当前位置:文档之家› (完整版)一级蜗轮蜗杆减速器毕业设计论文

(完整版)一级蜗轮蜗杆减速器毕业设计论文

(完整版)一级蜗轮蜗杆减速器毕业设计论文
(完整版)一级蜗轮蜗杆减速器毕业设计论文

一级蜗轮蜗杆减速器设计说明书

第一章绪论

1.1本课题的背景及意义

计算机辅助设计及辅助制造(CADCAM)技术是当今设计以及制造领域广泛采用的先进技术。本次设计是蜗轮蜗杆减速器,通过本课题的设计,将进一步深入地对这一技术进行深入地了解和学习。

1.1.1 本设计的设计要求

机械零件的设计是整个机器设计工作中的一项重要的具体内容,因此,必须从机器整体出发来考虑零件的设计。设计零件的步骤通常包括:选择零件的类型;确定零件上的载荷;零件失效分析;选择零件的材料;通过承载能力计算初步确定零件的主要尺寸;分析零部件的结构合理性;作出零件工作图和不见装配图。对一些由专门工厂大批生产的标准件主要是根据机器工作要求和承载能力计算,由标准中合理选择。

根据工艺性及标准化等原则对零件进行结构设计,是分析零部件结构合理性的基础。有了准确的分析和计算,而如果零件的结构不合理,则不仅不能省工省料,甚至使相互组合的零件不能装配成合乎机器工作和维修要求

的良好部件,或者根本装不起来。

1.2.(1)国内减速机产品发展状况

国内的减速器多以齿轮传动,蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外材料品质和工艺水平上还有许多弱点。由于在传动的理论上,工艺水平和材料品质方面没有突破,因此没能从根本上解决传递功率大,传动比大,体积小,重量轻,机械效率高等这些基本要求。

(2)国外减速机产品发展状况

国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮转动为主,体积和重量问题也未能解决好。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。

1.3.本设计的要求

本设计的设计要求机械零件的设计是整个机器设计工作中的一项重要的具体内容,因此,必须从机器整体出发来考虑零件的设计计算,而如果零件的结构不合理,则不仅不能省工省料,甚至使相互组合的零件不能装配成合乎机器工作和维修要求的良好部件,或者根本装不起来。

机器的经济性是一个综合性指标,设计机器时应最大限度的考虑经济性。提高设计制造经济性的主要途径有:①尽量采用先进的现代设计理论个方法,力求参数最优化,以及应用CAD技术,加快设计进度,降低设计成本;②合理的组织设计和制造过程;③最大限度地采用标准化、系列

化及通用化零部件;④合理地选择材料,改善零件的结构工艺性,尽可能采用新材料、新结构、新工艺和新技术,使其用料少、质量轻、加工费用低、易于装配⑤尽力改善机器的造型设计,扩大销售量。

提高机器使用经济性的主要途径有:①提高机器的机械化、自动化水平,以提高机器的生产率和生产产品的质量;②选用高效率的传动系统和支承装置,从而降低能源消耗和生产成本;③注意采用适当的防护、润滑和密封装置,以延长机器的使用寿命,并避免环境污染。

机器在预定工作期限内必须具有一定的可靠性。提高机器可靠度的关键是提高其组成零部件的可靠度。此外,从机器设计的角度考虑,确定适当的可靠性水平,力求结构简单,减少零件数目,尽可能选用标准件及可靠零件,合理设计机器的组件和部件以及必要时选取较大的安全系数等,对提高机器可靠度也是十分有效的。

1.4.研究内容(设计内容)

(1)蜗轮蜗杆减速器的特点

蜗轮蜗杆减速器的特点是具有反向自锁功能,可以有较大的减速化,输入轴和输出轴不在同一轴线上,也不在同一平面上。但是一般体积较大,传动效率不高,精度不高。

蜗轮蜗杆减速器是以蜗杆为主动装置,实现传动和制动的一种机械装置。当蜗杆作为传动装置时,在蜗轮蜗杆共同作用下,使机器运行起来,在此过程中蜗杆传动基本上克服了以往带传动的摩擦损耗;在蜗杆作为制动装置时,蜗轮,蜗杆的啮合,可使机器在运行时停下来,这个过程中蜗杆蜗轮的啮合静摩擦达到最大,可使运动中的机器在瞬间停止。在工业生

产中既节省了时间又增加了生产效率,而在工艺装备的机械减速装置,深受用户的美誉,是眼前当代工业装备实现大小扭矩,大速比,低噪音,高稳定机械减速传动独揽装置的最佳选择。

(2)方案拟订

A、箱体

(1):蜗轮蜗杆箱体内壁线的确定; (2):轴承孔尺寸的确定;

(3):箱体的结构设计;

a.箱体壁厚及其结构尺寸的确定

b. 轴承旁连接螺栓凸台结构尺寸的

确定

c.确定箱盖顶部外表面轮廓

d. 外表面轮廓确定箱座高度和油面

e. 输油沟的结构确定

f. 箱盖、箱座凸缘及连接螺栓的布置

B、轴系部件

(1) 蜗轮蜗杆减速器轴的结构设计

a. 轴的径向尺寸的确定

b. 轴的轴向尺寸的确定

(2)轴系零件强度校核

a. 轴的强度校核

b. 滚动轴承寿命的校核计算

C、减速器附件

a.窥视孔和视孔盖

b. 通气器

c. 轴承盖

d. 定

位销

e. 油面指示装置

f. 油塞

g. 起盖螺钉=(10~40)×

73.96=rmin

符合这范围的电动机同步转速有750、1000、1500、3000 rmin四种,现以同步转速1000 rmin和1500 rmin两种常用转速的电动机进行分析比较。

综合考虑电动机和传动装置的尺寸、重量、价格、传动比及市场供应情况,选取比较合适的方案,现选用型号为Y132M—4。

2.1.3 确定传动装置的传动比及其分配

减速器总传动比及其分配:

减速器总传动比i==144073.96=19.47

式中i—传动装置总传动比

—工作机的转速,单位rmin

—电动机的满载转速,单位rmin

2.1.4 计算传动装置的运动和动力参数

(1)各轴的输入功率

轴ⅠP= P=5.92×0.99×0.99=5.8kW

轴ⅡP= P=5.8×0.99×0.99×0.8=4.54kW (2)各轴的转速

电动机: =1440 rmin

轴Ⅰ:n= =1440 rmin

轴Ⅱ:n==144019.47=73.96 rmin

(3)各轴的输入转矩

电动机轴: =9550p

d n

m

=9550×5.921440=39.26Nm

轴Ⅰ:T= 9550p

1n

1

=9550×5.81440=38.46Nm

轴Ⅱ:T= 9550p

2n

2

=9550×4.5473.96=586.22Nm

上述计算结果汇见表3-1

表3-1传动装置运动和动力参数

2.2 传动零件的设计计算

2.2.1 蜗轮蜗杆传动设计

一.选择蜗轮蜗杆类型、材料、精度

根据GBT的推荐,采用渐开线蜗杆(ZI)蜗杆材料选用45钢,整体调质,表面淬火,齿面硬度45~50HRC。蜗轮齿圈材料选用ZCuSn10Pb1,金属模铸造,滚铣后加载跑合,8级精度,标准保证侧隙c。

二.计算步骤

1.按接触疲劳强度设计

设计公式≥mm

(1)选z

1,z

2

查表7.2取z

1

=2,

z

2= z

1

×n1n2=2×144073.96=38.94≈39.

z

2

在30~64之间,故合乎要求。

初估=0.82

(2)蜗轮转矩T2:

T2=T1×i×=9.55×106×5.8×19.47×0.821440=614113.55 Nmm (3)载荷系数K:

因载荷平稳,查表7.8取K=1.1 (4)材料系数ZE

查表7.9,ZE=156

(5)许用接触应力[0

H

]

查表7.10,[0

H

]=220 Mpa

N=60×jn

2×L

h

=60×73.96×1×12000=5.325×107

ZN===0.

