当前位置:文档之家› 一种纳米颗粒粒度分布的非接触测量方法

一种纳米颗粒粒度分布的非接触测量方法

一种纳米颗粒粒度分布的非接触测量方法
一种纳米颗粒粒度分布的非接触测量方法

12粒度测定法检验操作规程

目的:建立粒度测定法的标准操作规程。 范围:本规程适用于粒度测定法。 职责:检验员、QC主任。 依据:中国药典2010年版一部。 内容: 1 简述 粒度系指颗粒的粗细程度及粗细颗粒的分布,用于测定药物制剂的粒子大小或限度。 2 仪器与用具 2.1 天平感量0.001g 2.2 药筛(各品种项下规定的药筛号),并配有筛盖和密合的接受容器。 3 测定操作方法 3.1显微镜法 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定照显微鉴别法(附录Ⅱ C)标定。 测定法除另有规定外,取供试品,用力摇匀[黏度较大者可按品种项下的规定加适量甘油溶液(1→2)稀释],照该剂型或品种项下的规定取供试品,置载玻片上,覆以盖玻片(注意防止气泡混入),轻压使颗粒分布均匀;半固体可直接涂于载玻片上。立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或品种项下规定的50μm及50μm以上的粒子。再在200~500倍显微镜下检视该剂型或品种项下规定的视野内的总粒数及规定大小的粒数,计算所占百分比。 3.2 单筛分法 取各品种项下规定量的供试品,除另有规定外,取供试品10g,称定重量,置规定号药筛(配有密合接受容器)内,筛上加盖,按水平方向旋转振摇至少3分钟,并不时在垂

直方向轻叩筛。取筛下的颗粒及粉末,称定重量,计算所占百分比。 3.3 双筛分法 除另有规定外(西药取单剂量包装5袋或多剂量包装的1袋),中成药取供试品30g,称定重量,置该品种规定药筛的上层小号筛(小号筛置于大号筛上,并配有密合接受容器)中,盖好筛盖,保持水平状态过筛,左右往返,边筛动边叩3分钟。取不能通过小号筛和能通过大号筛的颗粒及粉末,称定重量,计算所占百分比。 4 注意事项 4.1 在筛动时速度不宜太快,否则由于粉末运动速度太快,可筛过粉末来不及与筛网接触而混于不可筛过粉末之中而影响结果。 4.2 适当增加振动力度,使药粉跳动运动增强,能有效地增加粉末间距,筛孔得到充分暴露而利于筛选。 4.3 振动的力度要适当,因为粒径有方向性,通过某一筛孔的粒子的实际长度可能比筛孔的孔径大。如果振动力度较强,此种误差会增大。 4.4 筛动时间不宜过长。若筛动时间长、振动力大,颗粒间互相撞击破碎,也可引起误差。 5 记录 记录筛号、称量数据、计算结果。 6 计算 6.1 散剂(采用单筛分法) 式中 A为供试品中通过筛子的粉末的含量,%; m为通过筛子的供试品粉末的重量,g; m 为供试品重量,g。 6.2 颗粒剂和细粒剂(采用双筛分法) B%=(m 2×100%)/m 式中 B为供试品中没能通过小号筛和通过大号筛的颗粒和粉末的含量,%;

附录KE粒度和粒度分布测定法

附录H E粒度和粒度分布测定法 率,以补偿供试品发生变化时的热效应,从而使供试品与参比 物之间的温度始终保持不变(么了=0)。由于A T-0,所以供 试品与参比物之间没有附加的热传导。热流型差示扫描量热 分析仪是在输给供试品与参比物相同的功率条件下,测定供 试品与参比物两者的温度差(4了),通过热流方程将温度差(A T)换算成热量差(dQ/dT)。热流型差示扫描量热分析仪应用较为广泛。差示扫描量热分析的定量测定准确度通常好于差热分析。 D T A曲线与D SC曲线的形状极为相似,横坐标均为温度TX或时间0,不同之处仅在于前者的纵坐标为而后者为dQ/d丁。在两者的曲线上,随样品不同而显示不同的吸热峰或放热峰。 在差热分析或差示扫描量热分析中,可使用《-氧化铝作为惰性参比物,通常可以采用氧化铝空坩埚或其他惰性空坩埚作为参比物应用。 仪器应根据操作规程,定期使用有证标准物质对温度(高 纯铟或锌等)进行校准,以保证检测结果的准确性。 差热分析与差示扫描量热分析可用于下列数据的测量。 1.转换温度 D T A或DSC两种实验方法均客观地记录了物质状态发生变化时的温度。例如熔融曲线可显示熔融发生时的温度(onset值)和峰值温度(peak值)。但这两种温度值与熔点值可能并不一致(由于升温速率等影响)。 2.转换热焓 吸热或放热峰的峰面积正比于相应的热焓变化,即: M-A H=K? A 式中M为物质的质量; 为单位质量物质的转换热焓; A为实测的峰茴积; K为仪器常数。 先用已知值的标准物质测定仪器常数K后,即可方 便地利用上式由实验求取样品的转换热焓。 当不同样品的化学成分相同,而差热分析或差示扫描量热分析获得的测量转换温度值或转换热焓值发生变化时,表 明不同样品的晶型固体物质状态存在差异。 3.纯度 理论上,化学固体纯物质均具有一定的熔点(T。)或无限 窄的熔距,并吸收一定的热量(熔融热焓任何熔距的展宽或熔点下降都意味着物质化学纯度的下降。杂质所引起 的熔点下降可由范特霍夫方程表示。 式中T为热力学温度,K; X2为杂质的浓度(摩尔分数 A H f为纯物质的摩尔熔融热焓; K为气体常数; ? 388 ? k为熔融时杂质在固相与液相中的分配系数。 假定熔融时无固溶体形成,即丨=0,此时可对式(1)积 分,得: v(T0— T m)A H f/0、 w n^⑵式中T0为纯物质的熔点,K; Tm为供试品的实测熔点,K。 由实验测得丁。和T m后,代入式(2)即可求得供试 品中杂质的含量。 无定型态固体物质(或非晶态物质)可能没有明确的熔点 (T。)或呈现宽熔距现象,其熔距宽度与物质的化学纯度或晶型 纯度无关。无定型固体物质状态亦不符合范特霍夫方程规律。 三、热载台显微镜 热载台显微镜可观测供试品的物相变化过程,通过光学 显微镜或偏光显微镜直接观测并记录程序温度控制下供试品 变化情况。 热载台显微镜的观察结果可对热重分析、差热分析、差示 扫描量热分析给予更直观的物相变化信息。热载台显微镜的 温度控制部分需要校准。 四、测定法 热重分析、差热分析、差示扫描量热分析、热载台显微镜分析的测定方法,应按各仪器说明书操作。为了尽可能得到 客观、准确、能够重现的热分析曲线或相变规律,首先应在室 温至比分解温度(或熔点)髙10?20°C的宽范围内做快速升温 或降温速率(每分钟10?20°C)的预试验,然后在较窄的温度范围内,以较低的升温或降温速率(必要时可降至每分钟r c)进行精密的重复试验,以获得准确的热分析结果。 热分析报告应附测定条件,包括仪器型号、温度的校正值、供试品的取用量和制备方法、环境气体、温度变化的方向 和速率,以及仪器的灵敏度等。 需要指出的是,利用范特霍夫方程测定纯度时,是建立在 杂质不形成固溶体的假设之上的,所以本法的应用具有一定的局限性,特别是当供试品为混晶物质(即不同晶型的混合物 熔点值无差异)或熔融时分解的物质,则难以准确地测定其化 学或晶型纯度。■[修订] 附录K E粒度和粒度分布测定法 本法用于测定原料药和药物制剂的粒子大小或粒度分布。其中第一法、第二法用于测定药物制剂的粒子大小或限度,第三法用于测定原料药或药物制剂的粒度分布。 第一法(显微镜法) 本法中的粒度,系以显微镜下观察到的长度表示。 目镜测微尺的标定■照显微鉴别法(《中国药典》2010年版 一部附录n c)标定。■[修订] 测定法取供试品,用力摇匀,黏度较大者可按各品种项 下的规定加适量甘油溶液(1 — 2)稀释,照该剂型或各品种项

