当前位置:文档之家› 风能和及其对未来的环境政策规划:供电可再生能源在加拿大和国外

风能和及其对未来的环境政策规划:供电可再生能源在加拿大和国外

风能和及其对未来的环境政策规划:供电可再生能源在加拿大和国外
风能和及其对未来的环境政策规划:供电可再生能源在加拿大和国外

5 of 781 DOCUMENTS

Copyright (c) 2007

Albany Law

Environmental

Outlook Journal

Albany Law

Environmental

Outlook Journal

2007

11 Alb. L. Envtl.

Outlook 198

LENGTH: 35331 words

ARTICLE: WIND ENERGY AND ITS IMPACT ON FUTURE ENVIRONMENTAL POLICY PLANNING: POWERING RENEWABLE ENERGY IN CANADA AND ABROAD

NAME: Kamaal R. Zaidi

SUMMARY:

... Given the tremendous pressure of using finite conventional sources of energy, many countries are turning to renewable sources of energy to cushion against rising costs and to diversify the means of delivering energy to their citizens. ... These early historical developments in wind mill technology helped shape modern wind-powered generation methods seen in today's wind turbine engines, which contribute to renewable energy and provide electricity. ... However, to achieve wind energy's maximum benefit, a wind farm must be highly integrated into an existing electrical transmission and distribution grid network. ... With recent advances in wind turbine technology, application of wind energy is contributing to employment in the renewable sector. ... This is where wind energy purchase plans become a hallmark of consumer interest for renewable energy. ... Groups like the Canadian Wind Energy Association support RPS initiatives across Canada to steer energy producers towards the purchase of renewable energy, while providing consumers, particularly new home buyers, with more reasonable energy costs for electricity consumption. ... In 2004, the DOE's National Renewable Energy Laboratory awarded the WTC $ 800,000 to work on developing prototype 5 781文件

版权所有( C )

2007奥尔巴尼法律环境展望杂志

奥尔巴尼法律环境展望杂志

2007年 11 Alb. L. Envtl.。展望198 长度: 35331字

文章:风能和及其对未来的环境政策规划:供电可再生能源在加拿大和国外

作者:Kamaal R. Zaidi

摘要:

鉴于使用有限的常规能源所产生的巨大压力,许多国家开始转向使用可再生能源以降低上升的成本,并且使用多种手段为本国公民提供能源。...这些早期风车技术的发展有助于形成现代风力发电的方法,这种方法应用于现今的风力引擎中,促进可再生能源的开发应用且提供了电能。...然而,为了实现风力发电的最大获利,一个风电场必须高度集成到现有的电力传输和分配输电网络中。...随着风力发电机技术的发展,风力发电的应用有助于可再生能源部门的就业。... 这就是为什么,对于可再生能源来说,风能采购计划会成为代表消费者利益的标志。...像加拿大风能协会这样的组织支持建立横跨加拿大的定位系统的倡议,以引导能源生产者购买可再生能源,同时为消费者,特别是新购房者,提供由于电力消费而产生的适度能源消耗。... 2004年,美国能源部的国家再生能源实验室给予世贸中心八十万美元为发展风力涡轮机的原型,其中包括一台750千瓦风力发电机。...例如,1990年的电力提供法和2000年的可再生能源法(以下简称RESA),这两项立法已经阻碍了德国的风力发展。...

文字:

wind turbines, including a 750 kilowatt wind turbine. ... For example, the Electricity Feed Act of 1990 and the Renewable Energy Sources Act (hereinafter RESA) of 2000 are two pieces of legislation that have spurned the development of wind energy in Germany.

TEXT:[*200]

Introduction

Given the tremendous pressure of using finite conventional sources of energy, many countries are turning to renewable sources of energy to cushion against rising costs and to diversify the means of delivering energy to their citizens. Wind energy is one example of an innovative strategy to provide energy to citizens in a clean, abundant, and reliable fashion. As rising electricity costs and environmental damage turn societies away from conventional electricity sources such as fossil fuels (i.e., coal, natural gas, etc.), government sponsored efforts and technological innovations are pushing wind energy to the forefront of environmental policy planning. More specifically, the Canadian government has implemented financial incentives to encourage public and private businesses to establish renewable energy sources. This paper examines the role of wind energy in Canada and abroad in terms of how its emergence is recognized as one of the best examples of implementing sound environmental regimes to replace expensive conventional methods of energy extraction and utilization.

Part I examines the history and background of wind energy, providing an overview of wind energy use in various cultures and time periods. Part II explains the role of wind energy in the context of the Kyoto Protocol. As part of this global initiative, wind energy is reviewed in terms of how it contributes to a "green" economy. Part III discusses the technology behind wind energy generation, more specifically, the functionality of wind turbines and their role in distributing electricity to surrounding communities. Part IV focuses on the application of wind energy in the Canadian economy. Here, various wind programs are examined in selected provinces to illustrate modern trends in diversifying the energy sector. Finally, Part V outlines the trend in global application of wind energy 导言

鉴于使用有限的常规能源所产生的巨大压力,许多国家开始转向使用可再生能源以降低上升的成本,并且使用多种手段为本国公民提供能源。风能作为一个创新战略的例子之一,它提供给公民一种清洁,丰富,可靠的能源。日益上升的电力成本和环境损害使社会拒绝使用如矿物燃料(如煤,天然气等)等常规电力,政府的大力推进和技术创新正将风能推到环境政策计划的前沿。更具体地讲,加拿大政府实施财政奖励办法,以鼓励公共和私营的企业建立可再生能源。本文讨论的是风能在加拿大和外国的作用,它的出现方式被认为是执行健全的环境制度来取代昂贵的传统能源开采和利用方法的最好方法之一。

第一部分研究的是风能的历史和背景,介绍了风能在不同文化和时代的利用情况。第二部分介绍了风能在《京都议定书》中的地位。作为这个全球性的倡议的一部分,风能在如何支持“绿色”经济这一问题上广受关注。第三部分论述了风力发电的技术,更确切地说,是风力发电机的功能,以及它们在为周边社区的分配电力中的作用。第四部分侧重说明风能在加拿大经济领域上应用。在这部分,为明确能源领域的多样化的现代趋势在选定的省份实施各种计划。最后,第五部分通过概括了风能项目的全球性应用在各个国家的发展趋势。讨论的重点是一些国家正在积极参与发展风能项目,以减少对矿物燃料的依赖,同时提供可负担得起的电力和提高能源输出风能项目。这些国家包括美国,丹麦,德国,西班牙,英国/爱尔

projects in various countries. The discussion focuses on several nations that are actively participating in the development of wind energy projects to reduce dependence on fossil fuels, while providing affordable electricity and improving energy output from wind projects. These nations include the United States, Denmark, Germany, Spain, the United Kingdom/Ireland, Australia, China, India, and Japan.

[*201]

I. History and Background of Wind Energy Wind energy production traces back to ancient civilizations. n1 It is believed that over 2000 years ago, for example, Chinese civilizations used the first vertical-axis windmill to pump water and grind grain for agricultural purposes. n2 Around 500-900 A.D., the ancient Persians also used wind energy to pump water on arid lands and grind grain with vertical axis devices known as panemones. n3 The island of Crete still has remnants of windmill technology that help irrigate crops and provide water for livestock. n4 Pre-industrial Europe saw the evolution from the Persian vertical-axis design to a horizontal-axis design. n5 While it is unknown why this happened, one possibility is that European water wheels used the horizontal-axis design, which could have served as a model. n6 Another possibility is that horizontal-axis designs are more efficient. n7 The Dutch modified these tower mills in Holland around 1390 by designing them to create aerodynamic lift in propelling the windmill sails. n8 Eventually, windmill sails had all the characteristics that modern engineers recognize as essential to modern turbine blade performance. n9

The Halladay windmill was introduced in the United States in 1854, followed by the Aermotor and Dempster designs, which still exist today. n10 In the late 19th century, Charles F. Brush developed the first large-scale wind project in Cleveland, Ohio, [*202] which created a low-speed, high-solidity rotor called the Brush machine. n11 In the 1920s, North American farms developed fan-type and sail rotor designs for windmills that pumped water and electricity. n12 The modern design of vertical axis windmills with slender, airfoil-section blades, was developed from the French 兰,澳大利亚,中国,印度和日本。

一,风能的历史和背景

风能生产可追溯到古代文明。据说在两千多年前,中国是第一个在农业方面使用垂直轴风车泵水和研磨粮食的。大约在公元500-900年,古代波斯人也使用风能来给干旱地区灌溉和碾磨粮食,这种垂直轴装臵称为panemones 。克里特岛仍然残存可以帮助灌溉作物,并给牲畜提供水的风车技术。工业化前欧洲见证了波斯湾从垂直轴设计到横向轴设计的演变。虽然这种演变的原因不明,但是有一种可能是,欧洲水车轮曾采用过可能作为一个模型的横向轴设计。另一种可能性是横向轴的设计更有效。大约在1390年,荷兰人改良了碾磨塔,使它能产生气动生力推动风车帆。最后,风车帆具备了现代的工程师认为的现代涡轮叶片必须具备的所有特征。1984年美国引进了Halladay风车,随后又引进了Aermotor和Dempster设计的风车,这些风车至今仍然存在。在19世纪末,Charles F. Brush 在美国俄亥俄州克里夫兰市发明了第一台大型风力设备,其中低速,高坚固转子被称为刷机。在20世纪20年代,北美农场开发设计了范型和帆转子风车的来供水和供电。现代的垂直轴风车具有细长,翼型节刀片,这是由GJM Darrieus在20世纪20年代从法国的风车设计发展来的。这些早期风车技术的发展有助于形成现代风力发电的方法,这种方法应用于现今的风力引擎中,促进可再生能源的开发应用且提供了电能。

design in the 1920s by G.J.M Darrieus. n13 These early historical developments in wind mill technology helped shape modern wind-powered generation methods seen in today's wind turbine engines, which contribute to renewable energy and provide electricity. n14

The Canadian government's renewable energy network defines renewable energy as a source that produces usable energy without depleting natural resources while having only a minor impact on the environment. n15 Renewable energy sources typically include water, biomass, wind, solar and geothermal energy. n16 There is currently a high demand for renewable energy [*203] use, particularly among nations that are implementing major wind power projects to create sustainable resource development. n17 Many of these nations have held environmental conferences with the intention of searching for more viable approaches to provide energy to its citizens. n18 Wind energy generation technology that promotes cleaner and more efficient methods of energy delivery is proving beneficial in terms of economic feasibility and in terms of reducing the environmental impact. n19 Not surprisingly therefore, wind energy is the fastest growing energy source. n20

II. The Technology Behind Wind Energy Generation

Perhaps the greatest attribute of wind energy is its natural availability. Wind is normally produced from differences in temperature gradients in high and low pressure zones, which are created from the land absorbing sunlight and emitting heat. n21 [*204] Cooler air rushes in the spaces left by the rising hot air, generating surface winds. n22 These surface winds are captured as kinetic energy by wind turbine engines when the wind turns the turbine's blades, n23 which are attached to a shaft. n24 The shaft is attached to a generator, and as the blades rotate from the winds, the generator also rotates and the wind energy is converted into electricity. n25 Various factors such as wind speed determine the rate at which turbine propellers turn, thereby affecting the amount of energy produced. n26 Generally, as wind speed increases, the energy output increases from the turbine, producing more electricity. 加拿大政府的可再生能源网络是这样定义可再生能源的,可再生能源是一种在不耗尽自然资源的前提下产生有用能源且对环境影响极小的能源。可再生能源主要包括水,生物能源,风能,太阳能和地热能。目前各国对于可再生能源的使用有很高的需求,特别是正在实施重大的风力发电项目以建立可持续的资源开发。为寻找更加切实可行的办法为其公民提供能源,许多国家已举行环境会议。风力发电技术是能够提供更加清洁、有效的能源供应方法,它在经济方面具有可行性,且有利于降低对环境的影响。因此不足为奇的是,风能是增长最快的能源。

二,风力发电的技术

也许风能最大的属性就是它的自然实用性。高低压区是由土地吸收阳光和排放热量产生的,风通常就是产生于这种不同温度梯度的高,低压区。上升的热空气带动空中的冷空气运动,产生表面风。当风使连接着轴的汽轮机叶片转动时,这些表面风便被用来作为风力涡轮发动机的动能。轴连着发动机,风使叶片旋转,发动机也旋转,风能便转化为电能。许多因素,如风速,决定着涡轮螺旋桨转动的速率,因此,影响能源产量。一般而言,随着风速的增加,涡轮产生的能量增加,从而产生更多的电力。风速,依次取决于地形,空气的密度,空气温度,气压和海拔。这就是为什么风轮机往往位于发射塔上,往往是在有强风的地区。各种能源形式如风能,促进了“绿色能源”应用的不断发展。因此,风能主要是通过涡轮发动机来进

Wind speed, in turn, depends on the terrain, the density of air, air temperature, barometric pressure, and altitude. n28 This is why wind turbines are frequently located on tall towers, often in areas of high winds. n29 Forms of energy such as wind comprise the growing wave of "green energy" applications. n30

