当前位置:文档之家› 3.4.4基本不等式 (第4课时)

3.4.4基本不等式 (第4课时)

3.4.4基本不等式 (第4课时)
3.4.4基本不等式 (第4课时)

沈丘三高高二数学学案

编制 王立

3.4.4基本不等式2a b ab +≤

(第4课时) 【学习目标】 进一步掌握基本不等式2

a b ab +≤;会应用此不等式求某些函数的最值. 【典型例题】

例1.(1)求函数2

49x x y +=(0≠x )的最小值.(2)求函数y = x 2

x 4+9 (x ≠0)的最大值.

例2已知x 、y 同号,且x +2y =1,求 1x +1y

的最小值.

例3已知正数y x ,,且191=+y x ,(1)求y x +的最小值;(2)求xy 的最小值.

【课堂检测】

1.已知x 、y 同号,且x +y =1,求12x y

+的最小值.

2.若x>0,y>0,且28

1

x y

+=,求xy及y

x+的最小值.

【总结提升】1. 二元均值不等式具有将“和式”转化为“积式”和“积式”转化为“和式”的放缩功能。

2.创设应用均值不等式的条件、合理拆分项或配凑因式是常用的解题技巧,而拆与凑的成因在于使等号能够成立。

第一章第四节 基本不等式

数学科第一轮复习教案 第四节 基本不等式 一、教学目标: (一)必备知识: 1.探索并了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. (二) 关键能力:读写能力、运算能力、信息通信技术能力、批判性与创造性思维、个人与社会能力、道德理解、跨文化理解 (三) 学科品格及学科素养:数学运算、数学建模 (四)核心价值:提高数学学习兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。具有一定的数学视野,逐步认识数学的科学价值,应用价值和文化价值。形成批判性的思维习惯,了崇尚数学的理性精神,体会数学的美学意义。树立辩证唯物主义和历史唯物主义的世界观。 二、生情分析: 1.学生对基础知识的掌握不扎实一些易得分的题也出现失分现象,对所学知识不能熟练运用,对知识的掌握也不是很灵活,造成容易的失分难的攻不下的两难状况。 2.一些学生的学习方法有待改进一些同学平时学习也挺认真,日常练习也不错,但一遇上综合性的考试就不行,像这样的状况主要是因为学生的复习方法不对,作为一名高三的学生应该学会自己归纳总结,可以把相似和有关联的一些题总结在一起,也可以把知识点相同或做题方法相同的题总结在一块,这样便于复习,也省时。 3.同学们的应试技巧也有待提高,翻看这次学生们的试卷会发现有些学生的题还没做完,前面难的没拿下后面容易的没时间做。拿不到高分认为是自己时间不够,这就是考试技巧的问题。 三、过程方法:讲练结合 四、重点难点: 1.利用基本不等式求最值.2.利用基本不等式解决实际问题 3.基本不等式的综合应用 五、教学用具:PPT 六、教学课时:2课时 七、设计思路:夯实基础→考点分类突破→课堂活动→解题技巧→教学生成 八、教学过程: ( [知识梳理] 1.基本不等式ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b .

2021年高考数学大一轮复习 6.2一元二次不等式及其解法课时作业 理

2021年高考数学大一轮复习 6.2一元二次不等式及其解法课时作业 理 一、选择题 1.已知集合A ={x ||2x +1|>3},集合B ={x |y = x +1 x -2 },则A ∩(?R B )=( ) A .(1,2) B .(1,2] C .(1,+∞) D .[1,2] 解析:由A ={x ||2x +1|>3}={x |x >1或x <-2},B ={x |y = x +1x -2}={x |x +1 x -2 ≥0}={x |x >2或x ≤-1},所以?R B ={x |-10}={x |-1e 或x ≤-12},故A ∩B =(-1,-1 2 ]. 答案:B 3.“00的解集是实数集R ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 解析:当a =0时,1>0,显然成立;当a ≠0时,? ???? a >0, Δ=4a 2 -4a <0.故ax 2 +2ax +1>0 的解集是实数集R 等价于0≤a <1.因此,“00的解集是实数集R ”的充分而不必要条件.

