当前位置:文档之家› 半导体物理(刘恩科)--详细归纳总结

半导体物理(刘恩科)--详细归纳总结

半导体物理(刘恩科)--详细归纳总结
半导体物理(刘恩科)--详细归纳总结

第一章、 半导体中的电子状态习题

1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说

明之。

1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。

1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为

[])sin(3.0)cos(1.01)(0ka ka E k E --=

其中E 0=3eV ,晶格常数a=5х10-11m 。求:

(1) 能带宽度;

(2) 能带底和能带顶的有效质量。

题解:

1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成

为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。

1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温

度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。

1-3、 解:空穴是未被电子占据的空量子态,被用来描述半满带中的大量电子的

集体运动状态,是准粒子。主要特征如下:

A 、荷正电:+q ;

B 、空穴浓度表示为p (电子浓度表示为n );

C 、E P =-E n

D 、m P *=-m n *。

1-4、 解:

(1) Ge 、Si:

a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ;

b )间接能隙结构

c )禁带宽度E g 随温度增加而减小;

(2) GaAs :

a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ;

b )直接能隙结构;

c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ;

1-5、 解:

(1) 由题意得:

[][]

)sin(3)cos(1.0)cos(3)sin(1.002

22

0ka ka E a k

d dE

ka ka aE dk dE +=-=

eV

E E E E a k

d dE

a k E a k d dE

a k a k a k ka tg dk

dE o o

o

o

1384.1min max ,

010

28.2)4349.198sin 34349.198(cos 1.0,4349.198,

010

28.2)4349.18sin 34349.18(cos 1.0,4349.184349.198,4349.183

1,040

0222

240

022

2

121=-=??=+====∴=

=--则能带宽度

对应能带极大值。当对应能带极小值;当)(得令

(2)

()()

()

()

()

()

????

??????-=???

?

??????-=??

???????? ??=?=???

?

??

????=?????????? ??=----------kg k d dE h

m kg k d dE h m k n k n 27

1

2

34401

22

2

*27

1

234

40

1

222

*

10

925.110625.61028.2110

925.110

625.61028.212

1带顶

带底

答:能带宽度约为1.1384Ev ,能带顶部电子的有效质量约为1.925x10-27kg ,能带底部电子的有效质量约为-1.925x10-27kg 。

第二章、半导体中的杂质和缺陷能级

2-1、什么叫浅能级杂质?它们电离后有何特点?

2-2、什么叫施主?什么叫施主电离?施主电离前后有何特征?试举例说明之,并用能带图表征出n 型半导体。

2-3、什么叫受主?什么叫受主电离?受主电离前后有何特征?试举例说明之,并用能带图表征出p 型半导体。

2-4、掺杂半导体与本征半导体之间有何差异?试举例说明掺杂对半导体的导电性能的影响。

2-5、两性杂质和其它杂质有何异同?

2-6、深能级杂质和浅能级杂质对半导体有何影响? 2-7、何谓杂质补偿?杂质补偿的意义何在?

题解:

2-1、解:浅能级杂质是指其杂质电离能远小于本征半导体的禁带宽度的杂质。

它们电离后将成为带正电(电离施主)或带负电(电离受主)的离子,并同时向导带提供电子或向价带提供空穴。

2-2、解:半导体中掺入施主杂质后,施主电离后将成为带正电离子,并同时向

导带提供电子,这种杂质就叫施主。施主电离成为带正电离子(中心)的过程就叫施主电离。

施主电离前不带电,电离后带正电。例如,在Si 中掺P ,P 为Ⅴ族元素,

本征半导体Si为Ⅳ族元素,P掺入Si中后,P的最外层电子有四个与

Si的最外层四个电子配对成为共价电子,而P的第五个外层电子将受

到热激发挣脱原子实的束缚进入导带成为自由电子。这个过程就是施主

电离。

n型半导体的能带图如图所示:其费米能级位于禁带上方

2-3、解:半导体中掺入受主杂质后,受主电离后将成为带负电的离子,并同时向价带提供空穴,这种杂质就叫受主。受主电离成为带负电的离子(中

心)的过程就叫受主电离。受主电离前带不带电,电离后带负电。

例如,在Si中掺B,B为Ⅲ族元素,而本征半导体Si为Ⅳ族元素,P

掺入B中后,B的最外层三个电子与Si的最外层四个电子配对成为共

价电子,而B倾向于接受一个由价带热激发的电子。这个过程就是受主

电离。

p型半导体的能带图如图所示:其费米能级位于禁带下方

2-4、解:在纯净的半导体中掺入杂质后,可以控制半导体的导电特性。掺杂半导体又分为n型半导体和p型半导体。

例如,在常温情况下,本征Si中的电子浓度和空穴浓度均为1.5╳1010cm-3。当在Si中掺入1.0╳1016cm-3后,半导体中的电子浓度将变为1.0╳1016cm-3,而空穴浓度将近似为2.25╳104cm-3。半导体中的多数载流子是电子,而少数载流子是空穴。

2-5、解:两性杂质是指在半导体中既可作施主又可作受主的杂质。如Ⅲ-Ⅴ族GaAs中掺Ⅳ族Si。如果Si替位Ⅲ族As,则Si为施主;如果Si替位Ⅴ族Ga,则Si为受主。所掺入的杂质具体是起施主还是受主与工艺有关。

2-6、解:深能级杂质在半导体中起复合中心或陷阱的作用。

浅能级杂质在半导体中起施主或受主的作用。

2-7、当半导体中既有施主又有受主时,施主和受主将先互相抵消,剩余的杂质最后电离,这就是杂质补偿。

利用杂质补偿效应,可以根据需要改变半导体中某个区域的导电类型,制造各种器件。

第三章、 半导体中载流子的统计分布

3-1、对于某n 型半导体,试证明其费米能级在其本征半导体的费米能级之上。

即E Fn >E Fi 。

3-2、试分别定性定量说明:

(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,载流子浓度

越高;

(2) 对一定的材料,当掺杂浓度一定时,温度越高,载流子浓度越高。

3-3、若两块Si 样品中的电子浓度分别为2.25×1010cm -3和6.8×1016cm -3,试分别求出其中的空穴的浓度和费米能级的相对位置,并判断样品的导电类型。假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,这两块样品的导电类型又将怎样?

3-4、含受主浓度为8.0×106cm -3和施主浓度为7.25×1017cm -3的Si 材料,试求温度分别为300K 和400K 时此材料的载流子浓度和费米能级的相对位置。

3-5、试分别计算本征Si 在77K 、300K 和500K 下的载流子浓度。

3-6、Si 样品中的施主浓度为4.5×1016cm -3,试计算300K 时的电子浓度和空穴浓度各为多少?

