当前位置:文档之家› Bessel Type Inequalities for Non-Orthonormal Families of Vectors in Inner Product Spaces

Bessel Type Inequalities for Non-Orthonormal Families of Vectors in Inner Product Spaces

Bessel Type Inequalities for Non-Orthonormal Families of Vectors in Inner Product Spaces
Bessel Type Inequalities for Non-Orthonormal Families of Vectors in Inner Product Spaces

贝塞尔函数的有关公式

贝塞尔函数的有关公式 C.贝塞尔函数的有关公式 贝塞尔方程 的持解B(z)为(柱)贝塞尔函数。有 p 第一类柱贝塞尔函数J(z) p np为整数n时,J=(,1)J; ,n n p不为整数时,J与J线性无关。 p,p 第二类柱贝塞尔函数N(z)(柱诺依曼函数) p nn为整数时N=(,1)N。 ,n n 第三类柱贝塞尔函数H(z) (柱汉开尔函数): p(1) 第一类柱汉开尔函数 H(z)= J(z)+j N(z) pp p(2)第二类柱汉开尔函数 H(z)= J(z),j N(z) pp p 大宗量z

小宗量z 0 ,为欧拉常数 见微波与光电子学中的电磁理论 p668 J(z)的母函数和有关公式 nz(t/2-1/2t)函数e称为第一类贝塞尔函数的母函数,或称生成函数,若将此函数在t=0附近 展开成罗朗级数,可得到 j j 在上式中作代换,令t=e,t= je等,可得 又可得 如z=x为实数

贝塞尔函数的加法公式 J(z)的零点,nni J’(z)的零点,nni 半整数阶贝塞尔函数 J(z)的零点,n+1/2np

J'(z)的零点,'n+1/2np D(朗斯基行列式及其它关系式 E(修正贝塞尔函数有关公式 贝塞尔方程中用(jz)代换z,得到修正的贝塞尔方程 方程的两个线性无关的解为 ,p I(z)=jJ(jz)(称为第一类修正的柱贝塞尔函数。 ppp+1(1)K(z)=(,/2)jH(jz)(称为第二类修正的柱贝塞尔函数。 pp

大宗量z 小宗量z 0 (0210)《古代散文》复习思考题 一、填空题 1(甲骨卜辞、和《易经》中的卦、爻辞是我国古代散文的萌芽。2(深于比兴、,是先秦散文的突出特点。 3(《》长于描写外交辞令。 4(《国语》的突出特点是长于。 5(“兼爱”、“非攻”是思想的核心。

Bessel函数介绍

第一类贝塞尔函数 图2 0阶、1阶和2阶第一类贝塞尔函数(贝塞尔J函数)曲线 (在下文中,第一类贝塞尔函数有时会简称为“J函数”,敬请读者留意。) 第一类α阶贝塞尔函数Jα(x)是贝塞尔方程当α为整数或α非负时的解,须满足在x= 0 时有限。这样选取和处理Jα的原因见本主题下面的性质介绍;另一种定义方法是通过它在x= 0 点的泰勒级数展开(或者更一般地通过幂级数展开,这适用于α为非整数): 上式中Γ(z)为Γ函数(它可视为阶乘函数向非整型自变量的推广)。第一类贝塞尔函数的 形状大致与按速率衰减的正弦或余弦函数类似(参见本页下面对它们渐进形式的介 绍),但它们的零点并不是周期性的,另外随着x的增加,零点的间隔会越来越接近周期性。图2所示为0阶、1阶和2阶第一类贝塞尔函数Jα(x)的曲线(α = 0,1,2)。 如果α不为整数,则Jα(x)和J?α(x)线性无关,可以构成微分方程的一个解系。反之若α是整数,那么上面两个函数之间满足如下关系: 于是两函数之间已不满足线性无关条件。为寻找在此情况下微分方程与Jα(x)线性无关的另一解,需要定义第二类贝塞尔函数,定义过程将在后面的小节中给出。 贝塞尔积分

α为整数时贝塞尔函数的另一种定义方法由下面的积分给出: (α为任意实数时的表达式见参考文献[2]第360页) 这个积分式就是贝塞尔当年提出的定义,而且他还从该定义中推出了函数的一些性质。另一种积分表达式为: 和超几何级数的关系 贝塞尔函数可以用超几何级数表示成下面的形式: 第二类贝塞尔函数(诺依曼函数) 图3 0阶、1阶和2阶第二类贝塞尔函数(贝塞尔Y函数)曲线图 (在下文中,第二类贝塞尔函数有时会简称为“Y函数”,敬请读者留意。)

贝塞尔函数

贝塞尔函数 当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 22222 2222 22222 0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ?=+=???=++<>???=+≤= (5.3)?????? ??? 用分离变量法解这个问题,先令 (,,)(,)() u x y t V x y T t =

