当前位置:文档之家› 水工建筑物重力坝设计计算书

水工建筑物重力坝设计计算书

水工建筑物重力坝设计计算书
水工建筑物重力坝设计计算书

一、非溢流坝设计

(一)、初步拟定坝型的轮廓尺寸

(1)坝顶高程的确定

①校核洪水位情况下:

波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m

波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m

波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m

安全超高按Ⅲ级建筑物取值h c=0.3m

坝顶高出水库静水位的高度△h

=2h l+ h0+ h c=0.98+0.30+0.3=1.58m

②设计洪水位情况下:

波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m

波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m

波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m

安全超高按Ⅲ级建筑物取值h c=0.4m

=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h

③两种情况下的坝顶高程分别如下:

校核洪水位时:225.3+1.58=226.9m

设计洪水位时:224.0+2.56=226.56m

坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。

(2)坝顶宽度的确定

本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。

(3)坝坡的确定

考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。

(4)上下游折坡点高程的确定

理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。

根据坝高确定为52.5m,则1/3H=1/3×52.5=17.5m,折坡点高程=174.5+17.5=192m;2/3H=2/3×52.5=35m,折坡点高程=174.5+35=209.5m,所以折坡点高程适合位于192m~209.5m之间,则取折坡点高程为203.00m。挡水坝段和厂房坝段的下游折坡点在统一高程216.5m处。

(5)坝底宽度的确定

由几何关系可得坝底宽度为T=(203-174.5)×0.2+8+(216.5-174.5)×0.7=43.1m

(6)廊道的确定

坝内设有基础灌浆排水廊道,距上游坝面6.1m,廊道底距基岩面4m,尺寸2.5×3.0m(宽×高)。

(7)非溢流坝段纵剖面示意图

(二)、基本组合荷载计算及稳定分析

由上述非溢流剖面设计计算得知校核洪水位情况下的波浪三要数:

波浪中心线到静水面的高度h0=0.3m

波浪高度2h l=0.98m

波浪长2L l=10.23m

因为gD/v2=9.81×4000/182=121.11m ,在20~250m之间

所以波高应安转换为累计频率1%时的波高:2h l(1%)=0.98×1.24=1.22m 。

又因为半个波长L l=10.23/2=5.12

所以浪压力P l按深水波计算。

式中:其中灌浆处及排水处扬压力折减系数取α=0.25

水重度Υ=9.81KN/m3

混泥土等级强度C10

混泥土重度24KN/m3

坝前淤沙浮容重0.95T/m3=9.5KN/ m3

水下淤沙内摩擦角Φ=18°。

(1)正常洪水位情况

正常洪水位情况下荷载计算示意图正常洪水位情况下的荷载计算过程见附表1

附表1非溢流重力坝基本荷载计算表

上游水位:217.00m下游水位:180.00m坝高:52.5m 计算情形:正常洪水位217.00m情况

注:垂直力以↓为正,↑为负;水平力以→为正,←为负;力矩以顺时针为正,逆时针为负

1

②抗滑稳定分析

=[0.9×(23368.24-5542.88)+700×43.1] /9752.39 =4.74>[3.0] ,满足抗滑稳定要求。

(2)校核洪水位情况

校核洪水位情况下荷载计算示意图

① 校核洪水位情况下的荷载计算过程见附表2

∑∑'+-'=

'P

A

C U W f s K )

(

附表2非溢流重力坝基本荷载计算表

上游水位:225.30m下游水位:190.65m坝高:52.5m计算情形:校核洪水位225.30m情况

注:垂直力以↓为正,↑为负;水平力以→为正,←为负;力矩以顺时针为正,逆时针为负。

1

② 抗滑稳定分析

=[0.9×(20324.20-9842.49)+700×43.1] /12419.82 =3.19>[2.5],满足抗滑稳定要求。

四、应力分析(运行期) (一)正常洪水位情况下 1、水平截面上的正应力

2、剪应力

上游面水压力强度:

下游面水压力强度 :

剪应力:

3、水平应力

)(25.2837.056.32796.53kPa m P d d xd =?+=+=τσ

4、主应力

(二)校核洪水位情况下

)(48.5621

.4345

.628261.4304.2258662

2

kPa B M B

W yu

=?+=

+

=∑∑σ)(89.5211

.4345.628261.4304.2258662

2

kPa B M B

W yd

=?-=-

=∑∑σ)

(25.92.0)48.56222.516()(kPa n P yu u u -=?-=-=στ)

(56.3277.0)96.5389.521()(kPa m P d yd d =?-=-=στ)

(07.5182.0)25.9(22.516kPa n P u u xu =?--=-=τσ)

(33.5642.022.51648.562)2.01()1(22221kPa n P n u

yu u =?-?+=-+=σσ)(18.7517.096.5389.521)7.01()1(22221kPa m P m d yd d =?-?+=-+=σσ)(22.5162kPa P u u ==σ)(96.532kPa P d d ==σ)

(96.535.581.92kPa H r P w d =?==)

(22.516)2

1845(tan 8.195.95.4281.9)245(tan 2

2

1kPa H r H r P sb w u =?-??+?=-?+=α淤∑∑'+-'=

'P

A

C U W f s K )(

1、水平截面上的正应力

2、剪应力

上游面水压力强度:

下游面水压力强度 : 剪应力

3、水平应力

4、主应力

)(03.7671

.4378

.9147761.4320.2032462

2

kPa B M B

W yu

=?+=+

=∑∑σ)(09.1761

.4378

.9147761.4320.2032462

2

kPa B M B

W yd

=?-=

-

=∑∑σ)

(64.597)2

1845(tan 8.195.98.5081.9)245(tan 2

2

1kPa H r H r P sb w u =?-??+?=-?+=α淤)(88.332.0)03.76764.597()(kPa

n P yu u u -=?-=-=στ)

(36.127.0)43.15809.176()(kPa m P d yd d =?-=-=στ)

(42.6042.0)88.33(64.597kPa n P u u xu

=?--=-=τσ)

(80.7732.064.59703.767)2.01()1(22221kPa n P n u yu u =?-?+=-+=σσ)

(74.1847.043.15809.176)7.01()1(22221kPa m P m d yd d =?-?+=-+=σσ)

(64.5972kPa P u u ==σ)

(43.1582kPa P d d ==σ)

(43.15815.1681.92kPa H r P w d =?==)