基本不等式练习题及答案解析

1.若xy>0,则对x y+ y x说法正确的是() A.有最大值-2B.有最小值2 C.无最大值和最小值D.无法确定 答案:B 2.设x,y满足x+y=40且x,y都是正整数,则xy的最大值是() A.400 B.100 C.40 D.20 答案:A 3.已知x≥2,则当x=____时,x+4 x有最小值____. 答案:2 4 4.已知f(x)=12 x+4x. (1)当x>0时,求f(x)的最小值; (2)当x<0 时,求f(x)的最大值. 解:(1)∵x>0,∴12 x,4x>0. ∴12 x+4x≥2 12 x·4x=8 3. 当且仅当12 x=4x,即x=3时取最小值83, ∴当x>0时,f(x)的最小值为8 3. (2)∵x<0,∴-x>0. 则-f(x)=12 -x +(-4x)≥2 12 -x ·?-4x?=83, 当且仅当12 -x =-4x时,即x=-3时取等号. ∴当x<0时,f(x)的最大值为-8 3. 一、选择题 1.下列各式,能用基本不等式直接求得最值的是() A.x+1 2x B.x 2-1+ 1 x2-1 C.2x+2-x D.x(1-x) 答案:C 2.函数y=3x2+ 6 x2+1 的最小值是() A.32-3 B.-3 C.6 2 D.62-3

解析:选D.y=3(x2+ 2 x2+1 )=3(x2+1+ 2 x2+1 -1)≥3(22-1)=62-3. 3.已知m、n∈R,mn=100,则m2+n2的最小值是() A.200 B.100 C.50 D.20 解析:选A.m2+n2≥2mn=200,当且仅当m=n时等号成立.4.给出下面四个推导过程: ①∵a,b∈(0,+∞),∴b a+ a b≥2 b a· a b=2; ②∵x,y∈(0,+∞),∴lg x+lg y≥2lg x·lg y; ③∵a∈R,a≠0,∴4 a+a≥2 4 a·a=4; ④∵x,y∈R,,xy<0,∴x y+ y x=-[(- x y)+(- y x)]≤-2?- x y??- y x?=-2. 其中正确的推导过程为() A.①②B.②③C.③④D.①④解析:选D.从基本不等式成立的条件考虑. ①∵a,b∈(0,+∞),∴b a, a b∈(0,+∞),符合基本不等式的条件,故①的推导 过程正确; ②虽然x,y∈(0,+∞),但当x∈(0,1)时,lg x是负数,y∈(0,1)时,lg y是负数,∴ ②的推导过程是错误的; ③∵a∈R,不符合基本不等式的条件, ∴4 a+a≥24 a·a=4是错误的; ④由xy<0得x y, y x均为负数,但在推导过程中将全体 x y+ y x提出负号后,(- x y)均 变为正数,符合基本不等式的条件,故④正确. 5.已知a>0,b>0,则1 a+ 1 b+2ab的最小值是() A.2 B.2 2 C.4 D.5 解析:选 C.∵1 a+ 1 b+2ab≥ 2 ab +2ab≥22×2=4.当且仅当 ?? ? ??a=b ab=1 时, 等号成立,即a=b=1时,不等式取得最小值4. 6.已知x、y均为正数,xy=8x+2y,则xy有()

4 第4讲 基本不等式

第4讲 基本不等式 1.基本不等式:ab ≤ a +b 2 (1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. (3)其中a +b 2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤???? a + b 22 (a ,b ∈R ),当且仅当a =b 时取等号. (3)a 2+b 22≥ ????a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (4)b a +a b ≥2(a ,b 同号),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 2 4 .(简记:和定积最大) 判断正误(正确的打“√”,错误的打“×”) (1)函数y =x +1 x 的最小值是2.( ) (2)ab ≤???? a + b 22成立的条件是ab >0.( ) (3)“x >0且y >0”是“x y +y x ≥2”的充要条件.( ) (4)若a >0,则a 3+1 a 2的最小值是2a .( ) 答案:(1)× (2)× (3)× (4)× (教材习题改编)设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81 D .82 解析:选C.xy ≤????x +y 22 =???? 1822 =81,当且仅当x =y =9时等号成立,故选C.