粒度测试的基本概念和基本知识

. 粒度测试的基本概念和基本知识 1.什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。2.什么叫粒度?颗粒的大小称为颗粒的粒度。3.什么叫粒度分布?不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 常见的粒度分布的表示方法?4.表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分?布和累计分布。图形法:用直方图和曲线等图形方式表示粒度分布的方法。?什么是粒径?5. 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。什么是等效粒径?6.文档Word . 同质球形颗粒相同或相近时,我们就当一个颗粒的某一物理特性与 用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法,等效粒径可具体分为下列几种:等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激?光法所测粒径一般认为是等

效体积径。等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直?Stokes离心沉降法所测的粒径为等效沉速粒径,也叫径。重力沉降法、径。等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗?粒的直径。库尔特法所测的粒径就是等效电阻粒径。即与所测颗粒具有相同的投影面积的球形颗粒的直等效投影面积径:?径。图像法所测的粒径即为等效投影面积直径。为什么要用等效粒径概念?7. 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的是用粒径来描述颗一个量,所以在实际的粒度分布测量过程中,人们还都 粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中文档Word . 。等效直径是当被等效直径所说的粒径并非颗粒的真实直径,而是虚拟的“”测颗粒的某一物理特性与某一直径的同质球体最相近时,就

粒度测试原理

分析了Cilas940L激光粒度仪的测试结果,并与沉降法、筛析法进行了比较.激光粒度仪测试结果的重复性较好,测量精度较高.对于玻璃珠样品,激光粒度仪和筛析法测试结果十分接近,对于天然沉积物,激光粒度仪测定的平均粒径偏粗,分选偏差.和沉降法相比,激光粒度仪测定的粘土组份(<8φ)的含量为沉降法的46.7%~70.5%,平均为60%,测定的平均粒径较沉降法偏粗,分选偏差.造成激光粒度仪与沉降法、筛析法之间差异的原因主要在于这些测试方法原理的不同和天然沉积物不规则的形状. 激光衍射法与比重计沉降法所测粒度参数的对比研究——以海滩泥沙为例 陈仕涛1,王建1,朱正坤2,娄英杰2 (1.南京师范大学地理科学学院,江苏南京210097; 2.江苏省交通规划设计院,江苏南京 210005) 摘要:用比重计沉降法和激光衍射法这两种方法,在相同条件下,对65个海滩泥沙样品分别进行了粒度分析。结果表明,激光衍射法的测试结果相对偏粗,二者的差异主要反映在>9Φ中和<4Φ这两个粒级范围内,上述差异对平均粒径、中值粒径、标准偏差、尖度、偏度等5个常用粒度参数的影响程度是不同的,经过线性相关性分析发现,二者的平均粒径和中值粒径的相关系数R较高,分别为0.9864,0.9763,F显著性检验和分析表明,其回归方程是有意义的,可作为换算公式使用,从而求得二者数据对比与换算途径。 关键词:激光粒度仪;比重计;粒度分析;相关性 1 引言 粒度分析,也叫颗粒分析,在许多领域有着广泛的应用。粒度测量的方法很多,比如传统的沉降法和随着激光技术的发展而产生的激光衍射法。沉降法之一的比重计法由于使用的仪器简单,在细颗粒样品的测量中曾广泛应用。激光衍射粒度分析法由于测量范围宽、所需样品量少、快速方便、重复性好等优点,使得用户越来越多,进而有取代其它粒度方法的趋势[1],不同的测试方法由于受原理中某些假设和仪器本身的限制,测量的数据往往各不相同[2],这就必然会导致相关数据及成果在对比与共享方面存在着客观上的困难。因此,定量分析这两