(08.1677.036.1243.158kPa m P d d xd =?+=+=τσ

五、内部应力计算 (一)正常洪水位情况下

坐标原点设在下游坝面,由偏心受压公式可以得出系数a 和b ,如下

具体坝内应力计算过程见附表3 (二)校核洪水位情况下

坐标原点设在下游坝面,由偏心受压公式可以得出系数a 和b ,如下

具体坝内应力计算过程见附表4

89.5211

.4345

.628261.4304.2258662

2

=?-=-

=∑∑B

M B

W a 52.01

.4345

.628212123

3

=?==

∑B

M b 09.1761

.4378

.9147761.4324.2336862

2

=?-=

-

=∑∑B

M B

W a 71.131

.4378

.9147712123

3

=?==

∑B M b

非溢流坝坝内应力分析计算表

正常洪水位情况下

1

非溢流坝坝内应力分析计算表

校核洪水位情况下

2

六、坝内应力分析图

根据坝内应力分析计算成果,可做出坝内应力分布图,如下所示:(1)正常洪水位情况下

(2)校核洪水位情况下

二、溢流坝设计

一、 孔口型式及尺寸拟定

已知:校核洪水位时泄流量为3340 m3/s

设计洪水位时泄流量2600 m3/s 设:单宽流量为q=80 m3/s·m

闸门孔口数为5孔,每孔净宽为8m 。

①前缘净宽

校核洪水位时: L=Q 溢/q=3340/80=41.75(m ) 设计洪水位时: L=Q 溢/q=2600/80=32.5(m ) 综上所述,取L=40m ② 堰顶高程

由资料可知,堰顶高程为213.00m 。 二、 溢流坝的堰面曲线设计 ①顶部曲线段

开敞式溢流堰面曲线,采用幂曲线时按下式计算:

定型设计水头,按堰顶最大作用水头的75%-95%计算,m ;

n 、K

— 与上游坝面坡度有关的指数和系数;

x 、y —— 溢流面曲线的坐标,其原点设在颜面曲线的最高点。 按85%计算,则: 上游坝面铅直:k=2 , n=1.85

x-y 关系如下表: ③ 原点上游曲线段

R1=0.5Hd=0.5×10.46=5.23(m), 0.175Hd=0.175×10.46=1.83(m); R2=0.2Hd=0.2×10.46=2.09(m), 0.276Hd=0.276×10.46=2.89(m); R3=0.04Hd=0.04×10.46=0.42(m), 0.282Hd=0.282×10.46=2.95(m)。 ④ 堰面曲线与直线段的切点坐标

上游坡度垂直: A=1.096 B=0.592 a=1.1765 b=2.176 直线段与溢流曲线的切点坐标:

θ1=arctan1.43=55°

y

kH x n d

n )

1(-=--d H m

H H d 46.10)2133.225(85.05.80m ax =-?==43.17

.011

tan 1===m θ)

(46.1743.146.10096.1)(tan 1765.11m AH x a d T =??==θ

切点高程 = 堰顶高程 - = 213-13.49=199.51(m)

⑤ 底部反弧段

取 =0.95时,坝顶水面流速为V 1

H 0=校核洪水位-坎顶高程=225.3-191.65=33.65(m)

因为q=80 m3/s·m,则q/V 1=80/28.1=2.85 所以 h=2.85m 。

又因为R=(4—10)h ,所以取R=6h=6×2.85=17.1(m) 取挑射角θ2=20° 则:

圆心高程=坎顶高程+Rcosθ2=191.65+17.1cos20°=207.72 (m) 圆心纵坐标y 0=堰顶高程-圆心高程=213-207.72=5.25(m ) 反弧段和直线段的切点坐标: 圆心坐标:

E 点坐标(坎顶坐标):

离心力作用点坐标:

)

(49.1343.146.10592.0)(tan 176.21m BH y b d T =??==θT y )

/(10.2865.3310295.014.1214.1301s m gH V =????=??=??

)

(06.1555cos 1.1725.5cos 10m R y y D =??+=+=θ)

(56.1843

.149

.1306.1546.17tan 1m y y x x T D T

D =-+=-+=θ)(57.3255sin 1.1756.18sin 1m R x x D o =??+=+=θ)(25.555cos 1.1706.15cos 1m R y y D o =??-=-=θ)(42.3820sin 1.1757.32sin 2m R x x o

E =??+=+=θ)

(32.2120cos 1.1725.5cos 2m R y y o E =??+=+=θ)

(43.27)2552055sin(1.1757.32)2sin(2

11m R x x o =?

+?-

??-=+-

-=θθθ)

(56.21)2

552055cos(1.1725.5)2cos(211m R y y o =?

+?-??+=+-+=θθθ

⑥溢流坝段纵剖面示意图

根据溢流坝的堰面曲线设计数据画出溢流坝段的纵剖面示意图,如下:

溢流坝段纵剖面示意图

三、基本组合荷载计算及稳定分析

波浪三要数:

波浪中心线到静水面的高度h0=0.3m

波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m

波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m

因为gD/v2=9.81×4000/182=121.11m ,在20~250m之间

所以波高应安转换为累计频率1%时的波高:2h l(1%)=0.98×1.24=1.22m 。又因为半个波长L l=10.23/2=5.12

所以浪压力P l按深水波计算。

式中:灌浆处及排水处扬压力折减系数取α=0.25

水重度Υ=9.81KN/m3

混泥土等级强度C10

混泥土重度24KN/m3

坝前淤沙浮容重0.95T/m3=9.5KN/ m3

水下淤沙内摩擦角Φ=18°。

(1)基本组合荷载计算

在CAD中绘制溢流坝段纵剖面图,并利用面域查出一个坝段坝体面积A1=1179.90m2,坝体重心距坝踵X1=21.67m;一个闸墩面积A2=181.75 m2,闸墩重心距坝踵X2=11.93m。

溢流坝段基本组合荷载计算过程见附表5,基本组合荷载示意图如下:

溢流坝段基本组合荷载计算示意图

附表5 溢流重力坝基本荷载计算表

上游水位:225.30m 下游水位:190.65m 溢流坝高:38.5m 计算情形:校核洪水位225.30m情况

1

(2)抗滑稳定分析

=[0..9×(22762.59-10841.25)+700×48.07] /12419.82 =3.57>[3.0] ,满足抗滑稳定要求。

(3)上下游边缘应力计算

根据材料力学可知,C20混凝土抗压强度为20MPa ,抗拉强度为1.97MPa,所以坝体应力满足稳定要求。 四、消能防冲设计

鼻坎高程为:191.65m 反弧半径: R=17.1m 挑射角: θ=20° 挑距: L ′=L+ΔL 由上诉可知:V 1=28.1 m3/s;

h 1=hcosθ =2.85cos20°=2.68m h 2 = 191.65-174.50=17.15m

冲刷坑深度:

取冲刷坑系数为k=1.2,q=80 m3/s·m ,H=225.3-190.65=34.65m 所以最大冲刷坑水垫厚度:

冲刷坑深度:

∑∑'+-'=

'P

A

C U W f s K )()(44.77707.4845

.96011607.4859.2276262

2

kPa B M B

W yu

=?+=+

=∑∑σ)(83.27807

.4845

.96011607.4859.2276262

2

kPa B M B

W yd =?-=

-

=∑∑σ)(04.2665.34802.125

.05.025.05.0m H kq t k =?==)(89.9)5.17465.190(04.26m t k =--='

[]

)(93.84)15.1768.2(81.9220sin 1.2820cos 1.2820cos 20sin 1.2881

.91)(2sin cos cos sin 12222122

1121m h h g V V V g L =+?+????+???=???

?

??+++=

θθθθ

所以:

满足要求

)(59.889.993.84m t L k =='m

t L k

5.259.8≥=

')

2x

y σστ--

坝体稳定计算书

1 坝顶高程及护坡计算 根据《碾压式土石坝设计规范》(SL274-2001),坝顶高程等于水库静 水位与坝顶超高之和,应分别按以下运用条件计算,取其最大值:①正常蓄水位加正常运用条件的坝顶超高;②设计洪水位加正常运用条件的坝顶超高;③校核洪水位加非常运用条件的坝顶超高。考虑坝前水深、风区长度、坝坡等因素的不同,分别计算安全加固前后主坝及一、二、三副坝的坝顶高程。 计算波浪要素所用的设计风速的取值:正常运用条件下,采用多年平 均年最大风速的倍;对于非常运用条件下,采用多年平均年最大风速。根据水库所处的地理位置,多年平均年最大风速值采用15.2m/s 计算。主坝风区长度为886m西营副坝风区长度为200m马尾副坝风区长度为330m 采用公式法进行计算。 坝顶超高计算 根据《碾压式土石坝设计规范》SL274— 2001,坝顶在水库静水位的超 高应按下式计算: y=R+e+A 式中:R――最大波浪在坝坡上的爬高(m; e —最大风壅水面高度(m ; A安全超高(m,对于3级土石坝,设计工况时A=0.7m,校 核工况时A=0.4m; 加固前坝顶超高的计算 1.2.1计算参数 各大坝计算采用的参数见表121.1 —2。

表 121.1 主坝加固前波浪护坡计算参数表 1.2.2加固前坝顶高程复核 各坝坝顶高程计算成果见表1.2.2.1?2 从表1.2.2.1可以看出,校核工况下主坝坝顶高程最大,所以坝顶高 程取17.39m,小于现状防浪墙顶高程~17.63m ,现坝顶高程满足现行规范的 西营副坝加固前波浪护坡计算参数表 主坝加固前坝顶高程计算成果表 表 121.2

重力坝稳定及应力计算书

重力坝稳定及应力计算 书 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程,坝高H=。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m 。 B10 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~,下游边坡坡率m=0~。故上游边坡坡率初步拟定为,下游边坡坡率初步拟定为。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表。 表荷载组合表

水工建筑物重力坝课程设计报告书

水工建筑物课程设计 ——重力坝 :武亮 学号: 2011101812 班级: 11水利水电工程(本)04 指导老师:洁

目录 一、原始资料(数据) (2) 二、坝体剖面拟定 (3) 三、稳定分析 (5) 四、应力分析 (13) 五、溢流坝面设计 (15) 六、细部构造设计 (17) 七、地基处理设计 (19) 附录1:参考资料 (21) 附录2:坝体剖面图 (21)

一、原始资料(数据) 某枢纽以发电为主,兼顾防洪灌溉。水库建成后,还可以提高下游二个水电站的出力和发电量。该工程坝型为混凝土重力坝。 1、水库特征: 1.1、水库水位: ①正常蓄水位—349米 ②设计洪水位—349.9米 ③校核洪水位—350.4米 1.2、下泄流量及相应下游水位:①千年一遇洪水的下泄流量13770s m 3,相应下游水位271.90米;②五千年一遇洪水的下泄流量15110m 3,相应下游水位27 2.63米 1.3、库容:总库容为17.9亿立方米 考虑开挖后,坝基面高程269m 2、综合利用效益: 2.1、装机容量20万千瓦,年发电量7.4亿度。 2.2、防洪:可将千年一遇洪峰流量以18200s m 3削减至13770s m 3;可将五千年一遇洪峰流量从21200s m 3削减至15110m 3;可灌溉农田30万亩;此外还可改善航运条件,库区可从事养殖。 3、自然条件: 3.1、地形:坝址位于峡谷出口段,左岸地势较低,山坡较缓;右岸地势较高,山坡较陡。 3.2、地质:坝址出露岩层为志留系圣母山绿色含砾片岩。岩性坚硬完整,新鲜岩石饱和极限抗压强度在60-80Mpa 以上,坝上游坡角为绢云母绿泥石英片岩, 饱和极限抗压强度为30-40 Mpa 。 坝基坑剪断摩擦系数f 经野外试验及分析研究确定为1.0-1.1;坝基坑抗剪断凝聚力为0.6-0.8 Mpa 。 3.3、水文地质:坝址水文地质较简单。相对不透水层埋藏深度一般在35米以,

混凝土重力坝毕业设计计算书

1 目录 目录 (1) 第1章非溢流坝设计 (4) 1.1坝基面高程的确定 (4) 1.2坝顶高程计算 (4) 1.2.1基本组合情况下: (4) 1.2.2特殊组合情况下: (5) 1.3坝宽计算 (6) 1.4 坝面坡度 (6) 1.5 坝基的防渗与排水设施拟定 (7) 第二章非溢流坝段荷载计算 (8) 2.1 计算情况的选择 (8) 2.2 荷载计算 (8) 2.2.1 自重 (8) 2.2.2 静水压力及其推力 (8) 2.2.3 扬压力的计算 (10) 2.2.4 淤沙压力及其推力 (12) 2.2.5 波浪压力 (13) 2.2.6 土压力 (14) 第3章坝体抗滑稳定性分析 (16) 3.2 抗滑稳定计算 (17) 3.3 抗剪断强度计算 (18) 第4章应力分析 (20) 4.1 总则 (20) 4.1.1大坝垂直应力分析 (20) 4.1.2大坝垂直应力满足要求 (21) 4.2计算截面为建基面的情况 (21) 4.2.1 荷载计算 (22) 4.2.2运用期(计入扬压力的情况) (23) 4.2.3运用期(不计入扬压力的情况) (23)

