当前位置:文档之家› 高中数学3.2复数代数形式的四则运算3.2.2复数代数形式的乘除运算导学案新人教A版选修2-2剖析

高中数学3.2复数代数形式的四则运算3.2.2复数代数形式的乘除运算导学案新人教A版选修2-2剖析

高中数学3.2复数代数形式的四则运算3.2.2复数代数形式的乘除运算导学案新人教A版选修2-2剖析
高中数学3.2复数代数形式的四则运算3.2.2复数代数形式的乘除运算导学案新人教A版选修2-2剖析

§3.2.2 复数代数形式的乘除运算

学习目标

1. 理解共轭复数的概念;

2. 掌握复数的代数形式的乘、除运算.

学习过程

一、课前准备

(预习教材P 68~ P 70,找出疑惑之处)

复习1:计算(1)(14)(72)i i +-+

(2)(52)(14)(23)i i i --+--+

(3)(32)(43)(5)]i i i --+-+-[

复习2:计算:

2()a b ±=

(32)(32)a b a b +-=

(32)(3)a b a b +--=

二、新课导学

学习探究

探究任务一:复数代数形式的乘法运算

规定,复数的乘法法则如下: 设12,z a bi z c di =+=+,是任意两个复数,那么

2()()a bi c di ac bci adi bdi ++=+++ =()()ac bd ad bc i -++ 即:两个复数相乘,类似于两个多项式相乘,只要在所得的结果中把2i 换成1-,并且把实部与虚部分别合并即可.

问题:复数的乘法是否满足交换律、结合律以及乘法对加法的分配律?

试试:计算(1)(14)(72)i i +?-

(2)(72)(14)i i -?+

(3)[(32)(43)](5)i i i -?-+?+

(4)(32)(43)(5)]i i i -?-+?+[

新知:对于任意123,,z z z C ∈,有 1221z z z z ?=?

123123()()z z z z z z ??=??

1231213())z z z z z z z +=+

反思:复数的四则运算类似于多项式的四则运算,也满足其在实数集上的运算律.

探究任务二:共轭复数

新知:当两个复数的实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。虚部不等于0的两个共轭复数也叫做共轭虚数.

试试:34i +的共轭复数为

a bi +的共轭复数为

bi 的共轭复数为

问:若12,z z 是共轭复数,那么(1)在复平面内,它们所对应的点的位置关系为:

(2)12z z ?是一个怎样的数?

探究任务三:复数的除法法则

典型例题

例1 计算:

(1)(34)(34)i i +-; (2)2(1)i +

变式:计算:

(1(2)2

(1)i-;

(3)(2)(12)

--

i i i

小结:复数的乘法运算类似于实数集上的乘法运算. 例2 计算(1)(12)(34)

+÷-;

i i

(2

变式:计算(1(2

小结:复数的除法运算类似于实数集上的除法运算。

动手试试

练1. 计算:(1)(12)(34)(2)

+---

i i i

练2. 计算:(1 (2 (3

三、总结提升

学习小结

1. 复数的乘除运算;

2. 共轭复数的定义.

知识拓展

i 具有周期性,即:41n i =;41n i i +=;4221n i i +==-; 43n i i +=-;

学习评价

当堂检测(时量:5分钟 满分:10分)计分:

1. )

A .2i +

B .2i -

C .2i --

D .2i -

2. )

A .i -

B .i

C .1-

D .1

3. 的实部和虚部互为相反数,那么实数b 的值为( )

A .-2 C 4.,则22z z -的值为

5. 若复数z 满足,则|1|z +的值为

课后作业

1. 计算:

(1(2

(3(4

2. 已知23i -是关于x 的方程220x px q ++=的一个根,求实数,p q 的值.