代入方程(5.1)得 2 2 2 2 2 ( )V V VT a T x y ??'=+ ?? 或 2 2 2 2 2 (0)V V T x y a T V λλ??+'??= =-> 由此得到下面关于函数()T t 和(,)V x y 的方程 2 0T a T λ'+= (5.4) 2 2 2 2 0V V V x y λ??+ +=?? (5.5) 从(5.4)得 2 ()a t T t Ae λ-= 方程(5.5)称为亥姆霍兹(Helmholtz )方程。为了求出这个方程满足条件 2 2 2 0x y R V +== (5.6) 的非零解,引用平面上的极坐标系,将方程(5.5)与条件(5.6)写成极坐标形式得 22 222 110,,02, (5.7)0,02, (5.8)R V v V V R V ρλρθπρρρρθθπ=????+++=<≤≤??????=≤≤? 再令 (,)()()V P ρθρθ=Θ, 代入(5.7)并分离变量可得 ()()0θμθ''Θ+Θ= (5.9) 2 2 ()()()()0P P P ρρρρλρμρ'''++-= (5.10)

数理方程与特殊函数教学大纲

数理方程与特殊函数 课程简介:本课程为电子与通信工程类专业的基础课。学分2,周学时2。本课程由“数学物理方程”与“特殊函数”两大部分组成。“数学物理方程”讲授物理学的一个分支——数学与物理所涉及的偏微分方程。主要介绍物理学中常见的三类偏微分方程及其有关的定解问题和这些问题的几种常用解法。“特殊函数”讲授贝塞尔函数与勒让德多项式,以及如何利用这两种特殊函数来解决数学物理方程的一些定解问题的过程。 教学目的与基本要求:通过数理方程与特殊函数课程的学习,使学生系统的掌握工程数学中数学物理方法的知识和技能,培养学生分析问题解决问题的能力,为后续课程的学习及研究奠定重要的数学基础。本课程的先修课程为:高等数学,复变函数,积分变换 主要教学方法:课堂讲授与课外习题。 第零章预备知识(4学时) 复习先修课程中相关的一些内容,主要包括:二阶线性常微分方程解的结构以及常系数情形解的求法;积分学中的一些重要公式和技巧;傅里叶(Fourier)分析;解析函数的极点及其留数;拉普拉斯(Laplace)变换。 第一章典型方程和定解条件的推导(4学时) 在讨论数学物理方程的求解之前,应建立描述某种物理过程的微分方程,再把一个特定物理现象所具有的具体条件用数学形式表达出来。本章学习的重点和难点是了解数学物

理方程的推导及定解问题的确定过程,学会推导一些简单物理过程的微分方程并能确定某些具体物理现象的定解条件。 第一节基本方程的建立 通过几个不同的物理模型,推导出数学物理方程中的三种典型偏微分方程:波动方程、电磁场方程和热传导方程。 第二节初始条件与边界条件 方程决定了物理规律的数学形式,但具体的物理问题所具有的特定条件也应用数学形式表达出来。用以说明某一具体物理现象的初始状态的条件称为初始条件,用以说明其边界上约束情况的条件称为边界条件。 第三节定解问题的提法 由于每一个物理过程都处在特定的条件之下,所以我们要求出偏微分方程适合某些特定条件的解。初始条件和边界条件都称为定解条件。把某个偏微分方程和相应的定解条件结合在一起,就构成了一个定解问题。 本章习题:3-5题 第二章分离变量法(8学时) 本章主要介绍在求解偏微分方程的定解问题时,如何设法把它们转化为常微分方程来求解。本章学习的重点和难点是掌握分离变量法这一“化繁为简”的典型方法的实质,学会求解常见的定解问题。

贝塞尔函数及其应用

题目:贝塞尔函数及其应用

摘要 贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中占有非常重要的地位。贝塞尔函数是贝塞尔方程的解。它在物理和工程中,有着十分广泛的应用。 本文首先通过一个物理问题引入贝塞尔方程,并求出贝塞尔方程的解,即贝塞尔函数。其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。第二部分主要介绍了傅里叶-贝塞尔级数,通过matlab编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。 关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式