[

H ]=ZN[0

H

]= 0.×220=178.5 Mpa

(6)md1:

md1≥=1.1×614113.55×=2358.75mm (7)初选m,d1的值:

查表7.1取m=6.3 ,d1=63

md1=2500.47〉2358.75

(8)导程角

tan= =0.2

=arctan0.2=11.3°

(9)滑动速度Vs Vs=?

???=??3.11cos 100060144063cos 1000601

1πγπn d =4.84ms (10)啮合效率

由Vs=4.84 ms 查表得 ν=1°16′

1 =

()()?+??=+23.11tan 3.11tan tan tan φνγγ=0.20.223=0.896 (11)传动效率

取轴承效率 2=0.99 ,搅油效率3=0.98

=1×2×3=0.896×0.99×0.98=0.87

T2=T1×i ×=9.55×106×5.8×19.47×0.871440=651559.494Nmm

(12)检验md1的值

md1≥=0.×651559.494×=1820<2500.47

原选参数满足齿面接触疲劳强度要求

2.确定传动的主要尺寸

m=6.3mm , =63mm ,z 1=2,z 2=39

(1) 中心距a

a==154.35mm

(2)蜗杆尺寸

分度圆直径d1 d1=63mm

齿顶圆直径da1 da1=d1+2ha1=(63+2×6.3)=75.6mm

齿根圆直径df1 df1=d1﹣2hf=63﹣2×6.3

(1+0.2)=47.88mm

导程角 tan=11.°右旋

轴向齿距 Px1=πm=3.14×6.3=19.78mm

齿轮部分长度b1 b1≥m(11+0.06×z2)=6.3×(11+0.06×39)=84.04mm

取b1=90mm

(2)蜗轮尺寸

=6.3×39=245.7mm

分度圆直径d2 d2=m×z

2

齿顶高 =11.°右旋

轴向齿距 Px2=Px1=π m=3.14×6.3=19.78mm

蜗轮齿宽b2 b2=0.75da1=0.75×75.6=56.7mm

齿宽角 sin(α2)=b2d1=56.763=0.9

蜗轮咽喉母圆半径 rg2=a —da22=154.35﹣129.15=25.2mm

(3)热平衡计算

①估算散热面积A A=275.175.17053.010035.15433.010033.0m a =??? ??=??? ??

②验算油的工作温度ti

室温:通常取。

散热系数:Ks=20 W(㎡·℃)。

()()=??

? ??+??-?=+-=207053.0208.587.0110001100001t A k P t s i η73.45℃<80℃ 油温未超过限度

(4) 润滑方式

根据Vs=4.84ms ,查表7.14,采用浸油润滑,油的运动粘度V40℃=350×10-6㎡s

(5)蜗杆、蜗轮轴的结构设计(单位:mm)

①蜗轮轴的设计

最小直径估算

dmin≥c×

c查《机械设计》表11.3得 c=120 dmin≥=120×=47.34 根据《机械设计》表11.5,选dmin=48

d1= dmin+2a =56 a≥(0.07~0.1) dmin=4.08≈4 d2=d1+ (1~5)mm=56+4=60

d3=d2+ (1~5)mm=60+5=65

d4=d3+2a=65+2×6=77 a≥(0.07~0.1) d3=5.525≈6

≥c×= 120×=19.09 取dmin=30

d1=dmin+2a=20+2×2.5=35 a=(0.07~0.1)dmin

d2=d1+(1~5)=35+5=40

d3=d2+2a=40+2×2=44 a=(0.07~0.1)d2

d4=d2=40

≥=120×=47.34mm

根据《机械设计》表11.5,选dmin=63

(3)轴的结构设计

①轴上零件的定位、固定和装配

单级减速器中,可将齿轮按排在箱体中央,相对两轴承对称分布,齿轮左面由轴肩定位,右面用套筒轴向固定,周向固定靠平键和过渡配合。两轴承分别以轴肩和套筒定位,周向则采用过渡配合或过盈配合固定。联轴器以轴肩轴向定位,右面用轴端挡,圈轴向固定.

键联接作周向固定。轴做成阶梯形,左轴承从做从左面装入,齿轮、套筒、右轴承和联轴器依次右面装到轴上。

②确定轴各段直径和长度

Ⅰ段d

1=50mm L

1

=70mm

Ⅱ段选30212型圆锥滚子轴承,其内径为60mm,宽度为22mm。故Ⅱ段直径d

2

=60mm。

Ⅲ段考虑齿轮端面和箱体内壁、轴承端盖与箱体内壁应有一定距离,

则取套筒长为38mm。故L

3=40mm,d

3

=65mm。

Ⅳ段d4=77mm,L4=70mm

Ⅴ段d5=d4+2h=77+2×5.5=88mm,L5=8mm Ⅵ段d6=65mm,L6=22mm

Ⅶ段 d7=d2=760mm,L7=25

(4)按弯扭合成应力校核轴的强度

① 绘出轴的结构与装配图 (a)图

②绘出轴的受力简图 (b)图

③绘出垂直面受力图和弯矩图 (c )图

46.197718.7492211=?==d T F a N

1.937.2450

2.114372222=?==d T F t N

88.3320tan 1.93tan =??=*=αt r F F N

轴承支反力:

N

F RBV =Fr+F RAV =33.88+16.94=50.82N

计算弯矩:

截面C 右侧弯矩 m N L F M RBV cv ?=?=?=795.21000

5582.502 截面C 左侧弯矩 m N L F M RAV cv '?=?=?='932.01000

5594.162 ④绘制水平面弯矩图 (d)图

轴承支反力:

m N F F F t RBH RAH ?===

=55.462

1.932 截面C 处的弯矩 m N L F M RAH CH ?=?=?=56.21000

5555.462 ⑤绘制合成弯矩图 (e)图

79.356.2795.22222=+=+=CH CV C M M M Nm

图3.2 低速轴的弯矩和转矩

(a)轴的结构与装配 (b)受力简图 (c)水平面的受力和弯矩图

(d)垂直面的受力和弯矩图 (e)合成弯矩图 (f)转矩图 (g)计算弯矩图 ()72.256.2932.0222=+=+'='CH CV C M M M Nm ⑥绘制转矩图 (f)图

86.596.7354.41055.91055.966=??=??=n

P T ×105 Nmm=586 Nm

⑦绘制当量弯矩图 (g)图

转矩产生的扭剪应力按脉动循环变化,取0.6,截面C 处的当量弯矩为

()()62.3515866.079.32

222=?+=+=T M M C EC α Nm ⑧校核危险截面C 的强度

<,安全。

2.3.2 轴的结构见图3.3所示

图3.3 蜗轮轴的结构图

2.3.3 蜗杆轴的设计

(1)选择轴的材料

选取45钢,调质处理,硬度HBS=230,强度极限=650 Mpa ,屈服极限=360 Mpa ,弯曲疲劳极限=300 Mpa ,剪切疲劳极限=155 Mpa ,对称循环变应力时的许用应力=60 Mpa 。