3-7、某掺施主杂质的非简并Si 样品,试求E F =(E C +E D )/2时施主的浓度。

解:

3-1、证明:设n n 为n 型半导体的电子浓度,n i 为本征半导体的电子浓度。显然

n n > n i

i

n i

n

F F F c c F c c E E T k E E N T k E E N >???

?

?

?--?>???? ??--?则即00exp exp

得证。

3-2、解:

(1) 在一定的温度下,对本征材料而言,材料的禁带宽度越窄,则跃迁所需的能

量越小,所以受激发的载流子浓度随着禁带宽度的变窄而增加。 由公式:

T

k E v c i g

e

N N n 02-

=

也可知道,温度不变而减少本征材料的禁带宽度,上式中的指数项将因此而增加,从而使得载流子浓度因此而增加。

(2)对一定的材料,当掺杂浓度一定时,温度越高,受激发的载流子将因此而

增加。由公式 可知,这时

3-3、解:由 2

00i n p n =

得:

()

()

()

()

????????≈??==?=??==--3

3162

1002202

3

1010

21001

201103.3108.6105.1100.11025.2105.1cm n n p cm n n p i i

可见,

型半导体

本征半导体n p n p n →>→≈02

020101

又因为

T

k E E v v F e

N p 00--

=,则

???

?

?

?--=???? ?

?--?=T k E E N p T

k E E N n V

F V F

c c 0000exp exp 和

?

?

?

???

?+=????

?????+=???

?

???+=+≈???

?

?????+=????

??

?+=eV E E p N T k E E eV E E p N T k E E v v n v F v v v v F 331.0103.3101.1ln 026.0ln 234.0100.1101.1ln 026.0ln 3

19020210

190101

假如再在其中都掺入浓度为2.25×1016cm -3的受主杂质,那么将出现杂质补偿,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

答:第一种半导体中的空穴的浓度为1.1x1010cm -3,费米能级在价带上方0.234eV

处;第一种半导体中的空穴的浓度为 3.3x103cm -3,费米能级在价带上方0.331eV 处。掺入浓度为2.25×1016cm -3的受主杂质后,第一种半导体补偿后将变为p 型半导体,第二种半导体补偿后将近似为本征半导体。

3-4、解:由于杂质基本全电离,杂质补偿之后,有效施主浓度

3

17

*

10

25.7-?≈-=cm

N N N A D D

则300K 时, 电子浓度

()3

17

010

25.7300-?=≈cm

N K n D

空穴浓度

()()

(

)

3

2

17

2

100

01011.310

25.7105.1300-?≈??=

=

cm

n n K p i

费米能级为:

()

eV

E E p N T k E E v v v V

F 3896.01011.3100.1ln 026.0ln 21900+=?

??

??????+=???

?

???+=

在400K 时,根据电中性条件 *

00D N p n +=

和 2

0i

p n p n =

得到:

)

()

(

)

(

)

()

()

???

?????=??==?≈?+?+?-=

++-=--3

1782

13203

8

2

132

17

17

22*010249.7103795.1100.1103795.12

10

0.141025.71025.724*cm p n n cm

n N N p p i i D D

费米能级为:

()()

eV

E E p K K K N T k E E v v p

v

v F

0819.01025.7300400101.1ln 026.0300400300ln 17

231923

0+=????

?

?

?

??????????? ?????+=???

?

???

?????????? ????+=

答:300K 时此材料的电子浓度和空穴浓度分别为7.25 x1017cm -3和3.11x102cm -3,费米能级在价带上方0.3896eV 处;400 K 时此材料的电子浓度和空穴浓度分别近似为为7.248 x1017cm -3和 1.3795x108cm -3,费米能级在价带上方0.08196eV 处。

3-5、解:假设载流子的有效质量近似不变,则

()()()()()()()()()(

)

3

1923

19233

1823

1923

2

3

10367.2300500101.1300500300500104304.130077101.13007730077300300--?=??? ????=??? ???=?=??

? ????=??? ???=?

?

? ???=cm

K K K K K N K N cm

K K K K K N K N K T K N T N v v v v v v 则由

()()()()()()()()()(

)

3

1923

19233

1823

1923

2

3

10025.6300500108.230050030050010758.330077108.23007730077300300--?=??

? ????=??? ???=?=??

? ????=??? ???=?

?

? ???=cm

K K K K K N K N cm

K K K K K N K N K T K N T N c c c c c c 则由

()()()()()()()()()()()()()()

eV

T T

E K E eV

T T E K E eV

T T

E K E T T

E T E g g g g g g g g 1059.1636

5005001073.47437

.005001615.1636

300300

1073.421.103002061.1636

7777

1073.421.1077636

10

73.402

4

2

2

4

2

2

4

2

4

2

=+??-

=+-

==+??-

=+-==+??-

=+-

==?=+-=----β

αβ

αβ

αβαβ

α所以

,且而

所以,由

T

k E v c i g

e

N N n 02-

=,有:

()()()()()()()()()()()()()()()????????????≈????==?≈????==?≈????==-?????---?????--

--?????--

------31450010

38.1210

602.11059.1191923930010

38.1210

602.11615.119192320771038.1210

602.12061.11818210669.110367.210025.6)500(105.3101.1108.2)300(10159.1104304.110758.3)77(23

39

02339

023

19

0cm e e

N N K n cm e e

N N K n cm e e N N K n T k E v c i T k E v c i T k E v c i g g g

答:77K 下载流子浓度约为1.159×10-20cm -3,300 K 下载流子浓度约为3.5×1019cm -3,500K 下载流子浓度约为1.669×1014cm -3。

3-6、解:在300K 时,因为N D >10n i ,因此杂质全电离

n 0=N D ≈4.5×1016cm -3 ()

(

)

3

3

16

2

100

2

0100.510

5.4105.1-?=??=

=

cm

n n p i

答: 300K 时样品中的的电子浓度和空穴浓度分别是4.5×1016cm -3和5.0×103cm -3。

3-7、解:由于半导体是非简并半导体,所以有电中性条件

n 0=N D +

()

c

D D C F V D

D

C F T

k E E D T

k E E c T

k E E D

T

k E E c N N E E E N N T k E E E e N e N e

N e

N F

D F c F

D F c 22

12ln 21

2212100000=+=???

?