目录 一、起源.......................................................................................................... 错误!未定义书签。 (一)贝塞尔函数的提出...................................................................... 错误!未定义书签。 (二) 贝塞尔方程的引出?错误!未定义书签。 二、贝塞尔函数的基本概念.......................................................................... 错误!未定义书签。 (一)贝塞尔函数的定义........................................................................ 错误!未定义书签。 1. 第一类贝塞尔函数....................................................................... 错误!未定义书签。 2. 第二类贝塞尔函数 (6) 3. 第三类贝塞尔函数?错误!未定义书签。 4. 虚宗量的贝塞尔函数................................................................... 错误!未定义书签。 (二)贝塞尔函数的递推公式?错误!未定义书签。 (三)半奇数阶贝塞尔函数?错误!未定义书签。 (四) 贝塞尔函数的零点?错误!未定义书签。 (五) 贝塞尔函数的振荡特性................................................................ 错误!未定义书签。 三、 Fourier-Bessel级数?错误!未定义书签。 (一) 傅里叶-贝塞尔级数的定义?错误!未定义书签。 (二) 将函数按傅里叶-贝塞尔级数展开?错误!未定义书签。 四、贝塞尔函数的应用?错误!未定义书签。 (一)贝塞尔函数在光学中的应用...................................................... 错误!未定义书签。 (二)贝塞尔函数在调频制中的应用.................................................... 错误!未定义书签。附录 ................................................................................................................... 错误!未定义书签。

第二类修正贝塞尔函数(Fortran代码)

调试日期:2011年9月13日星期二 程序说明:计算第二类修正贝塞尔函数的Fortran代码,参看徐士良先生的《Fortran常用程序算法集》 PROGRAM BSL_XSL DOUBLE PRECISION MBSL4,X OPEN(1,FILE='BSL.DAT',ACTION='WRITE') DO X=0.05,3,0.05 WRITE(1,*),X,MBSL4(0,X-0.01),MBSL4(1,X) ENDDO CLOSE(1) ENDPROGRAM FUNCTION MBSL3(N,X) DOUBLE PRECISION MBSL3,X DOUBLE PRECISION T,Y,P,B0,B1,Q,A(7),B(7),C(9),D(9) DATA A/1.0,3.5156229,3.0899424,1.2067492, * 0.2659732,0.0360768,0.0045813/ DATA B/0.5,0.87890594,0.51498869,0.15084934, * 0.02658773,0.00301532,0.00032411/ DATA C/0.39894228,0.01328592,0.00225319, * -0.00157565,0.00916281,-0.02057706, * 0.02635537,-0.01647663,0.00392377/ DATA D/0.39894228,-0.03988024,-0.00362018, * 0.00163801,-0.01031555,0.02282967, * -0.02895312,0.01787654,-0.00420059/ IF (N.LT.0) N=-N T=ABS(X) IF (N.NE.1) THEN IF (T.LT.3.75) THEN Y=(X/3.75)*(X/3.75) P=A(7) DO 10 I=6,1,-1 10 P=P*Y+A(I) ELSE Y=3.75/T P=C(9) DO 20 I=8,1,-1 20 P=P*Y+C(I) P=P*EXP(T)/SQRT(T) END IF END IF IF (N.EQ.0) THEN MBSL3=P RETURN

第五章_贝塞尔函数

n阶第一类贝塞尔函数() J x n 第二类贝塞尔函数,或称Neumann函数() Y x n 第三类贝塞尔函数汉克尔(Hankel)函数,(1)() H x n 第一类变形的贝塞尔函数() I x n 开尔文函数(或称汤姆孙函数)n阶第一类开尔文(Kelvin)第五章贝塞尔函数 在第二章中,用分离变量法求解了一些定解问题。从§2.3可以看出,当我们采用极坐标系后,经过分离变量就会出现变系数的线性常微分方程。在那里,由于只考虑圆盘在稳恒状态下的温度分布,所

以得到了欧拉方程。如果不是考虑稳恒状态而是考虑瞬时状态,就会得到一种特殊类型的常微分方程。本章将通过在柱坐标系中对定解问题进行分离变量,引出在§2.6中曾经指出过的贝塞尔方程,并讨论这个方程解的一些性质。下面将看到,在一般情况下,贝塞尔方程的解不能用初等函数表出,从而就导入一类特殊函数,称为贝塞尔函数。贝塞尔函数具有一系列性质,在求解数学物理问题时主要是引用正交完备性。 §5.1 贝塞尔方程的引出 下面以圆盘的瞬时温度分布为例推导出贝塞尔方程。设有半径为R 的薄圆盘,其侧面绝缘,若圆盘边界上的温度恒保持为零摄氏度,且初始温度为已知,求圆盘内瞬时温度分布规律。 这个问题可以归结为求解下述定解问题: 2222 22222 22222 0(),,0, (5.1)(,),, (5.2)0, t x y R u u u a x y R t t x y u x y x y R u ?=+=???=++<>???=+≤= (5.3)?????? ??? 用分离变量法解这个问题,先令 (,,)(,)()u x y t V x y T t = 代入方程(5.1)得 222 22()V V VT a T x y ??'=+?? 或