Wind energy is thus mainly produced by turbine engines, and more specifically, by rotors. n31 The rotors of turbine engines [*205] consist of propeller blades that capture the wind's energy, and they are attached to a generator that creates electricity. n32 The rotor blades are usually made from glass polyester or glass epoxy, sometimes in combination with wood or carbon. n33 The turbine engines are normally situated high-up on steel towers to take advantage of stronger winds that produce greater "lift" (low pressure winds pulling the blade, causing the rotor to turn), thereby producing greater energy output. n34 Large wind turbines can be subdivided into horizontal axis and vertical axis turbines. n35 Wind turbines can be used by homeowners with single turbine engines or for large scale operations on "wind farms," n36 a collection of towers equipped with large wind turbines. n37 Normally, wires that run down the tower carry electricity to the electrical grid, where it is stored or used. n38 Wind turbine engines produce electricity to local utility power grids that supply electricity to the community. n39

Wind farms generate large-scale energy that drives electricity to several designated communities and enables residents to purchase wind energy through various companies at reasonable [*206] rates. n40 The average wind turbine lasts 20-25 years, depending on the design and its functionality. n41 With respect to wind energy capacity, it is estimated that a 1 megawatt (MW) turbine engine with a 30 percent capacity produces about 2,600 megawatt-hour (MWh) per year, a process which may power up to 320 homes. n42 However, to achieve wind energy's maximum benefit, a wind farm must be highly integrated into an existing electrical transmission and distribution grid network. n43 The technology of wind turbines has developed over time. n44 In the 1970s and 1980s, wind turbines operated under classical control designs to regulate 行生产,更具体地说,是通过转n27 子。涡轮发动机的转子包括用来捕捉风的能量的螺旋桨桨叶,它们附属于能够发电的发电机。转子叶片通常由玻璃聚酯或玻璃环氧树脂制成的,有时结合木材或碳制成。

发动机的涡轮通常位于铁塔的高处上,以便利用大风产生更大的“提力”(低压风推动叶片,使转子转动),从而输出更多的能量。大型风力发电机可分为水平轴和垂直轴涡轮机。业主们通过单涡轮发动机或者通过可以大规模运行的风力发电场来使用风力涡轮机,这些风力发电场拥有很多的配备了大型风力发电机的塔。通常,电缆从电塔上延伸下来,将电运送到电网上,用来存储或使用。风力涡轮发电机为地方公用电网提供电力,这些电网又为居民供给电力。风力发电场产生的大规模能源被分配到那些指定的社区,而居民在电力公司用合理的价格来购买使用那些风能。

风力发电机平均可以持续使用20-25年,这取决于它的设计和功能。关于风能发电生产量,据估计,1兆瓦涡轮发动机,以百分之三十的功率计算每年可生产约2600万千瓦小时(兆瓦),可供320个家庭使用。然而,为了实现风力发电的最大利益,一个风力发电场必须高度集成到现有的电力传输和分配网格网络。风力涡轮机技术在一段时间内得到了发展。在上世纪70年代和80年代,风力发电依靠传统的控制设计来调节力量和速度。然而,现代的涡轮是安装在高塔上的更大、更有效的发电机。下图,图1 ,提供了风能是如何工作的基本演示。

power and speed. n45 However, modern turbines are mounted on tall towers, are larger, and more efficient electricity generators. n46 The following diagram, Diagram 1, offers a basic illustration of how wind energy production works.

[*207]

Diagram 1: Simple Overview of Wind Energy Application

[SEE DI AGRAM 1 IN ORIGINAL]

III. Wind Energy as "Green" and its Role Under Canada's Commitment to the Kyoto Protocol

Wind energy is regarded as "green" technology because it produces no air pollutants or greenhouse gases, and thus has little impact on the environment. n47 Therefore, wind energy neither uses any source of fuel, nor produces toxic or radioactive waste. n48 Wind farms have had some impact on specific bird and [*208] bat populations. n49 However, as long as an appropriate site is located, the capture of wind energy also poses little threat to damaging surrounding ecosystems, including wildlife and fauna and flora. n50 Wind farming is popular among farmers because they can still grow crops and graze livestock on their land with little interference from wind turbines. n51 Using wind energy instead of conventional fossil fuels to power approximately 200 homes would leave around 900,000 kilograms of coal in the ground and reduce annual greenhouse emissions by 2,000 tonnes. n52

In the context of global environmental reforms like the Kyoto Protocol (The Protocol), harnessing renewable forms of energy such as wind becomes a crucial step in meeting broad objectives of sustainable resource development. n53 The Protocol was a global agreement ratified in 1997 by developed nations, in response to the increasing demands of renewable energy use and high rates of industrialized pollution. n54 The Protocol curbs greenhouse gas emissions worldwide, and contributes to global climate change. [*209] While Canada signed the Protocol, other industrialized countries, including many traditional energy producers, were skeptical of the threat posed by 图1 :简单概述风能利用[图1原]

三、风能作为“绿色”能源和它在加拿大签订《京都议定书》中的作用

风力发电被认为是“绿色”技术是因为它不产生任何空气污染物或温室气体,因此对环境影响极小。因此,风力发电既没有使用任何燃料,也没有产生有毒或放射性废物。风力发电厂对特定种类的鸟以及蝙蝠种群造成了一些影响。但是,只要放臵在适当的地点,风能的利用就几乎不会破坏周围的生态系统,包括野生动物、动物和植物。利用风能来耕作深受农民的欢迎,因为在土地上放臵风力涡轮机对他们种植作物和放牧牲畜几乎没有产生任何干扰。利用风能来代替传统的矿石燃料给约200户家庭提供电力的话将节省900,000公斤煤炭,并且每年减少2000吨的温室气体排放量。

在全球环境的改革中,如京都议定书,利用如风能等可再生资源是资源可持续发展的关键步骤。该议定书是在1997年由发达国家批准的一个全球性的协议,以回应可再生能源的需求的日益增加和工业的高污染率。该议定书限制全球温室气体的排放,有助于防止全球气候变化。虽然加拿大签署了该议定书,但是其他工业化国家,包括许多传统能源的生产者,对全球变暖的威胁持怀疑态度。的确,评论家讨论该协议的成本和收益,以及气候变化是否会有巨大变化。尽管如此,寻找可再生能源是一个国家努力改变自己提取和利用自然资源的

global warming. n55 Indeed, commentators debate the

costs and benefits of the Protocol, and whether there is a dramatic shift in climate change. n56 Despite this, searching for renewable energy sources is a high priority for nations striving to change their methods of extracting and using natural resources, while achieving economic self-sufficiency and price controls on soaring energy costs. n57

In the past twenty years, researchers in universities, private research labs, and utility companies have developed or improved upon renewable forms of energy, including wind energy. n58 For instance, physicists and aerodynamic engineers have been improving upon the technology that is behind wind turbine operations. n59 This work has been using cutting-edge materials and developing innovative designs of wind turbines in order to improve electricity output. n60 This process helps reduce the electricity consumption in cities, towns, and remote communities such as farms. n61

[*210] The Canadian government recognizes the importance of renewable energy and is investing in such projects to find more appropriate and more cost-efficient means of supplying energy. n62 For instance, the government expects that over $ 1.5 billion in capital investments will encourage development of wind turbine projects across Canada. n63 Another method of harvesting wind energy is the building of wind farms in shallow waters near coastlines where energy is generally self-regulated and may not be subject to local energy laws and market regulation. n64 This is especially practical in small countries because it does not use the little land area they have to begin with. n65 Offshore wind projects are quickly becoming the latest trend in modern renewable energy development. n66 However, challenges remain in acquiring wind energy offshore due to heavy costs, geographical barriers, unfavorable climatic conditions, and negative impact on wildlife. n67

IV. Application of Wind Energy to the Canadian Economy

Wind energy is one of the fastest growing forms of 方法的最优先选择,同时实现经济自给自足和控制高涨的能源成本。

在过去的20年里,大学研究人员,私人研究实验室,以及公用事业公司已经开发或改进可再生能源,包括风能。例如,物理学家和空气动力学工程师这个致力于改进风力涡轮机操作的技术。他们一直在利用最先进的材料和创新设计来改善风力涡轮机的电力输出。这一探索有助于减少城市,城镇和偏远社区如农场的电力消耗。

加拿大政府认识到可再生能源的重要性并积极投资此类项目可以找到更适当、更符合成本效益的供应能源的方式。举例来说,加拿大政府预计投入超过15亿美元来鼓励发展风力发电机组项目。另一种获得风能的方法是在靠近海岸线的浅水区建设风力发电场,一般情况下这种地方能够自我调节,不会受到地方能源法规和市场调节。这一点对小国来说尤其适用,因为这种风力发电机无需占用它们那本已少得可怜的土地。海上风能项目正在迅速成为现代可再生能源发展的最新趋势。但是,费用昂贵,地理障碍,不利的气候条件,以及对野生动物的负面影响使在海上获取风能充满了挑战。

四、风能在加拿大经济领域上应用

风能是在世界上增长最快的可再生能源的形式。除了拥有对环境最小的不利影响,风能技术通过设臵更合理的电力消费价格来影响经济,为可再生能源部门创造新的就业机会。在城市和农村施行的基础设施计划,为将来renewable energy in the world. n68 Aside from having

minimal negative impact on the environment, wind energy technology impacts the economy by setting more reasonable electricity prices for consumption, and creating new jobs in the renewable sector. n69 [*211] Infrastructure plans in both urban and rural settings are incorporating wind energy in preparation for future resource development. In 2005 alone, Canada's wind energy capacity grew by fifty four percent. n70 In Canada, like many other nations, there are two forms of wind energy applications: (1) large scale and (2) small scale. n71 Large-scale wind generation gives power to local utility grid systems, which provide energy to large communities. n72 Small-scale wind generation contributes to energy in smaller, more locally designated sites. n73 With recent advances in wind turbine technology, application of wind energy is contributing to employment in the renewable sector. n74

To encourage the use of wind energy, current policy options the Canadian Government should consider include:

Feed-in Tariffs: guarantee payment for electricity produced by wind energy

Production Subsidies: provide a guaranteed payment or tax incentive per kWh produced

Investment Subsidies: help support the high capital costs of wind energy through grants, loans, favorable tax treatment

Investment Incentives: enable easier financing by giving investors incentives to invest

Renewable Portfolio Standards (Quota Obligations): require electricity producers and distributors to purchase a specific percentage of their portfolio derives from renewable energy sources, which are frequently accompanied by a renewable energy certificates system

Pollution Taxes: imposed only on polluting forms of energy generation, not on renewable energy production

Green Pricing: allows electricity utilities or retailers to give consumers a choice as to the type of power they purchase n75

[*212] These policies tend to push forward 能源的开发做准备。仅在2005年,加拿大的风力发电能力增长了百分之五十四。在加拿大,或者许多其他国家,风能的利用主要有两种形式:(1)大型风力发电(2)小型风力发电。大型风力发电提供电力到地方公用电网系统,该系统为大型社区提供能源。小型风力发电给当地指定地点提供少量的能源。随着最新风力发电机组技术的发展,风力发电的应用为可再生能源部门提供更多就业机会。

为了鼓励风能的利用,加拿大政府考虑了一下几项政策:

输入关税:规定一个固定的价格让电力生产者来出售风能

生产补贴:每生产一千瓦时将提供固定的价格或税收鼓励政策

投资补贴:通过赠款,贷款,税收优惠等待遇来帮助、支持风能的高额成本

投资刺激:给投资者提供更为方便的投资政策

可再生能源投资组合标准(配额的义务):要求电力生产商和分销商购买有特定比例的投资组合的可再生能源,并依据相关制度颁发可再生能源证书。

污染税:只针对产生污染的发电能源,而不是针对可再生能源

绿色定价:让电力公司或零售商为消费者提供一个他们可以购买能源类型的权利

这些政策往往会推动可再生renewable energy and require electricity producers and

suppliers to reduce carbon emissions from conventional sources such as carbon-intensive power plants (coal and natural gas) and promote carbon-free energy technologies such as wind, solar, biomass, geothermal and nuclear energy. n76 The usual practice is for energy companies to purchase electricity from a land-based generator located on a wind farm or other fixed locations. n77 Energy companies then prescribe to the government how much energy they plan on distributing to consumers, carefully following federal and provincial statutory regulations that set out administrative requirements (such as the granting of licenses) and power development standards (which are percentages of energy derived from renewable sources). Through these policy options, Canada's energy market is experiencing a dramatic shift away from conventional fossil fuels in favor of renewable sources of energy, primarily because of the positive effects on the environment and the economy. n78

[*213]

A. Costs Associated with Wind Energy

The following three factors influence the cost of wind energy: (1) the initial cost of wind turbine installation;

(2) interest on borrowed capital; and (3) energy output of the turbine(s). n79 Start-up costs include feasibility and resource assessment studies. n80 "Determining the extent, location, and quality of energy resources ... negotiation and site-approval costs," site preparation,and service connection to transmit power from the project site to the electric utility grid. n81 Windy areas generally produce less expensive electricity than less windy areas which is why resource assessment of wind at a potential site is crucial in developing wind farms. n82 In Canada, the cost for operating large-scale wind turbines is approximately $ 1500 (Cdn) per kilowatt for wind farms, and $ 3,000 per kilowatt for smaller-scale wind turbines. n83

In windy areas, wind power generation costs anywhere between five and ten cents per kilowatt hour (kWh), n84 a decrease from 30 cents per kilowatt-hour less than ten years ago. n85 In more remote communities, the cost of producing energy from diesel 能源的使用并且这些政策也要求电力生产商和供应减少使用传统的如碳密集发电厂(煤和天然气)等能源的二氧化碳排放量,并促进例如风能,太阳能,生物质能,地热能和核能等无碳能源技术的使用。通常采取的做法是,能源公司购买一种由位于风力发电厂或其他固定地点的陆基发电机所生产的电力。然后告知政府他们计划分配多少电力给顾客。它们会严格按照联邦各州的法定条例办事,这些条例规定了行政经费(如发放许可证)和电力发展的标准(能源中可再生能源的百分比)。因其对环境和经济发展的积极影响,这些政策的实施,使加拿大的能源市场正经历着一场从传统的矿石燃料到再生能源的巨大转变。