4.2.4 施工期 (23) 第5章溢流坝段设计 (25) 5.1 泄流方式选择 (25) 5.2 洪水标准的确定 (25) 5.3 流量的确定 (25) 5.4 单宽流量的选择 (25) 5.5 孔口净宽的拟定 (26) 5.6 溢流坝段总长度的确定 (26) 5.7 堰顶高程的确定 (27) 5.8 闸门高度的确定 (27) 5.9 定型水头的确定 (28) 5.10 泄流能力的校核 (28) 5.11.1 溢流坝段剖面图 (29) 5.11.2 溢流坝段稳定性分析 (29) (1)正常蓄水情况 (29) (2)设计洪水情况 (30) (3)校核洪水情况 (30) 第6章消能防冲设计 (31) 6.1洪水标准和相关参数的选定 (31) 6.2 反弧半径的确定 (31) 6.3 坎顶水深的确定 (32) 6.4 水舌抛距计算 (33) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (34) 第7章泄水孔的设计 (36) 7.1有压泄水孔的设计 (36) 7.11孔径D的拟定 (36) 7.12 进水口体形设计 (36) 7.13 闸门与门槽 (37) 7.14 渐宽段 (37) 7.15 出水口 (37) 7.15 通气孔和平压管 (38) 参考文献 (39)

土石坝稳定计算安全评价与计算毕业设计

第4章大坝稳定计算 4.1. 计算方法 4.1.1. 计算原理 本设计稳定分析采用简单条分法——瑞典圆弧法。该法基本假定土坡失稳破坏可简化为一平面应变问题,破坏滑动面为一圆弧形面,将面上作用力相对于圆心形成的阻滑力矩与滑动力矩的比值定义为土坡的稳定安全系数。计算时将可能滑动面上的土体划分成若干铅直土条,略去土条间相互作用力的影响。 图4.1 瑞典圆弧法计算简图 下游坝坡有渗流水存在,应计入渗流对稳定的影响。在计算土条重量时,对浸润线以下的部分取饱和容重,对浸润线以上的部分取实重(土体干重加含水重)。假设土条两侧的渗流水压力基本上平衡,则稳定安全系数的综合简化计算公式为:

∑∑+±+ψ--±= ] /cos )[(} sec ]sin sec cos ){[(R e Q V W b c tg Q b u V W K i i i i i i i i i i i i i i i i i C ααααα‘ ’ (4.1) 其中:i ——土条编号; W ——土条重量; u ——作用于土条底部的孔隙水压力; ,b α——分别为土条宽度和其沿滑裂面的坡角; //,c ?——有效抗剪强度指标; S ——产生滑动的作用力; T ——抗力。 表4.1 坝体安全系数表 4.1.2. 计算工况 根据水工建筑物教材的要求,稳定渗流期校核两种工况的上下游坝坡稳定:正常运用条件和非正常运用条件I ,对于设计洪水位的上下游坝坡,其浸润线和水位均处于正常和校核条件之间,在坝体尺寸和材料相同的情况下,正常和校核满足要求,设计即满足要求。 4.1.3. 基础资料 表4.2 三百梯水库坝体土物理力学指标建议值

混凝土重力坝设计

XXXXXX 继续教育学院 毕业论文 题目 XXX水库 混凝土重力坝枢纽设计 专业水工 层次专升本 姓名 学号

前言 关键词:重力坝剖面稳定应力细部构造地基处理 本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。 整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。详见1号图SG-02下游立视图。 挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。 溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。 本枢纽溢流堰采用挑流方式消能,挑角取250。止水采用两道紫铜中间加沥青井的形式。坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。 以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。 本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。 编者 2008.9

水工建筑物及其答案

一,填空题(每题1分,共26分) 1,碾压土石坝按坝体的防渗材料及其结构分为( ),( ),( )三类. 2,重力坝的基本剖面是( )土石坝的基本剖面是( ). 3,重力坝的泄洪和( )比较容易解决. 4,重力坝按照缝的作用分有( ),( ),( )三种缝. 5,水库枢纽组成的三大主件有( ),( ),( ). 6,波浪的三要素是( ),波浪高,波浪长. 7,土石坝是散粒体结构,坝体必须采取( )措施. 8,发电孔是有压泄水孔它的工作闸门设在( )口. 9,水闸必须具有适当的( ),以减小基底压力. 10,闸门按其工作性质分为( ),工作闸门,检修闸门三种闸门. 11,隧洞进口建筑物的形式有( ),( ),塔式,岸塔式四种形式. 12,水闸两端与堤,坝或河岸连接处需设置连接建筑物.它们包括上,下游翼墙,边墩或( )和( )等. 13,取水枢纽按其有无拦河闸(坝)可分为( )和( )两种类型. 14,水工隧洞有( ),( ),( )三部分组成. 得分 评分人 二,判断题(每题2分,共10分) 对的划+,错的划— 1,溢流面上的混凝土必须具有足够的耐久性.( ) 2,重力坝裂缝会影响坝的整体性和抗渗性.( )

3,平压管是埋于重力坝内部的充气管.( ) 4,土石坝的垂直防渗措施是铺盖. ( ) 5,水闸的辅助消能工有消力墩和消力齿.( ) 得分 评分人 三,选择题:(每题2分,共20分) 1. 重力坝横向贯穿性裂缝会导致( ) A.漏水和渗透侵蚀性破坏 B.坝的整体性下降 C.大坝的抗剪强度下降 D.局部应力集中 2. 在重力坝温度控制措施中,哪一项是不易控制的( ) A.稳定温度 B.水化热温升 C. 混凝土入仓温度 D.最高温度 3.设计的坝顶高程是针对( )情况而言的 (A) 坝刚建好时的(B) 坝体沉降稳定后以后(C) 坝施工中的(D) 坝体还未沉降时 4.我国土石坝设计规范要求中坝的最小顶宽为( )米. (A) 10~15(B) 5~10(C) 10~20(D) 15~20 5. 下面的哪一个材料不宜作为板桩的材料( ) A . 木材 B . 混凝土 C . 钢筋混凝土 D . 钢材 6. 下面的哪一选项不是连接建筑物( ) A . 边墩和岸墙 B . 翼墙 C . 底板 D . 齿墙 7.在较好的岩基上宜采用( )消能