数理方程与特殊函数试卷 3套

2010年6月 一、填空题(20分) 1、微分方程的固有值为 ____________,固有函数为____________。 2、勒让德多项式的母函数为________________________。 3、一长为的均匀直金属杆,x=0端固定,x=l端自由,则纵向震动过程中的边界条件为 ________________________。 4、二阶线性偏微分方程属于____________型方程。 5、微分方程,在条件下的拉氏变换表 达式为____________________________________。 6、埃尔米特多项式的微分表达式为____________________________________。 7、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 8、定解问题的解为________________________。 9、在第一类奇次边界条件下=____________。 10、=____________,=____________。 二、证明题(10分) 三、建立数学物理方程(10分) 一长为l、截面积为s、密度为、比热容为的均匀细杆,一端保持零度,另一端有恒定的热量q流入,初始温度为试建立热传导方程,写出定界条件(要有必要的步骤)。四、写出下列定解问题的解(35分) 1、

2、 3、 五、将函数展开为广义傅里叶级数(25分) 1、设是的正零点,试将函数展开成的傅里叶贝塞尔级数。 2将函数按埃尔米特多项式展开成级数。 2009年6月 一、填空题(20分) 11、微分方程的固有值为 ____________,固有函数为____________。 12、勒让德多项式的母函数为________________________。 13、一长为的均匀直金属杆,x=0端温度为零,x=l端有恒定的热流流出,则热传导过 程中的边界条件为________________________。 14、二阶线性偏微分方程属于____________型方程。 15、微分方程,在条件下,其拉氏 变换表达式为____________________________________。 16、埃尔米特多项式的微分表达式为____________________________________。 17、函数是区域内的调和函数,它在上有一阶连续偏导数,则 ____________. 18、定解问题的解为 ________________________。 19、在第一类奇次边界条件下=____________。 20、=____________,=____________。 二、证明题(10分)

Bessel函数应用例

《复变函数与数理方程》Project 名称:Bessel函数应用例 组别:第十三组 小组成员:唐文岐、高成振、 林慧平、邹三泳、 郭凯

目录 封面 (1) 目录 (2) 文章说明 (3) 摘要 (3) 关键词 (3) 正文 (4) Section 1Bessel函数在衍射中的应用 (4) 一,菲涅尔-基尔霍夫衍射积分公式 (4) 二,衍射的分类 (5) 三,夫琅禾费圆孔衍射数学模型的建立 (6) 四,夫琅禾费圆孔衍射光强公式的推导 (6) 五,夫琅禾费圆孔衍射常见结论的推导 (8) 六,夫琅禾费圆孔衍射光强公式的另一种推导 (11) Section 2 Bessel函数在通信电路中的应用 (14) 一,单音信号的调频 (15) 二,贝塞尔函数的渐进公式 (16) 三,贝塞尔函数图像与调制频率的关系 (17) 四,卡森公式的推导 (20) 五,贝塞尔函数级数展开的理论说明 (21) 总结 (22) 参考文献 (23)

文章说明: 本学期我们在数理方程的课堂上学习了贝塞尔函数的相关内容,贝塞尔函数性质很特殊,它在物理和工程中的广泛应用更是引起我们强烈的兴趣。而学以致用,这是我们学习应用数学的目的之一。联想到在之前的课程中曾经遇到过Bessel函数,但是老师只是直接给出结论,并没有说明原因。因此,我们小组主要从《大学物理》课程中遇到的夫琅禾费圆孔衍射和《电子电路与系统基础》课程中遇到的单音信号调频两个例子对Bessel函数的应用进行讨论,希望能对Bessel 函数的魅力有更深一些的理解。 摘要: 物理学中我们熟知的夫琅禾费圆孔衍射的振幅和电路系统中单音信号调频的幅度都可以用Bessel函数来表示。因此,利用Bessel 函数对夫琅禾费圆孔衍射的振幅和单音信号调频的幅度的表达式进行推导很有必要,同时也可以根据推导得到的公式进行理论的分析和现有结果的解释。另外,根据得到的函数表达式,还可以利用数学软件进行模拟,以期得到更直观的结果,也可以加深对于Bessel函数以及夫琅禾费圆孔衍射、单音信号调频的理解。 关键词: Bessel函数,夫琅禾费圆孔衍射,振幅,光强,调频,频率,幅度,调制指数

数学物理方程与特殊函数期末考试试题卷子2011

XXXXX 大学研究生试卷 (考试时间: 至 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2011年 12 月 28 日 成绩 1.化方程2220xx xy yy x y x u xyu y u xu yu ++++=为标准形. (10分) 2. 把定解问题:(10分) 212(0)(0,)(),(,)() (,0)(),(,0)(),(0) tt xx x x t u a u x l u t h t u l t h t u x x u x x x l ?ψ?=<