第五章颗粒污染物控制技术基础

第五章颗粒污染物控制技术基础 第一节颗粒的粒径及粒径分布 一、颗粒的粒径 大气污染中涉及到的颗粒物,一般指粒径介于0.01~100μm的粒子。颗粒的大小不同,其物理、化学特性不同,对人和环境的危害亦不同,而且对除尘装置的影响甚大,因此颗粒的大小是颗粒物的基本特性之一。实际颗粒的形状多是不规则的,所以需要按一定的方法确定一个表示颗粒大小的代表性尺寸,作为颗粒的直径,简称为粒径。下面介绍几种常用的粒径定义方法。 1.显微镜法 定向直径dF(Feret 直径):各颗粒在投影图中同一方向上的最大投影长度定向面积等分直径dM(Martin直径):各颗粒在投影图中同一方向将颗粒投影面积二等分的线段长度 投影面积直径dA(Heywood直径):与颗粒投影面积相等的圆的直径 ( Heywood测定分析表明,同一颗粒的dF>dA>dM)显微镜法观测粒径直径的三种方法

a-定向直径 b-定向面积等分直径 c-投影面积直径 2.筛分法 筛分直径:颗粒能够通过的最小方筛孔的宽度(筛孔的大小用目表示-每英寸长度上筛孔的个数) 3.光散射法 等体积直径dV:与颗粒体积相等的球体的直径 4.沉降法 斯托克斯(Stokes)直径ds:同一流体中与颗粒密度相同、沉降速度相等的球体直径 空气动力学当量直径da:在空气中与颗粒沉降速度相等的单位密度(1g/cm3)的球体的直径 斯托克斯直径和空气动力学当量直径与颗粒的空气动力学行为密切相关,是除尘技术中应用最多的两种直径 粒径的测定结果与颗粒的形状有关,通常用圆球度表示颗粒形状与球形不一

致的程度 圆球度:与颗粒体积相等的球体的表面积和颗粒的表面积之比Φs(Φs<1) 正立方体Φs=0.806,圆柱体Φs=2.62(l/d)2/3/(1+2l/d) 某些颗粒的圆球度 二、粒径分布 粒径分布是指某一粒子群中不同粒径的粒子所占的比例,也称粒子的分散度。有个数分布、表面积分布、质量分布等,除尘技术中多采用质量分布。粒径分布的表示方法有列表法、图示法和函数法。下面以粒径分布测定数据的整理过程来说明粒径分布的表示方法及相应定义。 1.个数分布 个数分布:每一间隔内的颗粒个数

粉尘粒径分布测定

实验一 粉尘粒径分布测定 一、实验目的 1.掌握用光散射的方法测定粉尘粒径分布的方法。 2.了解激光粒度分布仪的构造原理及操作方法。 二、实验原理 根据光学衍射和散射原理,光电探测器把检测到的信号转换成相应的电信号,在这些电信号中包含有颗粒粒径大小及分布的信息,电信号经放大后,输入到计算机,计算机根据测得的衍射和散射光能值,求出粒度分布的相关数据,并将全部测量结果打印输出。 图1 激光粒度测试仪原理示意图 三、实验设备 图2 仪器外形结构 A :机械搅拌器 B :样品分散池 C :排水管接口 D :自动进水管接口 E :电源开关 F :交流电源输入端 G :连接串口线 四、操作步骤 1.开仪器和电脑电源,开电源前先检查电源是否正常,接地是否良好; 2.为保证测试的准确性,仪器应预热20~30分钟,再进行测试; H 、 正视图 后视图

3.打开水开关;运行桌面快捷文件“JL-1166”; 4.点击“仪器调零”,会出现两种情况: A.显示“请按空白测试”,表示仪器可以通讯,状态正常; B.显示“仪器调零请等待”,字没有变化,表示仪器与电脑之间没有通讯,此时:请点击:“系统设置-系统设置”,弹出“选择串口号数”对话框,如果当前串口号数为“1”,修改为“2”,仪器就可以通讯了(也可以运行TZ.exe文件修改)。 5.点击“半自动清洗”,继续点击“循环泵”和“进水”。待样品分散池内无气泡排出,点击“空白测试”,出现“状态正常请加粉测试”。 注:如果使用环境没有水源,只需在提示自动进水时由人工进水(推荐方法)。也可以选用半自动清洗,由人工进水,往样品分散池内注入三分之二清水,点击“半自动清洗-循环泵”。待样品分散池内无气泡排出,点击“空白测试”,出现“状态正常请加粉测试”。 6.此时,点击“加粉准备”,在样品池中加入适量粉末(约0.1~0.5g,不同粉体加入量不尽相同,应保证相对加入量显示在50~85之间,另加1~2滴分散剂; 7.电脑自动完成第一次测试,显示数据后,可继续点击“测试”,此时:以下表数据进行判断分档测试。 见下表: 8.反复点击“测试”3~5次,待数据稳定后,点击“保存文件”,输入文件名,点击“保存”(保存文件默认在当前文件夹中的JL子文件夹中); 9.测试完毕后要及时点击“全自动清洗”,自动进行仪器内部管道循环清洗; 注:如果是使用半自动测试,测试完毕后,同样点击“全自动清洗”,待样品分散池内完全排完水后,及进注入清水至样品分散池,水位约在三分之二,此动作人工替代进水阀动作,直至清洗完毕。 10.要显示测试结果,点击“结果显示”; 11.要打印测试结果,点击“结果显示-打印”; 12.清洗次数及排水,进水时间等参数可以自己设定:点击“系统-清洗参数设置”即可设置清洗参数(清洗次数一般为三次); 13.测试结束时,应先关闭仪器电源,再关闭计算机电源。 五、注意事项