????+

+=

=

+=

---

---则

而即”可以略去,

右边分母中的“

施主电离很弱时,等式

答:N D 为二倍N C 。

第四篇半导体的导电性习题

4-1、对于重掺杂半导体和一般掺杂半导体,为何前者的迁移率随温度的变化趋势不同?试加以定性分析。

4-2、何谓迁移率?影响迁移率的主要因素有哪些?

4-3、试定性分析Si 的电阻率与温度的变化关系。

4-4、证明当μn ≠μp ,且电子浓度

p

n i

n n μμ/0=,空穴浓度

n

p i n p μμ/0=时半

导体的电导率有最小值,并推导min σ的表达式。

4-5、0.12kg 的Si 单晶掺有3.0×10-9kg 的Sb ,设杂质全部电离,试求出此材料的电导率。(Si 单晶的密度为2.33g/cm 3,Sb 的原子量为121.8)

解:

4-1、解:对于重掺杂半导体,在低温时,杂质散射起主体作用,而晶格振动散射与一般掺杂半导体的相比较,影响并不大,所以这时侯随着温度的升高,重掺杂半导体的迁移率反而增加;温度继续增加后,晶格振动散射起主导作用,导致迁移率下降。对一般掺杂半导体,由于杂质浓度较低,电离杂质散射基本可以忽略,起主要作用的是晶格振动散射,所以温度越高,迁移率越低。

4-2、解:迁移率是单位电场强度下载流子所获得的漂移速率。影响迁移率的主要因素有能带结构(载流子有效质量)、温度和各种散射机构。

4-3、解:Si 的电阻率与温度的变化关系可以分为三个阶段:

(1) 温度很低时,电阻率随温度升高而降低。因为这时本征激发极弱,可以忽

略;载流子主要来源于杂质电离,随着温度升高,载流子浓度逐步增加,相应地电离杂质散射也随之增加,从而使得迁移率随温度升高而增大,导致电阻率随温度升高而降低。

(2) 温度进一步增加(含室温),电阻率随温度升高而升高。在这一温度范围

内,杂质已经全部电离,同时本征激发尚不明显,故载流子浓度基本没有变化。对散射起主要作用的是晶格散射,迁移率随温度升高而降低,导致电阻率随温度升高而升高。

(3) 温度再进一步增加,电阻率随温度升高而降低。这时本征激发越来越多,

虽然迁移率随温度升高而降低,但是本征载流子增加很快,其影响大大超过了迁移率降低对电阻率的影响,导致电阻率随温度升高而降低。当然,温度超过器件的最高工作温度时,器件已经不能正常工作了。

4-4、证明:

n

p i p

n i

n

n n

p i p n

n n dn

d p n

n n d d dn

d n n p n n q q q i i i μμσσμμμμμμσμσσσ

σq 2//0

,00min 22

2

23

2

22

====

==-=>=

=有所以

即有极小值

故而有极值

得证。

4-5、解:

(

)

()()

()

3

17

23

9

3

10

881.2556

.228.12110025.6100010

0.3502.5133

.21000

12.0--?≈????=

=?=

cm N cm

V Si D 的体积

故材料的电导率为:

()()(

)1

1

19

17

04.24520

10602.110

579.6---Ω=????==cm

nq n μσ

答:此材料的电导率约为24.04Ω-1cm -1。

第五章、非平衡载流子习题

5-1、何谓非平衡载流子?非平衡状态与平衡状态的差异何在? 5-2、漂移运动和扩散运动有什么不同?

5-3、漂移运动与扩散运动之间有什么联系?非简并半导体的迁移率与扩散系数之间有什么联系?

5-4、平均自由程与扩散长度有何不同?平均自由时间与非平衡载流子的寿命又有何不同?

5-5、证明非平衡载流子的寿命满足()τ

t

e p t p -?=?0,并说明式中各项的物理意义。

5-6、导出非简并载流子满足的爱因斯坦关系。 5-7、间接复合效应与陷阱效应有何异同?

5-8、光均匀照射在6cm ?Ω的n 型Si 样品上,电子-空穴对的产生率为4×1021cm -3s -1,样品寿命为8μs。试计算光照前后样品的电导率。

5-9、证明非简并的非均匀半导体中的电子电流形式为

dx dE n j n

F

n

μ=。

5-10、假设Si 中空穴浓度是线性分布,在4μm 内的浓度差为2×1016cm -3,试计算空穴的扩散电流密度。

5-11、试证明在小信号条件下,本征半导体的非平衡载流子的寿命最长。

解:

5-1、解:半导体处于非平衡态时,附加的产生率使载流子浓度超过热平衡载流子浓度,额外产生的这部分载流子就是非平衡载流子。通常所指的非平衡载流子是指非平衡少子。

热平衡状态下半导体的载流子浓度是一定的,产生与复合处于动态平衡状态 ,跃迁引起的产生、复合不会产生宏观效应。在非平衡状态下,额外的产生、复合效应会在宏观现象中体现出来。

5-2、解:漂移运动是载流子在外电场的作用下发生的定向运动,而扩散运动是由于浓度分布不均匀导致载流子从浓度高的地方向浓度底的方向的定向运动。前者的推动力是外电场,后者的推动力则是载流子的分布引起的。

5-3、解:漂移运动与扩散运动之间通过迁移率与扩散系数相联系。而非简并半导体的迁移率与扩散系数则通过爱因斯坦关系相联系,二者的比值与温度成反比关系。即

T

k q D 0=

μ

5-4、答:平均自由程是在连续两次散射之间载流子自由运动的平均路程。而扩散长度则是非平衡载流子深入样品的平均距离。它们的不同之处在于平均自由程由散射决定,而扩散长度由扩散系数和材料的寿命来决定。 平均自由时间是载流子连续两次散射平均所需的自由时间,非平衡载流子的寿命是指非平衡载流子的平均生存时间。前者与散射有关,散射越弱,平均自由时间越长;后者由复合几率决定,它与复合几率成反比关系。

5-5、证明:

()[]p

p

dt t p d τ?=?-

=非平衡载流子数

而在单位时间内复合的

子的减少数单位时间内非平衡载流

时刻撤除光照

如果在0=t

则在单位时间内减少的非平衡载流子数=在单位时间内复合的非平衡载流子数,即

()[]()

1?→??=?-

p

p

dt

t p d τ

在小注入条件下,τ为常数,解方程(1),得到

()()()20?→??=?-

p

t

e

p t p τ

式中,Δp (0)为t=0时刻的非平衡载流子浓度。此式表达了非平衡载流子随时间呈指数衰减的规律。

得证。

5-6、证明:假设这是n 型半导体,杂质浓度和内建电场分布入图所示

E 内

稳态时,半导体内部是电中性的,

Jn=0

()

10→=--x n n E nq dx

dn q

D μ

对于非简并半导体

()()()()()

()()()()

()

()()()()()

()()()()()()

()()()()T

k q D x n dx x dV D x n dx x dV D x n E D dx

x dn x n dx

x dV T

k q dx

x dn e n e

N x n x V q E x E n

n n n n n x n n

T

k x qV T

k E x E c c c F

c 00545143302000=

?

