砷化镓(GaAs)、磷化铟(InP)、锑化铟(InSb)、氮化镓(GaN)、碳化硅(SiC)、硫化镉(CdS)等。其中砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。由于砷化镓是一种直接带隙的半导体材料,并且具有禁带宽度宽、电子迁移率高的优点,因而砷化镓材料不仅可直接研制光电子器件,如发光二极管、可见光激光器、近红外激光器、量子阱大功率激光器、红外探测器和高效太阳能电池等,而且在微电子方面,以半绝缘砷化镓(Si-GaAs)为基体,用直接离子注入自对准平面工艺研制的砷化镓高速数字电路、微波单片电路、光电集成电路、低噪声及大功率场效应晶体管,具有速度快、频率高、低功耗和抗辐射等特点。碳化硅由于其抗辐射能力强、耐高温和化学稳定性好,在航天技术领域有着广泛的应用。氮化镓材料是近十年才成为研究热点,它是一种宽禁带半导体材料(Eg=3.4eV),具有纤锌矿结构的氮化镓属于直接跃迁型半导体,是制作绿光、蓝光、紫光乃至紫外发光二极管、探测器和激光器的材料。氮化镓可以与氮化铟(Eg=1.9eV)、氮化铝(Eg=6.2eV)形成合金InGaN、AlGaN,这样可以调制禁带宽度,进而调节发光管、激光管等的波长。 三是非晶半导体。上面介绍的都是具有确定晶格结构的半导体材料,在这些材料中原子排列具有对称性和周期性。然而,一些不具有长程有序的无定形固体(非晶体)也具有明显的半导体特征。非晶半导体的种类繁多,大体上也可按晶态物质的归类方法来分类。从目前研究的深度来看,颇有实用价值的非晶半导体材料首推氢化非晶硅(α-SiH)及其合金材料(α-SiC:H、α-SiN:H),可以用于低成本太阳能电池和静电光敏感材料。非晶Se(α-Se)、硫系玻璃及氧化物玻璃等非晶半导体在传感器、开关电路及信息存储方面也有广泛的应用前景。 四是有机半导体,例如芳香族有机化合物就具有典型的半导体特征。有机半导体的电导特性研究可能对生物体内的基本物理过程研究起着重大推动作用,是半导体研究的一个热门领域,其中有机发光二极管(OLED)的研究尤其受到人们的重视。 半导体材料有重要的战略地位,上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地着世界的、格局和军事对抗的形式,彻底改变人们的生活方式。 常用的半导体材料分为元素半导体和化合物半导体。元素半导体是由单一元素制成的半导体材料。主要有硅、锗、硒等,以硅、锗应用最广。化合物半导体

半导体器件物理

半导体器件物理 Physics of Semiconductor Devices 教学大纲 课程名称:半导体器件物理 课程编号:M832001 课程学分:2 适用专业:集成电路工程领域 一、课程性质 本课程的授课对象为集成电路工程专业硕士研究生,课程属性为专业基础必修课。要求学生在学习过《电路分析》,《数字电路》,《模拟电路》和《半导体物理》的基础上选修这门课程。 二、课程教学目的 通过本课程教学,使得学生知道微电子学的用途、主要内容,明白学习微电子学应该掌握哪些基础知识;对微电子学的发展历史、现状和未来有一个比较清晰的认识;学会应用《半导体物理》的基础知识来对半导体器件物理进行分析,初步掌握电子器件物理、工作原理等基本概念,对微电子学的整体有一个比较全面的认识。

三、教学基本内容及基本要求 第一章微电子学常识 (一)教学基本内容 第一节晶体管的发明 1.1 晶体管发明的历史过程 1.2 晶体管发明对现代文明的作用 第二节集成电路的发展历史 2.1 集成电路的概念 2.2 集成电路发展的几个主要里程碑 2.3 目前集成电路的现状 2.4 集成电路未来发展的主要趋势 第三节集成电路的分类 3.1 集成电路的分类方法 3.2 MOS集成电路的概念 3.3 双极集成电路的概念 第四节微电子学的特点 4.1 微电子学的主要概念 4.2 微电子学的主要特点 (二)教学基本要求 了解:晶体管发明的过程,晶体管发明对人类社会的作用; 微电子学的概念,微电子学的特点; 掌握:集成电路的概念,集成电路发展的几个主要里程碑;集成电路的分