复 数 的 运 算 法 则

网易云课堂_C++程序设计入门(下)_第9单元:白公曾咏牡丹芳,一种鲜妍独“异常”_第9单元 - 作业3:OJ编程 - 使用异常进行复数运算的错误处理... 第9单元?-?作业3:OJ编程?-?使用异常进行复数运算的错误处理 查看帮助 温馨提示: 1.本次作业属于Online Judge题目,提交后由系统即时判分。 2.学生可以在作业截止时间之前不限次数提交答案,系统将取其中的最高分作为最终成绩。 在复数的运算中,练习异常处理 依照学术诚信条款,我保证此作业是本人独立完成的。 通过C++内建的异常类,处理复数除法中除数为0 的问题(5分)题目内容请参见【第9单元 - 作业3说明:【OJ - 使用异常进行错误处理】】 时间限制:500ms内存限制:32000kb #include iostream #include exception #include stdexcept #include limits #include cmath

using namespace std; class MyComplex--2. 创建一个类 MyComplex,用来表示复数。 MyComplex(); MyComplex(double a, double b); friend ostream operator (ostream os, const MyComplex z);--4. 重载流插入运算符,使之可以将复数输出为如下的格式(实部如果是非负数,则不输出符号位;输出时要包含半角左右小括号):friend istream operator (istream is, MyComplex z);--3. 重载流提取运算符,使之可以读入以下格式的输入(两个数值之间使用空白分隔),将第一个数值存为复数的实部,将第二个数值存为复数的虚部: MyComplex operator+(const MyComplex secondMyComplex);--加法法则:(a+bi)+(c+di)=(a+c)+(b+d)i; MyComplex operator-(const MyComplex secondMyComplex);--减法法则:(a+bi)-(c+di)=(a-c)+(b-d)i; MyComplex operator*(const MyComplex secondMyComplex);--乘法法则:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i; MyComplex operator-(const MyComplex secondMyComplex);--除法法则:(a+bi)÷(c+di)=[(ac+bd)-(c2+d2)]+[(bc-ad)-(c2+d2)]i. private: double a_;

代数式恒等式的证明

初中数学竞赛专题选讲 代数恒等式的证明 一、内容提要 证明代数恒等式,在整式部分常用因式分解和乘法两种相反的恒等变形,要特别注意运用乘法公式和等式的运算法则、性质。 具体证法一般有如下几种 1.从左边证到右边或从右边证到左边,其原则是化繁为简。变形的过程中要不断注意结论的形式。 2.把左、右两边分别化简,使它们都等于第三个代数式。 3.证明:左边的代数式减去右边代数式的值等于零。即由左边-右边=0可得左边=右边。 4,由己知等式出发,经过恒等变形达到求证的结论。还可以把己知的条件代入求证的一边证它能达到另一边, 二、例题 例1求证:3 n+2-2n+2+2×5 n+2+3 n-2 n=10(5 n+1+3 n-2 n-1) 证明:左边=2×5×5 n+1+(3 n+2+3 n)+(-2 n+2-2 n) =10×5 n+1+3 n(32+1)-2 n-1(23+2) =10(5 n+1+3 n-2 n-1)=右边 又证:左边=2×5 n+2+3 n(32+1)-2 n(22+1) =2×5 n+2+10×3 n-5×2 n 右边=10×5 n+1+10×3 n-10×2 n-1 =2×5 n+2+10×3 n-5×2 n ∴左边=右边 例2 己知:a+b+c=0 求证:a3+b3+c3=3abc 证明:∵a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-ac-bc)(见19例1) ∵:a+b+c=0 ∴a3+b3+c3-3abc=0即a3+b3+c3=3abc 又证:∵:a+b+c=0∴a=-(b+c) 两边立方a3=-(b3+3b2c+3bc2+c3) 移项a3+b3+c3=-3bc(b+c)=3abc 再证:由己知a=-b-c 代入左边,得 (-b-c)3+ b3+c3=-(b3+3b2c+3bc2+c 3)+b3+c3 =-3bc(b+c)=-3bc(-a)=3abc