BY

经济法系

0642 班

孙建

A .有关风能的费用

以下三个因素影响风能的成本:( 1 )风力发电机组装的初步费用; ( 2 )借款的利息; ( 3 )能源输出的涡轮。初始费用包括可行性和资源评估报告“决定了能源资源的范围,地点和质量。谈判和网站批准的费用。”场地准备和服务,以及服务连接发射功率由ahe项目工地的电力网络提供。多风地区一般生产费用较低,电不是更少多风地区这就是为什么风力资源评估的一个潜在的网站是非常重要的开发风力的场所。在加拿大,成本经营大型风力涡轮机规模约为1500 (加元)每千瓦的风力发电场,美元3000每千瓦为小规模的风力发电厂

In windy areas, wind power generation costs anywhere between five and ten cents per kilowatt hour (kWh), n84 a decrease from 30 cents per kilowatt-hour less than ten years ago. n85 In more remote communities, the cost of producing energy from diesel generators ranges from $ 0.25 to $ 1.00 per kilowatt-hour. n86 By contrast, the cost of wind energy generation ranges from five to ten cents per kilowatt-hour. n87 In good wind areas then, wind [*214] energy is a cost effective power source. n88 Wind energy costs are declining with time, while prices charged for conventional fossil fuels are continually rising, making wind power more economically appealing. n89 As part of this plan, government efforts are encouraging the availability of wind energy purchase plans for residents, particularly in newly developed communities. n90 Furthermore, Canadian landowners often receive payment for installing wind turbines on their land for producing wind energy for the wider community. n91

B. Tax Incentives to Encourage Use of Wind Energy

Aside from entailing fewer deleterious effects on the environment, the application of wind energy in the marketplace is generally meant to compete against rising costs of energy supplied by conventional fossil fuels like coal or natural gas. To foster more efficient energy pricing regimes, the Canadian government offers tax incentives to businesses and potential investors to create renewable forms of energy that supplement modern environmental policies of sustainable development. n92 In its 1996 federal budget, the Canadian government allowed investors to fully write-off intangible start-up costs by investing in renewable energy projects like wind turbines. n93 In 1998, the Canadian government reiterated how these tax incentives would continue to be applied for companies planning to invest in energy conservation as "green" renewable energy. n94

For instance, Class 43.1 of Section II of the federal Income Tax Act, allows taxpayers to write-off any machinery or equipment that produces energy in a more efficient way or from alternative [*215] 在多风地区,风力发电的成本介于5和10美分每千瓦小时(千瓦时),这是比10 年前减少从30美分每千瓦小时更少。在较偏远的社区,其生产成本的能源来自柴油发电机范围从0.25美元到1.00美元每千瓦小时。相比之下,成本的风力发电范围5至10美分每千瓦小时。在风能领域良好然后,风能源是一种经济有效的电源。风能源成本正在下降。随着时间的推移,而常规化石燃料的价格不断上涨,使得风力发电在经济上更有吸引力。对于可用性风能购买计划的居民,特别是在新开发的社区。作为这项活动的一部分,政府的努力是令人鼓舞的。此外,加拿大地主常常收到在自己的土地用于生产风能付款安装风力涡轮机的广泛组织.

B.税务奖励措施,鼓励使用风能

除了在环境中造成的有害影响较少,风能的应用在市场上一般是指竞争成本上升,能源供应的传统矿物燃料如煤或天然气。为促进更有效的能源定价制度,加拿大政府提供税收激励措施的企业和潜在投资者创造可再生能源形式补充现代环境政策的可持续发展。在其1996年联邦预算,政府允许投资者充分注销无形资产开办费投资于可再生能源项目,如风力涡轮机。于1998年,加拿大政府重申,如何使这些税收奖励,将继续实行公司在投资于能源节约作为“绿色”可再生能源。

例如,第43.1条第二节联邦所得税法,使纳税人注销任何机械或设备,生产能源的更有效的

方式或除可再生资源此外,加拿renewable sources. n95 Moreover, the Canadian Renewable and Conservation Expenses (CRCE) is a category of fully deductible expenses for the start-up of renewable projects where at least 50 percent of the capital costs of equipment is deductible per year, meaning that investment through renewable technology triggers a capital cost allowance. n96 Under the CRCE, eligible expenditures are 100 percent deductible in the year incurred, and can be later applied indefinitely for deduction in later years. n97 Furthermore, an asset must be acquired after February 21, 1994 to be eligible under Class 43.1. n98 Those that qualify for the Class 43.1 tax write-off incentives include electricity generation systems and thermal energy systems, including wind energy electrical generation systems, geo-thermal systems,and small-scale hydro-electric systems. n99

Test wind turbines, which are the first turbines installed on a proposed wind farm to test the nature of energy production, are also eligible for tax incentives under Class 43.1, provided that a favorable opinion is given by the Minister of Natural Resources for any installation. n100 Costs which are ineligible for tax write-offs include operating costs, spare parts inventory, foundations and structures, and electrical distribution systems. n101 By promoting renewable energy as a tax incentive, both the federal and provincial governments in Canada offer investment tax credits, particularly for "Scientific Research and Research Development". n102 This policy attracts universities, private research labs, and energy companies to develop innovative wind turbine technologies through design reformulation and efficient energy output.[*216]

C. The Wind Power Production Incentive (WPPI)

The Canadian Renewable Energy Network (CanREN) was created by the Natural Resources Canada federal agency in applying technologies for the advancement of wind energy applications in Canada. n103 Performing similar roles to the U.S. Department of Energy, CanREN provides information and support to those who wish to learn and participate in wind energy programs. n104 As part of CanREN, the federal 大可再生能源和养护费(CRCE)是一类完全扣除费用为启动可再生能源项目,至少有百分之五十的资本费用的设备,每年可扣除,这意味着投资可再生能源技术触发资本海岸津贴。

根据CRCE ,后来适用无限期扣除后几年,资格符合规定的支出是百分之百扣除费用的一年,此外,资产必须是后获得。1994年2月21日,根据第43.1条,这些有资格税务注销奖励办法包括发电系统和热能源系统,包括风能发电系统,地热系统,和小水电电力系统.

试验风力系统,这是第一次风机安装在风电场测试的性质,能源生产,也可为税收奖励,前提是一个良好的舆论是由法务大臣任何费用不得通过促进可再生能源作为税收奖励,税务注销包括运营成本,备件库存,基础和结构,以及配电系统,无论是联邦和省政府在加拿大提供投资税收抵免,特别是对“科学研究和研究发展“这个政策吸引大学,私人研究实验室,与能源公司通过重新设计和高效的能源输出开发创新风力技术。

C.风能生产激励(WPP公司)

加拿大可再生能源网(CanREN )是由加拿大自然资源部的联邦机构在实施技术对于提高风能应用加拿大。类似的作用,以美国能源部,CanRENprovides信息和支援那些谁愿学习和实践风能程序。作为CanREN ,联邦风力发电激励

(WPPI )给出了生产奖励1美Wind Power Production Incentive (WPPI) gives a

production incentive of one cent per kilowatt-hour (kWh) to wind power producers, n105 much like the U.S. Wind Program. n106 Introduced in December 2001, WPPI is a federal and provincial project that encourages electric utility companies, independent power producers and other stakeholders in all jurisdictions to actively engage in wind energy initiatives. n107 Here, financial benefits are offered to energy producers to encourage wind energy generation by qualifying specific wind turbines that meet certain standards of operation. n108 Federal spending on promoting wind-generated programs throughout Canada almost quadrupled in the 2005 budget. n109 Under the WPPI, the Canadian government plans on investing $ 920 million on wind energy projects in the hopes of establishing a target of 4,000 megawatts by 2010. n110 分每千瓦小时(千瓦时),以风力发电生产者,很多像美国这样的风力公司在2001年12月介绍说,WPPI是联邦和省的项目,鼓励电力公司,独立的电力公司和其他公司积极参与。在这里,最后的好处是能源生产商提供,用来鼓励风力发电的排位能源具体风力发电机,以满足某些标准的计划。联邦的开支,促进风能产生程序整个加拿大几乎翻了两番,2005年预算.在WPPI ,加拿大政府计划投资九万二点〇万美元风能项目,希望能建立一个目标是4000兆瓦。

BY

经济法系

环境0841班

周宜静

To participate in the WPPI, prospective energy producers must negotiate a contribution agreement with Natural Resources [*217] Canada, upon three conditions: (1) the wind farm must be commissioned between April 1, 2002 and March 31, 2007; (2) the wind farm must be independently metered at the point of interconnection with the electricity grid; and (3) the wind farm must have a minimum capacity of 500 kilowatts (kW), while in northern and remote locations it must be 20 kilowatts (kW). n111 The WPPI will provide financial support for the installation of 1,000 MW of new capacity until 2007. n112 Promised as an incentive for electricity producers, this type of support covers nearly half the cost of the premium for wind energy production, compared to costs associated with conventional fossil fuel sources. n113 It is expected that by 2010, the WPPI will reduce greenhouse gas emissions by three megatonnes annually. n114 This form of partnership between government and private industry is echoed in other nations pursuing wind

energy programs.

D. Modern Initiatives to Promote Wind Energy in Canada - The Canadian Wind Energy Association

Since the introduction of the Canadian government's wind program, various provinces and territories have begun to take steps to encourage wind energy projects through financial incentives such as Renewable Portfolio Standards. n115 This is because Canada does not have a comprehensive national electricity grid system. n116 Rather, each province and territory regulates electricity on their own terms with varying emission standards. n117 As such, wind energy resource maps (also known as wind speed maps) are regularly published by Environment Canada in order to assess the potential of wind speeds, thereby [*218] helping establish wind turbine projects in various locations. n118 These maps display mean wind speeds and wind energy potential for sites across Canada. n119

The concept of a Renewable Portfolio Standard (RPS) requires electricity producers to purchase a specified percentage of their power from renewable sources of energy. n120 From here, retailers can match this percentage by choosing different types of renewable energy to purchase, thereby encouraging cost-effective renewable energy generation. n121 This is where wind energy purchase plans become a hallmark of consumer interest for renewable energy. n122 These purchase plans include a number of organizations that sell "green power" for home residents, businesses, and communities. Groups like the Canadian Wind Energy Association support RPS initiatives across Canada to steer energy producers towards the purchase of renewable energy, while providing consumers, particularly new home buyers, with more reasonable energy costs for electricity consumption. n123

In providing more streamline energy delivery to communities, energy utility operators are developing interconnections between electrical grids on wind farms and surrounding communities. n124 The most recent announcement by the Canadian Wind Energy Association relates to the establishment of the Canadian Wind Interconnection Grid Code (Grid Code) that would connect utility-scale wind farms to provincial electricity transmission [*219] grids across Canada. n125 This is a significant step considering that provinces and territories apply their own wind energy interconnection requirements at various times and regulate electricity systems, thereby contributing to uneven rates of renewable plans. n126 The Grid Code plan is expected to involve several Canadian utility and transmission operators with the North American Electricity Reliability Council (NERC) through a consultation process. n127

This mobilization effort through the Grid Code exemplifies the degree of harmonization that Canadian wind energy producers wish to provide by developing consistent wind energy standards in all jurisdictions, rather than standards applied in isolation. n128 It is hoped that by 2013, Canada's installed wind energy capacity will increase to 7,000 MW, which would be enough to power 1.8 million homes. n129 Other policy considerations that are associated with wind energy programs include crown land issues, transmission and interconnection (between wind farms and utility electrical grids) issues, environmental assessment issues, land use and zoning rules, and building codes and electrical standards. n130

V. Current Renewable Policy Initiatives Among Some Canadian Jurisdictions

Current renewable energy regimes in Canada include a host of federal and provincial projects, with some as independent efforts and others as legislative frameworks that cover the application of [*220] wind energy technology. n131 Various provinces including Alberta, Quebec, Ontario, and the Yukon Territory are quickly moving towards renewable-driven efforts to help power essential services such as transportation, agriculture, and household electricity. n132 These four jurisdictions are among Canada's leaders in adopting wind energy as a part of energy infrastructure plans by offering financial incentives to companies pursuing renewable energy. n133 Other provinces with little or no wind energy development are closely following recent

wind-generating projects and are likely to introduce similar renewable energy schemes. n134 Modern techniques applying wind energy technology include both land-based wind farms and, more recently, offshore-based wind farms. n135 Such initiatives require improved wind turbine technology and interconnection of electrical grids connecting wind farms and cities or remote communities. n136

A. Alberta

Alberta, the oil and gas capital of Canada, is one of the greatest polluters due to heavy reliance on conventional fossil fuels. n137 Despite this, Alberta has made tremendous strides in procuring creative wind energy programs and has become one of Canada's leaders in fostering renewable energy. n138 Canada's first [*221] commercial wind farm was built in southern Alberta, near Cowley Ridge. n139 With Alberta's booming economy and its massive influx of people, Alberta is at the forefront of vigorously applying wind technology to produce more efficient energy consumption. One such project is located at Castle River, Alberta, where a wind farm of sixty turbines generates enough electricity (around 39.5 MW) to supply thousands of homes. n140 The first wind turbine was established at the Castle River wind farm in November 1997. n141

Other major projects in Alberta include the McBride Lake Wind Farm, which has a wind-generating capacity of 75 MW, n142 the Summerview Wind Turbine, with a wind-generating capacity of 1.8 MW, n143 and the Waterton wind turbines, with a wind- [*222] generating capacity of 3.6 MW. n144 The McGrath Wind Power Project is yet another wind program with twenty turbines and the capacity to generate 30 MW of electricity to power approximately 13,000 homes. n145 The McGrath project is a $ 48 million zero-emissions project that was introduced in 2004 which will replace 82,000 tonnes of carbon dioxide per year; the equivalent to taking away 12,000 vehicles. n146 In the context of federal renewable programs under the Wind Power Production Incentive (WPPI), the McGrath Wind Power Project will receive $ 9 million in funding from the Canadian government over the next ten years. n147

Drawing from these renewable energy developments, municipalities are applying "green" programs to power basic infrastructure services. For instance, in 2001, Calgary, Alberta's largest city boasting a population of over 1 million people, switched its light-rail transit system from using conventional electricity to using wind-generated electricity. n148 Known as the Ride the Wind Project, the Calgary initiative uses zero-emissions electricity generated from the Castle River Wind Farm in the Pincher Creek area of southern Alberta to power the city's light-rail transit system. n149 This is the first public light-rail transit [*223] system in North America that fully operates on wind-generated electricity. n150 The transfer of electricity generation from conventional sources of energy to wind energy is powered by Vision Quest Windelectric Inc., a subsidiary of TransAlta Utilities. The Ride the Wind project serves as an example of the interconnection of wind farms in mainly rural communities with urban electrical grids to power municipal services like the light-rail transit.