颗粒度的检测 筛分法 标准操作规程

编制、审核、批准 生产管理部质量管理部行政管理部财 务 部QA 室QC 室 营养粉车间仓 储 中 心

1目的 建立颗粒度检查法标准操作规程,规范该项目检查操作。 2适用范围 本标准适用于食品添加剂中颗粒度检测的定量试验。 3职责 6.1QC检验员:负责对颗粒度检测的管理。 6.2QC主管:负责监督本规程的执行。 4参考文件 GBT 21524-2008 无机化工产品中粒度的测定筛分法. 5培训范围 6内容: 6.1手筛法:用手往复振摇实验筛,一手在振幅距离处轻轻碰撞实验筛,由此产生的 震动使小于孔径的颗粒通过筛孔的筛分方法。 6.2方法原理:把预先于(105±2)℃下干燥并冷却至温室的无机化工产品样品,在 相对湿度不大于50%的环境下,使用毛筛法进行筛分到达筛分终点后,称量不同筛子剩余样品的质量,计算出以筛网孔径为的粒度分布。 6.3仪器:实验筛、天平、羊毛筛子、电烘箱、超声波清洗器。 6.4分析步骤: 6.4.1将指定尺寸的实验筛从底盘到顶部按筛孔增大的顺序组装好。 6.4.2用天平称取20g~50g试样,精确至,放置在最顶部的实验筛上,盖上顶盖。 6.4.3测定(手筛法) 用手振动试验,振幅约为,频率约为120/min,筛分时间为3min~5min,静至 3min后,称量各筛的剩余物或筛下物,判定方案如)

6.4.4筛分过程应连续进行,直至1min内通过剩余粒度级最多的试验筛的试样的质量 分数小于。把留在筛上或底盘上的试料用毛刷仔细刷净,分别称量每个粒度级 别的试验筛的筛余物质量(M1),所有筛余物的量的总和与称样量之差应不大 于%,否则,重新取样测定。 6.4.5每次测定结束后,用超神波对整套筛子进行清洗,以保证试验筛堵塞不大于%。 6.4.6定期对试验筛进行计量或校准,若发现筛孔尺寸超过有关标准的要求或筛孔变 形、筛网破损,应及时更换实验筛。 6.4.7计算结果 粒度以细度或通过率质量分数w计,数值以%表示,按如下公式计算: W=(m-m1)÷M×100 式中: m1------试验筛筛余物的质量的数值,单位为克(g); m--------试料的质量的数值,单位为克(g); 7注意事项 8相关文件 9附录 10版本历史

粒度测试的基本知识和基本方法(doc 15)

粒度测试的基本知识和基本方法(doc 15)

粒度测试的基本知识和基本方法 摘要:本文从应用角度出发,提出了大家关心的一些粒度测试方面的基本问题,并对这些问题进行了解答。同时介绍了目前常用的几种粒度测试方法的原理、应用情况以及它们各自的优缺点,并在此基础上对粒度测试工作的几个实际问题进行了探讨。 关键词:粒度测试;等效粒径;激光法;沉降法 粒度测试是通过特定的仪器和方法对粉体粒度特性进行表征的一项实验工作。粉体在我们日常生活和工农业生产中的应用非常广泛。如面粉、水泥、塑料、造纸、橡胶、陶瓷、药品等等。在的不同应用领域中,对粉体特性的要求是各不相同的,在所有反映粉体特性的指标中,粒度分布是所有应用领域中最受关注的一项指标。所以客观真实地反映粉体的粒度分布是一项非常重要的工作。下面就我具体讲一下关于粒度测试方面的基知识和基本方法。 一、粒度测试的基本知识 1、颗粒:在一尺寸范围内具有特定形状的几何体。这里所说的一尺寸一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。颗粒的概念似乎很简单,但由于各种颗粒的形状复杂,使得粒度分布的测试工作比想象的要复杂得多。因此要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义是很重要的。

2、粉休:由大量的不同尺寸的颗粒组成的颗粒群。 3、粒度:颗粒的大小叫做颗粒的粒度。 4、粒度测试复杂的原因 由于颗粒的形状多为不规则体,因此用一个数值去描述一个三维几何体的大小是不可能的。为了叙述方便,我们以火柴盒为例,如图2。用一把直尺量一个火柴盒的尺寸,你可以得出这个火柴盒的尺寸是20×10×5mm。但你不能说这个火柴盒是20mm或10mm或5 mm,因为这几个数值只是它大小尺寸的一个侧面而不是它的整体。可见,用一个数值去直接描述一个火柴盒的大小都是不可能的,同样,对于一个形状极其复杂的颗粒来说,用一个数值去直接描述它们的大小就更不可能了。那么,怎样仅用一个数值描述一个颗粒的大小?这是粒度测试的基本问题。 5、粒度分布:用特定的仪器和方法反映出的不同粒径颗粒占粉体总量的百分数。有区间分布和累计分布两种形式。区间分布又称为微分分布或频率分布,它表示一系列粒径区间中颗粒的百分含量。累计分布也叫积分分布,它表示小于或大于某粒径颗粒的百分含量。 6、粒度分布的表示方法: ① 表格法:用表格的方法将粒径区间分布、累计分布一一列出的方法。 ② 图形法:在直角标系中用直方图和曲线等形式表示粒度分布的方法。

粒度测定法

GMP文件 编号:QMS001-2013-0粒度测定法操作规程页码:第1页共3页部门质量部类别管理标准 编制人陈云 审核人 蔡群虎 批准人 邹顺光 编制日期2013年3月1日审核日期2013年3月5日批准日期2013年3月10日 签发人王铿 生效日期2013 年 4 月 1 日 签发日期2013年3月10日 变更记载 原文件编号:变更原因及目的: 执行日期: 授权:现授权下列部门拥有并执行本标准(复印数:份) 质量部、财务部、营销部、行政部、研发部、生产部、物料部、工程部 目录 1.目的 (2) 2.适用范围 (2) 3. 责任 (2) 4. 依据 (2) 5.分类 (2) 5.1显微镜法 (2) 5.2筛分法 (3)