3.有一带状的均匀薄板(0x a ≤≤,0y ≤<+∞), 边界0y =上的温度为0u ,其余边界上的温度保持零度,并且当y →+∞时,温度极限为零. 求解板的稳定温度分布. (用分离 变量法求解).(20分) 4.求下面的定解问题:(10分) 090,(,0) 0,sin tt xx t t t u u x R t u u x ==-=∈>??? ==??. 第2页

5.求()2 1,1 (),()0,1 x x F f x f x x ?-≤?=?>??,其中()F ?表示Fourior 变换.(10分) 6.求()2(),()sin(),03 L f t f t t t π =-≥,其中()L ?为Laplace 变换.(10分) 第3页 学 号 姓 名 学 院 教师 座位号 ……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………

贝塞尔函数释疑

数理方程中与贝塞尔函数有关的问题 据百度百科介绍: 贝塞尔(1784——1846)是德国天文学家,数学家,天体测量学的奠基人。20岁时发表了有关彗星轨道测量的论文。1810年任新建的柯尼斯堡天文台台长,直至逝世。1812年当选为柏林科学院院士。贝塞尔的主要贡献在天文学,以《天文学基础》(1818)为标志发展了实验天文学 ,还编制基本星表 ,测定恒星视差, 预言伴星的存在,导出用于天文计算的贝塞尔公式,较精确地计算出岁差常数等几个天文常数值,还编制大气折射表和大气折射公式,以修正其对天文观测的影响。他在数学研究中提出了贝塞尔函数,讨论了该函数的一系列性质及其求值方法,为解决物理学和天文学的有关问题提供了重要工具。此外,他在大地测量学方面也做出一定贡献,提出贝塞尔地球椭球体等观点。(图片来自维基百科) 一、 贝塞尔方程与贝塞尔函数 二、 贝塞尔方程与欧拉方程比较 三、 贝塞尔函数与伽马函数 四、 贝塞尔函数与几个常用函数的台劳级数比较 右图来自网页“维基百科——自由的百科全书”中贝塞尔 函数介绍。贝塞尔函数的一个实例:一个紧绷的鼓面在中心受到敲击后的二阶振动振型,其振幅沿半径方向上的分布就是一个贝塞尔函数(考虑正负号)。实际生活中受敲击的鼓面的振动是各阶类似振动形态的叠加 一、贝塞尔方程与贝塞尔函数 Bessel 方程是二阶线性变系数齐次常微分方程 0)(222 22 =-++y v x dx dy x dx y d x 其中,v 是常数,称为Bessel 方程的阶(不一定是整数),可取任何实或复数。该方程 的解无法用初等函数表现。数理方程教科书采用第一类Bessel 函数和第二类Bessel 函数的线性组合表示方程的标准解函数。贝塞尔函数也被称为圆柱函数或圆柱谐波。通常所说的贝塞尔函数是指第一类Bessel 函数 m v m m v x m v m x J 20)2 ()1(!)1()(+∞ =∑++-=Γ 贝塞尔方程是在圆柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的(在圆柱域问题中得到的是整阶形式;在球域问题中得到的是半奇数阶形式),因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,典型的问题有:在圆柱形波导中的电磁波传播问题;圆柱体中的热传导问题;圆形(或环形)薄膜的振动模态分析问题;在其他一些领域,贝塞尔函数也相当有用。如在信号处理中的调频合成(FM synthesis )或凯泽窗(Kaiser window )的定义中,都要用到贝塞尔函数。 在教科书中Bessel 方程来源 1. 在圆柱坐标系下解二维热传导方程; ?? ? ????=+=<+=><++=2222 222222,0),,()0,,(0,),(R y x u R y x y x y x u t R y x u u a u yy xx t ? 用分离变量法,令u (x ,y ,t ) = V (x ,y )T (t ),代入方程整得

贝塞尔函数

贝塞尔函数 基本概念编辑 是数学上的一类特殊函数的总称。一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数: 这类方程的解无法用初等函数系统地表示。 贝塞尔函数的具体形式随上述方程中任意实数变化而变化(相应地,被称为其对应贝塞尔函数的阶数)。实际应用中最常见的情形为是整数,对应解称为n阶贝塞尔函数。 尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在点的不光滑性)。 基本内容编辑 贝塞尔函数(Bessel functions)是数学上的一类特殊函数的总称。一般贝塞尔函数是下列常微分方程(一般称为'''贝塞尔方程''')的标准解函数。 这类方程的解无法用初等函数系统地表示。但是可以运用自动控制理论中的相平面法对其进行定性分析。 这里,被称为其对应贝塞尔函数的阶数。实际应用中最常见的情形为是整数,对应解称为阶贝塞尔函数。 尽管在上述微分方程中,本身的正负号不改变方程的形式,但实际应用中仍习惯针对和定义两种不同的贝塞尔函数(这样做能带来