(2) 初步估算轴的最小直径

最小直径估算

dmin ≥cx= 120x=19.09 取dmin=20

(3)轴的结构设计

按轴的结构和强度要求选取轴承处的轴径d=35mm ,初选轴承型号为30207圆锥滚子轴承(GBT297—94),采用蜗杆轴结构,其中,齿根圆直径mm ,分度圆直径mm ,齿顶圆直径mm ,长度尺寸根据中间轴的结构进行具体的设计,校核的方法与蜗轮轴相类似,经过具体的设计和校核,

得该蜗杆轴结构是符合要求的,是安全的,轴的结构见图3.4所示:

图3.4 蜗杆轴的结构草图

第三章 轴承的选择和计算

3.1 蜗轮轴的轴承的选择和计算

按轴的结构设计,初步选用30212(GBT297—94)圆锥滚子轴承,内径d=60mm,外径D=110mm,B=22mm.

(1)计算轴承载荷

① 轴承的径向载荷

轴承A :N R R R AV AH

A 54.4994.1655.462222=+=+= 轴承

B :N R R R BV BH

B 92.6882.5055.462222=+=+= ② 轴承的轴向载荷

轴承的派生轴向力

查表得:30212轴承15°38′32″

所以, =17.173N

=23.89N

无外部轴向力。

因为<,轴承A 被“压紧”,所以,两轴承的轴向力为

③ 计算当量动载荷

由表查得圆锥滚子轴承30211的

取载荷系数,

轴承A :<e

取X=1,Y=0,则N YA XR f P A A P rA 448.59)054.491(2.1)(=+??=+= 轴承B :<e

取X=1,Y=0,则N YA XR f P B B P rB 7.82)092.681(2.1)(=+??=+=

3.2 蜗杆轴的轴承的选择和计算

按轴的结构设计,选用30207圆锥滚子轴承(GBT297—94),经校核所选轴承能满足使用寿命,合适。具体的校核过程略。

3.3 减速器铸造箱体的主要结构尺寸(单位:mm )

(1) 箱座(体)壁厚: =≥8,取=15,其中=154.35;

(2) 箱盖壁厚: =0.85≥8,取=12;

(3) 箱座、箱盖、箱座底的凸缘厚度:,;

(4) 地脚螺栓直径及数目:根据=154.35,得,取d f =18,地脚螺钉数目

为4个;

(5) 轴承旁联结螺栓直径:

(6) 箱盖、箱座联结螺栓直径: =9~14.4,取=12;

(7) 表2.5.1轴承端盖螺钉直径:

(8) 检查孔盖螺钉直径:本减速器为一级传动减速器,所以取=10;

(9) 轴承座外径:,其中为轴承外圈直径,

把数据代入上述公式,得数据如下:

高速轴:144~14012)5.5~5(802=?+=D ,取,

低速轴:198~19016)5.5~5(1102=?+=D ,取;

(10) 表2.5.2螺栓相关尺寸:

(11) 轴承旁联结螺栓的距离:以螺栓和螺钉互不干涉为准尽量靠近,

一般取;

(12) 轴承旁凸台半径: 20,根据而得;

(13) 轴承旁凸台高度:根据低速轴轴承外径和扳手空间的要求,由结

构确定;

(14) 箱外壁至轴承座端面的距离:

50~478~520228~521=++=++=c c L ,取=48;

(15) 箱盖、箱座的肋厚:>0.85,取=12,≥0.85,取=14;

(16) 大齿轮顶圆与箱内壁之间的距离:≥,取=16;

(17) 铸造斜度、过渡斜度、铸造外圆角、内圆角:铸造斜度=1:10, 过渡斜度=1:20,铸造外圆角=5,铸造内圆角=3。

第四章 其他零件设计

毕业设计论文二级减速器

安徽理工大学继续教育学院 毕业设计 题目二级直齿圆柱齿轮减速器 系别 专业机械电子工程 班级 09 姓名汪凡凯 学号 指导教师 日期 2011年5月

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

机械设计课程设计蜗轮蜗杆传动

目录 第一章总论......................................................... - 2 - 一、机械设计课程设计的容......................................... - 2 - 二、设计任务..................................................... - 2 - 三、设计要求..................................................... - 3 - 第二章机械传动装置总体设计......................................... - 3 - 一、电动机的选择................................................. - 4 - 二、传动比及其分配............................................... - 4 - 三、校核转速..................................................... - 5 - 四、传动装置各参数的计算......................................... - 5 - 第三章传动零件—蜗杆蜗轮传动的设计计算............................. - 5 - 一、蜗轮蜗杆材料及类型选择....................................... - 6 - 二、设计计算..................................................... - 6 - 第四章轴的结构设计及计算.......................................... - 10 - 一、安装蜗轮的轴设计计算........................................ - 10 - 二、蜗杆轴设计计算.............................................. - 15 - 第五章滚动轴承计算................................................ - 17 - 一、安装蜗轮的轴的轴承计算...................................... - 18 - 二、蜗杆轴轴承的校核............................................ - 18 - 第六章键的选择计算................................................ - 19 - 第七章联轴器...................................................... - 20 - 第八章润滑及密封说明.............................................. - 20 - 第九章拆装和调整的说明............................................ - 20 - 第十章减速箱体的附件说明.......................................... - 20 - 课程设计小结........................................................ - 21 - 参考文献............................................................ - 22 -

蜗轮蜗杆减速器设计说明书

目录 一、电动机的选择 (3) 二、传动比分配 (4) 三、计算传动装置的运动和动力参数 (4) 四、传动零件的设计计算 (4) 五、轴的设计计算 (6) 六、蜗杆轴的设计计算 (17) 七、键联接的选择及校核计算 (18) 八、减速器箱体结构尺寸确定 (19) 九、润滑油选择: (21) 十、滚动轴承的选择及计算 (21) 十一、联轴器的选择 (22) 十二、设计小结 (22)

减速器种类:蜗杆—链条减速器 减速器在室内工作,单向运转工作时有轻微震动,两班制。要求使用期限十年,大修期三年,速度误差允许5%,小批量生产。

型号 额定功率 同步转速 满载转速 质量 Y112M-4 4.0 1500 1440 470 有表中数据可知两个方案均可行,但方案 1的总传动比较小,传 动装置结构尺寸较小,并且节约能量。因此选择方案 1,选定电 动机的型号为Y112M-4, ?传动比分配 n m i a = 一= =114.55 n i 2 (0.03~0.06)i =3~5 取i 涡=30所以i 2=3.82 三?计算传动装置的运动和动力参数 1)各轴传速 i a =114.55 n D n m ,960 r min n 1 n D i D 960 1 960r min 压 n i 1 960 30 32 r min n 3 匹 i 2 32 1 32r min n 4 n 8?38r min P D P d 4kw P P d 3 3.96kw 巳 p 2 1 2.9106kw P P 2 2.824kw 2)各轴输入功率 i 涡=30 i 2 =3.82 n D =960 m =960 min min n 2 = in n 3 =32 in n 工=8.38r/min P D =4kw