A江坝后式厂房双曲拱坝设计计算书

目录 第一章调洪演算 ........................ - 3 - 1.1 调洪演算的原理.......................................... - 3 - 1.2 调洪方案的选择.......................................... - 3 - 1.2.1对以下四种方案进行调洪演算......................... - 3 - 1.2.2方案比较........................................... - 7 - 1.2.3 2浅孔+2中孔方案选定后坝顶高程的计算 .............. - 8 -第二章大坝工程量比较 .................. - 10 - 2.1 大坝剖面设计计算....................................... - 10 - 2.1.1混凝土重力坝设计.................................. - 10 - 2.2 大坝工程量比较......................................... - 17 - 2.2.1重力坝工程量...................................... - 17 - 2.2.2拱坝工程量........................................ - 18 - 2.2.3重力坝与拱坝工程量比较............................ - 19 -第三章第一主要建筑物的设计 ............ - 19 - 3.1 拱坝的型式尺寸及布置................................... - 19 - 3.1.1坝型选择.......................................... - 19 - 3.1.2拱坝的尺寸........................................ - 19 - 3.2 荷载组合............................................... - 23 - 3.2.1 正常水位+温降 .................................... - 23 - 3.2.2 设计水位+温升 .................................... - 23 - 3.2.3 校核水位+温升 .................................... - 23 - 3.2.4 正常水位+温降+地震 ............................... - 23 - 3.3 拱坝的应力计算......................................... - 23 - 3.3.1对荷载组合1,2,3使用FORTRAN程序进行电算........ - 23 - 3.3.2对荷载组合4进行手算.............................. - 24 - 3.4 坝肩稳定验算........................................... - 37 - 3.4.1计算原理.......................................... - 37 - 3.4.2验算工况.......................................... - 38 - 3.4.3验算步骤.......................................... - 38 - 4.1泄水建筑物的型式尺寸 ................................... - 42 - 4.2坝身进水口设计 ......................................... - 42 - 4.2.1管径的计算........................................ - 42 - 4.2.2进水口的高程...................................... - 42 - 4.3泄槽设计计算 ........................................... - 43 - 4.3.1坎顶高程.......................................... - 43 - 4.3.2坎上水深h ........................................ - 43 - c 4.3.3反弧半径R ........................................ - 44 -

《土石坝设计与施工》实训任务书(五组)

《土石坝设计与施工》实训任务书 一、设计资料: 1、地形、地质资料。 某河流位于山区峡谷内,全长约122km,两岸地势高峻,土石坝坝址处位于其中游地段的峡谷地带,为梯形河谷,河床比较平缓,坡降不太大,河床宽约120m,河床基面高程为380.0m。坝址一带均为原生黄土,河槽底部有深4~5m的沙卵石。 2、水文水利计算资料如下: 正常高水位436.0m,相应下游水位382.0 m; 设计洪水位437.0 m,相应下游水位385.0 m; 校核洪水位438.0 m,相应下游水位386.40 m; 死水位516.2 m; 3、气象地理资料如下: 多年平均最大风速 12m/s 水库吹程:1km; 该地区地震烈度5度。 4、建筑材料资料如下: ①该坝址附近壤土比较丰富,蕴藏量约为500万m3,河床中有沙砾料可供开 采,运距约1.5km,但储量仅为15万m3,距坝址8km处可开采块石,交通较方便; ②壤土试验有关指标:干容重16.5kN/ m3,浮容重10.6kN/ m3,饱和容重 20.6 kN/ m3,粘结力19Kpa,内摩擦角18度,渗透系数2.4×10-5cm/s; ③可供作堆石排水体的石料有关指标:比重2.71,干容重19.50 kN/ m3, 饱和容重22.30 kN/ m3,浮容重12.30 kN/ m3,湿容重20.30 kN/ m3,内摩擦角31°,渗透系数2×10-2cm/s。 二、实训要求 1、根据所给资料规划工程布置;绘制其布置图 2、试按选择坝形设计土石坝,按比例绘制其剖面图并做必要的计算; 3、画出防渗、排水和护坡等细部构造,标明必要的尺寸和高程; 4、编制设计说明书,绘制设计图(设计图手绘、机打均可)

(完整版)水工建筑物2重力坝

第二章重力坝 学习要求 目的: 1.掌握混凝土重力坝的特点和类型,国内外发展概况和趋势。 2.掌握重力坝的荷载及其计算方法,荷载组合。 3.理解重力坝稳定的概念及影响因素,掌握重力坝的稳定分析方法、安全系数指标的选用 及评价,提高稳定性的工程措施。 4.掌握重力坝应力分析的目的和内容,应力分析方法,材料力学法及其应力控制标准,了 解影响坝体应力分布的主要因素,(地基变形和施工方法等)及影响范围和程度。 5.理解拟定重力坝剖面的基本原理,掌握非溢流重力坝的基本剖面及实用剖面的拟定和溢 流重力坝的剖面的拟定方法;溢流重力坝的下游消能方式的选择; 四种泄水消能方式的特点,运用条件。 6.了解重力坝对材料的要求,建筑材料的种类特性及使用条件;坝体断面混凝土标号的分 区。掌握重力坝的细部构造要求,坝缝、止水;坝身排水、廊道的布置及溢流重力坝坝顶的 构造等。 7.了解重力坝对地基的要求;掌握坝基处理的开挖、灌浆(固结灌浆、帷幕灌浆、接触灌 浆)及排水设计要求;坝基软弱破碎带的处理。 重点: 1.混凝土重力坝的工作原理和特点,设计要求,分类。 2.重力坝的荷载及其计算方法。 3.重力坝的稳定分析方法。 4.重力坝应力分析的材料力学法及其应力控制标准。 5.非溢流重力坝的基本剖面及实用剖面的拟定;溢流重力坝的剖面的拟定。 6.重力坝的细部构造要求,重力坝对材料的要求,溢流重力坝坝顶的构造。 7.固结灌浆、帷幕灌浆、坝基排水。 难点: 1.混凝土重力坝的设计要求和类型。 2.扬压力的计算,重力坝的荷载组合。 3.重力坝稳定的概念及影响因素,安全系数指标的选用及评价。 4.坝体边缘应力的计算。 5.拟定重力坝剖面的基本原理,溢流重力坝的剖面的拟定。 6.重力坝的细部构造要求,溢流重力坝坝顶的构造。 7.固结灌浆、帷幕灌浆。 学习要点 章节学习内容: 1.混凝土坝的类型,国内外发展概况和趋势。 2.重力坝的工作原理和特点,以及其优缺点。 3.重力坝的荷载及其计算方法(包括自重、水压力、扬压力、浪压力、冰压力、土压力、 泥沙压力、地震荷载等),荷载组合的概念及确定。 4.重力坝的稳定分析。稳定的概念及影响因素,稳定分析方法、安全系数指标的选用及评