高中数学复数

第1章:复数与复变函数 §1 复数 1.复数域 形如iy x z +=的数,称为复数,其中y x ,为实数。实数x 和实数y 分别称为复数iy x z +=的实部与虚部。记为 z x Re =, z y Im = 虚部为零的复数可看成实数,虚部不为零的复数称为虚数,实部为零虚部不为零的复数称为纯虚数。复数iy x z -= 和iy x z +=称为互为共轭复数,z 的共轭复数记为z 。 设 ,复数的四则运算定义为 加(减)法: 乘法: 除法: 相等: 当且仅当 复数的四则运算满足以下运算律 ①加法交换律 1221z z z z +=+ ②加法结合律 321321)()(z z z z z z ++=++ ③乘法交换律 1221z z z z ?=? ④乘法结合律 321321)()(z z z z z z ??=?? ⑤乘法对加法的分配律 3121321)(z z z z z z z ?+?=+? 全体复数在引入相等关系和运算法则以后,称为复数域. 在复数域中,复数没有大小. 正如所有实数构成的集合用R 表示,所有复数构成的集合用C 表示。

例 设i 3,i 5221+=-=z z ,求 2 1 z z . 分析:直接利用运算法则也可以,但那样比较繁琐,可以利用共轭复数的运算结果。 解 为求 2 1 z z ,在分子分母同乘2z ,再利用1i 2-=,得 i 101710110i 171)i 3)(i 52(2222121-=-=--=??=z z z z z z z 2.复平面 一个复数iy x z +=本质上由一对有序实数唯一确定。于是能够确定平面上全部的点和全体复数间一一对应的关系。如果把x 和y 当作平面上的点的坐标,复数z 就跟平面上的点一一对应起来,这个平面叫做复数平面或z 平面,x 轴称为实轴,y 轴称为虚轴. 在复平面上,从原点到点 所引的矢量 与复数z 也构成一一对应 关系,且复数的相加、减与矢量相加、减的法则是一致的,即满足平行四边形法则,例如: 这样,构成了复数、点、矢量之间的一一对应关系. 3. 复数的模与辐角 向量 的长度称为复数 的模或绝对值,即:

复数代数形式的加减运算及其几何意义(教案)

新授课:3.2.1 复数代数形式的加减运算及其几何意义 教学目标 重点:复数代数形式的加法、减法的运算法则. 难点:复数加法、减法的几何意义. 知识点:.掌握复数代数形式的加、减运算法则; .理解复数代数形式的加、减运算的几何意义. 能力点:培养学生渗透转化、数形结合的数学思想方法,提高学生分析问题、解决问题以及运算的能力. 教育点:通过探究学习,培养学生互助合作的学习习惯,培养学生对数学探索和渴求的思想. 在掌握知识的同时,形成良好的思维品质和锲而不舍的钻研精神. 自主探究点:如何运用复数加法、减法的几何意义来解决问题. 考试点:会计算复数的和与差;能用复数加、减法的几何意义解决简单问题. 易错易混点:复数的加法与减法的综合应用. 拓展点:复数与其他知识的综合. 一、引入新课 复习引入 .虚数单位:它的平方等于,即; .对于复数: 当且仅当时,是实数; 当时,为虚数; 当且时,为纯虚数; 当且仅当时,就是实数. .复数集与其它数集之间的关系:. 一一对应 .复数几何意义: 复数复平面内的向量 我们把实数系扩充到了复数系,那么复数之间是否存在运算呢?答案是肯定的,这节课我们就来研究复数的加减运算. 【设计意图】通过复习回顾复数概念、几何意义等相关知识,使学生对这一知识结构有个清醒的初步认知,逐渐过渡到对复数代数形式的加减运算及其几何意义的学习情境,为探究本节课的新知识作铺垫. 二、探究新知