好处,比如消除了函数在点的不光滑性)。 定义 贝塞尔方程是一个二阶常微分方程,必然存在两个线性无关的解。针对各种具体情况,人们提出了这些解的不同形式。下面分别介绍不同类型的贝塞尔函数。 历史 几个正整数阶的贝塞尔函数早在18世纪中叶被瑞士数学家丹尼尔·伯努利在研究悬链振动时提出,当时引起了数学界的轰动。雅各布·伯努利,莱昂哈德·欧拉|欧拉、约瑟夫·路易斯·拉格朗日|拉格朗日等数学大师对贝塞尔函数的研究作出过重要贡献。1817年,德国数学家弗里德里希·威廉·贝塞尔在研究约翰内斯·开普勒提出的三体万有引力系统的运动问题时,第一次系统地提出了贝塞尔函数的理论框架,后人以他的名字来命名了这种函数。 现实背景和应用范围 贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程和亥姆霍兹方程时得到的,因此贝塞尔函数在波动问题以及各种涉及有势场的问题中占有非常重要的地位,最典型的问题有:* 在圆柱形波导中的电磁波传播问题; * 圆柱体中的热传导定律|热传导问题;

研究生数理方程与特殊函数考题2014

科技大学研究生试卷 (考试时间: 至 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2014年 12 月 日 成绩 考核方式: (学生填写) 1.化简方程22222 (,)(,)(,) 1280u x y u x y u x y x x y y ???++=????并求其通解. (10分) 2. 设有一长度为L 的均匀细棒,其侧面和两端均绝热,初始温度分布为已知。(1)求以后时刻的温度分布;(2)证明:当初始温度分布为常数时,以后时刻的温度分布也必为常数. (20分) 第 1页 3.求解定解问题:(15分) 学 号 姓 名 学 院 教师 座位号 ……………………密……………封……………线……………以……………内……………答……………题……………无……………效……………………

200000 (0,0),t xx x x l t u a u x l t q u u u k u u ===?=<<>? ? ==?? ?=?,00,,,a u k q 均为常数. 4.求函数()() 2 1 ()13f s s s =+- 的Laplace 逆变换.(10分) 第2页 5.求下面的定解问题:(15分) 号 效……………………

2 00,(,0) ,sin tt xx t t t u a u x at x R t u x u x ==?-=+∈>?? ==??. 6.求3()J x dx ? .(10分) 第3页 7.写出平面第一象限的Dirichlets 问题对应的Green 函数及其定解问题.(10分)

Bessel方程及Bessel函数

第一部分 Bessel 函数 (阶数或自变量趋于0或无穷时,各种Bessel 函数的极限值,可以利用Mathematica 试算推得。) 一、Bessel 方程及其通解 0)(2 2 2 2 2 =-++y n x dx dy x dx y d x (1) 上式称为以x 为宗量的n 阶Bessel 方程。 ●当n 为整数时,(1)式的通解为 )()(x BY x AJ y n n += (2) 其中,A 、B 为任意实数; )(x J n 为n 阶第一类Bessel 函数; )(x Y n 为n 阶第二类Bessel 函数(或称为“诺依曼(Neumann)函数”)。 ●当n 不为整数时,例如,v n =,(1)式的通解可表示为如下两种形式 )()(x BJ x AJ y v v -+= (3) )()(x BY x AJ y v v += (4) 其中,A 、B 为任意实数; )(x J v 和)(x J v -分别称为v 阶和v -阶第一类Bessel 函数; )(x Y v 称为v 阶第二类Bessel 函数。 另外,Bessel 方程的通解还可以表示为 )()()2()1(x BH x AH y v v += 其中,)()()() 1(x iY x J x H v v v +=,)()()() 2(x iY x J x H v v v -=分别称为称为第一类和第二类汉克尔(Hankel )函数,或统称为第三类Bessel 函数。 ●值得注意的是, ∞=-→)(lim 0 x J v x ,∞=→)(lim 0x Y v x ,∞=→)(lim 0 x Y n x ,当所研究的问题的区域 包含0=x 时,由于要求Bessel 方程的解在0=x 处取有限值,所以,此时对(2)、(3)、(4)式而言,必有0=B 。此条件称为“Bessel 方程的自然边界条件”。 例1:02 2=+'+ ''y x y x y x λ (10<≤x ) 此式为以x λ为宗量的0阶Bessel 方程,其通解为 )()(00x BY x AJ y λλ+= 另外,由于所求解问题的区域10<≤x 包含0=x ,根据Bessel 方程的自然边界条件,必然有0=B ,通解最后简化为