B. Quebec

Although traditionally dependent upon hydroelectric power, Quebec is becoming one of the most active provinces in pursuing renewable wind energy programs. In 2004, the Quebec government announced a $ 1.5 billion (Canadian) windmill power project with the potential to double Canada's wind energy capacity. n151 Hydro Quebec (HQ), one of the province's top energy companies, hosted bids from two private companies, Cartier Wind Energy and Northland Power Income Fund, to build and operate eight wind turbine farms in eastern Quebec that would produce 1,000 MW of power by 2012. n152 More specifically, Cartier [*224] Wind Energy has contracted with HQ for 740 MW worth of wind power projects located in the Gaspesie-Iles-de-la-Madeleine region and the regional county municipality of Matane. n153

Under this program, Quebec, with the assistance of General Electric (GE), will install 660 wind turbines in eight projects throughout the province between 2006 and 2012 totaling 990 MW of wind capacity. n154 This development is a result of Hydro Quebec's 2003

proposal to supply 1,000 MW of new wind power capacity by 2012, supporting Quebec government Decrees 352 and 353 requesting this wind capacity amount. n155

A second project announced in 2004 involves a $ 300 million plan by Skypower Corporation to develop a wind farm in Riviere-du-Loup, Quebec. n156 This project is slated as Canada's largest private wind energy production thus far in the nation's wind producing history, with both Skypower and Hydro-Quebec signing an agreement for Skypower to build a 200 MW "SuperPark." n157 The SuperPark will supply approximately 625 million kilowatt-hours (kWh) of electricity, enough to power 70,000 homes and produce twenty permanent jobs. n158

[*225] A third wind project in Quebec consists of the creation of two wind farms in Murdochville, Quebec, with the help of over $ 36.5 million of federal funding under the auspices of Canada's Wind Power Production Incentive (WPPI). n159 Under this plan, sixty wind turbines on Mount Miller and Mount Copper will provide 108 MW of wind capacity, enough to power 150,000 homes in Quebec. n160 The Murdochville project has an estimated cost of $ 1.1 billion (Canadian), and the construction of the wind farms is currently underway in 2006.

C. Ontario

Goals such as meeting the growing demands of electricity consumption and reducing dependence on coal-generated energy inspired the government of Ontario to pass the Electricity Restructuring Act (ERA) in 2004. n161 This Act amended the 1998 Ontario Energy Board Act and the 1998 Electricity Act, thereby restructuring the province's electricity sector. n162 The main objective of the ERA is to expand alternative and renewable sources of electricity consumption, to reduce the rising costs of conventional fossil fuel energy, and to promote energy conservation. n163 In applying this statute, the Ontario Energy Board seeks to provide affordable electricity prices for consumers who have not signed contracts with electricity retailers. n164 The Act also establishes a Regulated Price Plan that offers the true cost of electricity and stabilizes pricing. n165

The government of Ontario enacted the Electricity Conservation Responsibility Act (Bill 21) on November 3, 2005 as [*226] a means to promote energy efficiency strategy in the province. n166 Schedule B of Bill 21 creates a "smart metering entity," which is an administrative body with powers to gather energy use information from individual households and businesses. n167 Smart meters are devices that calculate the amount of energy use, thus allowing local electricity distributors to track the amount and pattern of electricity use. n168 This contrasts with traditional energy meters that only sum up the total energy used in a given period. n169 The policy of Ontario's government is to install over 800,000 smart meters by December 2007 and to install enough Smart Meters for all Ontario consumers by 2010. n170

As part of this initiative, the government of Ontario is partnered with six local electricity distribution companies in a project known as PowerWISE. n171 PowerWISE is a multi-year initiative to encourage energy conservation to consumers. n172 Under this scheme, the provincial government and the electricity distribution companies are launching a consumer education campaign to raise awareness about rising energy costs as well as to determine when to reduce energy consumption during periods of high prices. n173 The smart meter campaign offers higher prices [*227] for consumers during on-peak hours (periods of highest electricity consumption), and lower prices during mid-peak, and off-peak hours (periods of lowest electricity consumption). n174

The new trend in global wind energy applications is to install wind farms offshore, particularly in smaller countries. n175 For instance, Toronto Hydro Energy Services Inc., along with Windshare, is installing a wind turbine offshore on Lake Ontario. n176 This offshore turbine will generate 1,000 megawatt-hours of power per year, providing energy to approximately 250 homes. n177 At 94 meters high, the 750 kilowatt-hour wind turbine costs $ 1.3 million (Canadian dollars). n178 At around 43 decibels, the wind turbine also

produces very little noise. n179 Another off-shore wind project is located on Lake Huron, known as the Huron Wind Farm, which is Ontario's first commercial wind farm. n180

[*228] Located in Kincardine, the Huron Wind Farm is a partnership between Ontario Power Generation (the province's largest "green energy" supplier) and British Energy Canada (the UK's largest electricity generating company). n181 The Huron Wind Farm is a collection of 1.8 MW turbines that serves approximately 2,000 to 3,000 homes on an annual basis. n182 The Huron Wind Farm underwent extensive administrative compliance procedures, whereby environmental assessments were conducted to determine the potential for wind energy development. n183 Such assessments helped the wind farm market and increased electricity distribution to consumers and businesses throughout Ontario. It also encourages compliance with Ontario's environmental legislation.

D. Yukon

The Yukon Territory is also active in Canada's push toward wind energy production. During the early 1980's, two Yukon government efforts, the Yukon Conservation Strategy and the Yukon Economic Strategy, considered how Yukon may incorporate renewable energy into the territory's existing infrastructure regime; this would replace imported diesel, a trend similarly found in China's rapidly-growing cities. n184 Wind turbine generation is now an established aspect of Y ukon's energy sector with the creation of two major wind farms on [*229] Haeckel Hill near the capital of Whitehorse. n185 Located at 4,700 feet (1,430 meters), the "two wind generators on Haeckel Hill" supply electricity to 150 homes. n186 This location was chosen because high altitudes produce stronger winds, which contribute to electricity generation from wind turbines. n187 The Haeckel Hill Wind Project serves as an alternative energy source, considering that much of Yukon's electricity supply comes from diesel generators. n188 Although two major hydro-electric plants provide some energy, most of the diesel plants are not connected to the hydro-electric plants.

The first wind turbine in the Yukon was manufactured in December 1992 by the Danish company Bonus Energy A/S, known as Bonus 150. n189 The wind turbine is a 150 kW Mark III, three-blade, conventional horizontal axis machine. n190 The sub-arctic climate of the Yukon provides insight into the preservation of wind turbines in severely cold temperatures, a climatic [*230] condition which may interfere in the operation of the equipment. n191 For instance, the effect of rime icing (buildup of ice on solid objects) is detrimental to a normal-functioning wind turbine. n192 The accumulation of rime ice on the leading edges of a propeller blade slows the rate of rotation of the blades, and consequently reduces the generation of electricity. n193 To counteract this effect, wind operators install blade heaters that minimize accumulation of ice build-up. n194

Without these blade heaters, the wind blades would stop altogether. n195 This is why Bonus Energy A/S and Yukon Energy worked together to make necessary technical modifications to the Bonus 150 wind turbine prior to installation on Haeckel Hill. n196 The modifications included low-temperature tolerant steels, synthetic lubricants, six-inch heating strips for leading edges on blades, heating systems in the generator, and a 30 meter-high base to capture high winds. n197 Other Yukon-made solutions included the burying of power lines to eliminate power outages, widening the heating strips used on blade edges to increase efficiency, and applying a black-colored fluorourethane coating to encourage ice shedding. n198 A second wind turbine was installed on Haeckel Hill in 2000 by the Danish company Vestas Wind Systems A/S. n199 Known as the Vestas V47-660 kW, this wind turbine generates 660 kW, has a tubular tower 37 meters high with three fiberglass blades, and is conditioned to face temperatures as low as -30 [degrees] C. n200 This project is modeled after the Bonus 150 wind turbine, but utilizes modern specifications [*231] and technology to power at least 130 homes. n201

It is remarkable that northern climates are incorporating wind turbine technology in supplying

electricity to regions that are mostly remote and extremely cold. Taking advantage of naturally-occurring high winds during the winter months, Yukon is certainly on its way to developing greater wind-generating capacity in the near future. This certainly raises the possibility of developing wind projects in northern regions around the world. In May 2003, over 100 delegates attended the Y ukon International Wind Energy Conference in Whitehorse. n202 The Yukon government has established a Community Wind Resource Assessment Program as a means to provide financial incentives and technical assistance to companies testing wind energy as an alternative to diesel fuel. n203 The Yukon experience helps foster new attitudes towards sustainable resource development, even in the most remote locations.

VI. Global Applications of Wind Energy

The global wind energy industry is growing at a rapid pace. n204 From a purely economic perspective, producing wind energy helps reduce the high costs of electricity consumption. n205 Fossil fuels represent the traditional means of producing energy, but given the finiteness of this resource, the high levels of pollution it produces, and the rapid rise in consumption costs from fossil fuels such as coal and natural gas, the advent of cheaper and more efficient wind energy tools like wind turbines are proving to be an attractive alternative. n206

While some forms of wind energy are more costly to apply than [*232] conventional means (such as with offshore wind projects), the high demand for electricity consumption is causing conventional energy costs to rise at a rapid rate. n207 In contrast, wind energy costs are declining due to the improved technological advancements in producing more efficient wind energy production from wind turbine engines. n208 Governments, industries, and consumers are beginning to realize the potential benefits associated with renewable energy extraction and application. n209 From an environmental perspective, the use of wind energy greatly reduces the adverse effects of land and air pollution, while conserving local habitats by lessening the impact on wildlife. n210 It is thus important to examine some global approaches in applying wind energy as an important renewable alternative.

A. United States: Department of Energy's Wind Program, the National Wind Technology Center and Other Initiatives

Since 1972, the United States has researched wind generation under the National Science Foundation, primarily in response to the oil crisis. n211 With respect to modern wind energy, the U.S. Department of Energy's Wind Program is a comprehensive strategy designed to promote wind power generation in the United States. n212 This program was instrumental in tripling the [*233] wind energy capacity in the U.S. from 1,600 MW in 1994 to over 6,700 MW by the end of 2004. n213 In guiding this trend, the United States provided a federal production tax credit, which is an inflation-adjusted credit of 1.9 cents per kilowatt-hour (kWh) for technologies for the first ten years of production. n214 Recently, the DOE Wind Program implemented two projects: the Next Generation Wind Turbine (1994-2003), and WindPACT (1999-2004). n215 These projects helped innovate designing larger turbines that produced more wind energy, and significantly reduced costs; for instance, the cost of operating utility-driven turbines has been reduced from $ 0.80 per kilowatt-hour (kWh) to under $ 0.04 per kilowatt-hour. n216

The DOE Wind Program involves a partnership between the DOE's Wind Powering Team and industry representatives by providing state support and utility plans. n217 This partnership helps create large-scale and small-scale projects in various communities across the nation. n218 The main objective of DOE Wind Program is to apply an average of 100 MW wind capacity in over thirty states by 2010. n219 Other more ambitious projects under the Wind Energy Multiyear Program Plan set targets of 100 gigawatts (GW) of wind energy capacity to be installed around the United States by 2020. n220 Working in conjunction with the DOE is the National Wind Technology Center (Wind Technology Center), managed by the National Renewable Energy Laboratory. n221

[*234] The Wind Technology Center develops better wind energy technologies to be applied in the wind energy industry. n222 It is involved in the Turbine Research Project, which seeks to improve existing wind turbine design and equipment functionality to promote cost-effective electricity. n223 More specifically, the Turbine Research Project aims to reduce energy costs produced by large wind systems from 3 cents per kilowatt-hour in Class 6 winds n224 from 2004 (average wind speeds of 6.7 meters per second at a 10-meter height) to 3 cents per kilowatt-hour in Class 4 winds by 2010 (average wind speeds of 5.8 meters per second at a 10-meter height). n225