二级减速器毕业设计论文

兰州工业学院学院 毕业设计 题目二级直齿圆柱齿轮减速器系别机电工程学院 专业机械设计与制造 班级机设 姓名***** 学号****** 指导教师**** 日期2013年12月

设计任务书 题目: 带式运输机传动系统中的二级直齿圆柱齿轮减速器设计要求: 1:运输带的有效拉力为F=2500N。 2:运输带的工作速度为V=1.7m/s。 3:卷筒直径为D=300mm。 5:两班制连续单向运转(每班8小时计算),载荷变化不大,室内有粉尘。6:工作年限十年(每年300天计算),小批量生产。 设计进度要求: 第一周拟定分析传动装置的设计方案: 第二周选择电动机,计算传动装置的运动和动力参数: 第三周进行传动件的设计计算,校核轴,轴承,联轴器,键等: 第四周绘制减速器的装配图: 第五周准备答辩 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

目录 1、引言 (1) 2、电动机的选择 (2) 2.1. 电动机类型的选择 (2) 2.2.电动机功率的选择 (2) 2.3.确定电动机的转速 (2) 3、计算总传动比及分配各级的传动比 (4) 3.1. 总传动比 (4) 3.2.分配各级传动比 (4) 4、计算传动装置的传动和动力参数 (5) 4.1.电动机轴的计算 (5) 4.2.Ⅰ轴的计算(减速器高速轴) (5) 4.3.Ⅱ轴的计算(减速器中间轴) (5) 4.4.Ⅲ轴的计算(减速器低速轴) (6) 4.5.Ⅳ轴的计算(卷筒轴) (6) 5、传动零件V带的设计计算 (7) 5.1.确定计算功率 (7) 5.2.选择V带的型号 (7) 5.3.确定带轮的基准直径d d1 d d2 (7) 5.4.验算V带的速度 (7) 5.5.确定V带的基准长度L d 和实际中心距a (7) 5.6.校验小带轮包角ɑ 1 (8)

蜗轮蜗杆(常见普通)的规格及尺寸

例:蜗杆传动,已知模数m=4.蜗杆头数z1=1,蜗轮齿数z2=50,特性系数q=10。求传动中心距a=?变位系数0时: 中心距a=(蜗杆分度圆+蜗轮分度圆)/2=(特性系数q*模数m+蜗轮齿数Z2*模数m)/2=(10*4+50*4)/2=120 特性系数:蜗杆的分度圆直径与模数的比值称为蜗杆特性系数。 加工蜗轮时,因为是直径和形状与蜗杆相同的滚刀来切制,由上式可看出,在同一模数下由于Z1和λ0的变化,将有很多不同的蜗杆直径,也就是说需要配备很多加工蜗轮的滚刀。为了减少滚刀的数目,便于刀具标准化,不但要规定标准模数,同时还必须规定对应于一定模数的Z1/tgλ0值,这个值用q表示,称之为蜗杆特性系数。 圆柱蜗轮、蜗杆设计参数选择 蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。计算速比(i)的公式如下: i=蜗杆转速n1 蜗轮转速n2 = 蜗轮齿数z2蜗杆头数z1 1、蜗轮蜗杆主要参数与尺寸计算 主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。 (1)模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt为标准模数。对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。

标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。 表A

二级圆柱齿轮减速器开题报告

武汉工业学院 毕业设计(论文)开题报告 2010届 毕业设计题目:基于AutoCAD的圆柱齿轮三维参数化设计 院(系):机械工程学院 专业名称:过程装备与控制工程 学生姓名: 学生学号: 指导教师:杨红军

武汉工业学院学生毕业设计(论文)开题报告表 课题名称基于AutoCAD的圆柱齿轮三维参数化设计课题类型论文 课题来源导师杨红军 学生姓名学号专业 一,课题研究目的和意义 AutoCAD是目前微机上应用最为广泛的通用交互式计算机辅助绘图与设计软件包。AutoCAD的强大生命力在于它的通用性、多种工业标准和开放的体系结构。AutoCAD的通用性为其二次开发提供了必要条件,而AutoCAD开放的体系结构则使其二次开发成为可能,它允许用户和开发者采用高级编程语言对其进行扩充修改,即二次开发。 AutoCAD参数化设计是二次开发技术在实际应用中提出的课题,参数化设计通常是指软件设计者为绘图及修改图形提供一个软件环境,工程技术人员在这个环境中所绘制的任意图形均可以被参数化,修改图中的任一尺寸,均可实现尺寸驭动,引起相关图形的改变.它不仅可使CAD系统具有交互式绘图功能,还具有自动绘图的功能。其目的是通过图形驭动(或尺寸驭动)方式在设计绘图状态中修改图形。利用参数化设计手段开发的AutoCAD设计系统,可使工程设计人员从大量繁重而琐碎的绘图工作中解脱出来,可以大大提高设计速度。 AutoCAD是目前使用最为广泛的机械图形绘制软件。但是它小支持尺寸驱动的参数化绘图方式,因此在用它进行绘图的过程中就存在大量的没意义重复性的绘图。由于齿轮的绘制比较麻烦,我们就考虑用程序驱动的方式,通过编程实现齿轮的参数化绘图从而提高绘图效率。以AutoCAD为平台,利用VB语言对AutoCAD进行二次开发,开发出了齿轮参数化设计库。 参数化设计是当前AutoCAD技术中的一个研究热点.对参数化技术进行深入的研究,对于提高我国企业的AutoCAD自动化程度以及竞争力有着重要的现实意义。 二,课题研究现状和前景 1 .计算机辅助绘图的研究现状 AutoCAD是由美国Autodesk公司于二十世纪八十年代初为微机上应用CAD技术而开发的绘图程序软件包,经过不断的完美,现已经成为国际上广为流行的绘图工具。AutoCAD可以绘制任意二维和三维图形,并且同传统的手工绘图相比,用AutoCAD 绘图速度更快、精度更高、而且便于个性,它已经在航空航天、造船、建筑、机械、电子、化工、美工、轻纺等很多领域得到了广泛应用,并取得了丰硕的成果和巨大的经济效益。 AutoCAD具有良好的用户界面,通过交互菜单或命令行方式便可以进行各种操作。它的多文档设计环境,让非计算机专业人员也能很快地学会使用。在不断实践的过程中更好地掌握它的各种应用和开发技巧,从而不断提高工作效率。 AutoCAD具有广泛的适应性,它可以在各种操作系统支持的微型计算机和工作站上运行,并支持分辨率由320×200到2048×1024的各种图形显示设备40多种,以及

蜗轮蜗杆设计参数

圆柱蜗轮、蜗杆设计参数选择 蜗轮和蜗杆通常用于垂直交叉的两轴之间的传动(图1)。蜗轮和蜗杆的齿向是螺旋形的,蜗轮的轮齿顶面常制成环面。在蜗轮蜗杆传动中,蜗杆是主动件,蜗轮是从动件。蜗杆轴向剖面类是梯形螺纹的轴向剖面,有单头和多头之分。若为单头,则蜗杆转一圈蜗轮只转一个齿,因此可以得到较高速比。计算速比(i)的公式如下: i=蜗杆转速n1 蜗轮转速n2 = 蜗轮齿数z2 蜗杆头数z1 1、蜗轮蜗杆主要参数与尺寸计算 主要参数有:模数(m)、蜗杆分度圆直径(d1)、导程角(r)、中心距(a)、蜗杆头数(或线数z1)、蜗轮齿数(z2)等,根据上述参数可决定蜗杆与蜗轮的基本尺寸,其中z1、z2由传动要求选定。 模数m 为设计和加工方便,规定以蜗杆轴项目数mx和蜗轮的断面模数mt为标准模数。对啮合的蜗轮蜗杆,其模数应相等,及标准模数m=mx=mt。 标准模数可有表A查的,需要注意的是,蜗轮蜗杆的标准模数值与齿轮的标准模数值并不相同。表A 图1