贝塞尔函数

20.3.1 贝塞尔函数的递推公式 由贝塞尔函数的级数表达式(20.2.1)容易推出 1J () J ()d []d v v x x x x x νν+=- (20.3.1) 1d [J ()]J ()d v v v v x x x x x -= (20.3.2) 以上两式都是贝塞尔函数的线性关系式. 诺伊曼函数N ()v x 和汉克尔函数也应该满足 上述递推关系. 若用()v Z x 代表v 阶的第一或第二或第三类函数,总是有 1d [()]()d v v v v x Z x x Z x x -= (20.3.3) 1d [()]()d v v v v x Z x x Z x x --+=- (20.3.4) 把两式左端展开, 又可改写为 1()()() v v v Z x Z x Z x x ν+'-=- (20.3.5) 1()() v v v Z Z x Z x x ν-'+= (20.3.6) 从(20.3.5)和(20.3.6)消去Z ν或消去Z ν'可得 11()()2()v v v Z x Z x Z x +-'=- 112()()()v v v v Z x Z x Z x x +-=-+ 即为从)(1x Z v -和)(x Z v 推算)(1x Z v +的递推公式. 上式也可以写成为 11()()2() v v v v Z x Z x Z x x -++= (20.3.7) 11()()2()v v Z x Z x Z x ν-+'-= (20.3.8) 任一满足一组递推关系的函数)(x Z v 统称为柱函数. 例 20.3.1 求 2 J ()d x x x ? 【解】 根据公式 (20.3.8) 11()()2()v v Z x Z x Z x ν-+'-= 有 201 J ()J ()2J ()x x x '=- 2 1 1 1 1 1 1 1 J ()d J ()d 2J ()d J ()2[J ()J ()d ]J ()2[J ()J ()d ]J ()2J ()x x x x x x x x x x x x x x x x x x x x x x x x c '=-=--'=-+=--+????? 20.3.2贝塞尔函数正交性和模 1.正交性 对应不同本征值的本征函数分别满足 2()2()2dJ d []{[]}J ()0 d d m m m i m i m k k ρρρρρ+-= (20.3.9)

贝塞尔函数表

貝塞爾函數(Bessel Function),它們的數值可由查有關貝塞爾函數曲線或查表得出,貝塞爾函數值與m f的關係如圖4-6所示。 表4-1載頻、邊頻振幅與關係表 圖4-1第一類貝塞爾函數 根據式(4-18),可以得出如下結論︰ 1.一個調頻波除了載波頻率外,還包含無窮多的邊頻,相鄰邊頻之間的頻率間隔仍是。第

條譜線與載頻之差為。 2.每一個分量的最大振幅等於。而由貝塞爾函數決定。 理論上,相角調變信號的邊頻分量是無限多的,也就是說,它的頻譜是無限寬的。一路信號要佔用無限寬的頻帶,是我們不希望的。實際上,已調信號的能量絕大部分是集中在載頻附近的一些邊頻分量上,從某一邊頻起,它的幅度便非常小(工程上習慣,凡是振幅小於未調變載波振幅的10% 的邊頻分量可以忽略不計)。根據貝塞爾函數的特點,當階數時,貝塞爾函數的數值隨著n的增加而迅速減小。所以,實際上我們可以認為,也即高低邊頻的總數等於 個,因此調頻波的頻譜有效寬度為,即頻帶寬度可以方便地算出,為 (4-19) 由於,所以式(4-19)也可寫成下列形式,即 (4-20) 這與調變頻率相同的調幅波比起來,調角波的頻帶要寬。通常,所以相角調變的頻帶要比調幅波寬得多。因此,在同樣的波段中,能容納相角調變信號的數目,要少於調幅信號的數目。因此,調頻只宜用於頻率較高的、甚高頻和超高頻段中。 關於頻帶寬度區分以下兩點說明: 3.當,也就是寬頻帶FM(WBFM)情況,式(4-19)及式(4-20)適用之。 4.當,為窄頻帶FM(NBFM),此時式(4-19)及(4-20)不再適用,由表6-1可以看出, 邊頻只取一對就夠了,即窄頻帶調頻頻譜寬度為

【精品文档】贝塞尔函数-word范文 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 贝塞尔函数 篇一:贝塞尔函数的有关公式 C.贝塞尔函数的有关公式 贝塞尔方程 的持解Bp(z)为(柱)贝塞尔函数。有 第一类柱贝塞尔函数Jp(z ) p为整数n时,J?n=(?1) nJn; p不为整数时,Jp与J?p线性无关。 第二类柱贝塞尔函数N p(z)(柱诺依曼函数 ) n为整数时N?n=(?1) nNn。 第三类柱贝塞尔函数Hp(z) (柱汉开尔函数): 第一类柱汉开尔函数 Hp(1)(z)= Jp(z)+j N p(z) 第二类柱汉开尔函数 Hp(2)(z)= Jp(z)?j N p(z ) 大宗量z?? 小宗量z? ,为欧拉常数 见微波与光电子学中的电磁理论