高考数学一轮复习第六篇不等式第4节基本不等式训练理新人教版

第4节基本不等式 知识点、方法题号 利用基本不等式比较大小、证明2,3 利用基本不等式求最值1,4,7,9,11,13 基本不等式的实际应用6,12,14 基本不等式的综合应用5,8,10 基础巩固(时间:30分钟) 1.已知f(x)=x2(x<0),则f(x)有( C ) (A)最大值0 (B)最小值0 (C)最大值4 (D)最小值4 解析:因为x<0,所以f(x)=(x)2≤=4,当且仅当x=,即x=1时取等号. 选C. 2.下列不等式一定成立的是( C ) (A)lg(x2)>lg x(x>0) (B)sin x≥2(x≠kπ,k∈Z) (C)x21≥2|x|(x∈R) (D)>1(x∈R) 解析:当x>0时,x2≥2·=x,所以lg(x2)≥lg x(x>0),故选项A不正确当2kππ

解析:由ab=1,可得a2bab=1, 因为2ab≤a2b2,当且仅当a=b时取等号. 所以2ab2≥1, 则a2b2≥. 当a,b异号时,不妨取a=1,b=2,易知A,C,D都不正确. 故选B. 4.导学号 38486112(2017·枣庄一模)若正数x,y满足=1,则3x4y的最小值是( C ) (A)24 (B)28 (C)25 (D)26 解析:因为正数x,y满足=1, 则3x4y=(3x4y)( )=13≥133×2=25, 当且仅当x=2y=5时取等号. 所以3x4y的最小值是25. 故选C. 5.导学号 38486113(2017·平度二模)若直线2mxny2=0 (m>0,n>0)过点(1,2),则最小值 ( D ) (A)2 (B)6 (C)12 (D)32 解析:因为直线2mxny2=0(m>0,n>0)过点(1,2), 所以2m2n2=0,即mn=1, 因为=()(mn)=3≥32, 当且仅当=,即n=m时取等号, 所以的最小值为32, 故选D. 6.(2017·河北邯郸一模)已知棱长为的正四面体ABCD(四个面都是正三角形),在侧棱AB 上任取一点P(与A,B都不重合),若点P到平面BCD及平面ACD的距离分别为a,b,则的最小值为( C ) (A) (B)4 (C) (D)5 解析:由题意可得, a·S△BCD bS△ACD=h·S△BCD,其中S△BCD=S△ACD,h为正四面体ABCD的高. h==2, 所以ab=2.

6-4第四节 基本不等式练习题(2015年高考总复习)

第四节 基本不等式 时间:45分钟 分值:75分 一、选择题(本大题共6小题,每小题5分,共30分) 1.设a ,b ∈R ,已知命题p :a 2+b 2≤2ab ;命题q :? ?? ??a +b 22≤a 2+b 2 2,则p 是q 成立的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 解析 命题p :(a -b )2≤0?a =b ;命题q :(a -b )2≥0.显然,由p 可得q 成立,但由q 不能推出p 成立,故p 是q 的充分不必要条件. 答案 B 2.已知f (x )=x +1 x -2(x <0),则f (x )有( ) A .最大值为0 B .最小值为0 C .最大值为-4 D .最小值为-4 解析 ∵x <0,∴-x >0. ∴x +1 x -2=-? ?? ??-x +1-x -2≤-2 (-x )·1 -x -2=-4, 当且仅当-x =1 -x ,即x =-1时,等号成立. 答案 C 3.下列不等式:①a 2 +1>2a ;②a +b ab ≤2;③x 2 +1x 2+1≥1,其 中正确的个数是( ) A .0 B .1

C .2 D .3 解析 ①②不正确,③正确,x 2 +1x 2+1=(x 2 +1)+1x 2+1-1≥2 -1=1. 答案 B 4.(2014·云南师大附中模拟)已知a +b =t (a >0,b >0),t 为常数,且ab 的最大值为2,则t 的值为( ) A .2 B .4 C .2 2 D .2 5 解析 当a >0,b >0时,有ab ≤(a +b )24=t 24,当且仅当a =b =t 2时取等号.∵ab 的最大值为2,∴t 2 4=2,t 2=8,∴t =8=2 2. 答案 C 5.(2014·山东师大附中模拟)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是( ) A.245 B.285 C .5 D .6 解析 由x +3y =5xy ,可得x xy +3y xy =5,即1y +3x =5,∴15y +3 5x =1,∴3x +4y =(3x +4y )? ????15y +35x =95+45+3x 5y +12y 5x ≥135+23x 5y ×12y 5x = 135+12 5=5. 答案 C 6.(2014·湖北八校联考)若x ,y ∈(0,2]且xy =2,使不等式a (2x +y )≥(2-x )(4-y )恒成立,则实数a 的取值范围为( )