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

O江水利枢纽工程毕业设计计算书.doc

O江水利枢纽工程毕业设计计算书- 本设计以O 江流域的水文、地形、地质为基础,通过调洪演算确定了坝型及枢纽布置、大坝设计、泄水建筑物设计和施工组织设计等方面进行简略的计算。在设计中对经济、技术及安全等方面进行了详细分析与比较,拟定相应的斜心墙土石坝设计方案。 本设计以O 江流域的水文、地形、地质资料为基础,通过调洪演算确定了水库的特征水位,进行了枢纽布置;对大坝、泄水建筑物进行了比较详细的设计。通过编制施工组织计划,确定了枢纽工程各主体部分的进度。设计中考虑了经济、技术及安全等方面的因素,并对各部分可行的方案进行了比较,确定了最优方案。 O江水利枢纽工程毕业设计计算书.zip

P&G公司诉上海晨铉智能科技发展有限公 司不正当竞争案- 本案是上海法院受理的第一起计算机网络域名与商标相冲突的案件。本案判决是人民法院认定驰名商标的酋例生效判决,也是人民法院就域名与商标的冲突作出的酋例生效判决。本案主要解决了以下问题:第一,确认将他人商标注册为域名使用产生的纠纷属于法院受理民事诉讼的范围第二,法院在审理将他人商标注册为域名使用的案件中,可以根据当事人的请求,就系争商标是否构成驰名商标作出调定;第三,确立了将他人商标注册为域名使用构成不正当竞争的判定标准。 案情 原告:(美国)普罗克特和甘布尔公司(Procter &Gamble,简称P&G公司) 被告:上海晨铉智能科技发展有限公司 1976年5月,(瑞士)P&G公司在中国注册了“SAFEGUARD”商标,核定使用商品为第70类香皂、肥皂等。原告(美国)P&G公司(中译为宝洁公司)于1992年8月经国家工商行政管理局核准,从(瑞士)P&G公司受让上述商标。1994年6月,宝洁公司在中国注册了“safeguard/舒肤佳”商标,核定使用商品为第3类肥皂、护发制剂等。宝洁公司还在中国注册了“舒肤佳”。“safeguard”及其组合的多个商标。宝洁公司自

重力坝毕业设计

第一章设计基本资料及任务 第一节设计基本资料 一、枢纽任务 本工程同时兼有防洪、发电、灌溉、渔业等综合利用。水电站装机容量为21.75万kW,装3台机组。正常蓄水位为110.5m,死水位为86.5m,三台机满载时的流量为405m3/s。采用坝后式厂房。工程建成后,可增加保灌面积90万亩,减轻洪水对下游城市和平原的威胁。在遇P=0.02%和P=0.1%频率的洪水时,经水库调节后,洪峰流量可由原来的18200m3/s、14100 m3/s分别削减为6800 m3/s和6350 m3/s;水库蓄水后形成大面积水域,为发展养殖业创造有利条件。 二、基本资料 1、规划数据 本重力坝坝高86.9m,坝全长368m,溢流坝位于大坝中段长度73米,非溢流坝分别接溢流坝两侧各147.5m,坝顶宽度8m,坝底宽度80.5m,坝底高程28m,坝顶高程114.9m,正常蓄水位110.5m,死水位86.5m。 坝址处的河床宽约120m,水深约1.5~4m。河谷近似梯形,两岸基本对称,岸坡取约35o。 2、工程地质 坝基岩性为花岗岩,风化较深,两岸达10m左右。新鲜花岗岩的饱和抗压强度为100~200MPa,风化花岗岩为50~80Mpa。坝址处无大的地质构造。 3、其他资料 - 1 -

(1)风向吹力:实测最大风速为24m/s,多年平均最大风速为20m/s,风向基本垂直坝轴线,吹程为4km。 (2)本坝址地震烈度为7度。 (3)坝址附近卵砾石、碎石及砂料供应充足,质量符合规范要求。 三、表格 表1比选数据 - 2 -

表2岩石物理力学性质 四、参考文献 1.混凝土重力坝设计规范水利电力部编 2.水工建筑物任德林河海大学出版社 3.水工设计手册泄水与过坝建筑物水利电力出版社 4.混凝土拱坝及重力坝坝体接缝设计与构造水电部黄委会编 第二节设计任务 一、枢纽布置 (1)拟定坝址位置 - 3 -

碾压土石坝计算书_毕业设计

目录 第一章水文水利计算 (1) 1.1推理公式法推求设计洪水位 (1) 1.1.1工程地点流域特征值 (1) 1.1.2设计暴雨的查算 (1) 1.1.3设计24小时净雨过程的计算 (6) 1.1.4推求30年一遇设计洪水 (6) 1.2调洪演算 (10) 第二章大坝剖面确定 (14) 2.1 正常运行情况下的超高计算 (14) 2.1.1波浪爬高 (14) 2.1.2 风雍高度 (15) 2.1.3 正常情况下超高 (15) 2.2 非常运行情况下的超高计算 (16) 2.2.1波浪爬高 (16) 2.2.2 风雍高度 (17) 2.2.3 正常情况下超高 (17) 2.3 坝顶高程 (17) 第三章土石坝渗流计算 (19) 3.1 计算方法及计算假定 (19) 3.2 本设计土坝渗流的具体计算 (20) 第四章土石坝坝坡稳定计算 (27) 4.1 稳定计算方法 (27) 4.2计算过程 (27) 4.3 稳定成果分析 (31) 第五章溢洪道设计 (36) 5.1 控制堰设计 (36) 5.1.1 克—奥Ⅰ型堰的剖面设计 (36) 5.2 泄槽设计 (37) 5.2.1. 泄槽的布置 (37) 5.2.2泄槽水面曲线计算 (38) 5.2.3克—奥Ⅰ型堰的抗滑稳定验算 (2) 5.3出口消能设计 (3) 参考文献 (8)