1.目的 建立粒度测定法操作标准,以保证产品检验质量。 2.适用范围 产品质量标准中需进行粒度测定的产品的检验。 3.责任 QC对本操作标准的实施负责 4.依据 《中华人民共和国药典》2010年版一部附录本法项下规定的方法。 5.分类 粒度:指颗粒的精细程度及粗细颗粒的分布。 本法用于测定原料药和药物制剂的粒子大小或粒度分布。。 5.1显微镜法 本法中的粒度,系以显微镜下观察到得长度表示。 5.1.1仪器与用具 显微镜、镜台测微尺和目镜测微尺(直尺式)、盖玻片、载玻片、计数器、 5.1.2 测定法 除另有规定外,取供试品,用力摇匀﹝黏度较大者可按品种项下的规定加适量甘油溶液(1→2)稀释﹞,照该剂型或品种项下的规定取供试品,置载坡片上,覆以盖玻片(注意防止气泡混入),轻压使颗粒分布均匀;半固体可直接涂于载玻片上。立即在50~100倍显微镜下检视盖玻片全部视野,应无凝聚现象,并不得检出该剂型或品种项下规定的50μm及50μm以上的粒子。再在200~500倍显微镜下检视该剂型或品种项下的视野内的总粒子数及规定大小的粒数,计算所占百分比。 5.1.3注意事项 5.1.3.1应注意物镜、目镜的正确选择。 5.1.3.2所用器具应清洁。 5.1.3.3盖盖玻片时,用镊子夹取盖玻片,先使其一边与药物接触,慢慢放下,以防止气泡混入,轻压使颗粒分布均匀。 5.1.3.4盖玻片、载玻片应平整,光洁、无痕、透明度良好,以免引起散射等现象。

粒度和粒度分布的测量

粒度和粒度分布的测量 原料药的粒径及粒径分布对制剂的加工性能、稳定性和生物利用度等有重要影响。本文总结了粒径表征的基本概念,及常见测量手段(筛分、激光散射、图像法和沉降法)的原理、优劣和注意事项。 1、粒径的表征方式 对于球形物体,通过直径很容易确定其大小;但对于立方体,则需要更多的参数,如长宽高;而对于形状更为复杂的颗粒体,恐怕没有足够的参数准确描述其大小。但在实际应用中,只要能够描述其相对大小,指导意义就很大了。为了采用简单的参数直观描述颗粒的大小,往往采取等效球体的直径来描述颗粒的大小。这种等效的基础常常是表面积、体积或者投影面积,分别被称为表面积径、体积径或投影径等。此外,还可以等效为具有相同沉降速度的球形粒子,称为斯托克径。我们通过各种检测方法获得的测量值一般都是理论等效值。不同原理的粒度检测设备的使用的等效物理参量不同,在检测同一个不规则颗粒时,得到的测试结果是不相同的,因此将不同测试方法的结果进行比较,可能无法得出具有实际意义的结论。粉体作为一堆粒子的集合,不同的粒子颗粒大小可能不同,表示粉体粒径的大小可以采用平均粒径。计算每一个颗粒的某一等效粒径,然后采用粒子数目、长度、表面积或粒子体积等参数作为权重计算平均粒径,从而得到不同的平均等效粒径。其中在药学中较为重要的平均径包括表面积加权平均粒径(该值与表面积成负相关)和体积加权平均粒径。 平均粒径无法描述各个颗粒的粒径情况。当就某一粒径范围的粒子数或粒子重量对粒径范围或平均粒径作图,就得到所谓的频率分布曲线,其可以直观的表示粒径分布。另一种表示分布的方式是将超过或低于某一粒径的累积百分数对粒径作图,得到的曲线往往为S形。在实践中,粒径分布对API性质的影响可能超过平均粒径,应当给以充分的重视。 2、粒径及粒径分布的测量 粒径及其分布的测定基于不同的原理有多种测定方法。在中国药典和日本药典中描述了显微法(即本文的“图像法”)、筛分法和激光散射法。美国药典也对对筛分和激光散射法进行了描述。除上述三种药典方法外,沉降法也可用于粒径的表征。下面就对这些方法的特点和注意事项进行介绍。(1)筛分

空气中颗粒物的分布及预测

空气中颗粒物的分布及预测 摘要 本文对空气中颗粒物的分布进行分析,通过Excel软件采集附件1、附件2 中的数据,运用Matlab软件,对模型进行分析和求解. 针对问题一:根据数据筛选统计出2014年4月22日-2014年5月22日31天各个站点的平均PM2.5浓度和PM2.5浓度随纬度的变化(见附件1),发现相对来说纬度越低PM2.5平均浓度越高,根据PM2.5其在空气中含量浓度越高,就代表空气污染越严重,由PM2.5平均浓度和传播学原理找出35个监测站所在位置中PM2.5污染较严重的5个位置分别为30站点(经纬度116,39.58),29(116.3,39.52),28(116.783,39.712),10(116.297,39.863),13(116.136,39.742); 针对问题二:由问题一找出污染最严重的那个监测站所在位置为第30站点,根据所给数据求出第30个监测站20140422-20140522的日平均浓度变化,根据日平均浓度变化趋势, 利用at M lab曲线拟合工具箱cftool拟合可以发现拟合度较高的为Fourier函数(见图4), 然后根据拟合出来的函数预测2014年6月1号的PM2.5平均浓度为82.3558,同样的建模思想,可以预测出2014年6月1号全天24小时各个时刻的PM2.5的平均浓度,以0时刻为例,由所给数据可以筛选出2014年4月22日-2014年5月22日31天的0时刻PM2.5平均浓度变化,根据0时刻PM2.5平均浓度变化,利用at M lab曲线拟合工具箱cftool拟 合出一条曲线并预测6月1号0时刻的平均浓度,其它23个时刻以相同的方法预测(见附 件3)。然后根据 () 23 ,0,1,2231 i i j j o u a a i = =÷= ∑(公式) ,计算第i个时刻的指标值占全 天总值的比例为 i u,结合前面求出的6月1号的PM2.5平均浓度X,根据24*2 Y X u =(公式)可进一步精确6月1号全天24小时各个时刻的PM2.5的平均浓度为Y=(97.453,104.94,106.1,56.021,135,102.58,77.169,53.774,58.878,109.41,110.77,121.85,129.26,122.39,115.64,39.591,24.433,41.753,47.732,44.571,62.056,67.682,69.056,78.434) 针对问题三:由于空气质量受污染源排放、天气变化情况等诸多因素影响,污染物在大气中的扩散、转化、传输和沉降均受到气象条件的制约和影响,而气象条件、大气层结的日变化和季节变化明显,对准确预报污染物的日变化、区域分布带来很大的挑战。 所以要想改进模型就得知道该地区人口密集度、交通污染程度、地理位置与地形分布、城市热岛效应,当地政府治理力度,气象条件、当地污染源排放及传输规律等信息。 关键词:Excel软件;at M lab软件;傅里叶逼近模型;cftool软件