=→??=???? ??-????? ?

?-=??-

=?

→??=

?

→?=?=→-+=--

μμμμ式式由由所以

这就是非简并半导体满足的爱因斯坦关系。

得证。

5-7、答:间接复合效应是指非平衡载流子通过位于禁带中特别是位于禁带中央的杂质或缺陷能级E t 而逐渐消失的效应,E t 的存在可能大大促进载流子的复合;陷阱效应是指非平衡载流子落入位于禁带中的杂质或缺陷能级E t 中,使在E t 上的电子或空穴的填充情况比热平衡时有较大的变化,从引起Δn≠Δp ,

这种效应

对瞬态过程的影响很重要。此外,最有效的复合中心在禁带中央,而最有效的陷阱能级在费米能级附近。一般来说,所有的杂质或缺陷能级都有某种程度的陷阱效应,而且陷阱效应是否成立还与一定的外界条件有关。

5-8、解:光照前

(

)

1

1

0167.16

11

--?Ω

≈=

=

cm

ρσ

光照后 Δp=G τ=(4×1021

)(8×10-6

)=3.2×1017 cm -3 则

()()(

)1

1

19

16

0051.3490

106.110

2.3167.1---?Ω

=??+=???+=?+=cm

q p p μσσσσ

答:光照前后样品的电导率分别为1.167Ω-1cm -1和3.51Ω-1cm -1。

5-9、证明:对于非简并的非均匀半导体

()()dx dn qD E nq j j j n

n n n +=+=μ漂扩

由于

()[]T

k E x qV E c n

F c e

N n 00---

?=)

T

k dx

dE dx

dV q n dx

dn n

F 0+?

=

同时 利用非简并半导体的爱因斯坦关系,所以

dx

dE n T k dx dE dx dV q n q T k q dx dV nq dx

dn qD E nq j n

F n n

F n n

n

n ?

=?????

?

?

?+

??+-=+=μμμμ00)()(

得证。

5-10、解:

()

(

)

(

)()

2

5

6

8

16

1919

19

0/10

15.710

410

10

2106.110602.1026.0055.010

6.1m A dx

dp

q T k q dx

dp qD j n p

p -----?-=?????

?

? ?

??????-=???? ??-=-=μ扩

答:空穴的扩散电流密度为7.15╳10-5

A/m 2

5-11、证明:在小信号条件下,本征半导体的非平衡载流子的寿命

()

i

rn p n r 21100=

+≈

τ

而 i n p n 2p n 20000=≥+

所以

i

rn 21≤

τ

本征半导体的非平衡载流子的寿命最长。

得证。

第六篇-金属和半导体接触习题

6-1、什么是功函数?哪些因数影响了半导体的功函数?什么是接触势差? 6-2、什么是Schottky 势垒?影响其势垒高度的因数有哪些?

6-3、什么是欧姆接触?形成欧姆接触的方法有几种?试根据能带图分别加以分析。

6-4、什么是镜像力?什么是隧道效应?它们对接触势垒的影响怎样的?

6-5、施主浓度为7.0×1016cm -3的n 型Si 与Al 形成金属与半导体接触,Al 的功函数为4.20eV ,Si 的电子亲和能为4.05eV ,试画出理想情况下金属-半导体接触的能带图并标明半导体表面势的数值。

6-6、分别分析n 型和p 型半导体形成阻挡层和反阻挡层的条件。

6-7、试分别画出n 型和p 型半导体分别形成阻挡层和反阻挡层的能带图。 6-8、什么是少数载流子注入效应?

6-9、某Shottky 二极管,其中半导体中施主浓度为2.5×1016cm -3,势垒高度为0.64eV ,加上4V 的正向电压时,试求势垒的宽度为多少?

6-10、试根据能带图定性分析金属-n 型半导体形成良好欧姆接触的原因。

题解:

6-1、答:功函数是指真空电子能级E0与半导体的费米能级E F之差。影响功函数的因素是掺杂浓度、温度和半导体的电子亲和势。

接触势则是指两种不同的材料由于接触而产生的接触电势差。

6-2、答:金属与n型半导体接触形成阻挡层,其势垒厚度随着外加电压的变化而变化,这就是Schottky势垒。影响其势垒高度的因素是两种材料的功函数,影响其势垒厚度的因素则是材料(杂质浓度等)和外加电压。

6-3、答:欧姆接触是指其电流-电压特性满足欧姆定律的金属与半导体接触。形成欧姆接触的常用方法有两种,其一是金属与重掺杂n型半导体形成能产生隧道效应的薄势垒层,其二是金属与p型半导体接触构成反阻挡层。其能带图分别如下:

6-4、答:金属与半导体接触时,半导体中的电荷在金属表面感应出带电符号相反的电荷,同时半导体中的电荷要受到金属中的感应电荷的库仑吸引力,这个吸引力就称为镜像力。

能量低于势垒顶的电子有一定几率穿过势垒,这种效应就是隧道效应。隧道穿透的几率与电子的能量和势垒厚度有关。

在加上反向电压时,上述两种效应将使得金属一边的势垒降低,而且反向电压越大势垒降得越低,从而导致反向电流不饱和。

6-5、解:金属与半导体接触前、后能带图如图所示

)

(1558.07ln 6

0000eV 10102.8ln 0.026 n N T k E e N n 119

c n

T

k E c n =???

? ?????=???

?