探究一:复数的加法 .复数的加法法则 我们规定,复数的加法法则如下: 设,是任意两个复数,那么: 提出问题: ()两个复数的和是个什么数,它的值唯一确定吗? ()当时,与实数加法法则一致吗? ()它的实质是什么?类似于实数的哪种运算方法? 学生明确: ()仍然是个复数,且是一个确定的复数; ()一致; ()实质是实部与实部相加,虚部与虚部相加,类似于实数运算中的合并同类项.【设计意图】加深对复数加法法则的理解,且与实数类比,了解规定的合理性:将实数的运算通性、通法扩充到复数,有利于培养学生的学习兴趣和创新精神. .复数加法的运算律 实数的加法有交换律、结合律,复数的加法满足这些运算律吗? 对任意的,有 (交换律), (结合律). 【设计意图】引导学生根据实数加法满足的运算律,大胆尝试推导复数加法的运算律,学生先独立思考,然后小组交流.提高学生的建构能力及主动发现问题,探究问题的能力. .复数加法的几何意义 复数与复平面内的向量有一一对应关系,那么请同学们猜想一下,复数的加法也有这种对应关系吗? 设分别与复数对应,则有,由平面向量的坐标运算有 . 这说明两个向量的和就是与复数对应的向量.因此,复数的加法可以按照向量加法的平行四边形法则来进行.这就是复数加法的几何意义.如图所示:

高一数学复数的运算练习题

复数的运算测试题 一、选择题 1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( ) A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件 D.既不是充分也不必要条件 答案:B 2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2 C.1 D.—1 答案:D 3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D. 2 a =或 0a = 答案:D 4.设1z ,2z 为复数,则下列四个结论中正确的是( )

A.若22120z z +>,则2212z z >- B. 12 z z -= C.22121200z z z z +=?== D.11z z -是纯虚数或零 答案:D 5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D 6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A 7.已知复数1cos z i θ=-,2sin z i θ=+,则1 2z z ·的最大值为( )

A.3 2 D.3 答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( ) A. 2- B. C. D.4 答案:B 9.在复平面内12 ω=-对应的向量为OA ,复数2ω对应的向量为 OB .那么向量AB 对应的复数是( ) A.1 B. 1- D. 答案:D 10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小; ②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ; ⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.

三角函数恒等式的证明

三角形内有关角的三角函数恒等式的证明 张思明 课型和教学模式:习题课,“导学探索,自主解决”模式 教学目的: (1)掌握利用三角形条件进行角的三角函数恒等式证明的主要方法,使学生熟悉三角变换的一些常用方法和技巧(如定向变形,和积互换等)。 (2)通过自主的发现探索,培养学生发散、创造的思维习惯和思维能力,体验数形结合、特殊一般转化的数学思想。并利用此题材做学法指导。 (3)通过个人自学、小组讨论、互相启发、合作学习,培养学生自主与协作相结合的学习能力和敢于创新,不断探索的科学精神。 教学对象:高一(5)班 教学设计: 一.引题:(A,B环节) 1.1复习提问:在三角形条件下,你能说出哪些有关角的三角恒等式? 拟答: , …… , ,

…… 这些结果是诱导公式,的特殊情况。 1.2今天开始的学习任务是解决这类问题:在三角形条件下,有关角的三角恒等式的证明。学习策略是先分若干个学习小组(四人一组),分头在课本P233---P238,P261-266的例题和习题中,找出有三角形条件的所有三角恒等式。 1.3备考:期待找出有关△ABC内角A、B、C的三角恒等式有: (1)P233:例题10:sinA+sinB+sinC=4cosA/2cosB/2cosC/2 (2)P238:习题十七第6题:sinA+sinB-sinC=4sinA/2sinB/2cosC/2. (3) cosA+cosB+cosC=1+4sinA/2sinB/2sinC/2. (4) sin2A+sin2B+sin2C=4sinAsinBsinC. (5)cos2A+cos2B+cos2C=-1-4cosAcosBcosC. (6)P264:复参题三第22题:tgA+tgB+tgC = tgAtgBtgC. (7) 也许有学生会找出:P264--(23)但无妨。 1.4请各组学生分工合作完成以上恒等式的证明: 提示:建议先自学例题10,注意题目之间的联系,以减少证明的重复劳动。 二.第一层次的问题解决(C,D环节) 2.1让一个组上黑板,请学生自主地挑出有“代表性”的3题(不超过3题)书写证明过程。然后请其他某一个组评判或给出不同的证法。 证法备考:(1)左到右:化积---->提取----->化积。 (2)左到右:化积---->提取----->化积sin(A+B)/2=cosC/2