图2 蜗杆分度圆直径d1 再制造蜗轮时,最理想的是用尺寸、形状与蜗杆完全相同的蜗轮滚刀来进行切削加工。但由于同一模数蜗杆,其直径可以各不相同,这就要求每一种模数对应有相当数量直径不同的滚刀,才能满足蜗轮加工需求。为了减少蜗轮滚刀数目,在规定标准模数的同时,对蜗杆分度圆直径亦实行了标准化,且与m有一定的匹配。蜗杆分度圆直径d1与轴向模数mx之比为一标准值,称蜗杆的直径系数。即 q= 蜗杆分度圆直径 模数 = d1 m d1=mq

有关标准模数m 与标准分度圆直径d1的搭配值及对应的蜗杆直径系数参照表A 蜗杆导程角r 当蜗杆的q 和z1选定后,在蜗杆圆柱上的导程角即被确定。为导程角、导程和分度圆直径的关系。 tan r= 导程分度圆周长 = 蜗杆头数x 轴向齿距分度圆周长 =z1px d1π =z1πm πm q =z1 q 相互啮合的蜗轮蜗杆,其导程角的大小与方向应相同。 中心距a 蜗轮与蜗杆两轴中心距a 与模数m 、蜗杆直径系数q 以及蜗轮齿数z2间的关系式如下: a=d1+d22 =m q (q+z2) 蜗杆各部尺寸如表B 蜗轮各部尺寸如表C 蜗轮蜗杆的画法 (1) 蜗杆的规定画法 参照图1图2 (2)蜗轮的规定画法 参照图1图2 (3)蜗轮蜗杆啮合画法 参照图1图2.

机械毕业设计625二级圆柱直齿齿轮减速器

1引言 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是:①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力;②适用的功率和速度范围广;③传动效率高,η=0.92-0.98;④工作可靠、使用寿命长;⑤外轮廓尺寸小、结构紧凑。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用,在现代机械中应用极为广泛。 国内的减速器多以齿轮传动、蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外,材料品质和工艺水平上还有许多弱点,特别是大型的减速器问题更突出,使用寿命不长。国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮传动为主,体积和重量问题,也未解决好。 当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。减速器与电动机的连体结构,也是大力开拓的形式,并已生产多种结构形式和多种功率型号的产品。近十几年来,由于近代计算机技术与数控技术的发展,使得机械加工精度,加工效率大大提高,从而推动了机械传动产品的多样化,整机配套的模块化,标准化,以及造型设计艺术化,使产品更加精致,美观化。 在21世纪成套机械装备中,齿轮仍然是机械传动的基本部件。CNC机床和工艺技术的发展,推动了机械传动结构的飞速发展。在传动系统设计中的电子控制、液压传动、齿轮、带链的混合传动,将成为变速箱设计中优化传动组合的方向。在传动设计中的学科交叉,将成为新型传动产品发展的重要趋势。

2 传动装置总体设计 2.0设计任务书 1设计任务 设计带式输送机的传动系统,采用两级圆柱直齿齿轮减速器传动。 2 设计要求 (1)外形美观,结构合理,性能可靠,工艺性好; (2)多有图纸符合国家标准要求; (3)按毕业设计(论文)要求完成相关资料整理装订工作。 3 原始数据 (1)运输带工作拉力 F=4KN (2)运输带工作速度V=2.0m/s (3)输送带滚筒直径 D=450mm η (4)传动效率96 = .0 4工作条件 两班制工作,空载起动,载荷平稳,常温下连续(单向)运转,工作环境多尘,中小批量生产,使用期限10年,年工作300天。 2.1 确定传动方案

减速器毕业设计

设计说明书 一、前言1 (—)课程设计的目的(参照第1页) 机械零件课程设计是学生学习《机械技术》(上、下)课程后进行的一项综合训练,其主要目的是通过课程设计使学生巩固、加深在机械技术课程中所学到的知识,提高学生综合运用这些知识去分析和解决问题的能力。同时学习机械设计的一般方法,了解和掌握常用机械零部件、机械传动装置或简单机械的设计方法与步骤,为今后学习专业技术知识打下必要的基础。(二)传动方案的分析(参照第10页) 机器一般是由原动机、传动装置和工作装置组成。传动装置是用来传递原动机的运动和动力、变换其运动形式以满足工作装置的需要,是机器的重要组成部分。传动装置是否合理将直接影响机器的工作性能、重量和成本。合理的传动方案除满足工作装置的功能外,还要求结构简单、制造方便、成本低廉、传动效率高和使用维护方便。 本设计中原动机为电动机,工作机为皮带输送机。传动方案采用了两级传动,第一级传动为带传动,第二级传动为单级直齿圆柱齿轮减速器。 带传动承载能力较低.在传递相同转矩时,结构尺寸较其他形式大,但有过载保护的优点,还可缓和冲击和振动,故布置在传动的高速级,以降低传递的转矩,减小带传动的结构尺寸。 齿轮传动的传动效率高,适用的功率和速度范围广,使用寿命较长,是现代机器中应用最为广泛的机构之—。本设计采用的是单级直齿轮传动(说明直齿轮传动的优缺点)。 说明减速器的结构特点、材料选择和应用场合(如本设计中减速器的箱体采用水平剖分式结构,用HT200灰铸铁铸造而成)。 设计说明书 1

二、传动系统的参数设计 已知输送带的有效拉力F w =2350,输送带的速度V w =1.5,滚筒直径D=300。连续工作,载荷平稳、单向运转。 1)选择合适的电动机;2)计算传动装置的总传动比,分配各级传动比;3)计算传动装置的运动参数和动力参数。 解:1、选择电动机 (1)选择电动机类型:按工作要求和条件选取Y 系列一般用途的全封闭自扇冷鼠笼型三相异步电动机。 (2)选择电动机容量 工作机所需功率: 75.3ηw 1000=?= Vw Fw Pw ,其中带式输送机效率ηw =0.94。 电动机输出功率: 12.4== η Pw Po 其中η为电动机至滚筒、主动轴传动装置的总效率,包括V 带传动效率ηb 、一对齿轮传动效率ηg 、两对滚动轴承效率ηr 2、及联轴器效率ηc ,值 计算如下:η=ηb ·ηg ·ηr 2·ηc =0.90 由表10—1(134页)查得各效率值,代入公式计算出效率及电机输出功率。使电动机的额定功率Pm =(1~1.3)Po ,由表10—110(223页)查得电动机的额定功率Pm=5.5。 (3)选择电动机的转速 计算滚筒的转速:== D Vw nw π6095.49 根据表3—1确定传动比的范围:取V 带传动比i b =2~4,单级齿轮传动比i g =3~5,则总传动比的范围:i =(2X3)~(4X5)=6~20。 电动机的转速范围为n′=i·n w (6~20)·n w =592.94~1909.8 在这个范围内电动机的同步转速有1000r /min 和1500r /min ,综合考虑电动机和传动装置的情况,同时也要降低电动机的重量和成本,最终可确定同步转速为1000,根据同步转速确定电动机的型号为Y132M2-6,满载转速960。(223页) 型号 额定功率 满载转速 同步转速 Y132M2-6 5.5 960 1000 2、计算总传动比并分配各级传动比 (1)计算总传动比:i=n m /n W =8~14 (2)分配各级传动比:为使带传动尺寸不至过大,满足i b