???=∴?=-

()()0.0942(V)

q

W E q

W W V m

n m

s s -=-+=-+=

-=3.41558.005.4χ

答:半导体的表面势为 –0.0942 V 。

6-6、解:

(1) 金属与n 半导体接触形成阻挡层的条件是W m >W s ,其接触后的能带图如图

所示:

金属与n 半导体接触形成反阻挡层的条件是W m

(2)金属与p半导体接触形成阻挡层的条件是W m

金属与p半导体接触形成反阻挡层的条件是W m>W s,其接触后的能带图如图所示:

6-8、答:当金属与n型半导体形成整流接触时,加上正向电压,空穴从金属流向半导体的现象就是少数载流子注入效应。它本质上是半导体价带顶附近的电子流向金属中金属费米能级以下的空能级,从而在价带顶附近产生空穴。小注入时,注入比(少数载流子电流与总电流直之比)很小;在大电流条件下,注入比随电流密度增加而增大。

6-9、解:

()

(

)()()()

()

m qN

V V x D

D

r D 3

16

19

12

010

2.4105.210

6.164.0410

854.89.1122---?≈??-??=

-=

εε

答:势垒的宽度约为4.2×10-3

m 。

6-10、解:当金属和半导体接触接触时,如果对半导体的掺杂很高,将会使得势垒区的宽度变得很薄,势垒区近似为透明,当

隧道电流占主要地位时,其接触电

阻很小,金属与半导体接触近似为欧姆接触。加上正、反向电压时的能带图如下图所示:

第六篇 -半导体表面与MIS 结构题解

1. 解释什么是表面积累、表面耗尽和表面反型?

2. 在由n 型半导体组成的MIS 结构上加电压V g ,分析其表面空间电荷层状态随VG 变化的情况,并解释其C -V 曲线。

3.试述影响平带电压V FB 的因素。

7-1、解:

又因为

V V V s G +=

7-3、解:

(1) 表面积累:当金属表面所加的电压使得半导体表面出现多子积累时,这就

是表面积累,其能带图和电荷分布如图所示:

(2) 表面耗尽:当金属表面所加的电压使得半导体表面载流子浓度几乎为零

时,这就是表面耗尽,其能带图和电荷分布如图所示:

(3)当金属表面所加的电压使得半导体表面的少子浓度比多子浓度多时,这就

是表面反型,其能带图和电荷分布如图所示:

7-3、解:理想MIS结构的高频、低频电容-电压特性曲线如图所示;

其中AB段对应表面积累,C到D段为表面耗尽,GH和EF对应表面反型。

7-4、解:使半导体表面达到强反型时加在金属电极上的栅电压就是开启电压。

刘恩科—半导体物理习题

半导体物理习题解答 (河北大学电子信息工程学院 席砺莼) 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 27106.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。

半导体物理学(第7版)第三章习题和答案

第三章习题和答案 1. 计算能量在E=E c 到2 *n 2 C L 2m 100E E 之间单位体积中的量子态数。 解: 2. 试证明实际硅、锗中导带底附近状态密度公式为式(3-6)。 3 22 23 3*28100E 21 23 3 *22100E 002 1 233*231000L 8100)(3 222)(22)(1Z V Z Z )(Z )(22)(23 22 C 22 C L E m h E E E m V dE E E m V dE E g V d dE E g d E E m V E g c n c C n l m h E C n l m E C n n c n c )() (单位体积内的量子态数) () (21)(,)"(2)()(,)(,)()(2~.2'2 1 3'' ''''2'21'21'21' 2 2222 22C a a l t t z y x a c c z l a z y t a y x t a x z t y x C C e E E m h k V m m m m k g k k k k k m h E k E k m m k k m m k k m m k ml k m k k h E k E K IC E G si ? 系中的态密度在等能面仍为球形等能面 系中在则:令) (关系为 )(半导体的、证明: 3 1 23 2212 32' 2123 2 31'2 '''')()2(4)()(111100)()(24)(4)()(~l t n c n c l t t z m m s m V E E h m E sg E g si V E E h m m m dE dz E g dk k k g Vk k g d k dE E E ?? ? ? )方向有四个, 锗在(旋转椭球,个方向,有六个对称的导带底在对于即状态数。 空间所包含的空间的状态数等于在

半导体物理学(刘恩科第七版)半导体物理学课本习题解

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 212102220 202 02022210 1202==-==<-===-==>=+===-+ 因此:取极大值 处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- =??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示: (a )(100)晶面 (b )(110)晶面

半导体物理刘恩科考研复习总结

半导体物理刘恩科考研 复习总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1.半导体中的电子状态 金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成 闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子 纤锌矿结构:六方对称结构(AB堆积) 晶体结构:原子周期性排列(点阵+基元) 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以 在整个晶体中运动。 能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能 级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围 内,可以认为是连续的。 能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。 (边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差) 自由电子与 半导体的 E-K图: 自由电子模型: 半导体模型: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

波矢为k的电子波的布喇格衍射条件: 一维情况(布里渊区边界满足布拉格): 第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取 向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 杂质电离:电子脱离杂质原子的的束缚成为导电电子的过程。脱离束缚所需要的能力成为杂质电离能。 杂质能级:1)替位式杂质(3、5族元素,5族元素释放电子,正电中心,称施 主杂质;3族元素接收电子,负电中心,受主杂 质。) 2)间隙式杂质(杂质原子小) 杂质能带是虚线,分离的。 浅能级杂质电离能: 施主杂质电离能

半导体物理学第七版 完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)与价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===η

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-==ηηηηη所以:准动量的定义: 2、 晶格常数为0、25nm 的一维晶格,当外加102V/m,107 V/m 的电场时,试分别计 算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π πηη 补充题1 分别计算Si(100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提示:先 画出各晶面内原子的位置与分布图) Si 在(100),(110)与(111)面上的原子分布如图1所示: (a)(100)晶面 (b)(110)晶面

半导体物理(刘恩科)--详细归纳总结

第一章、 半导体中的电子状态习题 1-1、 什么叫本征激发?温度越高,本征激发的载流子越多,为什么?试定性说 明之。 1-2、 试定性说明Ge 、Si 的禁带宽度具有负温度系数的原因。 1-3、试指出空穴的主要特征。 1-4、简述Ge 、Si 和GaAS 的能带结构的主要特征。 1-5、某一维晶体的电子能带为 [])sin(3.0)cos(1.01)(0ka ka E k E --= 其中E 0=3eV ,晶格常数a=5х10-11m 。求: (1) 能带宽度; (2) 能带底和能带顶的有效质量。 题解: 1-1、 解:在一定温度下,价带电子获得足够的能量(≥E g )被激发到导带成 为导电电子的过程就是本征激发。其结果是在半导体中出现成对的电子-空穴对。如果温度升高,则禁带宽度变窄,跃迁所需的能量变小,将会有更多的电子被激发到导带中。 1-2、 解:电子的共有化运动导致孤立原子的能级形成能带,即允带和禁带。温 度升高,则电子的共有化运动加剧,导致允带进一步分裂、变宽;允带变宽,则导致允带与允带之间的禁带相对变窄。反之,温度降低,将导致禁带变宽。因此,Ge 、Si 的禁带宽度具有负温度系数。 1-3、 解:空穴是价带中未被电子占据的空量子态,被用来描述半满带中的大量 电子的集体运动状态,是准粒子。主要特征如下: A 、荷正电:+q ; B 、空穴浓度表示为p (电子浓度表示为n ); C 、E P =-E n D 、m P *=-m n *。 1-4、 解: (1) Ge 、Si: a )Eg (Si :0K) = 1.21eV ;Eg (Ge :0K) = 1.170eV ; b )间接能隙结构 c )禁带宽度E g 随温度增加而减小; (2) GaAs : a )E g (300K )= 1.428eV ,Eg (0K) = 1.522eV ; b )直接能隙结构; c )Eg 负温度系数特性: dE g /dT = -3.95×10-4eV/K ; 1-5、 解: (1) 由题意得: [][] )sin(3)cos(1.0)cos(3)sin(1.002 22 0ka ka E a k d dE ka ka aE dk dE +=-=