(完整word版)高中数学-复数专题

复数专题 一、选择题 1 .(2012年高考(天津理)) i 是虚数单位,复数7= 3i z i -+ ( ) A .2i + B .2i - C .2i -+ D .2i -- 2 .(2012年高考(新课标理))下面是关于复数2 1z i = -+的四 个命题:其中的真命 题为 1:2p z = 22:2p z i = 3:p z 的共轭复数为1i + 4:p z 的虚部为1- ( ) A .23,p p B .12,p p C .,p p 24 D .,p p 34 3 .(2012年高考(浙江理))已知i 是虚数单位,则 3+i 1i -= ( ) A .1-2i B .2-i C .2+i D .1+2i 4 .(2012年高考(四川理))复数2(1)2i i -= ( ) A .1 B .1- C . i D .i - 5 .(2012年高考(上海理))若i 21+是关于x 的实系数方程02=++c bx x 的一个复数根,则 ( ) A .3,2==c b . B .3,2=-=c b . C .1,2-=-=c b . D .1,2-==c b . 6 .(2012年高考(陕西理))设,a b R ∈, 是虚数单位,则“0ab =”是“复数b a i + 为纯虚数”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 7 .(2012年高考(山东理))若复数z 满足(2)117z i i -=+( i 为虚数单位),则z 为 ( ) A .35i + B .35i - C .35i -+ D .35i -- 8 .(2012年高考(辽宁理))复数 22i i -=+ ( ) A .34i - B .34i + C .41i - D .3 1i +

高中数学公式速记口诀大全

高中数学公式速记口诀大全 一、《集合与函数》 内容子交并补集,还有幂指对函数。性质奇偶与增减,观察图象最明显。复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。指数与对数函数,两者互为反函数。底数非1的正数,1两边增减变故。函数定义域好求。分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。 二、《三角函数》 三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1,连结顶点三角形;向下三角平方和,倒数关系是对角,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用;1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范; 三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围;利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集; 三、《不等式》 解不等式的途径,利用函数的性质。对指无理不等式,化为有理不等式。高次向着低次代,步步转化要等价。数形之间互转化,帮助解答作用大。证不等式的方法,实数性质威力大。求差与0比大小,作商和1争高下。直接困难分析好,思路清晰综合法。非负常用基本式,正面难则反证法。还有重要不等式,以及数学归纳法。图形函数来帮助,画图建模构造法。 四、《数列》 等差等比两数列,通项公式N项和。两个有限求极限,四则运算顺序换。数列问题多变幻,方程化归整体算。数列求和比较难,错位相消巧转换,取长补短高斯法,裂项求和公式算。归纳思