二级减速器(机械课程设计)(含总结)

机械设计课程设计 : 班级: 学号: 指导教师: 成绩:

日期:2011 年6 月 目录 1. 设计目的 (2) 2. 设计方案 (3) 3. 电机选择 (5) 4. 装置运动动力参数计算 (7) 5.带传动设计 (9) 6.齿轮设计 (18) 7.轴类零件设计 (28) 8.轴承的寿命计算 (31) 9.键连接的校核 (32) 10.润滑及密封类型选择 (33) 11.减速器附件设计 (33) 12.心得体会 (34) 13.参考文献 (35)

1. 设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规等。 2. 设计方案及要求 据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

1—输送带 2—电动机 3—V带传动 4—减速器 技术与条件说明: 1)传动装置的使用寿命预定为8年每年按350天计算,每天16小时计算; 2)工作情况:单向运输,载荷平稳,室工作,有粉尘,环境温度不超过35度; 3)电动机的电源为三相交流电,电压为380/220伏; 4)运动要求:输送带运动速度误差不超过%5;滚筒传动效率 0.96; 5)检修周期:半年小修,两年中修,四年大修。 设计要求 1)减速器装配图1; 2)零件图2(低速级齿轮,低速级轴);

蜗轮蜗杆设计

了解蜗杆传动的特点,它的适用场合。了解蜗杆传动的主要参数,如模数、压力角、螺旋头数、螺旋导程角、螺旋螺旋角、螺旋分度圆等。 ?熟悉蜗杆、蜗轮构造,蜗杆与蜗轮常用什么材料制造,那个易被损害。 ?掌握蜗杆传动效率低的机理,蜗杆传动中箱体内的润滑油温度过高有什么危害,如何降低。 第一节概述 蜗杆传动是由蜗杆和蜗轮组成的(图3-52),用于传递交错轴之间的运动和动力,通常两轴交错角为90°。在一般蜗杆传动中,都是以蜗杆为主动件。 从外形上看,蜗杆类似螺栓,蜗轮则很象斜齿圆柱齿轮。工作时,蜗轮轮齿沿着蜗杆的螺旋面作滑动和滚动。为了改善轮齿的接触情况,将蜗轮沿齿宽方向做成圆弧形,使之将蜗杆部分包住。这样蜗杆蜗轮啮合时是线接触,而不是点接触。 蜗杆传动具有以下特点: 1.传动比大,且准确。通常称蜗杆的螺旋线数为螺杆的头数,若蜗杆头数为z 1,蜗轮齿数为z2,则蜗杆传动的传动比为 2=n1/n2=z2/z1ω1/ωi=(3-60) 通常蜗杆头数很少(z1=1~4),蜗轮齿数很多(z2=30~80),所以蜗杆传动可获得很大的传动比而使机构比较紧凑。单级蜗杆传动的传动比i≤100~300;传递动力时常用i=5~83。 2.传动平稳、无噪声。因蜗杆与蜗轮齿的啮合是连续的,同时啮合的齿对较多。03.当蜗杆的螺旋升角小于啮合面的当量摩擦角时,可以实现自锁。 =0.4~0.45。η=0.82~0.92。具有自锁时,η=0.75~0.82;z1=3~4时,η=0.7~0.75;z1=2时,η4.传动效率比较低。当z1=1时,效率 5.因啮合处有较大的滑动速度,会产生较严重的摩擦磨损,引起发热,使润滑情况恶化,所以蜗轮一般常用青铜等贵重金属制造。 由于普通蜗杆传动效率较低,所以一般只适用于传递功率值在50~60kW以下的场合。一些高效率的新型蜗杆传动所传递的功率可达500kW,圆周速度可达50 m/s。 第二节蜗杆传动的主要参数和几何尺寸 本节只讨论普通圆柱蜗杆传动,或称阿基米德圆柱蜗杆传动(在垂直于蜗杆轴线的剖面中,齿廓线是一条阿基米德螺旋线,故称为阿基米德螺杆)。 =40°;而蜗轮的齿廓为渐开线,即在主平面内,蜗杆与蜗轮的啮合如同齿条与齿轮的啮合一样。α如图3-53所示,通过蜗杆轴线并垂直于蜗轮轴线的平面为主平面。在主平面上,蜗杆的齿廓与齿条相同,两侧边为直线,夹角2因此,蜗杆传动的主要参数和几何尺寸计算大致与齿轮传动相同,并且在设计、制造中皆以主平面上的参数和尺寸为基准。普通圆柱蜗杆传动参数已标准化。 (一)蜗杆传动的主要参数 α 1.模数m和压力角 为20°。α规定为标准值。圆柱蜗杆传动的标准模数见表3-21。蜗杆传动标准压力角α相等。为了制造方便,把蜗轮的端面模数m及端面压力角α因为在主平面上蜗杆传动相当于齿条与齿轮的啮合,所以,蜗杆的轴向齿距等于蜗轮的端面周节p(图3

二级减速器毕业设计

济源职业技术学院 毕业设计 题目二级圆柱齿轮减速器的设计系别机电系 专业机电一体化技术 班级机电0602班 姓名Xxx 学号06010204 指导教师高清冉 日期2008年11月

设计任务书 设计题目: 二级圆柱齿轮减速器 设计要求: 运输带拉力 F = 3400 N 运输带速度 V = 1.3 m/s 卷筒直径 D = 320 mm 滚筒及运输带效率η=0.94 。要求电动机长期连续运转,载荷不变或很少变化。电动机的额定功率Ped稍大于电动机工作功率Pd。工作时,载荷有轻微冲击。室内工作,水份和灰份为正常状态,产品生产批量为成批生产,允许总速比误差为±4%,要求齿轮使用寿命为10年,传动比准确,有足够大的强度,两班工作制,轴承使用寿命不小于15000小时,要求轴有较大刚度,试设计二级圆柱齿轮减速器。 设计进度要求: 第一周:熟悉题目,收集资料,理解题目,借取一些工具书。 第二周:完成减速器的设计及整理计算的数据,为下步图形的绘制做准备。 第三周:完成了减速器的设计及整理计算的数据。 第四周:按照上一阶段所计算的数据,完成零部件的CAD的绘制。 第五周:根据设计和图形绘制过程中的心得体会撰写论文,完成了论文的撰写。 第六周:修改、打印论文,完成。 指导教师(签名):