一元二次不等式的解法 含答案

课时作业16 一元二次不等式及其解法 时间:45分钟 满分:100分 课堂训练 1.不等式x 2-5x +6≤0的解集为( ) A .[2,3] B .[2,3) C .(2,3) D .(2,3] 【答案】 A 【解析】 因为方程x 2-5x +6=0的解为x =2或x =3,所以不等式的解集为{x |2≤x ≤3}. 2.若a 2-17 4a +1<0,则不等式x 2+ax +1>2x +a 成立的x 的范围是( ) A .{x |x ≥3或x ≤1} B .{x |x <1 4或x >4} C .{x |11} 【答案】 D 【解析】 由a 2 -174a +1<0,得:a ∈(1 4,4). 不等式x 2+ax +1>2x +a ,可化为:(x -1)[x -(1-a )]>0, ∴x <1-a 或x >1, ∴x ≤-3或x >1. 3.若关于x 的不等式ax 2-6x +a 2<0的解集为(1,m ),则实数m =________. 【答案】 2

【解析】 ∵x =1是方程ax 2-6x +a 2=0的根,∴a -6+a 2=0,∴a =2或-3.当a =2时,不等式2x 2-6x +4<0的解集为(1,2),∴m =2.当a =-3时,不等式-3x 2-6x +9<0的解集为(-∞,-3)∪(1,+∞),不合题意. 4.求函数f (x )=log 2(x 2 -x +1 4)+x 2-1的定义域. 【解析】 由函数的解析式有意义,得??? ?? x 2-x +14>0, x 2-1≥0, 即????? x ≠12, x ≤-1或x ≥1. 因此x ≤-1或x ≥1.故所求函数的定义域为{x |x ≤-1或x ≥1}. 课后作业 一、选择题(每小题5分,共40分) 1.不等式2x 2-x -1>0的解集是( ) A .(-1 2,1) B .(1,+∞) C .(-∞,1)∪(2,+∞) D .(-∞,-1 2)∪(1,+∞) 【答案】 D 【解析】 ∵2x 2-x -1=(2x +1)(x -1),∴由2x 2-x -1>0得(2x +1)(x -1)>0,解得x >1或x <-12,∴不等式的解集为(-∞,-1 2)∪(1,+∞).故应选D.

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

2015届高考数学总复习 基础知识名师讲义 第六章 第四节基本不等式≤ (a,b∈R+ ) 文

第四节 基本不等式: ab ≤a +b 2 (a ,b ∈R +) 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题. 知识梳理 一、算术平均数与几何平均数的概念 若a >0,b >0,则a ,b 的算术平均数是a +b 2,几何平均数是ab . 二、常用的重要不等式和基本不等式 1.若a ∈R ,则a 2≥0,||a ≥0(当且仅当a =0时取等号). 2.若a ,b ∈R ,则a 2+b 2≥2ab (当且仅当a =b 时取等号). 3.若a ,b ∈R +,则a +b ≥2ab (当且仅当a =b 时取等号). 4.若a ,b ∈R +,则a 2+b 22≥ ????a +b 22 (当且仅当a =b 时取等号). 三、均值不等式(基本不等式) 两个正数的均值不等式:若a ,b ∈R +,则a +b 2≥ab (当且仅当a =b 时取等号). 变式: ab ≤?? ?a +b 22 (a ,b ∈R +). 四、最值定理 设x >0,y >0,由x +y ≥2xy ,有: (1)若积xy =P (定值),则和x +y 最小值为2P . (2)若和x +y =S (定值),则积xy 最大值为????S 22 . 即积定和最小,和定积最大. 运用最值定理求最值应满足的三个条件:“一正、二定、三相等”. 五、比较法的两种形式