南昌工程学院本科毕业设计 第一章 水文水利计算 1.1推理公式法推求设计洪水位 市东山街办南山村老虎坑,坝址座落于章江水系二级支流老虎坑河,东经114°44′,北纬25°10′,设计历时为24小时,坝址以上控制集水面积1.2km 2,主河长1.63km ,河床平均坡降43‰,设计频率为30年一遇为例。参照《手册》,计算步骤如下(说明:以下所用附图均来自于手册): 1.1.1工程地点流域特征值 工程地点流域面积F=1.2km 2,主河道长度L=1.63km ,主河道比降J=0.043。 1.1.2设计暴雨的查算 1、求三十年一遇24小时点暴雨量 根据工程地理位置查附图2-4,得流域中心最大24小时点暴雨值P 24=101.5mm;附图2-5得 C v24 =0.37,由设计频率P=3.33%和C S =3.5C v 查附表5-2,得87.1)2333.0(2 .05.038.264.299.124=-?---=K p 则30年一遇24小时点暴雨量mm K P P P 8.18987.15.101%)33.3(242424=?=?= 2、求30年一遇24小时面暴雨量 根据流域面积F=1.2km 2和暴雨历时t=24h 查附图5-1,得点面系数24a =0.9998。 则30年一遇24小时面暴雨量为: mm a P P 8.1899998.08.18924%)33.3(24%)33.3(24=?=?= 3、求设计暴雨24小时的时程分配 ①设计暴雨24小时雨配 查附表2-1,得以60分钟为时段的雨型分配表,如表1-1。 ②查算30年一遇60分钟,3小时,6小时暴雨参数 根据工程地理位置分别查附录图2-6和附图2-8,得流域中心最大6小时和60分钟点暴雨量,P 6=72mm ;P 60min =44.5mm ;查附图2-7和附图2-9,得C v6=0.42;C v60min =0.335。由设计频率P=3.33%和C S =3.5C v 查附表5-2得 77.1)233.3(2564.1875.1825.12)233.3(2582.115.215.2min 606=-?---==-?--- =K K P P 。 则30年一遇60分钟,6小时点暴雨量为:

水工建筑物重力坝设计计算书样本

一、非溢流坝设计 ( 一) 、初步拟定坝型的轮廓尺寸 (1)坝顶高程的确定 ①校核洪水位情况下: 波浪高度 2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m 波浪长度 2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m 安全超高按Ⅲ级建筑物取值 h c=0.3m 坝顶高出水库静水位的高度△h校=2h l+ h0+ h c=0.98+0.30+0.3=1.58m ②设计洪水位情况下: 波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m 波浪长度 2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m 安全超高按Ⅲ级建筑物取值 h c=0.4m 坝顶高出水库静水位的高度△h设=2h l+ h0+ h c=1.62+0.54+0.4=2.56m ③两种情况下的坝顶高程分别如下: 校核洪水位时: 225.3+1.58=226.9m 设计洪水位时: 224.0+2.56=226.56m 坝顶高程选两种情况最大值226.9 m, 可按227.00m设计, 则坝高227.00-174.5=52.5m。

(2)坝顶宽度的确定 本工程按人行行道要求并设置有发电进水口, 布置闸门设备, 应适当加宽以满足闸门设备的布置, 运行和工作交通要求, 故取8米。 (3)坝坡的确定 考虑到利用部分水重增加稳定, 根据工程经验, 上游坡采用1: 0.2, 下游坡按坝底宽度约为坝高的0.7~0.9倍, 挡水坝段和厂房坝段均采用1: 0.7。 (4)上下游折坡点高程的确定 理论分析和工程实验证明, 混凝土重力坝上游面可做成折坡, 折坡点一般位于1/3~2/3坝高处, 以便利用上游坝面水重增加坝体的稳定。 根据坝高确定为52.5m, 则1/3H=1/3×52.5=17.5m, 折坡点高程=174.5+17.5=192m; 2/3H=2/3×52.5=35m, 折坡点高程=174.5+35=209.5m, 因此折坡点高程适合位于192m~209.5m之间, 则取折坡点高程为203.00m。挡水坝段和厂房坝段的下游折坡点在统一高程216.5m处。 (5)坝底宽度的确定 由几何关系可得坝底宽度为T=( 203-174.5) ×0.2+8+(216.5-174.5) ×0.7=43.1m (6)廊道的确定 坝内设有基础灌浆排水廊道, 距上游坝面6.1m, 廊道底距基岩面4m, 尺寸 2.5× 3.0m( 宽×高) 。 (7)非溢流坝段纵剖面示意图

斜墙土石坝工程设计计算书

目录 第一章洪水调节计算 2第二章挡水建筑物的计算 8 2.1 坝顶高程的计算 8 2.2 渗流计算 14 2.3 土料设计 18 2.4 稳定设计 23 2.5 细部设计 25第三章泄水建筑物的设计 27第四章施工组织设计 32附录1 稳定计算程序 34

第一章 调洪演算 因该河流为山区性河流,故兴利库容与防洪库容不结合,从正常蓄水位开 始调节。将坝址来水单位过程线按同比例缩放,得到不同频率下的洪水过程线。根据初步拟定四组堰顶高程与孔口尺寸计算下泄流量和设计和校核水位。 方案1: ?∩=2811m, B=7m ; 方案2: ?∩=2812m, B=7m ; 方案3: ?∩=2813m , B=8m ; 方案4: ?∩=2812m, B=8m 。 ?∩——堰顶高程; B ——过水净宽 用下列方法计算下泄流量和设计和校核水位: (1)在估计所求B 点附近,任意选定B1、B2、B3(或B1′、B2′、 B3′)向A (或A ′)方向做三条直线,并与洪峰过程线相切,如图1.1所示。 A,A ′分别为Q 设=1680m 3/s (P=1%)和Q 校=2320 m 3/s (P=0.05%)时的起调点(在图中Q 设、Q 校分别用Qmax 和Qmax ′表示),用下式计算分别不同方案和频率下的起调点(Bi ,Bi ′)。 起调点:Q 起调=εm 2/32H g ?×B m ——流量系数,与堰型有关,取0.502; H ——作用水头m ; ε——侧收缩系数取0.86(ε=1-0.2*0.7*1=0.86); B ——过水净宽。 g ——重力加速度取0.981 B1、B2、B3为设计情况下过A 做切线与来水过程线的交点,其流量计算公式 Qi=1680×y Bi /120 y Bi ——为Bi 的纵坐标 B1′、B2′、 B3′校核情况下过A ′做切线与来水过程线的交点,其流量计算公式 Qi ′=2320×y Bi ′/120 y Bi ′——为Bi ′的纵坐标 (2)计算相应直线AB i (或AB i )与洪峰过程线所包围的面积(即相应调节库容)和相应的隧洞最大下泄流量,并V~H 曲线上根据V 总查出高程H 。 在单位过程线上所围面积A ,求出不同频率下的相应调节库容V 见表1.1 (3)根据相应高程H ,在Q~H 曲线上根据交点找出相应的隧洞最大下泄流量,H 设,H 校,如图1.2所示。 将不同方案的计算过程列入表1.1中,并将最后结果汇总至表1.2中。