粒径分析基本原理

最大直径 特性: V=体积 W=重量 S=表面积 A=投影面积 R=沉降速度 高圆度 中圆度 低圆度 图1 有关粒度的难题 假设给你一只火柴盒和一把尺子,要求你告诉我它的大小。你可能回答火柴盒的大小是20×10×5 mm 。但是你若回答“火柴盒的大小是20 mm ”,这是不正确的,因为这仅仅是其大小的一个维度。你不可能用一个单独的数字来描述一只三维的火柴盒的大小。显然,对于复杂的形状,比如一颗砂粒或漆罐中的一粒颜料而言,情况变得更加困难。如果我是质量保证经理,我只想用一个数字来描述颗粒的大小-比如我必须知道从上一次生产起,颗粒的平均大小是增加了或是减少了。这就是粒度分析的一个基本问题-我们如何能够只用一个数字来描述一个三维物体呢? 图1显示了一些砂粒。它们的大小是多少? 等效球体 只有一种形状可以用一个数 字来描述,那就是球体。如果 我们说,一个球体的直径是 50μm ,这样的描述是完全正 确。然而,即使是对于立方体, 我们也不能以同样的方式做 到,因为50μm 可能是指一条边或者指一条对角线。对于火柴盒而言,它拥有许多可以用一个数字描述的特性。例如重 量是一个单一的数字,体积和表面积亦然。因此,如果我们有一种方法可以测量火柴盒 的重量,那么,我们可以把这个重量转化为球体的重量: 重量 = 4/3πr 3 ρ 而计算出与火柴盒重量相等球体的独特直径(2r )。这就是等效球体理论。我们测量颗粒的一些特性,并假设这指的是一个球体,由此得出一个唯一的数字(这个球体的直径)来描述颗粒。这样,可以保证我们不必以三个或更多数字来描述三维颗粒,虽然那样更加精确,但对于具体操作而言并不方便。 我们可以看出,取决于物体的形状,这将产生一些有趣的结果。我们可通过圆柱体等效球体的例子来说明这种情况(图2)。然而如果圆柱体改变了形状或大小,则体积/重量会发生变化。有了等效球体模型,我们至少可以说它变得更大了或更小了。 图2 100 × 20 μm 圆柱体的等效球 体直径 假设有一个直径D 1=20 μm (即r=10 μm ),高度为100 μm 的圆柱体。另有一个直径为D 2的与圆柱体有等效体积的球体。我们可以用以下方式计算这个直径D 2: 圆柱体的体积 = πr 2h = 10000π(μm 3 ) 球体的体积 = 33 4 X π 其中X 是等效体积半径。 33 V 6204V 3X .==∴π μm 5.197500430000X 3 3 ===π π μm 139D 2.=∴ 对于高100 μm ,直径20 μm 的圆柱体,体积等效球体直径约为40 μm 。下表指出了各种比率圆柱体的等效球直径。最后一行对应于典型的盘形大粘土颗粒。它看起来直径为20 μm ,但由于厚度只有 2 μm ,我们通常不考虑厚度。在测量颗粒体积的仪器上,我们可能得到的答案是半径约为5 μm 。因此,不同的方法可能给出有争议的答案!对于一个25 μm 的筛子而言,所有这些圆柱体看起来是相同大小的,可以说“所有材料都小于25 μm ”。然而对于激光光衍射而言,这些“圆柱体”看起来是不同的。 最小直径 粒度分析基本原理 作者: Alan Rawle 马尔文仪器有限公司Enigma Business Park, Grovewood Road, Malvern, Worcestershire, WR14 1XZ, UK (英国) 什么是颗粒? 这一问题的提出似乎十分愚蠢!但是,要想对各种粒度分析方法所得出的结果进行分析,这又是一个十分基本的问题。颗粒的分散过程和材料的形状使粒度分析比乍看起来要复杂得多。 棱角明显 有棱角 接近棱角 接近光滑 光滑

F-HZ-DZ-TR-0008颗粒组成(粒径分布)的测定

FHZDZTR0008 土壤 颗粒组成(粒径分布)的测定 比重计法 F-HZ-DZ-TR-0008 土壤—颗粒组成(粒径分布)的测定—比重计法 1 范围 本方法适用于土壤颗粒组成(粒径分布)的测定。 2 原理 土样经化学和物理方法处理成悬浮液定容后,根据司笃克斯(Stokes)定律及土壤比重计浮泡在悬浮液中所处的平均有效深度,静置不同时间后,用土壤比重计直接读出每升悬浮液中所含各级颗粒的质量,计算其百分含量,并定出土壤质地名称。比重计法操作较简便,但精度较差,可根据需要选择使用。 3 试剂 3.1 氢氧化钠溶液:0.5mol/L ,20g 氢氧化钠,加水溶解后稀释至1000mL 。 3.2 六偏磷酸钠溶液:0.5mol/L ,51g 六偏磷酸钠溶于水,加水稀释至1000mL 。 图1 搅拌棒 3.3 草酸钠溶液:0.5mol/L ,33.5g 草酸钠溶于水,加水稀释至 1000mL 。 4 仪器 4.1 土壤比重计,又称甲种比重计或鲍氏比重计,刻度0~60g/L 。 4.2 量筒,1000mL 。 4.3 锥形瓶,500mL 。 4.4 烧杯,50mL 。 4.5 洗筛,直径6cm ,孔径0.25mm 。 4.6 土壤筛,孔径2、1、0.5mm 。 4.7 搅拌棒(图1)。 5 操作步骤 5.1 称取通过2mm 筛孔的10g(精确至0.001g)风干土样置于已知质量的50mL 烧杯(精确至0.001g)中,放入烘箱,在105℃烘6h ,再在干燥器中冷却后称至恒量(精确至0.001g),计算土壤水分换算系数。 5.2 称取通过2mm 筛孔的50g(精确至0.01g)风干土样(粘土或壤土50g ,砂土100g)置于500mL 锥形瓶中。 5.3 分散土样:根据土壤的pH 值,于锥形瓶中加入50mL 0.5mol/L 氢氧化钠溶液(酸性土壤)、50mL 0.5mol/L 六偏磷酸钠溶液(碱性土壤)或50mL 0.5mol/L 草酸钠溶液(中性土壤),然后加水使悬浮液体积达到250mL 左右,充分摇匀。在锥形瓶上放小漏斗,置于电热板上加热微沸1h ,并经常摇动锥形瓶,以防止土粒沉积瓶底成硬块。 5.4 分离2~0.25mm 粒级与制备悬浮液 大于0.25mm 粒级颗粒用筛分法测定,小于0.25mm 颗粒用比重计法测定。 在1000mL 量筒上放一大漏斗,将孔径0.25mm 洗筛放在大漏斗内。待悬浮液冷却后,充分摇动锥形瓶中的悬浮液,通过0.25mm 洗筛,用水洗入量筒中。留在锥形瓶内的土粒,用水全部洗入洗筛内,洗筛内的土粒用橡皮头玻璃棒轻轻地洗擦和用水冲洗,直到滤下的水不再混浊为止。同时应注意勿使量筒内的悬浮液体积超过1000mL ,最后将量筒内的悬浮液用水加至1000mL 。 将盛有悬浮液的1000mL 量筒放在温度变化较小的平稳试验台上,避免振动,避免阳光直接照射。 将留在洗筛内的砂粒(2~0.25mm)用水洗入已知质量的50mL 烧杯(精确至0.001g)中,烧杯置于低温电热板上蒸去大部分水分,然后放入烘箱中,于105℃烘6h ,再在干燥器中冷却