一是作差,二是作商. 基础自测 1.(2012·深圳松岗中学模拟)若函数f (x )=x +1 x -2(x >2)在x =n 处有最小值,则n =( ) A .1+2 B .1+ 3 C .4 D .3 解析:f (x )=x -2+1x -2+2≥2(x -2)·1x -2+2=4,当且仅当x -2=1x -2 ,即x -2=1,x =3时,f (x )有最小值.故选D. 答案:D 2.(2013·广州二模)已知0<a <1,0<x ≤y <1,且log a x ·log a y =1,那么xy 的取值范围为( ) A .(0,a 2] B .(0,a ] C .(0,1 a ] D .(01a 2] 解析:因为0<a <1,0<x ≤y <1,所以log a x >0,log a y >0, 所以log a x +log a y =log a (xy )≥2log a x ·log a y =2,当且仅当log a x =log ay =1时取等号.所以0<xy ≤a 2.故选A. 答案:A 3.(2012·合肥重点中学联考)若直线2ax -by +2=0(a ,b >0)始终平分圆x 2+y 2+2x -4y +1=0的周长,则1a +1 b 的最小值是________. 答案:4 4.当x >2时,不等式x +1 x -2≥a 恒成立,则实数a 的取值范围是________. 解析:因为x + 1 x -2≥a 恒成立, 所以a 必须小于或等于x +1 x -2 的最小值.

广东高考数学(理)一轮题库:7.4-基本不等式(含答案)

第4讲基本不等式一、选择题 1.若x>0,则x+4 x 的最小值为( ). A.2 B.3 C.2 2 D.4 解析∵x>0,∴x+4 x ≥4. 答案 D 2.已知a>0,b>0,a+b=2,则y=1 a + 4 b 的最小值是( ). A.7 2 B.4 C. 9 2 D.5 解析依题意得1 a + 4 b = 1 2? ? ? ? ? 1 a + 4 b( a+b)= 1 2? ? ? ? ? ? 5+ ? ? ? ? ? b a + 4a b≥ 1 2? ? ? ? ? 5+2 b a × 4a b =9 2 ,当且仅当 ?? ? ?? a+b=2 b a = 4a b a>0,b>0 ,即a= 2 3 , b=4 3 时取等号,即 1 a + 4 b 的最小值是 9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a和b(a

又v -a =2ab a + b -a =ab -a 2a +b >a 2-a 2a +b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4 C.a +b 有最大值 2 D .a 2+b 2有最小值 22 解析 由基本不等式,得ab ≤a 2+b 2 2 = a +b 2 -2ab 2 ,所以ab ≤1 4 ,故B 错; 1 a +1 b =a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2-2ab =1-2ab ≥1-2×14=1 2, 故D 错. 答案 C 5.已知x >0,y >0,且2x +1 y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ???? 2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2+2m 恒成立, 只需(x +2y )min >m 2+2m 恒成立, 即8>m 2+2m ,解得-4

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理

2019-2020年高考数学一轮复习第七章不等式第4讲基本不等式理 一、选择题 1.若x >0,则x +4 x 的最小值为( ). A .2 B .3 C .2 2 D .4 解析 ∵x >0,∴x +4 x ≥4. 答案 D 2.已知a >0,b >0,a +b =2,则y =1a +4 b 的最小值是( ). A.72 B .4 C.9 2 D .5 解析 依题意得1a +4b =12? ????1a +4b (a +b )=12??????5+? ????b a +4a b ≥12? ? ???5+2 b a ×4a b =9 2 , 当且仅当????? a + b =2b a = 4a b a >0,b >0 ,即a =2 3 , b =4 3时取等号,即1a +4b 的最小值是9 2 . 答案 C 3.小王从甲地到乙地的时速分别为a 和b (a a 2 -a 2 a + b =0,∴v >a . 答案 A 4.若正实数a ,b 满足a +b =1,则( ). A.1a +1 b 有最大值4 B .ab 有最小值1 4