摘要 齿轮传动是现代机械中应用最广的一种传动形式。它的主要优点是: ①瞬时传动比恒定、工作平稳、传动准确可靠,可传递空间任意两轴之间的运动和动力; ②适用的功率和速度范围广; ③传动效率高,η=0.92-0.98; ④工作可靠、使用寿命长; ⑤外轮廓尺寸小、结构紧凑。由齿轮、轴、轴承及箱体组成的齿轮减速器,用于原动机和工作机或执行机构之间,起匹配转速和传递转矩的作用。齿轮减速器的特点是效率高、寿命长、维护简便,因而应用极为广泛。齿轮减速器按减速齿轮的级数可分为单级、二级、三级和多级减速器几种;按轴在空间的相互配置方式可分为立式和卧式减速器两种;按运动简图的特点可分为展开式、同轴式和分流式减速器等。单级圆柱齿轮减速器的最大传动比一般为8~10,作此限制主要为避免外廓尺寸过大。若要求i>10时,就应采用二级圆柱齿轮减速器。二级圆柱齿轮减速器应用于i:8~50及高、低速级的中心距总和为250~400mmm的情况下。 本设计讲述了带式运输机的传动装置——二级圆柱齿轮减速器的设计过程。首先进行了传动方案的评述,选择齿轮减速器作为传动装置,然后进行减速器的设计计算(包括选择电动机、设计齿轮传动、轴的结构设计、选择并验算滚动轴承、选择并验算联轴器、校核平键联接、选择齿轮传动和轴承的润滑方式九部分内容)。运用AutoCAD软件进行齿轮减速器的二维平面设计,完成齿轮减速器的二维平面零件图和装配图的绘制。 关键词:齿轮啮合轴传动传动比传动效率

蜗轮蜗杆减速器说明书

一级蜗轮蜗杆减速器设计说明书 第一章绪论 1.1本课题的背景及意义 计算机辅助设计及辅助制造(CAD/CAM)技术是当今设计以及制造领域广泛采用的先进技术。本次设计是蜗轮蜗杆减速器,通过本课题的设计,将进一步深入地对这一技术进行深入地了解和学习。 1.1.1 本设计的设计要求 机械零件的设计是整个机器设计工作中的一项重要的具体内容,因此,必须从机器整体出发来考虑零件的设计。设计零件的步骤通常包括:选择零件的类型;确定零件上的载荷;零件失效分析;选择零件的材料;通过承载能力计算初步确定零件的主要尺寸;分析零部件的结构合理性;作出零件工作图和不见装配图。对一些由专门工厂大批生产的标准件主要是根据机器工作要求和承载能力计算,由标准中合理选择。 根据工艺性及标准化等原则对零件进行结构设计,是分析零部件结构合理性的基础。有了准确的分析和计算,而如果零件的结构不合理,则不仅不能省工省料,甚至使相互组合的零件不能装配成合乎机器工作和维修要求的良好部件,或者根本装不起来。 1.2.(1)国内减速机产品发展状况 国内的减速器多以齿轮传动,蜗杆传动为主,但普遍存在着功率与重量比小,或者传动比大而机械效率过低的问题。另外材料品质和工艺水平上还有许多弱点。由于在传动的理论上,工艺水平和材料品质方面没有突破,因此没能从根本上解决传递功率大,传动比大,体积小,重量轻,机械效率高等这些基本要求。 (2)国外减速机产品发展状况 国外的减速器,以德国、丹麦和日本处于领先地位,特别在材料和制造工艺方面占据优势,减速器工作可靠性好,使用寿命长。但其传动形式仍以定轴齿轮

转动为主,体积和重量问题也未能解决好。当今的减速器是向着大功率、大传动比、小体积、高机械效率以及使用寿命长的方向发展。 1.3.本设计的要求 本设计的设计要求机械零件的设计是整个机器设计工作中的一项重要的具体内容,因此,必须从机器整体出发来考虑零件的设计计算,而如果零件的结构不合理,则不仅不能省工省料,甚至使相互组合的零件不能装配成合乎机器工作和维修要求的良好部件,或者根本装不起来。 机器的经济性是一个综合性指标,设计机器时应最大限度的考虑经济性。提高设计制造经济性的主要途径有:①尽量采用先进的现代设计理论个方法,力求参数最优化,以及应用CAD技术,加快设计进度,降低设计成本;②合理的组织设计和制造过程;③最大限度地采用标准化、系列化及通用化零部件; ④合理地选择材料,改善零件的结构工艺性,尽可能采用新材料、新结构、新工艺和新技术,使其用料少、质量轻、加工费用低、易于装配⑤尽力改善机器的造型设计,扩大销售量。 提高机器使用经济性的主要途径有:①提高机器的机械化、自动化水平,以提高机器的生产率和生产产品的质量;②选用高效率的传动系统和支承装置,从而降低能源消耗和生产成本;③注意采用适当的防护、润滑和密封装置,以延长机器的使用寿命,并避免环境污染。 机器在预定工作期限内必须具有一定的可靠性。提高机器可靠度的关键是提高其组成零部件的可靠度。此外,从机器设计的角度考虑,确定适当的可靠性水平,力求结构简单,减少零件数目,尽可能选用标准件及可靠零件,合理设计机器的组件和部件以及必要时选取较大的安全系数等,对提高机器可靠度也是十分有效的。 1.4.研究内容(设计内容) (1)蜗轮蜗杆减速器的特点

二级减速器机械课程设计含总结

机械设计课程设计 姓名: 班级: 学号: 指导教师: 成绩: 日期:2011 年6 月

目录 1. 设计目的 (2) 2. 设计方案 (3) 3. 电机选择 (5) 4. 装置运动动力参数计算 (7) 5.带传动设计 (9) 6.齿轮设计 (18) 7.轴类零件设计 (28) 8.轴承的寿命计算 (31) 9.键连接的校核 (32) 10.润滑及密封类型选择 (33) 11.减速器附件设计 (33) 12.心得体会 (34) 13.参考文献 (35)

1. 设计目的 机械设计课程是培养学生具有机械设计能力的技术基础课。课程设计则是机械设计课程的实践性教学环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是: (1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的理论与实际知识去分析和解决机械设计问题的能力。 (2)学习机械设计的一般方法,掌握机械设计的一般规律。 (3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件工作能力,确定尺寸和掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。 (4)学习进行机械设计基础技能的训练,例如:计算,绘图,查阅设计资料和手册,运用标准和规范等。 2. 设计方案及要求 据所给题目:设计一带式输送机的传动装置(两级展开式圆柱直齿轮减速器)方案图如下:

技术与条件说明: 1)传动装置的使用寿命预定为 8年每年按350天计算, 每天16小时计算; 2)工作情况:单向运输,载荷平稳,室内工作,有粉尘,环境温度不超过35度; 3)电动机的电源为三相交流电,电压为380/220伏; 4)运动要求:输送带运动速度误差不超过%5;滚筒传动效率0.96; 5)检修周期:半年小修,两年中修,四年大修。 设计要求 1)减速器装配图1张; 2)零件图2张(低速级齿轮,低速级轴); 3)设计计算说明书一份,按指导老师的要求书写 1—输送带 2—电动机 3—V 带传动 4—减速器 5—联轴器

二级减速器 课程设计 轴的设计

轴的设计 图1传动系统的总轮廓图 一、轴的材料选择及最小直径估算 根据工作条件,小齿轮的直径较小(),采用齿轮轴结构, 选用45钢,正火,硬度HB=。 按扭转强度法进行最小直径估算,即初算轴径,若最小直径轴段开有键槽,还要考虑键槽对轴的强度影响。 值由表26—3确定:=112 1、高速轴最小直径的确定 由,因高速轴最小直径处安装联 轴器,设有一个键槽。则,由于减速器输入轴通过联轴器与电动机轴相联结,则外伸段轴径与电动机 轴径不得相差太大,否则难以选择合适的联轴器,取,为