筛分析法测试粉体粒度及粒度分布汇总

筛分析法测试粉体粒度及粒度分布 粒度分布通常是指某一粒径或某一粒径范围的颗粒在整个粉体中占多大的比例。它可用简单的表格、绘图和函数形式表示颗粒群粒径的分布状态。颗粒的粒度、粒度分布及形状能显著影响粉末及其产品的性质和用途。例如,水泥的凝结时间、强度与其细度有关,陶瓷原料和坯釉料的粒度及粒度分布影响着许多工艺性能和理化性能,磨料的粒度及粒度分布决定其质量等级等。为了掌握生产线的工作情况和产品是否合格,在生产过程中必须按时取样并对产品进行粒度分布的检验,粉碎和分级也需要测量粒度。 粒度测定方法有多种,常用的有筛析法、沉降法、激光法、小孔通过法、吸附法等。本实验用筛析法和沉降法,以及激光法测粉体粒度分布。 一、实验目的 筛析法是最简单的也是用得最早和应用最广泛的粒度测定方法,利用筛分方法不仅可以测定粒度分布,而且通过绘制累积粒度特性曲线,还可得到累积产率50%时的平均粒度。本实验用筛析法测粉体粒度,其实验的目的是: 1、了解筛析法测粉体粒度分布的原理和方法。 2、根据筛分析数据绘制粒度累积分布曲线和频率分布曲线。 二、基本原理 1、测试方法概述 筛析法是让粉体试样通过一系列不同筛孔的标准筛,将其分离成若干个粒级,分别称重,求得以质量分数表示的粒度分布。筛析法适用于约10mm至20μm之间的粒度分布测量。如采用电成形筛(微孔筛),其筛孔尺寸可小至5μm,甚至更小。 过去,筛孔的大小用“目”表示,其含义是每英寸(25.4mm)长度上筛孔的数目,也有用1cm长度上的孔数或1cm2筛面上的孔数表示的,还有的直接用筛孔的尺寸来表示。筛析法常使用标准套筛,标准筛的筛制按国际标准化组织(ISO)推荐的筛孔为1mm的筛子作为基筛,以优先系数及20/3为主序列,其筛孔为

显微镜法测试粉体粒度、粒度分布及形貌-(1)教学提纲

显微镜法测试粉体粒度、粒度分布及形貌- (1)

实验二显微镜法测试粉体粒度、粒度分布 及形貌 一、目的意义 显微镜是少数能对单个颗粒同时进行观测和测量的方法。除颗粒大小外,它还可以对颗粒的形状(球形、方形、条形、针形、不规则多边形等)、颗粒结构状况(实心、空心、疏松状、多孔状等)以及表面形貌等有一个认识和了解。因此显微镜法是一种最基本也是最实用的测量方法,常被用来作为对其他测量方法的一种校验甚至确定的方法。 本实验的目的: 通过使用生物显微镜观察粉末的形状和粒度掌握: 1、制样方法及计算方法 2、数据处理 3、粒度分布曲线的描绘 二、方法实质 生物显微镜是透光式光学显微镜的一种。用生物显微镜法检测粉末是一般材料实验室中通用的方法。虽然计算颗粒数目有限。粒度数据往往缺乏代表性,但它是唯一的对单个颗粒进行测量的粒度分析方法。此法还具有直观性可以研究颗粒外表形态。因此称为粒度分析的基本方法之一。 测试时首先将欲测粉末样品分散在载玻片上。并将载玻片置于显微镜载物台上。通过选择适当的物镜目镜放大倍数和配合调节焦距到粒子的轮廓清晰。粒径的大小用标定过的目镜测微尺度量,样品粒度的范围过宽时,可通过变换镜