C.a +b 有最大值 2 D .a 2+b 2 有最小值 22 解析 由基本不等式,得ab ≤ a 2+ b 2 2 = a +b 2 -2ab 2,所以ab ≤14,故B 错;1a +1b = a +b ab =1ab ≥4,故A 错;由基本不等式得a +b 2 ≤ a +b 2 = 1 2 ,即a +b ≤ 2,故C 正确;a 2+b 2=(a +b )2 -2ab =1-2ab ≥1-2×14=12,故D 错. 答案 C 5.已知x >0,y >0,且2x +1y =1,若x +2y >m 2 +2m 恒成立,则实数m 的取值范围是 ( ). A .(-∞,-2]∪[4,+∞) B .(-∞,-4]∪[2,+∞) C .(-2,4) D .(-4,2) 解析 ∵x >0,y >0且2x +1 y =1, ∴x +2y =(x +2y )? ?? ??2x +1y =4+4y x +x y ≥4+2 4y x ·x y =8,当且仅当4y x =x y , 即x =4,y =2时取等号, ∴(x +2y )min =8,要使x +2y >m 2 +2m 恒成立, 只需(x +2y )min >m 2 +2m 恒成立, 即8>m 2 +2m ,解得-40),l 1与函数y =|log 2x |的图象从左至右相 交于点A ,B ,l 2与函数y =|log 2x |的图象从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为a ,b .当m 变化时,b a 的最小值为 ( ). A .16 2 B .8 2 C .83 4 D .434 解析 如图,作出y =|log 2x |的图象,由图可 知A ,C 点的横坐标在区间(0,1)内,B ,D 点的横坐标在区间(1,+∞)内,而且x C -x A 与x B -

基本不等式及其应用知识梳理及典型练习题(含答案)

基本不等式及其应用 1.基本不等式 若a>0,,b>0,则 a + b 2 ≥ab ,当且仅当 时取“=”. 这一定理叙述为:两个正数的算术平均数 它们的几何平均数. 注:运用均值不等式求最值时,必须注意以下三点: (1)各项或各因式均正;(一正) (2)和或积为定值;(二定) (3)等号成立的条件存在:含变数的各项均相等,取得最值.(三相等) 2.常用不等式 (1)a 2+b 2≥ab 2(a ,b ∈R ). 2 a b +()0,>b a 注:不等式a 2+b 2≥2ab 和 2 b a +≥a b 它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.其等价变形:ab≤(2 b a +)2 .

(3)ab≤ 2 2 ? ? ? ? ?+b a (a,b∈R). (4) b a + a b ≥2(a,b同号且不为0). (5) 2 2 ? ? ? ? ?+b a ≤ a2+b2 2 (a,b∈R). (6) b a ab b a b a 1 1 2 2 2 2 2 + ≥ ≥ + ≥ +()0 ,> b a (7)abc≤ a3+b3+c3 3 ;() ,,0 a b c> (8) a+b+c 3 ≥ 3 abc;() ,,0 a b c> 3.利用基本不等式求最大、最小值问题 (1)求最小值:a>0,b>0,当ab为定值时,a+b,a2+b2有,即a +b≥,a2+b2≥. (2)求最大值:a>0,b>0,当a+b为定值时,ab有最大值,即;或a2+b2为定值时,ab有最大值(a>0,b>0),即.

设a,b∈R,且a+b=3,则2a +2b的最小值是( ) 解:因为2a>0,2b>0,由基本不等式得2a+2b≥22a·2b=22a+b=42, 当且仅当a=b=3 2 时取等号,故选B. 若a>0,b>0,且a+2b-2=0, 则ab的最大值为( ) 解:∵a>0,b>0,a+2b=2,∴a+2b=2≥22ab,即ab≤1 2 .当且仅当a =1,b=1 2 时等号成立.故选A.

2020-2021学年北师大版八年级数学下册第二章课时作业:6第2课时一元一次不等式组的解法(2)

第2课时 一元一次不等式组的解法(2) 知识点 1 解复杂的一元一次不等式组 1. 不等式组{2-3x ≥-1,x -1≥-2(x +2) 的解集为 ( ) A .无解 B .x ≤1 C .x ≥-1 D .-1≤x ≤1 2.解不等式组,并把解集在数轴上表示出来. (1) {3x -4<5,2x -13>x -22; (2) { 7-4x >5(1-x ),4-x -22