类方法,MOS集成电路的概念,双极集成电路的概念;第二章p-n结二极管 (一)教学基本内容 第一节p-n结的空间电荷区 1.1 p-n结的结构和制造概述 1.2 p-n结的空间电荷层和内建电场、内建电势 1.3 p-n结的耗尽层(势垒)电容 第二节p-n结的直流特性 2.1 p-n结中载流子的注入和抽取 2.2 理想p-n结的伏-安特性 2.3 实际p-n结的伏-安特性 2.4 大注入时p-n结的伏-安特性 2.5 实际p-n结的电流、正向结电压与温度的关系 第三节p-n结的小信号特性 3.1 p-n结的交流电流密度 3.2 扩散电容C d 第四节p-n结的开关特性 4.1 p-n结中少数载流子存储的电荷 4.2 p-n结的瞬变过程 4.3 p-n结反向恢复时间的计算 第五节p-n结的击穿特性 5.1 隧道击穿(Zener击穿)

半导体材料发展

题目半导体材料的发展导师马晓华 学生姓名王语晨 学生学号1614123118

半导体材料发展 第一代半导体硅材料 第一代半导体材料主要是指硅(Si)、锗元素(Ge)半导体材料。作为第一代半导体材料的锗和硅,在国际信息产业技术中的各类分立器件和应用极为普遍的集成电路、电子信息网络工程、电脑、手机、电视、航空航天、各类军事工程和迅速发展的新能源、硅光伏产业中都得到了极为广泛的应用,硅芯片在人类社会的每一个角落无不闪烁着它的光辉。硅制程是大量生产且便宜的制程。且硅(Si)有较好的物理应力,所以可做成大尺寸的晶圆(现今,Si晶圆直径约为300 mm,而GaAs晶圆最大直径约只有150 mm)。在地球表面上有大量硅(Si)的原料:硅酸盐矿。硅工业已发展到规模经济(透过高的产能以降低单位产品的成本)的情形了。第二个主要的优点是,硅很容易就会变成二氧化硅,二氧化硅在电子元件中是一种很好的绝缘体。二氧化硅可以轻易地被整合到硅电路中,且二氧化硅和硅(Si)拥有很好的界面特性。第三,大概也是最重要的优点,是硅拥有高很多的空穴移动率。在需要CMOS逻辑时,高的空穴率可以做成高速的P-沟道场效应晶体管。如果需要快速的CMOS结构时,虽然GaAs的电子迁移率快,但因为它的功率消耗高,所以使的GaAs电路无法被整合到Si逻辑电路中。 第二代半导体GaAs和InP单晶材料 GaAs 和InP是微电子和光电子的基础材料,为直接带隙,具有电子饱和漂移速度高、耐高温、抗辐照等特点,在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。近年来,为满足高速移动通信的迫切需求,大直径(4,6 和8 英寸)的SI-GaAs 发展很快,4 英寸70cm 长,6 英寸35cm 长和8 英寸的半绝缘砷化钾S I - G a A s)也在日本研制成功。 第三代半导体GaN和SiC 以碳化硅和氮化镓为代表的第三代半导体材料凭借其宽禁带、高热导率、高击穿电场、高抗辐射能力等特点,在许多应用领域拥有前两代半导体材料无法比拟的优点,有望突破第一、二代半导体材料应用技术的发展瓶颈,市场应用潜力巨大。根据第三代半导体不同的发展情况,其主要应用为半导体照明、电力电子器件、激光器和探测器以及其他4个领域,每个领域产业成熟度各不相同,其中前沿研究领域,宽禁带半导体还处于实验室研发阶段。预计到2020年,第三代半导体技术应用将在节能减排、信息技术、国防三大领域催生上万亿元潜在市场,而碳化硅和氮化镓器件很可能成为推动整个电力电子、光电子和微波射频三大领域效率提升和技术升级的关键动力之一。 国际上第三代半导体产业已经整体进入产业形成期,并开始步入激烈竞争的阶段,众多国家将其列入国家战略,从国际竞争角度看,美、日、欧等发达国家已将第三代半导体材料列入国家计划,并展开全面战略部署,欲抢占战略制高点。我国政府高度重视第三代半导体材料的研究与开发,从2004年开始对第三代半导体领域的研究进行了部署,启动了一系列重大研究项目,2013年科技部在863计划新材料技术领域项目征集指南中明确将第三代半导体材料及应用列为重要内容。2015年5月,国务院发布《中国制造2025》,新材料是《〈中国制造

相关主题
文本预览
相关文档 最新文档