头放大倍数或配合筛分法进行。观测若干视场,当计数粒子足够多时,测量结果可反映粉末的粒度组成,进而还可以计算粉末平均粒度。 三、仪器与原材料 物镜测微尺、标准测微尺、生物显微镜、分散剂(酒精、环乙醇等)、玻璃棒、吸管粉末试样(雾化粉、电解粉) 四、测试方法 1、显微镜使用前的准备 将目镜测微尺放入所选用的目镜中,并将目镜和物镜安装在显微镜上,将标准测微尺(每小格10微米)置于载物台上通过旋转公降螺钉(注意:不得使物镜接触载玻片1),调节焦距标定目镜测微尺一格比代表的长度(u)。 2、样品的制备 用显微镜测试的粉末应经过筛分,否则由于粉末粒度范围过宽,测试中需经常更换物镜或目镜,不仅造成测试工作的不便而且由于视场范围的变化引起测试的不准确。 粉末样品由于具有发达的表面积,因而有较高的表面能,使粉末颗粒产生聚集,形成团块,影响粉末粒度的测定,所以制样过程中应使颗粒聚集体分散成单个颗粒,一般是将少量粉末样品(0.01克左右)放置在干净的载玻片上,滴上数滴分散介质,用另一干净载玻片覆盖其上。进行对磨并观察情况然后平行对拉将两片玻璃载玻片分开,即得测试用样品,待分散介质挥发后放于显微镜载物台上进行观测。 对分散介质要求: (1)对粉末润湿性好且与所测粉末不起化学作用。

统卷烟和电子烟烟气气溶胶粒径分布研究

1 中国烟草学报 Acta Tabacaria Sinica https://www.doczj.com/doc/867756544.html, doi :10.16472/j.chinatobacco.2014.298 烟草与烟气化学 传统卷烟和电子烟烟气气溶胶粒径分布研究 段沅杏,赵伟,杨继,韩敬美,孙志勇,杨柳,陈永宽 云南中烟工业有限责任公司技术中心,昆明市五华区红锦路367号 650231 摘 要:为了解传统卷烟和电子烟烟气气溶胶粒径分布特性,按照ISO 的抽吸模式,分别对10个品牌的传统卷烟和电子烟进行测试。通过在线稀释,采用模拟循环吸烟机和快速粒径谱仪对气溶胶粒径和浓度进行了测试。结果表明:(1)在相同的抽吸条件下,传统卷烟气溶胶的颗粒、单位体积数浓度都比电子烟大;(2)在不同抽吸口数下,传统卷烟气溶胶粒径每口之间差异很大,而电子烟气溶胶粒径每口之间分布比较均匀。 关键词:气溶胶;粒径分布;电子烟 引用本文:段沅杏,赵伟,杨继,等. 传统卷烟和电子烟烟气气溶胶粒径分布研究[J]. 中国烟草学报,2015,21(1) 传统卷烟和电子烟烟气气溶胶形成都是复杂的动态物理、化学、生理和环境现象共同作用的过程[1-3]。这些形成的烟气气溶胶颗粒被吸烟者吸入体内,并沉降在呼吸道和肺部,气溶胶在体内长期沉降会导致肺癌、慢性阻塞性肺病和心血管等与吸烟相关的疾病[4-5]。研究气溶胶颗粒大小和分布状态不仅作为电子烟和传统卷烟物理特性和感官特性监管的科学依据,而且对人体吸收烟气气溶胶和毒理学评价具有重要参考意义[6-7]。目前,研究烟气气溶胶的方法主要有显微镜观察法[8-9]、光散射法[10]、惯性冲击法[11]和重力沉降法[1,12]、静电迁移法[13]等。显微镜观察法和重力沉降法均是将收集到采样膜上的气溶胶颗粒物通过称重、观察进行检测,这无法实现烟气气溶胶的实时测试,收集过程中颗粒间会发生碰撞、凝聚作用影响测定结果的准确性[14-15]。光散射可用于烟气气溶胶实时测试,但只能获得气溶胶颗粒的平均粒径,粒径分布参数很难得到[16-18]。本研究基于静电迁移的原理,采用快速粒径谱仪对传统卷烟和电子烟烟气气溶胶粒径和浓度进行实时监测,可为传统卷烟和电子烟烟气气溶胶的研究提供参考。 1 材料与方法 1.1 材料、试剂与仪器 DMS 500快速粒径谱仪(Cambustion, Cambridge, UK );吸烟循环模拟机(SCS )(Cambustion, Cambridge, UK )。 市售传统卷烟样品10个和国内销量较好的一次性电子烟和循环使用的电子烟样品共10个。1.2 方法 1.2.1 吸烟循环模拟机(SCS)和快速粒径谱仪分析系统(DMS ) 吸烟循环模拟器(SCS )是一套可以精确控制进行恒量采集烟气气溶胶的系统。SCS 提供一个可以控制的流量进入DMS ,通常通过SCS 的操作软件可以控制符合DMS 的样品流速,即烟支的抽吸模式。当DMS 需要一阵烟时(模拟吸烟动作),SCS 调整稀释空气的流速,通过孔板压力降(△P )来计量流速。采用这种方式,进入DMS 的流量是恒定的。烟支插入SCS 采样头,SCS 直接安装在DMS500前部,这样最大程度的减少了进入DMS 旋转稀释器的传送时间。通过控制电脑对包括流量和时间数据体现吸烟行为的吸烟变量曲线进行加载,提供ISO ,Health Canada 等标准变量曲线文件。快速粒径谱仪(DMS )是基于不同大小颗粒具有不同电迁移率的原理来测量烟气气溶胶的实时变化。 首先SCS 的变量阀通过对稀释流量的控制来实现通过测试样品的目标流量,重现吸烟气流量变曲线和提供第1级稀释,防止气溶胶颗粒凝聚。SCS 抽吸到的烟气气溶胶经过SCS 提供烟气样品的第1级稀释进入到DMS 的旋转碟稀释器,进一步稀释降低烟气气溶胶浓度,然后烟气气溶胶进入分级器,分级器利用电晕静电中和器使得气溶胶颗粒带上定量的电 基金项目:中国烟草总公司科技重大专项“电加热新型卷烟质量评价技术研究”[110201401017(XX-05)] 云南中烟工业公司科技开发计划“云南中烟新型烟草制品研发及其共性技术研究”(2014CP02)作者简介:段沅杏(1986—),硕士,研究实习员,主要从事烟草化学研究,Email :442677197@https://www.doczj.com/doc/867756544.html, 通讯作者:杨柳(1976—),Email: liuyang929@https://www.doczj.com/doc/867756544.html, 收稿日期:2014-07-10

相关主题
文本预览
相关文档 最新文档