电动机轴直径,由前以选电动机查表6-166:, ,综合考虑各因素,取。 2、中间轴最小直径的确定 ,因中间轴最小直径处安装滚动 轴承,取为标准值。 3、低速轴最小直径的确定 ,因低速轴最小直径处安装联轴 器,设有一键槽,则,参 见联轴器的选择,查表6-96,就近取联轴器孔径的标准值。 二、轴的结构设计 1、高速轴的结构设计 图2 (1)、各轴段的直径的确定 :最小直径,安装联轴器 :密封处轴段,根据联轴器轴向定位要求,以及密封圈的标准查表6-85(采用毡圈密封), :滚动轴承处轴段,,滚动轴承选取30208。 :过渡轴段,取 :滚动轴承处轴段

(2)、各轴段长度的确定 :由联轴器长度查表6-96得,,取 :由箱体结构、轴承端盖、装配关系确定 :由滚动轴承确定 :由装配关系及箱体结构等确定 :由滚动轴承、挡油盘及装配关系确定 :由小齿轮宽度确定,取 2、中间轴的结构设计 图3 (1)、各轴段的直径的确定 :最小直径,滚动轴承处轴段,,滚动轴承选30206 :低速级小齿轮轴段 :轴环,根据齿轮的轴向定位要求 :高速级大齿轮轴段 :滚动轴承处轴段 (2)、各轴段长度的确定 :由滚动轴承、装配关系确定 :由低速级小齿轮的毂孔宽度确定 :轴环宽度 :由高速级大齿轮的毂孔宽度确定

减速器设计答辩问题汇总

专业减速器课程设计/毕业设计定制辅导 淘宝担保 保证质量 慢洋洋工作室 店铺地址:https://www.doczj.com/doc/8f7925786.html,
减速器设计答辩问题汇总
1.在传动系统总体设计中电机的型号是如何确定的? 电动机的选择主要有两个因素: 第一是电机容量 主要是额定功率的选择。 首先要确定长期运转载荷稳定的带动工作机的功率 值以及估算整个传动系统的功率,根据工作机总效率计算出电机所需的功率,然 后按照额定功率大于实际功率的原则选择相应的电机。 第二是个转速因素 要综合考虑电动机和传动系统的性能、尺寸、重量和价格等因素,做出最佳 选择。 2.电动机的额定功率与输出功率有何不同?传动件按哪种功率设计?为什么? 额定功率是电机标定的作功,输出功率是电机实际作的功。实际输出功率, 可以比额定功率小很多。后续设计计算按实际输出功率计算。因为电动机工作时 并未达到额定功率,而是以实际功率在做功,应以实际在做功所得功率计算。 3.你所设计的传动装置的总传动比如何确定和分配的? 由选定的电动机满载转速和工作机转速,得传动装置总传动比为:i =
nm nw
总传动比为各级传动比的连乘积, 即 i = i带 ? i齿轮 , V 带传动的传动比范围在 2—4 间,单级直齿轮传动的传动比范围在 3—6 间,一般前者要小于后者。 各级传动,分配时有几个问题需要注意: 1 )各机构有常用传动形式的传动比范围,不要超过该范围。

专业减速器课程设计/毕业设计定制辅导 淘宝担保 保证质量 慢洋洋工作室 店铺地址:https://www.doczj.com/doc/8f7925786.html,
2 )各级传动要尺寸协调,结构匀称,便于安装,对应到齿轮就是各级直径相差 的不能太大, 3)对于二级齿轮传动,传动比有经验公式 i1= (1.3或1.4 × i总 ) 。
2
最后要说的是传动比分配只是初步的,后面算齿轮时,实际传动比会和设计 的传动比有出入,但是在允许范围内即可。 4.同一轴上的功率 、转矩 、转速 之间有何关系?你所设计的减速器中各轴上 的功率 、转矩 、转速是如何确定的? 关系:转距 T(N.M) = 9550 ×
P n
确定电机轴功率、扭矩和转速后,依次通过效率、传动比等因素确定后续各 轴参数,详细见说明书计算部分。 5.谈谈是如何选择传动零件(齿轮)的材料以及相应的热处理的方法,其合理性 何在? 对于齿轮来说,其材料的基本要求是齿面硬、齿芯韧、具有良好的加工性能 和经济性。 首先根据齿面硬度要求将齿面分为硬齿面和软齿面两种, 两者的材料均为中 碳钢,但是热处理的方式不一样,后者需要高频淬火,精度要求高,且软齿面便 于加工。 当受力较大, 初始计算数据较大时, 可选用硬齿面, 增加接触疲劳强度, 可以减小齿轮当设计模数,减小尺寸。 软齿面一般选用优质中碳钢,扭矩大时可选低合金钢。常用的中碳钢是 45 钢,热处理方式有两种,调质和正火,调质以后的力学性能要优于淬火。由于小 齿轮的啮合次数比大齿轮的多,为使两者的寿命接近,一般要使小齿轮齿面硬度 比大齿轮高出 25--50HBS,所以在热处理时,小齿轮(即主动轴齿轮)选用调质

西华大学 二级减速器课程设计说明书

课程设计说明书 课程名称:机械设计课程设计课程代码: 题目:二级斜齿圆柱齿轮减速器学生姓名:张伟荣 学号: 3120130316205 年级/专业/班: 13级机电2班 学院(直属系) :机械工程学院 指导教师:杜强

机械设计课程设计任务书 学院名称:机械工程学院专业:机械电子工程年级:2013级 学生姓名: 张伟荣学号: 3120130106205 指导教师: 杜强 一、设计题目带式运输机的减速传动装置设计 二、主要内容 ⑴决定传动装置的总体设计方案; ⑵选择电动机,计算传动装置的运动和动力参数; ⑶传动零件以及轴的设计计算;轴承、联接件、润滑密封和联轴器的选择及校验计算; ⑷机体结构及其附件的设计; ⑸绘制装配图及零件图;编写计算说明书并进行设计答辩。 三、具体要求 ⑴原始数据:运输带线速度v = 1.76 (m/s) 运输带牵引力F = 2700 (N) 驱动滚筒直径D = 470 (mm) ⑵工作条件: ①使用期5年,双班制工作,单向传动; ②载荷有轻微振动; ③运送煤、盐、砂、矿石等松散物品。 四、完成后应上交的材料 ⑴机械设计课程设计计算说明书; ⑵减速器装配图一张; ⑶轴类零件图一张; ⑷齿轮零件图一张。

五、推荐参考资料 ⑴西华大学机械工程与自动化学院机械基础教学部编.机械设计课程设计指导 书,2006 ⑵秦小屿.机械设计基础(第二版).成都:西南交大出版社,2012 指导教师杜强签名日期 2015 年 6 月 25日 系主任审核日期 2015 年 6 月 25 日

目录 一.传动方案的拟定……………………………………………………………………… 二.电动机的选择及传动装置的运动和动力参数计算………………………………… 三.传动零件的设计计算…………………………………………………………… 四.轴的结构设计及强度计算…………………………………………………………… 五.滚动轴承的选择与寿命计算…………………………………………………………… 六.键的强度计算…………………………………………………………… 七.联轴器的选择…………………………………………………………… 八.减速器机体结构设计及附件设计……………………………………………………………总结………………………………………………………………………………………… 参考文献……………………………………………………………………………………

相关主题
文本预览