(2) 解不等式组{4(x +1)≤7x +13,x -40,12a ≤3 B .{a +5>0,12a <3 C .{a +5>0,12a ≥3 D .{a +5≥0,12 a ≤3 5. 红光中学学生乘汽车从学校去研学旅行基地,以75 km/h 的平均速度,用时2 h 到达.由于天气原因,原路返回时汽车的平均速度控制在不低于50 km/h 且不高于60 km/h 的范围内,这样需要用t h 到达,则t 的取值范围为 . 6.对于不等式组{13x -6≤1-53x ,3(x -1)<5x -1, 下列说法正确的是 ( ) A .此不等式组的正整数解为1,2,3 B .此不等式组的解集为-1-1 的解集是x>3,则m 的取值范围是( ) A .m>4 B .m ≥4 C .m<4 D .m ≤4 8.如图,有长为40 m 的篱笆,现利用一面墙围成中间隔有一道篱笆的矩形花圃ABCD ,墙的长度MN=30 m,要使靠墙的一边AD 的长不小于25 m,设与墙垂直的一边AB 的长为x m,可得不等式组: . 9.若关于x 的不等式组{2x +a >0,12x >-a 4 +1的解集中的任意x ,都能使不等式x-5>0成立,则a 的取值范围是 . 10.2019年“我要走”全国徒步日(江夏站)暨第六届环江夏徒步大会5月19日在美丽的花山脚下隆重举行.活动主办方为了奖励活动中取得好成绩的参赛选手,计划购买甲、乙两种纪念品共100件进行发放,其中甲种纪念品每件售价120元,乙种纪念品每件售价80元.

基本不等式(含答案)

§3.4 基本不等式:ab ≤ a + b 2 材拓展 1.一个常用的基本不等式链 设a >0,b >0,则有: min{a ,b }≤21a +1b ≤ ab ≤a +b 2≤ a 2+b 22≤max{a ,b }, 当且仅当a =b 时,所有等号成立. 若a >b >0,则有: b <21a +1b 0,则a b +b a ≥2. 3.利用基本不等式求最值的法则 基本不等式ab ≤a +b 2 (a ,b 为正实数)常用于证明不等式或求代数式的最值. (1)当两个正数的和为定值时,它们的积有最大值,即ab ≤????a +b 22,当且仅当a =b 时, 等号成立. (2)当两个正数的积为定值时,它们的和有最小值,即a +b ≥2ab ,当且仅当a =b 时,等号成立. 注意:利用基本不等式求代数式最值,要注意满足三个条件:①两个正数;②两个正数的积或和为定值;③取最值时,等号能成立.概括为“一正、二定(值)、三相等”. 4.函数f (x )=x +k x (k >0)的单调性在求最值中的应用 有些最值问题由于条件的限制使等号取不到,其最值又确实存在,我们可以利用函数f (x )=x +k x (k >0)的单调性加以解决. 利用函数单调性的定义可以证明函数f (x )=x +k x (k >0)在(0,k ]上单调递减,在[k ,+∞)上单调递增. 因为函数f (x )=x +k x (k >0)是奇函数,所以f (x )=x +k x (k >0)在(-∞,-k ]上为增函数,在[-k ,0)上为减函数.

人教A版高中数学必修5:一元二次不等式及其解法 课时练习

课时作业16 一元二次不等式及其解法 [基础巩固](25分钟,60分) 一、选择题(每小题5分,共25分) 1.已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B 等于( ) A .(-∞,-1) B.? ????-1,-23 C.? ?? ??-23,3 D .(3,+∞) 解析:因为3x +2>0,所以x >-23 . 所以A =?????? ????x ??? x >-23. 又因为(x +1)(x -3)>0,所以x >3或x <-1. 所以B ={x |x <-1或x >3}. 所以A ∩B =??????????x ??? x >-23∩{x |x <-1或x >3}={x |x >3} 答案:D 2.函数y =17-6x -x 2的定义域为( ) A .[-7,1] B .(-7,1) C .(-∞,-7]∪[1,+∞) D .(-∞,-7)∪(1,+∞) 解析:由7-6x -x 2>0,得x 2 +6x -7<0,即(x +7)(x -1)<0,所以-7