This center is precisely why generating wind speed maps is so critical in producing efficient means of wind energy production. Here, the Wind Technology Center seeks competitive solicitations from industry partners that when selected share in the costs of the wind turbine project. n226 Beginning in 1997, the federal government and industry partners collaborated based in part on the DOE Wind Program's emphasis on cost-sharing turbine projects that improve efficiency standards. n227 For instance, there is a push in the industry towards developing stronger and lighter propeller blades with carbon fiber and carbon-glass hybrids. n228 This lighter composite design of the propeller blade allows the turbine to last longer in turbulent winds (which, over time, [*235] breaks down the surface materials of the blade), and rotate faster to provide more energy. n229

Considering that the rotor and blades comprise about 25 percent of the capital cost of the wind turbine (while capturing 100 percent of energy), it makes sense to research and modify the overall design and compositional materials of the turbine. n230 Thus, a healthy partnership exists between government-sponsored scientific research and market-based energy producers. n231 With this cooperation in place, the Wind Technology Center seeks to meet five percent of the nation's energy needs, and to double the number of states participating in wind energy programs. n232

These developments allow the Wind Technology Center to create better wind turbine technology in order to integrate wind power with electrical grids in various communities. Integration is achieved in four ways: (1) Wind Farm Monitoring; (2) Wind Farm Model Development; (3) Planning Models and Operations; and (4) Market Assessment. n233 First, wind farm monitoring involves gathering data on power output and searching for power output diversity. n234 Second, wind farm model development studies the behavior of power systems under varying conditions to identify grid stability because different wind farms are connected to different types of utility electrical grids. n235 This process eventually produces uneven electrical output levels, which forces wind planners to seriously consider the interconnectivity of grid systems when planning wind projects. n236 Third, the planning models and operations include the study of how multiple wind power plants or generators streamline each other's output under different windy environments. n237 Finally, market assessment [*236] determines how competitiveness can be introduced in the domestic and international economy by reducing the costs of wind energy from the effects of rising fossil fuel production. n238 In light of the increasing consumer demand, market assessment helps the wind industry appreciate economic factors in fine-tuning future projects, rather than focusing only on the science of wind generation. n239

Despite these efforts, some barriers to wind development include transmission constraints, utility grid integration, and site operations. Since the enactment of the Energy Policy Act in 1992, issues of open access to transmission lines have been presented to the Federal Energy Regulatory Commission (FERC). n240 Here, open access tariffs filed by transmission providers to FERC are limiting services available to wind producers, maintaining high transmission costs, and imposing penalties. n241 This has inspired FERC to develop a standard set of rules for developing interconnections between generators on wind farms and utility grid transmission lines. n242 Utility grid integration connects the wind farms to the electrical grids that supply surrounding communities. This is

significant considering that conventional energy sources generally do not incorporate the modern renewable wind technology and new design schemes of wind turbines on wind farms that supply energy to these grids.

Addressing such problems, FERC hosted a conference entitled "State of Wind Energy in Wholesale Electric Markets" to ensure that wind technology does not receive discriminatory treatment in electricity policy planning. n243 In response to this conference and with the help of the American Wind Energy Association, FERC issued a Notice of Proposed Rulemaking, in which the Commission proposed standards that would streamline the interconnection of grid systems and the economies of scale for [*237] large wind generating plants. n244 Other issues to be taken into consideration for wind site development include land use, noise pollution, and environmental impacts on wildlife. n245

In the United States, key jurisdictions participating in wind energy technologies include California, Texas, and Minnesota. n246 However, it is expected that most states will gradually incorporate wind energy programs, given the increasing recognition of wind energy's feasible application in resource management. For example, the Wind Turbine Company (WTC) of Washington has partnered with the DOE in developing utility-scale wind turbines that will produce cost-effective prices, keeping in line with government and industry cost-sharing plans. n247 In 2004, the DOE's National Renewable Energy Laboratory awarded the WTC $ 800,000 to work on developing prototype wind turbines, including a 750 kilowatt wind turbine. n248 Currently, the WTC is developing a two-blade, downwind wind turbine, a project closely affiliated with the Wind Technology Center. n249 Its first prototype model turbine (250 kilowatt) was tested at the Wind Technology Center in May 2000, while its second model (500 kilowatt) was installed in December 2001 in Los Angeles County, California. n250

Furthermore, wind energy is improving energy distribution in rural communities while creating unforeseen economic benefits. In states like Colorado, the 162 MW Colorado Green Wind Farm [*238] is now the fifth-largest wind project in the United States. n251 Aside from providing renewable energy, the wind farm has provided the local county of Prowers with an increase of 33 percent (or $ 33 million) in its tax base revenue. n252 The county credits the wind project for providing more job opportunities for local citizens in the renewable sector. n253 State-based initiatives such as this project include landowner and community meetings, workshops, state wind working groups, state wind resource maps, and wind consumer guides. n254

Other state departments like the U.S. Department of Agriculture (USDA) also offer funding support. n255 In April 2003, the USDA announced a $ 23 million package including loans, loan guarantees, and grants to help farmers, ranchers, and rural businesses purchase renewable energy systems. n256 This form of assistance derives from Section 9006 of the 2002 Farm Bill, which offers funds for developing energy from wind, solar, biomass, geothermal, and hydrogen sources. n257 Thus, the rural community is very much a part of the DOE Wind Program, and state energy offices often work in collaboration with USDA officials, the Farm Bureau, the Farmer's Union, agricultural schools, and the financial community. n258 Even DOE programs like Tribal Energy Program are administered under the Native American Wind Interest Group (NAWIG), which provide outreach materials and technical assistance to over 700 Native American tribes. n259 [*239]

B. European Union

Europe is the world's leader in harnessing wind energy potential in applying renewable energy projects. n260 As part of the European Union's effort to enhance wind energy technology, the European Wind Energy Association (EWEA) is instrumental in working with the European Commission (the European Union's administrative body) to develop innovative strategies in tackling the rising costs of energy production from fossil fuels. n261 For wind turbine manufacturing, the European world market share represents over 85 percent, while installed capacity represents over 75 percent. n262 Today, over 35 million European citizens

enjoy the benefits of wind energy generation. n263 On average, it is estimated that a ten megawatt wind farm can be constructed in two months, and produce enough energy for approximately 4,000 homes. n264

In realizing such benefits, European nations assess wind resources throughout the continent by utilizing national and regional data gathered from weather stations and specialized computer software, which eventually produce wind speed maps, or "wind atlases." n265 Such efforts reveal that the overall wind capacity in Europe is estimated at 600 terawatt-hours (TWh) for [*240] land-based wind farms and 3,000 TWh for offshore wind parks. n266 European nations are using cutting edge wind turbine technology. n267 For instance, in 1980 the average rotor diameter of wind turbines were only fifteen meters producing 50 kilowatts, while in 2003 the average rotor diameter of wind turbines were 124 meters producing 5,000 kilowatts of energy. n268

The latest trend in global wind energy is the development of large-scale offshore wind turbines. n269 These offshore wind farms are fully operating off the coasts of Denmark, Sweden, Ireland, the Netherlands, and the United Kingdom. n270 The significance of offshore wind turbine projects is the higher mean wind speeds, low turbulence (meaning longer wind turbine life), and fewer geographical barriers. n271 Thus, offshore wind energy becomes an attractive option, considering some of the potential problems associated with onshore wind energy (i.e. population density, land ownership, positioning of wind turbines in relation to roads and overhead power lines, uninhabited or used buildings, and avoidance of specially-protected environmental zones). n272

In terms of wind energy installation capacity, the most successful European nations are Germany (at 16,629 MW at end of 2004), Spain (at 8,263 MW), and Denmark (at 3,117 MW), with penetration levels in the marketplace at 7 percent, 6.5 percent, and 20 percent, respectively. n273 These percentages reflecting penetration in the marketplace refer to the degree by which wind [*241] energy is utilized as part of powering electricity generation to consumers. n274 The European Union's Renewable Energy Directive (Directive) seeks to provide electricity from renewable sources to increase from 14 percent in 1997 to 21 percent in 2010, with half of this increase to be delivered by wind power. n275 Under the Directive, Member States shall provide a guarantee of origin of electricity produced from renewable sources, carefully specifying the energy source from which the electricity was produced, and pertinent data of location of wind projects and electricity distribution criteria. n276 The Directive also addresses grid system issues of interconnecting wind farms with electrical grids that supply energy to communities. n277

Where appropriate, Member States may require transmission system operators and distribution system operators to bear all the costs of installing a grid system network. n278 After every five years, a detailed summary report by Member States must outline national indicative targets for future consumption of electricity. n279 This summary report shall be submitted to the Commission, which will present findings of progress related to electricity consumption from renewable and non-renewable sources. n280 The Directive also follows the global trend of streamlining administrative procedures related to reducing [*242] barriers to electricity supply from renewable sources. n281 In particular, under Article 6, the Directive indicates that there should be no discrimination in the charging of transmission and distribution fees for renewable-generated electricity, especially in peripheral regions, island regions, and regions of low population density. n282 Thus, a careful monitoring of specific activities of wind projects is conducted by very detailed legislative frameworks. n283

C. Denmark

Denmark is one of the European Union's leaders in wind energy production. n284 Enormous progress in the development and implementation of wind energy programs can be seen in Denmark. n285 Already established as one of the most innovative renewable energy markets in the world, Denmark has spurned other nations to develop new strategies for renewable energy application, particularly for wind energy projects. n286 In particular, the Danish model of wind

新能源风力发电的发展思路探索

新能源风力发电的发展思路探索 发表时间:2019-04-01T11:54:53.143Z 来源:《电力设备》2018年第28期作者:刘波 [导读] 摘要:风能是一种十分清洁的可再生能源,具有良好的经济效益和环境效益,较好地满足当前我国用电量增加的问题。 (新疆宏远建设集团有限公司新疆可克达拉市 835213) 摘要:风能是一种十分清洁的可再生能源,具有良好的经济效益和环境效益,较好地满足当前我国用电量增加的问题。我国具有大量的风能资源,使得风能在我国有十分广阔的发展前景,国家要继续推动风能产业的发展,保证市场公平,推动风能汗液的技术研发,推动风能发电的全面发展。 关键词:新能源风力发电;发展思路;分析 1风力发电 1.1风力发电的原理和特点 风力发电是一个将风能的机械能转化成电能的过程,这个转化过程由风力发电机和其控制系统实现,当风力进入发电系统后,便成为发电系统的输入信号,系统内的风力控制器输出桨距角信号,对机械的转和输出功率进行调整。机械产生的能量会进入发电机,最后转化成电能进入电网[1]。风能发电的特点在于风能是可再生的,发电厂的建设周期很短,装机规模灵活、具有较高的可靠性,同时运营维护简单,造价低。 1.2风力发电系统的类型 常见的风力发电系统主要有三种,包括恒速感应发电系统,变速恒频双馈式发电系统和变速同步发电系统。恒速感应发电系统在当前使用的最为广泛,这种系统的构造简单,造价很低,发电过程比较容易控制,后期维护投入非常低;但是这类系统存在着不能有效控制无功补偿的问题,使得供电效率很低[2]。变速恒频双馈式发电主要使用在电力生产中,这类系统的优势在于发电具有较高的稳定性,而且容易控制,不需要无功补偿,成本低的同时对风能具有较高的转化效率;但是这类系统比较复杂,使得维护比较困难。变速同步发电系统还处于摸索阶段,而且造价很高,目前并没有太多的使用,但是该系统具备着不需要无功补偿和稳定性高的优势,具有较高的潜力。 2我国新能源风力发电的现状 《可再生能源法》作为我国对新能源发展的规划,其预示着可再生能源将会成为能源发展的重要部分,经过十多年的努力,我国的风力发电水平已经不容小觑,风电装机比重越来越高,到2008年8月,已经进入世界前五,这也标志着中国已经成为可再生能源大国。目前,我国风电产业发展十分迅猛,增长率和总装机量都占全世界第一,已成为全世界范围内风电系统最大的国家。 如今我国对于国内风电发展所需的一般零件都已能够自给自足,但在一些技术要求较高的部件如励磁系统和一些关键电子元件仍然需要从外国大量进口。因此,我国必须在高层技术方面进行创新和突破,才能继续保持高速的发展趋势。 3问题分析 3.1风能能源的评估有待完善 对于风能资源进行评估并以此制定风力发电的规划是我国风力发电进行管理的基础。目前我国的相关机构在开展的风力能源评估还处于有点完善的状态,距离世界上的发达国家还存在明显的差距,因此,开展对于风力发电的相关资料整理以及重新进行调查评估是非常有必要的,相关部门应该更加严格的对我国沿海地区和内陆地区的风力分别进行检测和评估,同时还需要不断对我国现有的风力发电场所产能进行更科学合理的长远规划。 3.2自主创新需要提升 在目前我国对于风力发电产业生态圈建设尚未完成的过程中,我国的企业对于大型兆瓦发电机的信息技术吸收还没有充分进行。与此同时,我国对于风力发电机组中的核心设备和相关零件还无法进行自主生产,这是制约我国风力发电发展的关键问题。因此更快地进行我国风力发电设备制作的自主创新,同时加强完整知识产权的风力发电机组设备的研究,都是保障我国风力发电事业发展的重要目标[1]。 3.3国家电力网络与风力发电的发展不协调 目前我国电力网络设施的管理和运用并没有与风力发电产生足够的协调性。在风力发电场所接入电网的工作并没有很好地得到完成,整个国家电网的发展规划也缺乏对于风力发电场所的重视。就这个问题,还需要我国的政府相关部门更好地制定相应的管理办法,从而保证风力发电场所与国家电网之间可以共同协调发展,更好地为风力发电的发展提供保障。 4新能源风力发电的发展思路 4.1政府提供足够的政策 风力发电是一项十分巨大的工程,没有足够底气的公司是不会冒这个风险的,因此政府如果能够给出一些充满诱惑的“橄榄枝”,那些企业还是会冒一下风险闯一下的。比如,政府颁布多购多奖励,少购少处罚的政策,通过政策来刺激企业的投资,这样能够带动起风力发电的发展。其次,政府可以为企业提供电厂和电网的建设点,并为这些企业提供一定的补助,让害怕风险的企业有了保障,这样就会出现越来越多的企业投资风力发电,达到推动风力发电发展的目的。 4.2实现风力发电的产业化发展 在越来越多的企业投入风力发电后,风电企业就会慢慢变得和其他发电产业一样形成一个产业集群。这些企业能够在产业集群中相互竞争相互促进,就和达尔文自然选择学说一样,在竞争中优胜劣汰,从而营造一个以发展为目标的产业集群。这样就能使电力企业朝着更好的方向前进,促进经济的发展。 4.3政府完善市场检查管理制度 为了解决风电发展规划与电网规划的不相协调,政府应该采取一系列的措施,并且完善监管制度。首先,要吸引其余公司加入风电产业,这就需要政府对风电产业结构体制进行改革,根据市场经济规律在市场中建立一个公平开放、能够为国内投资者提供投资的平台。其次,为了使投资的主体群众保持一个较高的积极性,政府应该放低政策,提供一个多元化的投资平台。同时相关部门还要对风力发电投资项目可能出现的问题有所保障,这就需要政府规范市场秩序,营造一个公平的市场,保证风电产业的高速发展。 4.4明确我国风力发电的发展目标 为了促进我国风力发电的健康发展,同时不断提升我国电网运行过程中的安全性和可靠性,首先需要对我国风力发电的发展目标进行