水工建筑物重力坝设计计算书

一、非溢流坝设计 (一)、初步拟定坝型的轮廓尺寸 (1)坝顶高程的确定 ①校核洪水位情况下: 波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m 波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m 安全超高按Ⅲ级建筑物取值h c=0.3m 坝顶高出水库静水位的高度△h =2h l+ h0+ h c=0.98+0.30+0.3=1.58m 校 ②设计洪水位情况下: 波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m 波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m 安全超高按Ⅲ级建筑物取值h c=0.4m =2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h 设 ③两种情况下的坝顶高程分别如下: 校核洪水位时:225.3+1.58=226.9m 设计洪水位时:224.0+2.56=226.56m 坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。 (2)坝顶宽度的确定 本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。 (3)坝坡的确定 考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。 (4)上下游折坡点高程的确定 理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。 根据坝高确定为52.5m,则1/3H=1/3×52.5=17.5m,折坡点高程=174.5+17.5=192m;2/3H=2/3×52.5=35m,折坡点高程=174.5+35=209.5m,所以折坡点高程适合位于192m~209.5m之间,则取折坡点高程为203.00m。挡水坝段和厂房坝段的下游折坡点在统一高程216.5m处。 (5)坝底宽度的确定 由几何关系可得坝底宽度为T=(203-174.5)×0.2+8+(216.5-174.5)×0.7=43.1m

土石坝毕业设计计算书模板

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 毕业设计( 论文) 计算书 题目西南地区A江 上坝址初步设计 专业水利水电工程 班级级二班 学生莫秋琳 指导教师赵迪 重庆交通大学 目录 第一章调洪演算计算 (3) 1.1洪水调节计算原理 (3) 1.1.1工程等别及建筑物级别 (3) 1.1.2泄洪方式与水库运用方案 (4) 1.2.1堰顶高程及泄洪孔口的选择 (6) 1.2.2堰顶高程及孔口尺寸选择原则 (6) 1.3方案拟定 (6) 1.3.1方案一 (6) 1.3.2方案二 (10) 1.3.3方案三 (13) 1.3.4方案四 (16) 1.4方案选择 (20)

第二章坝高确定 (23) 2.1大坝高程的计算 (23) 2.1.1正常蓄水 (23) 2.1.2设计蓄水 (25) 2.1.3校核蓄水 (27) 3.1大坝轮廓尺寸及排水防渗体设 (29) 3.1.1坝顶宽度 (30) 3.1.2坝坡 (30) 3.1.3坝体排水 (30) 3.1.4大坝防渗体 (31) 3.2细部构造设计 (31) 3.2.1粘性土料设计 (32) 3.2.2坝壳砂砾料设计 (34) 3.2.3筑坝用料 (35) 4.1渗流分析 (36) 4.1.1渗流计算水位 (36) 4.1.2计算内容及目的 (37) 4.1.3计算原理 (37) 4.1.4渗流计算应包括以下水位组合情况: (37) 4.2稳定分析计算 (43) 4.2.1计算方法 (43) 4.2.2正常工况 (44) 4.2.3设计工况 (51) 4.2.4校核工况 (55) 第五章坝基处理及细部结构 (62) 5.1基础处理部分 (62)

混凝土重力坝毕业设计计算书

1 兵团广播电视大学开放教育(专科) 题目:混凝土重力坝设计 分校: 姓名: 学号: 专业: 指导教师:

目录 目录 (1) 第一章非溢流坝设计 (5) 1.1坝基面高程的确定 (5) 1.2坝顶高程计算 (5) 1.2.1基本组合情况下: (5) 1.2.1.1 正常蓄水位时: (5) 1.2.1.2 设计洪水位时: (6) 1.2.2特殊组合情况下: (6) 1.3坝宽计算 (7) 1.4 坝面坡度 (7) 1.5 坝基的防渗与排水设施拟定 (8) 第二章非溢流坝段荷载计算 (9) 2.1 计算情况的选择 (9) 2.2 荷载计算 (9) 2.2.1 自重 (9) 2.2.2 静水压力及其推力 (9) 2.2.3 扬压力的计算 (11) 2.2.4 淤沙压力及其推力 (13) 2.2.5 波浪压力 (14) 2.2.6 土压力 (15) 第三章坝体抗滑稳定性分析 (17) 3.1 总则 (17) 3.2 抗滑稳定计算 (18) 3.3 抗剪断强度计算 (19) 第四章应力分析 (21) 4.1 总则 (21) 4.1.1大坝垂直应力分析 (21) 4.1.2大坝垂直应力满足要求 (22) 4.2计算截面为建基面的情况 (22)

3 4.2.1 荷载计算 (23) 4.2.2运用期(计入扬压力的情况) (24) 4.2.3运用期(不计入扬压力的情况) (24) 4.2.4 施工期 (24) 第五章溢流坝段设计 (26) 5.1 泄流方式选择 (26) 5.2 洪水标准的确定 (26) 5.3 流量的确定 (26) 5.4 单宽流量的选择 (27) 5.5 孔口净宽的拟定 (27) 5.6 溢流坝段总长度的确定 (27) 5.7 堰顶高程的确定 (28) 5.8 闸门高度的确定 (29) 5.9 定型水头的确定 (29) 5.10 泄流能力的校核 (29) 5.11.1 溢流坝段剖面图 (30) 5.11.2 溢流坝段稳定性分析 (30) (1)正常蓄水情况 (30) (2)设计洪水情况 (31) (3)校核洪水情况 (31) 第六章消能防冲设计 (32) 6.1洪水标准和相关参数的选定 (32) 6.2 反弧半径的确定 (32) 6.3 坎顶水深的确定 (33) 6.4 水舌抛距计算 (34) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (35) 第七章泄水孔的设计 (37) 7.1有压泄水孔的设计 (37) 7.2孔径D的拟定 (37) 7.3 进水口体形设计 (37) 7.4 闸门与门槽 (38) 7.5渐宽段 (38)

相关主题
文本预览
相关文档 最新文档