4.若函数f (x )=1 kx 2+kx +1的定义域为R ,则常数k 的取值范围是( ) A .(0,4) B .[0,4] C .[0,4) D .(0,4] 解析:∵函数f (x )= 1kx 2+kx +1的定义域为R ,∴kx 2+kx +1>0对x ∈R 恒成立.当k >0时,Δ=k 2-4k <0,解得00恒成立;当k <0时,不符合条件.故0≤k <4.选C. 答案:C 5.如果ax 2+bx +c >0的解集为{x |x <-2或x >4},那么对于函数f (x )=ax 2+bx +c ,应有( ) A .f (5)4},得x =-2和x =4是函数f (x )=ax 2+bx +c 的图象与x 轴交点的横坐标,故f (x )的图象的对称轴为x =-2+42 =1,且其图象开口向上结合图象可得f (5)>f (-1)>f (2). 答案:D 二、填空题(每小题5分,共15分) 6.不等式1+2x +x 2≤0的解集为________. 解析:不等式1+2x +x 2≤0化为(x +1)2≤0,解得x =-1. 答案:{-1} 7.不等式x 2-(2a +1)x +a 2+a <0的解集为________. 解析:由题得[x -(a +1)](x -a )<0, 所以a f (1)的解集是________. 解析:f (1)=12-4×1+6=3,不等式即为f (x )>3. ①当x ≥0时,不等式即为 ????? x 2 -4x +6>3,x ≥0, 解得????? x >3或x <1,x ≥0,

最新基本不等式练习题及答案

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2 +1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

【训练2】 已知a >0,b >0,c >0,且a +b +c =1. 求证:1a +1b +1 c ≥9. 考向三 利用基本不等式解决恒成立问题 【例3】?(2010·山东)若对任意x >0,x x 2+3x +1≤a 恒成立,则a 的取值范围是 ________. 【训练3】 (2011·宿州模拟)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 考向三 利用基本不等式解实际问题 【例3】?某单位建造一间地面面积为12 m 2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x 不得超过5 m .房屋正面的造价为400元/m 2,房屋侧面的造价为150元/m 2,屋顶和地面的造价费用合计为5 800元,如果墙高为3 m ,且不计房屋背面的费用.当侧面的长度为多少时,总造价最低? 【训练3】 (2011·广东六校第二次联考)东海水晶制品厂去年的年产量为10万件,每件水晶产品的销售价格为100元,固定成本为80元.从今年起,工厂投入100万元科技成本.并计划以后每年比上一年多投入100万元科技成本.预计产量每年递增1万件,每件水晶产品的固定成本g (n )与科技成本的投入次数n 的关系是g (n )= 80 n +1 .若水晶产品的销售价格不变,第n 次投入后的年利润为f (n )万元. (1)求出f (n )的表达式; (2)求从今年算起第几年利润最高?最高利润为多少万元? 【试一试】 (2010·四川)设a >b >0,则a 2+1 ab +1 a (a - b ) 的最小值是( ). A .1 B .2 C .3 D .4 双基自测 D .(2,+∞) 答案 C 2.解析 ①②不正确,③正确,x 2+ 1x 2+1=(x 2 +1)+1x 2+1 -1≥2-1=1.答案 B 3.解析 ∵a >0,b >0,a +2b =2,∴a +2b =2≥22ab ,即ab ≤1 2.答案 A

【高考精品复习】第七篇 不等式 第4讲 基本不等式

第4讲 基本不等式 【高考会这样考】 1.考查应用基本不等式求最值、证明不等式的问题. 2.考查应用基本不等式解决实际问题. 【复习指导】 1.突出对基本不等式取等号的条件及运算能力的强化训练. 2.训练过程中注意对等价转化、分类讨论及逻辑推理能力的培养. 基础梳理 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ); (2)b a +a b ≥2(a ,b 同号); (3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定

积最大 ) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是ab ≤a 2+b 22;a +b 2≥ab (a ,b >0)逆用就是ab ≤? ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); (2) a 2+b 22≥a +b 2≥ab ≥2 1a +1b (a >0,b >0,当且仅当a =b 时取等号). 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 双基自测 1.(人教A 版教材习题改编)函数y =x +1x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 解析 ∵x >0,∴y =x +1x ≥2, 当且仅当x =1时取等号. 答案 C 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1x 2+1≥1,其中正确的个数是

相关主题
文本预览
相关文档 最新文档