半导体物理学刘恩科习题答案权威修订版(DOC)

半导体物理学 刘恩科第七版习题答案 ---------课后习题解答一些有错误的地方经过了改正和修订! 第一章 半导体中的电子状态 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别 为: 2 20122021202236)(,)(3Ec m k m k k E m k k m k V - =-+= 0m 。试求:为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:10 9 11010 314.0=-?= =π π a k (1) J m k m k m k E k E E m k k E E k m dk E d k m k dk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17 31 210340212012202 1210 12202220 21731 2 103402 12102 02022210120210*02.110 108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 430 382324 3 0) (232------=????==-=-== =<-===-==????===>=+== =-+= 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带:

04 32 2 2*8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.71010054.143 10314.0210625.643043)() ()4(6 )3(2510349 3410 4 3 002 2 2*1 1 ----===?=???=?? ??=-=-=?=- ==ππ 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能 带底运动到能带顶所需的时间。 解:根据:t k qE f ??== 得qE k t -?=? s a t s a t 137 19282 199 3421911028.810106.1) 0(1028.810106.11025.0210625.610106.1)0(-------?=??--=??=??-?-??=??--=?π π ππ 第二章 半导体中杂质和缺陷能级 7. 锑化铟的禁带宽度Eg=0.18eV ,相对介电常数εr =17,电子的有效质量 *n m =0.015m 0, m 0为电子的惯性质量,求①施主杂质的电离能,②施主的弱束缚电子基态轨道半径。

半导体物理学第七版完整答案修订版

半导体物理学第七版完 整答案修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k) 分别为: E C (K )=0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子 自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度(提 示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

(a )(100)晶面 (b )(110)晶面 (c )(111)晶面 补充题2 一维晶体的电子能带可写为)2cos 81 cos 8 7()22ka ka ma k E +-= (, 式中a 为 晶格常数,试求 (1)布里渊区边界; (2)能带宽度; (3)电子在波矢k 状态时的速度; (4)能带底部电子的有效质量* n m ; (5)能带顶部空穴的有效质量*p m 解:(1)由 0)(=dk k dE 得 a n k π = (n=0,?1,?2…) 进一步分析a n k π ) 12(+= ,E (k )有极大值, a n k π 2=时,E (k )有极小值

半导体物理学(刘恩科第七版)课后习题解第五章习题及答案

第五章习题 1. 在一个n 型半导体样品中,过剩空穴浓度为1013cm -3, 空穴的寿命为100us 。计算空穴的复合率。 2. 用强光照射n 型样品,假定光被均匀地吸收,产生过剩载流子,产生率为, 空穴寿命为τ。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n 型硅样品,寿命是1us ,无光照时电阻率是10Ω?cm 。今用光照射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm -3?s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例? s cm p U s cm p U p 31710 10010 313/10U 100,/10613 ==?= ====?-??-τ τμτ得:解:根据?求:已知:τ τ τ ττ g p g p dt p d g Ae t p g p dt p d L L t L =?∴=+?-∴=?+=?+?-=?∴-. 00 )2()(达到稳定状态时,方程的通解:梯度,无飘移。 解:均匀吸收,无浓度cm s pq nq q p q n pq np cm q p q n cm g n p g p p n p n p n p n L /06.396.21.0500106.1101350106.11010.0:101 :1010100 .19 16191600'000316622=+=???+???+=?+?++=+=Ω=+==?==?=?=+?-----μμμμμμσμμρττ光照后光照前光照达到稳定态后

4. 一块半导体材料的寿命τ=10us ,光照在材料中会产生非平衡载流子,试求光照突然停止20us 后,其中非平衡载流子将衰减到原来的百分之几? 5. n 型硅中,掺杂浓度N D =1016cm -3, 光注入的非平衡载流子浓度?n=?p=1014cm -3。计算无光照和有光照的电导率。 % 2606.38.006.3500106.1109. ,.. 32.0119 161 0' '==???=?∴?>?Ω==-σσ ρp u p p p p cm 的贡献主要是所以少子对电导的贡献献 少数载流子对电导的贡 。 后,减为原来的光照停止%5.1320%5.13) 0() 20()0()(1020 s e p p e p t p t μτ ==???=?--cm s q n qu p q n p p p n n n cm p cm n cm p n cm n K T n p n i /16.21350106.110:,/1025.2,10/10.105.1,30019160000003403160314310=???=≈+=?+=?+=?===?=??==---μμσ无光照则设半导体的迁移率) 本征空穴的迁移率近似等于的半导体中电子、注:掺杂有光照131619140010(/19.20296.016.2)5001350(106.11016.2) (: --=+=+???+≈+?++=+=cm cm s nq q p q n pq nq p n p n p n μμμμμμσ

半导体物理刘恩科考研复习总结

半导体物理刘恩科考研复 习总结 Prepared on 24 November 2020

1.半导体中的电子状态 金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子 纤锌矿结构:六方对称结构(AB堆积) 晶体结构:原子周期性排列(点阵+基元) 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以 在整个晶体中运动。 能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能 级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围 内,可以认为是连续的。 能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。 (边界处布 拉格 反射 形成 驻 波,电子集聚不同区域,造成能量差)自由电子与 半导体的 E-K图:

自由电子模型: 半导体模型: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

半导体物理学 (第七版) 习题答案

半导体物理习题解答 1-1.(P 32)设晶格常数为a 的一维晶格,导带极小值附近能量E c (k )和价带极大值附近能量E v (k )分别为: E c (k)=0223m k h +022)1(m k k h -和E v (k)= 0226m k h -0 2 23m k h ; m 0为电子惯性质量,k 1=1/2a ;a =0.314nm 。试求: ①禁带宽度; ②导带底电子有效质量; ③价带顶电子有效质量; ④价带顶电子跃迁到导带底时准动量的变化。 [解] ①禁带宽度Eg 根据dk k dEc )(=0232m k h +0 12)(2m k k h -=0;可求出对应导带能量极小值E min 的k 值: k min = 14 3 k , 由题中E C 式可得:E min =E C (K)|k=k min = 2 10 4k m h ; 由题中E V 式可看出,对应价带能量极大值Emax 的k 值为:k max =0; 并且E min =E V (k)|k=k max =02126m k h ;∴Eg =E min -E max =021212m k h =2 02 48a m h =11 28282 2710 6.1)1014.3(101.948)1062.6(----???????=0.64eV ②导带底电子有效质量m n 0202022382322 m h m h m h dk E d C =+=;∴ m n =022 283/m dk E d h C = ③价带顶电子有效质量m ’ 022 26m h dk E d V -=,∴022 2'61/m dk E d h m V n -== ④准动量的改变量 h △k =h (k min -k max )= a h k h 83431= [毕] 1-2.(P 33)晶格常数为0.25nm 的一维晶格,当外加102V/m ,107V/m 的电场时,试分别计算电子自能带 底运动到能带顶所需的时间。 [解] 设电场强度为E ,∵F =h dt dk =q E (取绝对值) ∴dt =qE h dk

半导体物理学(刘恩科)第七版-完整课后题答案

第一章习题 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带 极大值附近能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2) 导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1)

eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0)(2320 2121022 20 202 02022210 1202== -==<-===-==>=+===-+ηηηηηηηη因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2*8 3)2(1 m dk E d m k k C nC ===η s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- ==ηηηηη所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场 时,试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=?η

(完整word版)半导体物理刘恩科考研复习总结

1.半导体中的电子状态 金刚石与共价键(硅锗IV族):两套面心立方点阵沿对角线平移1/4套构而成 闪锌矿与混合键(砷化镓III-V族):具有离子性,面心立方+两个不同原子 纤锌矿结构:六方对称结构(AB堆积) 晶体结构:原子周期性排列(点阵+基元) 共有化运动:原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一个原子上,可以由一个原于转移到相邻的原子上去,电子可以在 整个晶体中运动。 能带的形成:组成晶体的大量原子的相同轨道的电子被共有化后,受势场力作用,把同一个能级分裂为相互之间具有微小差异的极其细致的能 级,这些能级数目巨大,而且堆积在一个一定宽度的能量范围内, 可以认为是连续的。 能隙(禁带)的起因:晶体中电子波的布喇格反射-周期性势场的作用。 (边界处布拉格反射形成驻波,电子集聚不同区域,造成能量差) 自由电子与 半导体的 E-K图: 自由电子模型: 半导体模型: 导带底:E(k)>E(0),电子有效质量为正值; 价带顶:E(k)

波矢为k的电子波的布喇格衍射条件: 一维情况(布里渊区边界满足布拉格): 第一布里渊区内允许的波矢总数=晶体中的初基晶胞数N -每个初基晶胞恰好给每个能带贡献一个独立的k值; -直接推广到三维情况考虑到同一能量下电子可以有两个相反的自旋取向,于是每个能带中存在2N个独立轨道。 -若每个初基晶胞中含有一个一价原子,那么能带可被电子填满一半; -若每个原子能贡献两个价电子,那么能带刚好填满;初基晶胞中若含有两个一价原子,能带也刚好填满。 杂质电离:电子脱离杂质原子的的束缚成为导电电子的过程。脱离束缚所需要的能力成为杂质电离能。 杂质能级:1)替位式杂质(3、5族元素,5族元素释放电子,正电中心,称施 主杂质;3族元素接收电子,负电中心,受主杂质。)2)间隙式杂质(杂质原子小) 杂质能带是虚线,分离的。 浅能级杂质电离能: 施主杂质电离能 受主杂质电离能 杂质补偿作用:施主和受主杂质之间的相互抵消作用(大的起作用) 杂质高度补偿:施主电子刚好能填充受主能级,虽然杂质多,但不能向导带和价带提供电子和空穴。 深能级杂质:非III,V 族杂质在禁带中产生的施主能级和受主能级距离导带底和价带顶都比较远。 1)杂质能级离带边较远,需要的电离能大。 2)多次电离?多重能级,还有可能成为两性杂质。(替位式) 缺陷、错位能级:1)点缺陷:原子获得能量克服周围原子的束缚,挤入晶格原 子的间隙,形成间隙原子。 弗仓克尔缺陷:间隙原子和空位成对出现。 肖特基缺陷:只在晶体内形成空位而无间隙原子。 2)位错 (点缺陷,空穴、间隙原子;线缺陷,位错;面缺陷,层错、晶粒间界) 导体、半导体、绝缘体的能带:

半导体物理学第七版课后答案分解

(完整word版)半导体物理学(刘恩科)第七版课后答案分解 亲爱的读者: 本文内容由我和我的同事精心收集整理后编辑发布到 文库,发布之前我们对文中内容进行详细的校对,但 难免会有错误的地方,如果有错误的地方请您评论区 留言,我们予以纠正,如果本文档对您有帮助,请您 下载收藏以便随时调用。下面是本文详细内容。 最后最您生活愉快 ~O(∩_∩)O ~

第一章 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大 值附近能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V - =-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43 (0,060064 3 382324 3 0) (2320 2121022 20 202 02022210 1202==-==<-===-==>=+===-+ 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带:

04 32 2 2*8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.704 3 )() ()4(6 )3(25104 3002 2 2*1 1 -===?=-=-=?=- == 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时, 试分别计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 137 19 282 1911027.810 10 6.1)0(102 7.810106.1) 0(----?=??-- = ??=??-- = ?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子 面密度(提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

半导体物理学(刘恩科)第七版课后答案剖析

第一章 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近 能量E V (k)分别为: E c =0 2 20122021202236)(,)(3m k h m k h k E m k k h m k h V -=-+ 0m 。试求: 为电子惯性质量,nm a a k 314.0,1==π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化 解:(1) eV m k E k E E E k m dk E d k m k dk dE Ec k k m m m dk E d k k m k k m k V C g V V V c 64.012)0()43(0,060064 30382324 30)(2320212102 2 20 202 02022210 1202==-==<-===-== >=+== =-+ 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 3222* 83)2(1m dk E d m k k C nC ===

s N k k k p k p m dk E d m k k k k V nV /1095.704 3)()()4(6 )3(25104300222* 11-===?=-=-=?=-== 所以:准动量的定义: 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别 计算电子自能带底运动到能带顶所需的时间。 解:根据:t k h qE f ??== 得qE k t -?=? s a t s a t 13719282 1911027.810106.1) 0(1027.810106.1) 0(----?=??--= ??=??-- =?π π 补充题1 分别计算Si (100),(110),(111)面每平方厘米内的原子个数,即原子面密度 (提示:先画出各晶面内原子的位置和分布图) Si 在(100),(110)和(111)面上的原子分布如图1所示:

半导体物理学(第7版)第五章习题及答案

第五章习题 1. 在一个n型半导体样品中,过剩空穴浓度为1013cm-3, 空穴的寿命为 100us。计算空穴的复合率。 2. 用强光照射n型样品,假定光被均匀地吸收,产生过剩载流子,产生 率为,空穴寿命为。 (1)写出光照下过剩载流子所满足的方程; (2)求出光照下达到稳定状态时的过载流子浓度。 3. 有一块n型硅样品,寿命是1us,无光照时电阻率是10cm。今用光照 射该样品,光被半导体均匀的吸收,电子-空穴对的产生率是1022cm-3s-1,试计算光照下样品的电阻率,并求电导中少数在流子的贡献占多大比例?

4. 一块半导体材料的寿命=10us,光照在材料中会产生非平衡载流子,试求光照突然停止20us后,其中非平衡载流子将衰减到原来的百分之几? 5. n型硅中,掺杂浓度N D=1016cm-3, 光注入的非平衡载流子浓度n=p=1014cm-3。计算无光照和有光照的电导率。 6. 画出p型半导体在光照(小注入)前后的能带图,标出原来的的费米能级和光照时的准费米能级。 E c E i E v E c

E F E i E v E Fp E Fn 光照前 光照后 7. 掺施主浓度N D=1015cm-3的n型硅,由于光的照射产生了非平衡载流子n=p=1014cm-3。试计算这种情况下的准费米能级位置,并和原来的费米能级作比较。 8. 在一块p型半导体中,有一种复合-产生中心,小注入时,被这些中心俘获的电子发射回导带的过程和它与空穴复合的过程具有相同的概率。试求这种复合-产生中心的能级位置,并说明它能否成为有效的复合中心?

9. 把一种复合中心杂质掺入本征硅内,如果它的能级位置在禁带中央,试证明小注入时的寿命=n+p。 10. 一块n 型硅内掺有1016cm-3的金原子 ,试求它在小注入时的寿 命。若一块p型硅内也掺有1016cm-3的金原子,它在小注入时的寿命又是多少?

半导体物理学(刘恩科第七版)课后习题解第1章习题解

半导体物理学 第一章习题 (公式要正确显示,请安装字体MT extra) 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为: ........................................................................................... 1 2. 晶格常数为0.25nm 的一维晶格,当外加102V/m ,107 V/m 的电场时,试分别计算电子自能带底运动到能带顶所需的时间。 (3) 1.设晶格常数为a 的一维晶格,导带极小值附近能量E c (k)和价带极大值附近能量E V (k)分别为: 2 20122021202236)(,)(3Ec m k m k k E m k k m k V -=-+= 0m 。试求: 为电子惯性质量,nm a a k 314.0,1== π (1)禁带宽度; (2)导带底电子有效质量; (3)价带顶电子有效质量; (4)价带顶电子跃迁到导带底时准动量的变化

解:109 11010 314.0=-?= =π π a k (1) J m k m k m k E k E E m k k E E k m dk E d k m k dk dE J m k Ec k k m m m dk E d k k m k k m k dk dE V C g V V V V c C 17 31 210340212012202 1210 122022 20 21731 2 103402 12102 02022210120210*02.110 108.912)1010054.1(1264)0()43(6)(0,0600610*05.310108.94)1010054.1(4Ec 430 382324 3 0) (232------=????==-=-===<-===-==????===>=+== =-+= 因此:取极大值处,所以又因为得价带: 取极小值处,所以:在又因为:得:由导带: 04 32 2 2 *8 3)2(1 m dk E d m k k C nC === s N k k k p k p m dk E d m k k k k V nV /1095.71010054.14 3 10314.0210625.643043)()()4(6)3(2510349 3410 4 3 222 *1 ----===?=???= ?? ??=-=-=?=-==ππ 所以:准动量的定义:

半导体物理学(第七版)课后习题答案整理版

1 — 1. 别为: (P32) 半导体物理习题解答 设晶格常数为a 的一维晶格,导带极小值附近能量 E c ( k ) 和价带极大值附近能量 E v (k )分 E c (k) = h 2k 2 3m ° + h 2(k — k1)2 和钠=代疋—3『k 2 ; 6m ° m o m ° m o 为电子惯性质量,k i = 1/2a ; a = 0.314nm 。试求: ① 禁带宽度; ② 导带底电子有效质量; ③ 价带顶电子有效质量; ④ 价带顶电子跃迁到导带底时准动量的变化。 [解]①禁带宽度Eg 2 2 根据dEc(k) = 2丄 + 2h (k — kl) = 0;可求出对应导带能量极小值 dk E min 的k 值: 3m o m o 由题中E c 式可得: E min = E C (K)|k=k min = k ]; 由题中E V 式可看出,对应价带能量极大值 Emax 的k 值为:k max = 0; 并且 E min = E v (k)|k=k =h 2k 2 ?? Eg = E — E =『k ; 6m 0 12m 0 h 2 48m 0a 2 (6.62 10 ②)2 =0.64eV 48 9.1 10 (3.14 10 冷2 1.6 10 ②导带底电子有效质量 m d 2E C 2h 2 2h 2 = _ 8h 2 dk 2 3m 0 m 0 3m ° ③价带顶电子有效质量 m' d 2 Ev 6h 2 ? 1 m n = h 2 _ _ ,… dk m ° ④准动量的改变量 h △ k = h (k min - k ma x ): =-hk 4 2 1 ;? m =h 2/牛 dk 2 d E V 1 / 2 m ° dk 2 6 3h “ [毕] 8a 1 — 2. (P 33)晶格常数为0.25nm 的一维晶格,当外加 底运动到能带顶所需的时间。 dk [解]设电场强度为E ,v F=h =qE (取绝对值) dt 3 8m o 2 7 10 V/m , 10 V/m 的电场时,试分别计算电子自能带 ???dt = -^dk qE

相关主题
文本预览
相关文档 最新文档