p668 Jn(z)的母函数和有关公式 函数ez(t/2-1/2t)称为第一类贝塞尔函数的母函数,或称生成函数,若将此函数在t=0附近展开成罗朗级数,可得到 在上式中作代换,令t=ej?,t=?jej?等,可得 又可得 如z=x为实数 贝塞尔函数的加法公式 Jn(z)的零点?ni J’n(z)的零点? ni 半整数阶贝塞尔函数 Jn+1/2(z)的零点? np J'n+1/2(z)的零点?' np D.朗斯基行列式及其它关系式 E.修正贝塞尔函数有关公式 贝塞尔方程中用(jz)代换z,得到修正的贝塞尔方程 方程的两个线性无关的解为 Ip(z)=j?pJp(jz).称为第一类修正的柱贝塞尔函数。 Kp(z)=(?/2)jp+1Hp(1)(jz).称为第二类修正的柱贝塞尔函数。 篇二:贝塞尔函数 第五章贝塞尔函数

贝塞尔函数及其应用

题目: 贝塞尔函数及其应用

摘要 贝塞尔方程是在柱坐标或球坐标下使用分离变量法求解拉普拉斯方程时得到的,因此它在波动问题以及各种涉及有势场的问题的研究中占有非常重要的地位。贝塞尔函数是贝塞尔方程的解。它在物理和工程中,有着十分广泛的应用。 本文首先通过一个物理问题引入贝塞尔方程,并求出贝塞尔方程的解,即贝塞尔函数。其次列出了贝塞尔函数的几个重要的结论,如递推公式,零点性质等,并对他们进行了深入的分析。第二部分主要介绍了傅里叶-贝塞尔级数,通过m atlab编程对函数按傅里叶-贝塞尔级数展开之后的图像进行分析,得到了它们的逼近情况。最后一部分介绍了贝塞尔函数的几个重要应用,一个是在物理光学中的应用,着重分析了贝塞尔函数近似公式的误差;一个是在信号处理中调频制的应用,得到了特殊情况下的公式算法。 关键词:贝塞尔函数,傅里叶-贝塞尔级数,渐近公式

目录 一、起源?错误!未定义书签。 (一)贝塞尔函数的提出?错误!未定义书签。 (二)贝塞尔方程的引出.................................................................... 错误!未定义书签。 二、贝塞尔函数的基本概念.......................................................................... 错误!未定义书签。 (一) 贝塞尔函数的定义........................................................................ 错误!未定义书签。 1. 第一类贝塞尔函数....................................................................... 错误!未定义书签。 2.第二类贝塞尔函数.................................................................. 错误!未定义书签。 3. 第三类贝塞尔函数 (9) 4. 虚宗量的贝塞尔函数?错误!未定义书签。 (二) 贝塞尔函数的递推公式?错误!未定义书签。 (三) 半奇数阶贝塞尔函数?错误!未定义书签。 (四)贝塞尔函数的零点...................................................................... 错误!未定义书签。 (五) 贝塞尔函数的振荡特性?错误!未定义书签。 三、 Fourier-Bessel级数 (16) (一) 傅里叶-贝塞尔级数的定义............................................................ 错误!未定义书签。 (二) 将函数按傅里叶-贝塞尔级数展开 (16) 四、贝塞尔函数的应用?错误!未定义书签。 (一) 贝塞尔函数在光学中的应用?错误!未定义书签。 (二) 贝塞尔函数在调频制中的应用.................................................... 错误!未定义书签。附录 (29)

A-2005级-数理方程与特殊函数B卷

课程编号: 北京理工大学2006-2007学年第二学期 2005级数学物理方程期末试题(B 卷) 班级_______________学号_______________姓名______________成绩_____________ 一、填空(请写在答题纸上,每题5分,共计40分) 1. 设弦一端在0x =处固定,另一端在x l =处做自由运动。则弦振动问题的 边界条件为:________________________________。 2. 边界为Γ的区域Ω上函数u 的第二类边界条件为__________________ 。 3. 三维泊松方程是______________________________。 4. 极坐标下的二维拉普拉斯方程为__________________________。 5. 定解问题2 02||0tt xx t t t u u x u x u ===-∞<<+∞ ???==??, ,的解__________________________。 6. 三维拉普拉斯方程的牛曼内问题为______________________________; 其解存在的必要条件为____________。 7. 设2()J x 为2阶贝塞尔函数,则2 2()d x J kx dx ????=__________________。 8. 写出4阶贝塞尔方程的标准形式_____________________________。 二、(10分)求解定解问题: 200(0)()00()0.t xx x x u a u x l t u t u l t t u x x x l ?=<<>? ==≥??=≤≤? , ,, ,,, , ,0,

相关主题
文本预览
相关文档 最新文档