中国风力发电的发展现状及未来前景要点

中国风电发展现状及前景 前言 随着能源与环境问题的日益突出,世界各国正在把更多目光投向可再生能源,其中风能因其自身优势,作为可再生能源的重要类别,在地球上是最古老、最重要的能源之一,具有巨大蕴藏量、可再生、分布广、无污染的特性,成为全球普遍欢迎的清洁能源,风力发电成为目前最具规模化开发条件和商业化发展前景的可再生能源发电方式。 风,来无影、去无踪,是无污染、可再生能源。一台单机容量为1兆瓦的风电装机与同容量火电装机相比,每年可减排2000吨二氧化碳、10吨二氧化硫、6吨二氧化氮。随着《可再生能源法》的颁布,中国已把风能利用放在重要位置。 一、国内外风电市场现状 1.国外风机发展现状 随着世界各国对环境问题认识的不断深入,可再生能源综合利用的技术也在不断发展。在各国政府制订的相应政策支持和推动下,风力发电产业也在高速发展。截至2011年底,世界风电装机量达到237669MW,新增装机量43279MW,增长率22.3%,增速与2010年持平,低于2009年32%的增速。由表一,可以看出中国风电装机量62364MW,远远超过世界其他各国装机量,而德国依然是欧洲装机量最多的国家。从图表三中,很明显的看出,从2001年到2004年,风电装机增速是在下降的,2004年到2009年风电有处于一个快速发展期,直到近两年风电装机的增速又降为22%左右,可见风电的发展正处在一个由快速扩张到技术提

升的阶段。 图表 1 世界风电装机总量图 图表 2 世界近10年新增装机量示意图

图表 3 世界风电每年装机量增速

图表 4 总装机量各国所占份额

图表 5 2011年新增装机量各国所占份额 2.国内风电发展现状 中国的风电产业更是突飞猛进:2009年当年的装机容量已超过欧洲各国,名列世界第二。2010年将新增1892.7万kW,超越美国,成为世界第一。2011年装机总量到达惊人的62364MW。在图6中可以看出,中国风电正经历一个跨越式发展,这对世界风电的发展起到了至关重要的作用。然而,图8 中,我们能够清楚的看出自2007年以后,虽然新增装机量很大,但增速却明显下降,而其他国家,比如美国、德国,这些年维持着一个稳定的增速。由此,我们应该意识到,我国风电,尤其是陆上风电,正在进入一个转型期,从发展期进入成熟期,从量的追求进入到对质的提升。 图表 6 中国每年风电装机量示意图

风力发电环境影响分析

风力发电环境影响分析 北京计鹏信息咨询有限公司 2013年11月

编者按 “十一五”以来,我国风电发展迅猛,风电对环境的影响一直受到各方关注,也是人们质疑风电开发的主要因素,本报告主要分析风电对生态环境的影响,希望能为风电开发工作提供借鉴和参考。 报告编制历时一个多月,在总结我司多年来风电工程项目的经验的基础上,查阅了大量资料,征询多位风电行业专家和前辈意见后编制而成,同时也得到了公司领导和相关专业同事的支持。 报告编制过程中得到了多名风电行业老前辈、老专家的悉心指导,并且提供大量的素材,他们的经验、思路和眼光提升了报告的高度和质量,在此对他们表示诚挚的感谢! 报告编制过程中参考了大量网络、杂志等资料,对充实报告起到至关重要作用,在此对相关的媒体资源表示感谢! 报告编制过程中,公司相关领导、同事积极提供思路、素材、资料等,对报告进行审核,为报告最终完成做了大量工作,在此对他们的付出表示感谢! 此外,报告的编制比较匆忙,资料、案例比较有限,经验也不足,如有疏漏、错误等,也请广大读者提出宝贵意见或提供更多素材,我们将及时调整和补充。

目录 第1章概述 (1) 第2章风电环境效益 (3) 第3章主要环境污染分析 (5) 1光污染 (6) 2声污染 (9) 3电磁辐射与干扰 (13) 4视觉(景观)污染 (15) 5生态破坏与污染 (17) 6化学污染 (19) 第4章主要影响分析 (21) 1对居民的影响 (22) 2对鸟类的影响 (24) 3对森林植被影响 (28) 4对气候的影响 (30) 第5章总结与建议 (35)

第1章概述

能源是经济和社会发展的重要基础,是人类生产和生活必需的基本物质保障,也是我国现代化建设的战略重点。社会的进步和经济的发展在很大程度上取决于能源的供应和利用。我国幅员辽阔、资源丰富,但人口众多,人均资源占有量较少,随着国民经济的快速发展和人民生活水平的不断提高,对能源的需求也越来越高,未来一段时间我国的能源生产、供应与需要的矛盾仍十分严峻,能源安全问题更加突出。 新能源是未来能源发展的方向,清洁、循环、可持续的能源是人类的追求。风能作为新能源重要的一部分,利用起来相对较简单,生产过程中不产生污染和无废弃物排放,且储量大,永不枯竭。因此,风能将是21世纪最有发展前途的绿色能源和人类社会经济持续发展新动力之一。 风能是一种古老而新生的能源.自20世纪70年代能源危机以来,人们对风能再次产生了极大的兴趣,至2012年底,全世界风电总装机容量已达282.5GW。我国风电装机容量超过75GW。 风力发电的环保效益是有目共睹的,它不会污染空气或水源,不会排放有毒或有害物质,对公众安全没有威胁。但风电场对局部生态环境及自然景观等影响也日益受到人们的关注,主要体现在风机的视觉污染(或自然景观问题)、噪音、鸟类安全及电磁干扰等方面。风电场对环境的影响比单台风电机组对环境更大。因此,在风电场规划、设计阶段,就应该充分考虑风电场可能对环境造成的各种不利影响,并采取必要措施将其降至可接受的程度。

21世纪新能源之风力发电 感想

风力发电原理及现状 摘要:能源短缺和地球生态环境污染已经成为人类面临的最大问题。节能减排,寻找可再生的清洁能源,已经是能源发展的必然趋势。风能,作为21世纪可再生的清洁的新能源,已被人们广泛地关注。随着电力技术的不断进步及风能产业的不断发展,风能将给人们带来无尽的财富。本文介绍了风力发电的原理,风能的利用形式,以及国内外风能发展情况。 关键词:能源;风力发电;原理;优缺点;现状; Abstract: Nowadays, we are facing a major problem on the shortage of energy and the pollution of the earth's ecological environment. It is an inevitable trend to save energy and reduce emission. We are eager to look for some new energy. And wind energy, as a renewable clean energy in twenty-first Century, has been widely concerned by people. With the development of wind energy industry, it will give us endless fortune. This essayfocuses on the principle of wind energy, the use of wind energy, and the current situation of wind energy internal and enternal. Keywords: power; wind energy; principle; advantages; present situation 正文: 能源短缺和地球生态环境污染已经成为人类面临的最大问题。本世纪初进行的世界能源储量调查显示,全球剩余煤炭只能维持约216年,石油只能维持45年,天然气只能维持61年,用于核发电的铀也只能维持71年。另一方面,煤炭、石油等矿物能源的使用,产生大量的CO2、SO2等温室气体,造成全球变暖,冰川融化,海平面升高,暴风雨和酸雨等自然灾害频繁发生,给人类带来无穷的烦恼。根据计算,现在全球每年排放的CO2已经超过500亿吨。我国能源消费以煤为主,CO2的排放量大约占世界的25%,位居世界第一,所以减少排放CO2、SO2等温室气体,已经成为刻不容缓的大事。推广可再生能源是今后的必然趋势。 风能,随着地球大气的往复运动,周而复始地循环,几十亿年内不会枯竭,因此我们把它们称为可再生能源。风力发电,作为21世纪可再生的清洁的新能源,已被人们广泛地关注。风力发电是新能源中技术中相对成熟的、较具规模开发条件和商业化发展前景的发电方式之一。风力发电区别于传统的火力发电,它所用的资源是取之不尽而用之不竭的。所以我们更加需要利用好这大自然给予我们的恩赐。 风能利用形式,主要有两大类: 1.直接利用风能:直接利用风能驱动设备,也就是我们俗话说的风车。它在农村中经常还能见到用来灌溉农田的装置。这是一种最朴素的风能利用方式,也是最实在的。 2.间接形式:即将风能转化为电能。电能可谓是18,19世纪最伟大的发现,如今,电能可以被我们利用到世界的各个角落。风力发电,通过电网传输到需要的地方,这便间接地利用了风能。虽说过程要比风车复杂,但他的应用范围有了质的飞跃。 风力发电原理 风力发电的原理,其实和其他的发电方式都是一样的,总归是让发电机的轴“动起来”,从而切割磁感线自由电子因受到洛仑兹力,而出现了定向运动,这就是我们所学过的右手定则,金属阳离子则向另一端运动,这便产生了电势差,从而有了电能。

风力发电环评报告

目录 风力发电项目环境影响分析技术报告 1、前言 风能是一种清洁的能源。风力发电项目是一类不消耗矿物能源、污染环境少、建设周期短、建设规模灵活,具有良好的社会效益和经济效益的新兴能源项目。随着人们对环境保护意识的增强,以及国家有关部门对风力发电项目在政策上的扶持,风力发电在我国得到了迅速的发展。 风力发电项目与其他工业生产类项目不同,有其自身的特点,风电项目在生产过程中没有废气、废水和废渣等污染物产生,对环境的影响主要在噪声、光影和生态等方面。下面以铁岭市昌图风力发电场工程项目为例具体说明。 2、项目概况 铁岭市昌图县位于辽宁省北部地区,是我省风能资源最为丰富的地区之一,风速大,风向稳定,而且大部分地区地势平坦、开阔,适合于大规模开发、安装风力发电机组。 昌图风力发电项目总装机容量为49300kw,安装850 kw风力发电机58台,年上网电量10748万kwh。工程总投资为49881万元。其中风力发电场工程静态投资48689万元,单位投资9876元/千瓦。风力发电场址位于铁岭市昌图县昌图镇前哈石马沟村附近,场址中心坐标为东经124°10′,北纬42°48′,场址处为起伏平缓的山地,平均海拔高度为220—390米。风电场场区规划面积28 km2,区域内土地利用现状为:耕地约占%,林地约占46%,果园占地9%,村屯用地约占3%,水域%,道路约占3%,整体属于半山区--丘陵生态系统。该项目场址所在区域内无风景旅游区、国家、省、市级重点文物保护单位,不属于各类保护区。

3、风电项目组成及工艺流程 项目组成 昌图风力发电项目工程建设内容主要包括风力发电场工程和输电线路工程二部分。 3.1.1、风力发电场工程 (1)新建一座升压站,占地面积5547m2,站内建设主控制楼一座(二层)建筑面积507.5m2,建设10kv室内配电装置室一座(一层),建筑面积198.25 m2,建设附属建筑一座(一层)为砖混结构,其建筑面积187.15 m2。 (2)风力发电机组基础及箱式变电站58个,采用钢筋混凝土结构,单个机组占地面积约为266.7m2,总占地面积约15467m2。 (3)新建道路17km,道路征地宽5.5m,占地面积93467m2,改扩建道路18km,将原有3m宽道路拓宽至4.5m,新增占地面积27000m2。 3.1.2、输电线路工程 新建一条11km长的66kv输电线路,由66kv升压站至220kv昌图变电所联网,线路采用变压器组接线,导线采用LGJ-240钢芯铝绞线,共设输电杆塔约44根,其中拐角杆塔9根,单根杆塔占地约36m2。非拐角杆塔35根,单根杆塔占地约16m2。全部杆塔总占地约884m2。输电杆塔采用铁塔,高度为18--27米。 3.1.3、主要设备 该项目的主要设备有风力发电机组和箱式变电站58套、主变压器2台、高压开关柜13台等。具体情况见表1。

风力发电场的主要环境问题

收稿日期:2004-05-24 作者简介:赵大庆(1963-),男,辽宁沈阳人,高级工程师。 ?问题探讨? 风力发电场的主要环境问题 Main Environmental Problem of Wind Electric Power Generation Field 赵大庆1 王 莹2 韩玺山1 (1.辽宁省气象局 沈阳 110001);(2.沈阳环境科学研究院 沈阳 110016) 摘要 本文介绍了风电场建设时周边环境的有利、不利影响及风力发电场选址的气象、社会自然条件,并就此提出建议。 关键词 风电场 影响 气象 Abstract The article introduces the construction of wind electric power generation field that is influenced by the ad 2vanced and disadvanced conditions surrounding and its conditions of meteorology 、society and nature ,then provides the sug 2gestions. K ey words Wind E lectric Power Generation Field E ffect Meteorology 目前从世界各地来看,利用风能发电是开发新 能源、改善环境的重要组成部分。从90年代起辽宁省在利用风能等新能源方面有较大的进展。从全省风能分布看,资源量较大区主要集中在沿海及西北部干旱地区,到目前已建成风场8处,在建风场4处,待建风场有6处。 1 风电场的环境问题 风电场建设对周边环境影响可分为有利影响和不利影响。1.1 有利影响 (1)充分利用风能资源,减少常规能源的消耗,符合国家能源改革的方向。而且风能又是可再生能源(即在同一地点相距6~8倍风轮高度的距离后风能又达到原值)。取之不尽,用之不竭。 (2)风力发电场对比同规模使用燃煤电厂其向大气排放的污染物为零,实现固体、气体零排放。对保护大气环境有积极作用。 (3)风力发电场比燃煤电厂可节省大量淡水资源,减少水环境污染。特别是对缺少淡水资源的沿海及干旱地区更重要。 (4)在沿海及旅游区风力机群也是一道风景线,可在一定程度上反映经济、文化、环境相融洽的程度。 (5)通过实物教育,可增强公众开发自然资源、 保护环境的意识。 (6)建设风力电场对发展沿海经济有重大意义。如建海产冷库、开展海水淡化、进行电量季节调峰等都起到关键作用。1.2 不利影响1.2.1 噪声是公众关心的一个重要问题 风力发电机的噪声是来源于经过叶片的气流和风轮产生的尾流所形成,其强度依赖于叶尖线速度和叶片的空气动力负荷,这种噪声源与风力发电机的机型及塔架设计有关。噪声影响分为单机影响和机群影响。 单机噪声:为了达到距风机150m 处的噪声值小于45dB (A )的要求,厂商在制造时就采取了以下措施,风电机选用隔音防震型,变速齿轮箱为减噪型,叶片用减速叶片等。一般所用风机风轮转速在27r/min ,产生的噪声较小,据厂家介绍,离风机50~150m 范围内,噪声级分别为53~33dB (A )。 机群噪声:风力发电机机群的排列,是经过风洞试验后确定的,即风机行距在6D (D 为风轮直径),间距在4D ~6D 风速又恢复到常态,即噪声强度也随着风速减小而明显衰减。因此不存在风力机群噪声总合影响的问题。 本底噪声:风力发电场因考虑风能资源,大多 — 66—环境保护科学 第31卷 总第129期 2005年6月

新能源风力发电考试题库

风电专业考试题库 一、填空题 1、风力发电机开始发电时,轮毂高度处的最低风速叫()。 (切入风速) 2、严格按照制造厂家提供的维护日期表对风力发电机组进行的预防性维护是()。(定期维护) 3、禁止一人爬梯或在塔内工作,为安全起见应至少有人工作。 (两) 4、()是设在水平轴风力发电机组顶部内装有传动和其他装置的机壳。(机舱) 5、风能的大小与风速的()成正比。(立方) 6、风力发电机达到额定功率输出时规定的风速叫。(额定风速) 7、叶轮旋转时叶尖运动所生成圆的投影面积称为() 。 (扫掠面积) 8、风力发电机的接地电阻应每年测试() 次。(一) 9、风力发电机年度维护计划应() 维护一次。(每年) 10、SL1500齿轮箱油滤芯的更换周期为()个月。(6) 11、G52机组的额定功率() KW。(850) 12、凡采用保护接零的供电系统,其中性点接地电阻不得超过()。(4欧) 13、在风力发电机电源线上,并联电容器的目的是为了()。 (提高功率因素) 14、风轮的叶尖速比是风轮的()和设计风速之比。(叶尖速度) 15、风力发电机组的偏航系统的主要作用是与其控制系统配合,使风电机的风轮在正常情况下处于() 。(迎风状态) 16、风电场生产必须坚持()() 的原则。 (安全第一,预防为主) 17、()是风电场选址必须考虑的重要因素之一。(风况) 18、风力发电机的()()是表示风力发电机的净电输出功率和轮毂高度处风速的函数关系。(功率曲线) 19、风力发电机组投运后,一般在() 后进行首次维护。 (三个月) 20、瞬时风速的最大值称为() 。(极大风速) 21、正常工作条件下,风力发电机组输出的最高净电功率称为() 。 (最大功率) 22、在国家标准中规定,使用“downwind”来表示()。 (主风方向) 23、在国家标准中规定,使用“pitch angle”来表示()。 (桨距角) 24、在国家标准中规定,使用“wind turbine”来表示。

风力发电场的主要环境问题

风力发电场的主要环境问题 风力发电相对于传统的火力发电而言具有十分明显的优势,一方面其具有更高的能源利用效率,另一方面其对于环境的危害性更低。风能本质上是一种可再生能源,不会出现能源不足的情况。但是在实际的风能利用过程中发现,其也会对环境产生一定的负面影响,本文重点探讨了风力发电站的主要环境问题,以期提高我国风力发电的环保性。 标签:风能;风力发电站;环境问题 1 风力发电场的环境问题探讨 尽管风能是一种清洁能源,但是其在实际的应用中还是会对于环境产生一定的影响,下面简单的分析一下风力发电站周边的环境问题: 1.1 噪声问题 风力发电主要是依靠风能带动风力发电机的运作来产生电能,在这一过程中,发电机的叶片处于高速的旋转状态下,当空气经过叶片产生的气流以及风轮产生的尾流会产生一定的噪声,噪声的强度与叶轮转动的速度直接相关,同时与发电机的型号以及塔架的结构也有着一定的关系。通常情况下,对于风力发电场的噪声问题研究,可以分为单机噪声以及机群噪声两个方面进行研究,具体研究内容如下: 1.1.1 单机噪声 单机噪声指的是一个发电机所产生的噪声,风力发电机在生产设计的过程中就考虑了噪声方面的问题,厂家为了降低噪声强度,往往会选用隔音防震型叶片,并且会选用减噪型的齿轮箱,选用的叶片也是减速叶片。一般情况下,风机风轮的转速也会控制在27r/min,这种速度下产生的噪声并不大,在距离发电场150米的位置噪声的强度只有33dB(A)。 1.1.2 机群噪声 风力发电场并不是只有一架发电机,其往往是多个发电机经过科学的设计而排列的。通常情况下,相邻的两个风机距离应当保持在6D(D指的是风轮的直径),在实际的测试中发现当相邻的风机距离保持在4D以上时,两个风机之间的影响就可以忽略不计了,因此可以肯定风力发电场并不存在机群噪声。 1.2 电磁辐射 电磁辐射是一种普遍存在的辐射,只要有电气设备运行都会产生,只不过大多数的电气设备产生的辐射量都控制在正常的限度以内,并不会对人体产生危

(完整版)风力发电研究报告(精选多篇)

风力发电调研报告(精选多篇) 第一篇:2014-2014年中国新疆风力发电行业全景调研与投资战略报告 2014-2014年中国新疆风力发电行业全景调研与投资战略报告报告链接: 报告目录第一章风能资源的概述1.1风能简介1.1.1风能的定义1.1.2风能的特点1.1.3风能密度 第二章 1.1.4风能的利用方式1.2中国的风能资源与利用1. 2.1中国风能资源的形成及分布1.2.2中国风能资源储量与有效地区1.2.3中国风能开发应用状况1.2.4风能开发可缓解中国能源紧张1.2.5风能开发尚不成熟1.3风力发电的生命周期1. 3.1生命周期1.3.2风力发电机组组成1.3.3各阶段环境影响分析1.3.4综合分析与比较中国风力发电产业的发展2.1全球风力发电的总体分析2.1.12014年世界风力发电产业概况2.1.22014年欧盟风力发电产业发展分析2.1.32014年世界各国积极推进风电产业发展 2.1.42014-2014年全球风电市场预测2.2中国风电产业的发展综述2.2.1我国风电产业发展回顾2.2.2中国风电产业日益走向成熟 2.2.32014年我国风力发电能力排名世界第五2.2.42014年中国风电装机总量突破1300万千瓦2.2.5国内风电市场发展常态机制的构成2.2.6风电市场发展机会与竞争并存2.2.7中国

大力发展海上风力发电 2.3中国风力发电产业发展面临的问题 2.3.1风电产业繁荣发展下存在的隐忧 2.3.2中国风电产业存在硬伤 2.3.3国内风电发展面临的困难2.3.4阻碍风电产业发展的四道槛2.3.5风电产业突破瓶颈还有待时日 2.4中国风力发电产业的发展策略 2.4.1中国风电产业的出路分析2.4.2国内风电发展的措施2.4.3改善产业环境加快风电步伐 第三章2.4.5技术是推动风力发电发展的动力2.4.6风电市场的发展需加大电网建设的投入中国风力等新能源发电行业相关经济数据分析 3.12014-2014年中国风力等新能源发电业总体数据分析3.1.12014年我国风力等新能源发电业全部企业数据分析3.1.22014年我国风力等新能源发电业全部企业数据分析 3.1.32014年我国风力等新能源发电行业全部企业数据分析3.22014-2014年我国风力等新能源发电业不同所有制企业数据分析 分析 分析 析 析 第四章 3.2.12014年我国风力等新能源发电业不同所有制企业数据3.2.22014年我国风力等新能源发电业不同所有制企业数据 3.32014-

基于新能源发电风力发电技术的探讨 孟令峰

基于新能源发电风力发电技术的探讨孟令峰 摘要:随着社会主义的经济快速发展,工业的发展壮大为其做出了巨大贡献, 但是为此也付出了相应的代价,环境状况和能源短缺问题日益突出,亟待解决, 新能源的开发能实现可持续发展战略的需求解决能源消耗问题以及整合能源结构,本文主要探讨的新能源发电,对比过去传统的煤、天然气、石油发电,风力发电 实现了能源的可再生,也不会对环境造成污染破坏,得到了世界各国的大力研发 和推广使用,风力发电技术也日趋成熟,相对风力发电的电机组装机容量变大, 攻克了风力发电中的缺点问题,促进了风力发电的稳定快速的发展。 关键词:新能源;风力发电;技术探讨 现如今,世界各国对于环境问题和能源损耗问题日益关注,之前为了经济发展,导致环境受到破坏,能源损耗过大,因此,新能源的研发和发展对与我国的 可持续发展有着重要的且不可替代的作用,可再生资源已经受到了世界各国的关注,风能作为新能源中发展比较成熟且目前相对技术比较稳定先进的存在,对各 国风能转化发电奠定了基础。 风能转化为发电,也就是风力发电,其是将风能转化为机械能,机械能进而 转化成电能的整体过程。加上我国风能资源比较丰富,可借助风力涡轮机和控制 系统将风能换成机械能发电机及其控制系统,进而将机械能转化为电能。风力涡 轮机在整个风力发点系统中直接影响了其性能和效率。目前风力发电机变桨距功 率控制技术和发电机变速恒频发电技术属于较为先进的发电技术,是目前乃至未 来风力发电技术的发展趋势。 一、目前风能的相关现状 我国相对来说属于风能资源较为丰富的国家,风能的储量约为4.83x109MW,主要分布在新疆、内蒙古等北部地区和东部至南部沿海地带以及岛屿上,比较适 合安装风力发电装置,补充能源发电,进而实现新能源风力发电的覆盖面积扩大。 二、目前风力发电的优缺点 1.风力发电的缺点 目前风力发电存在的问题一是对电网的冲击较大,二是对于电能的储存存在 浪费,实际用电和风能发电量不匹配。因此,采用风机变桨,减少了对电网的冲击,另外,由于风能发电的电波不是标准的正弦函数波形,这也是对电网承载力 的一个考验,加之,风力发电装置都比较大,运输和安装存有一些难度。 2.风力发电的优点 风能资源属于可再生资源,且对环境不会存在污染破坏,是相对来说比较安 全可靠的新能源发电技术,建设的周期一般较短,可实现安装一台运转一台,对 于土地的占有率低,全部设备总占风电场约1%,剩余还可进行农、牧使用,运 行简单,可实现无人值守等等,对于我国实现新能源发电起到了促进作用。 三、风力机的功率调节技术 对于风力发电系统,目前的关键核心是如何控制风力机的功率调节,一旦出 现超过额定风速,就会对风力发电设备造成不必要的损坏,影响机械工作,就需 要减少风力机对于风能的捕获,使其功率保持在额定值左右,确保风力机的正常 运转。现如今,对于风力机进行功率调节的方式主要有定桨距失速调节、变桨距 调节和主动失速调节。 1.定桨距失速控制 对于风力机调节功率方式中的定桨距失速控制,其是将固定螺距风机叶片与

风力发电环评报告

目录

风力发电项目环境影响分析技术报告 1、前言 风能是一种清洁的能源。风力发电项目是一类不消耗矿物能源、污染环境少、建设周期短、建设规模灵活,具有良好的社会效益和经济效益的新兴能源项目。随着人们对环境保护意识的增强,以及国家有关部门对风力发电项目在政策上的扶持,风力发电在我国得到了迅速的发展。 风力发电项目与其他工业生产类项目不同,有其自身的特点,风电项目在生产过程中没有废气、废水和废渣等污染物产生,对环境的影响主要在噪声、光影和生态等方面。下面以铁岭市昌图风力发电场工程项目为例具体说明。 2、项目概况 铁岭市昌图县位于辽宁省北部地区,是我省风能资源最为丰富的地区之一,风速大,风向稳定,而且大部分地区地势平坦、开阔,适合于大规模开发、安装风力发电机组。 昌图风力发电项目总装机容量为49300kw,安装850 kw风力发电机58台,年上网电量10748万kwh。工程总投资为49881万元。其中风力发电场工程静态投资48689万元,单位投资9876元/千瓦。风力发电场址位于铁岭市昌图县昌图镇前哈石马沟村附近,场址中心坐标为东经124°10′,北纬42°48′,场址处为起伏平缓的山地,平均海拔高度为220—390米。风电场场区规划面积28 km2,区域内土地利用现状为:耕地约占%,林地约占46%,果园占地9%,村屯用地约占3%,水域%,道路约占3%,整体属于半山区--丘陵生态系统。该项目场址所在区域内无风景旅游

区、国家、省、市级重点文物保护单位,不属于各类保护区。3、风电项目组成及工艺流程 项目组成 昌图风力发电项目工程建设内容主要包括风力发电场工程和输电线路工程二部分。 3.1.1、风力发电场工程 (1)新建一座升压站,占地面积5547m2,站内建设主控制楼一座(二层)建筑面积507.5m2,建设10kv室内配电装置室一座(一层),建筑面积198.25 m2,建设附属建筑一座(一层)为砖混结构,其建筑面积187.15 m2。 (2)风力发电机组基础及箱式变电站58个,采用钢筋混凝土结构,单个机组占地面积约为266.7m2,总占地面积约15467m2。 (3)新建道路17km,道路征地宽5.5m,占地面积93467m2,改扩建道路18km,将原有3m宽道路拓宽至4.5m,新增占地面积27000m2。 3.1.2、输电线路工程 新建一条11km长的66kv输电线路,由66kv升压站至220kv 昌图变电所联网,线路采用变压器组接线,导线采用LGJ-240钢芯铝绞线,共设输电杆塔约44根,其中拐角杆塔9根,单根杆塔占地约36m2。非拐角杆塔35根,单根杆塔占地约16m2。全部杆塔总占地约884m2。输电杆塔采用铁塔,高度为18--27米。 3.1.3、主要设备 该项目的主要设备有风力发电机组和箱式变电站58套、主变压器2台、高压开关柜13台等。具体情况见表1。

风电项目环境影响及效益评价研究

《资源节约与环保》2013年第1期 论 文与案例交流 摘要:风电作为一种技术开发水平成熟、应用前景广 阔的可再生能源,越来越受到人们的关注和青睐。本文通过对风电项目环境影响和效益评价进行比较研究,提倡在发展风电的同时做好环境保护工作。 关键词:风力发电;环境影响;效益 全球风能约为2.74×109MW ,其中可利用的风能为2×107MWkw ,比地球上可开发利用的水能总量还要大10倍。我国探明的风能理论储量为32.26亿kw ,其中可开发利用约为2.53亿kw ,主要分布在东北、 华北和西北地区以及东部沿海一带。风力发电由于不会产生废水、废气,具有良好的经济效益和环境效益而日益受到人们重视,到2010年我国风电总装机容量已达到500万kw 。据专家预测,在21世纪,风能将占能源结构的10%以上,其中风能 发电总量将达到全世界发电总量的15%以上【1】 。 1风电项目环境影响评价 1.1对土地及植被影响 一个风电场的规划范围一般在十几到几10km 2,风电场的工程在开工建设时需要修建道路、平整坡面,造成植被破坏以及原生地貌的变化甚至还会造成不同程度的水土流失等。但大多数风电场项目建设的施工周期不长,各个工程项目之间的连接并不紧密,在规划时尽量避免一些植被密集区,施工后及时回填,恢复原有植被,可以大大减少水土流失的概率。此外,在修建道路时尽量使用原来的道路,或者是在原有道路上拓宽,对水土和植被的影响会减小。1.2噪声的影响 风电项目的噪声源主要来自机械噪声及空气动力噪声。风电 机组在工作过程中由于在风和运动部件的作用下,风机中的叶片和齿轮、轴承、电机以及散热器等机组在运行过程中产生噪声。但这些噪声可以通过改进工艺和器件的精密度,增强齿轮与轴承间的润滑度,降低噪声的产生。空气动力噪声是风电机组的主要噪声源,较难分离出声源区,因此在布置风机时尽量与居民点保持一定距离。1.3电磁辐射的影响 发电机、变电所、输电线路往往成为风电场项目周边电磁辐射源三大主要产生源。这些电磁辐射的产生会对广播电视节目的接收信号产生一定干扰,但是风电项目一般选择在海湖或者空旷、偏远山区地带,远离人们生活区。此外,电磁辐射的强弱还受风电机组的位置、大小、叶片材料等影响。据调查,国内已建的风电场项目运行过程中对于周边500m 左右的居民生活影响很小。此外,风电项目在立项时可以选择远离居民点、导航台、电视台等 地,或者选用一些干扰较小的器件材料。 2风电项目效益评价 风电项目因其在经济、社会、环境等方面产生的巨大效益而一直受到人们的青睐,也成为我国重点发展的项目。2.1提高土地利用效率 风电项目的开工建设对农牧区不会产生实质性的影响。据测 算,如果以850kw 的风机为例,1万kw 的永久性占地仅为0.2hm 2,而 每个风电场所建的升压站,占地仅约1hm 2【2】。此外,风电机组的建 设还可以有效降低风速,缓解土地荒漠化进程,可以起到防风固沙的作用。 2.2节省能源,改善生态环境 风能是可再生清洁能源,对于火电来说可以减少温室气体的排放以及其他污染物的产生。以张家口风电场区域一座年发电量为2.67亿kw ·h 时的风电场为例,以发电标准煤煤耗335g/kw ·h 时计算,一年可节约标准煤8.9万t ,相应地就可以减少209tSO 2、512tNOx 、30.98t 一氧化碳、24万tCO 2的排放量。 2.3降低生产成本,带动相关产业发展 风电项目属于一次投资建设的项目,项目生产是利用风能发电来运营,不需要其他原材料,大大节省了如实物生产的运输成本。此外,风电项目涉及到风电的设计以及风电设备的生产制造、土木工程的建设等等,发展风电项目会带动相关产业发展,增加劳动力就业指标,缓解就业压力等,为地区经济、社会发展发挥积极功效。 3结论 风能作为一种清洁的可再生能源,得到了政府相关部门的大力扶持也取得了长足发展,随着装机容量的增加,其经济、社会效益优势会更加明显。但在大力发展风电项目的同时,要切实采取必要的环保措施,进一步建立和完善《可再生能源法》配套实施细 则、专项资金制度等【3】 ,最大限度地降低项目对周边生态平衡和区域环境产生的影响。 参考文献 [1]侯侠,王静.21世纪的绿色能源.内蒙古石油化工.2006(12):52-54 [2]申全民.关于加快张家口坝上风电开发的对策建议[J].经济论坛,2007(4):41-43 [3]陈永祥,方征.中国风电发展现状、趋势及建议[J].装备机械,2010(4):14-19 风电项目环境影响及效益评价研究 邵玉芬 (河北省电力勘测设计研究院河北石家庄050031) 10

新能源风力发电技术基础知识

新能源风力发电技术基础知识 风力大点技术是把风能转变为电能的技术。通过风力发电机实现,利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。人类对于风能的开发利用也很早就开始了。但是,近代火力、水力发电机的广泛应用和20世纪50年代中东油田的发展,使风力发电机的发展缓慢下来。在我国风力发电机组的研制工作开展较早,但是没得到足够的重视与支持,因而发展较慢。如今在我国风能利用与风力发电技术虽然有了一定的进展,与国外先进国家相比较仍然存在差距,尤其是在大型风力发电机组的开发与研制方面。 风力发电机一般有风轮、发电机(包括装置)、调向器(尾翼)、塔架、限速安全机构和储能装置等构件组成。风力发电机的工作原理比较简单,风轮在风力的作用下旋转,它把风的动能转变为风轮轴的机械能。发电机在风轮轴的带动下旋转发电。风轮是集风装置,它的作用是把流动空气具有的动能转变为风轮旋转的机械能。一般风力发电机的风轮由2个或3个叶片构成。在风力发电机中,已采用的发电机有3种,即直流发电机、同步交流发电机和异步交流发电机。风力发电机中调向器的功能是使风力发电机的风轮随时都迎着风向,从而能最大限度地获取风能。一般风力发电机几乎全部是利用尾翼来控制风轮的迎风方向的。尾翼的材料通常采用镀锌薄钢板。限速安全机构是用来保证风力发电机运行安全的。限速安全机构的设置可以使风力发电机风轮的转速在一定的风速范围内保持基本不变。塔架是

风力发电机的支撑机构,稍大的风力发电机塔架一般采用由角钢或圆钢组成的桁架结构。风力机的输出功率与风速的大小有关。由于自然界的风速是极不稳定的,风力发电机的输出功率也极不稳定。风力发电机发出的电能一般是不能直接用在电器上的,先要储存起来。目前风力发电机用的蓄电池多为铅酸蓄电池。 风轮叶片是风力机最重要的部件之一,其平面和剖面几何形状与风力机空气动力特性密切相关。目前,水平轴风力机叶片一般为2 片或3 片。两叶片风轮的制造成本较低,但叶片几何形状及风轮旋转速度相同时,两叶片风轮对应最大风能利用系数的转速比较高、由脉动载荷引起的风轮轴向力变化也较大。三叶片风轮由于外形整体对称,旋转速度较低、噪声相对较小,更易于为大众接受,故目前三叶片风轮居多。风轮叶片在空气动力作用下主要产生两种力:升力推动风力机旋转进行有效工作,阻力形成对风轮叶片的正面压力。 通常笼型异步发电机,其定子由铁芯和定子绕组构成,转子为笼型结构,转子铁芯由硅钢片叠成。其转子无需外加励磁,没有集电环和电刷,结构简单、运行可靠、价格便宜且并网容易。由于是定速恒频机组,转速基本不变,风力发电机组运行在最佳Cp下的概率较小,因而其发电能力比后述的两种机型低。该类型机组运行时,从电力系统吸收无功功率,为满足电网对风电场功率因数的要求,多在机端并联补偿电容器。由于风速随气候环境变化,驱动发电机的风力机不可能常运行在额定风速下,为充分利用低风速时的风能,

新能源风电光伏电站典型解决方案

新能源/风电/光伏电站典型解决方案 1.方案背景 随着经济的发展、社会的进步,火电、水电、核电等传统电力能源已不能满足人类的需求,寻找新能源成为当前人类面临的迫切课题。 太阳能作为可再生的清洁能源,近年来得到了世界各国的大力推广和发展,尤其是光伏面板原材料和制作工艺的越来越成熟,使得太阳能光发电行业如雨后春笋般涌现。新型光伏发电站,相比传统电网变电站而言,在智能微机保护、测量、计量及控制方面,提出了全新要求,对此,我公司基于电网变电站强大的计算机监控系统平台,结合光伏电站的新需求,完善了一整套光伏电站计算机监控系统系统解决方案。 2.应用场景 光伏电站典型应用场景为: 1)大型并网光伏发电站(10MW及以上)如图1所示。 2)工业厂区屋顶光伏发电站(通常是1MW及以上级别)如图2所示。 3.方案实现 3.1.概述 大型并网光伏电站,因光伏场地大,各逆变器室之间、各逆变器与主控制室之间距离较远,工业控制监控系统宜采用光纤环型网络,相邻逆变器室内的环网交换机互相连接,环型网络如

厂区屋顶光伏电站,因光伏场地分散,各屋顶光伏发电监控单元之间没有专用的电缆或光缆连接通道,计算机监控系统宜采用无线网桥星型拓扑网络,实现各屋顶光伏箱变测控装置模块的集中监控,网络如图4。 3.2.设计原则 1)《继电保护和安全自动装置设计技术规程》GB14285-2006 2)《电力装置的电测量仪表装置设计规范》GBJ63-1990 3)《220~500kV变电所计算机监控系统设计技术规程》DL/T 5149 4)《电测量及电能计量装置设计技术规程》DL/T5137-2004 5)《电能量计量系统设计技术规程》DL/T5202 6)《电力工程直流系统设计技术规定》DL/T5044-2004 7)《火灾自动报警系统设计规范》GB50116-2008 8)《光伏电站接入电网技术规定》2010年9月 9)根据接入系统设计报告和接入系统设计审查意见进行并网光伏电站的系统继电保护设计、调度自动化系统设计、通信系统设计。 3.3.装置列表 1.光伏电站后台监控系统,远动主机.前置机及规约转换.公用测控装置.110kV送出线光线差动保护装置.35kV送出线光线差动保护装置.升压变压器差动保护装置.升压变压器后备保护装置.升压变压器

相关主题
文本预览
相关文档 最新文档