复数的四则运算教学设计

《复数的四则运算》教学设计 吕叔湘中学 黄国才 【教学目的】1、初步理解复数的加法、减法、乘法的运算法则. 2、会利用加法、减法、乘法、运算法则进行简单的运算。 3、了解复数中共轭复数的概念 【教学重点】:会利用加法、减法、乘法、运算法则进行简单的运算。 【教学难点】:理解复数的加法、减法、乘法的运算法则. 【教学过程】: 一、 问题情景: 问题1: 由初中学习我们可以知道: (2+3x )+(1-4x)=3-x 猜想: (2+3i )+(1-4i)= ? 二、 建构数学 1、复数减法的运算法则 问题 2:用字母表示数,你可以表示复数的运算法则和运算律吗? (1)运算法则:设复数z 1=a+bi,z 2=c+di,(a,b,c,d ∈R )那么: z 1+z 2=(a+bi)+(c+di)=(a+c)+(b+d)i; 显然,两个复数的和仍是一个复数,复数的加法法则类似于多项式的合并同类项法则。 (2)复数的加法满足交换律、结合律,即对任何z 1,z 2,z 3∈C,有: z 1+z 2=z 2+z 1, (z 1+z 2)+z 3=z 1+(z 2+z 3) 2、复数减法的运算法则 定义:把满足(c+di )+(x+yi) = a+bi 的复数x+yi (x,y ∈R ),叫做复数a+bi 减去复数c+di 的差,记作:x+yi =(a+bi )-(c+di) 由复数的加法法则和复数相等定义,有c+x=a , d+y=b 由此,x=a -c , y=b -d ∴ (a+bi )-(c+di) = (a -c) + (b -d)i 显然,两个复数的差仍然是一个复数 由此可见: 两个复数相加(减)就是把实部与实部,

代数恒等式的证明练习

1. 求证: ①(a+b+c)2+(a+b-c)2-(a-b-c)2-(a-b-c)2=8ab ②(x+y )4+x 4+y 4=2(x 2+xy+y 2)2 ③(x-2y)x 3-(y-2x)y 3=(x+y)(x-y)3 ④3 n+2+5 n+2―3 n ―5 n =24(5 n +3 n-1) ⑤a 5n +a n +1=(a 3 n -a 2 n +1)(a 2 n +a n +1) 2.己知:a 2+b 2=2ab 求证:a=b 3.己知:a+b+c=0 求证:①a 3+a 2c+b 2c+b 3=abc ②a 4+b 4+c 4=2a 2b 2+2b 2c 2+2c 2a 2 4.己知:a 2=a+1 求证:a 5=5a+3 5.己知:x +y -z=0 求证: x 3+8y 3=z 3-6xyz 6.己知:a 2+b 2+c 2=ab+ac+bc 求证:a=b=c 7.己知:a ∶b=b ∶c 求证:(a+b+c )2+a 2+b 2+c 2=2(a+b+c)(a+c) 8.己知:abc ≠0,ab+bc=2ac 求证: c b b a 1111-=- 9.己知:a c z c b y b a x -=-=- 求证:x+y+z=0 10.求证:(2x -3)(2x+1)(x 2-1)+1是一个完全平方式 11己知:ax 3+bx 2+cx+d 能被x 2+p 整除 求证:ad=bc

练习20 1.④左边=5 n(5 2-1)+3 n-1(33-3)= 24(5 n+3 n-1)注意右边有3n-1 2.左边-右边=(a-b)2 3.②左边-右边=(a2+b2-c2)2-4a2b2=…… 4.∵a5=a2a2a,用a2=a+1代入 5.用z=x+2y代入右边 6.用已知的(左-右)×2 7.用b2=ac分别代入左边,右边化为同一个代数式 8.在已知的等式两边都除以abc 9.设三个比的比值为k, 10.(2x2-x-2)2 11. 用待定系数法

高中数学复数练习题百度文库

一、复数选择题 1.已知复数1z i =+,则2 1z +=( ) A .2 B C .4 D .5 2.在复平面内,复数534i i -(i 为虚数单位)对应的点的坐标为( ) A .()3,4 B .()4,3- C .43,55??- ??? D .43,55?? - ??? 3.若复数1z i i ?=-+,则复数z 的虚部为( ) A .-1 B .1 C .-i D .i 4.已知a 为正实数,复数1ai +(i 为虚数单位)的模为2,则a 的值为( ) A B .1 C .2 D .3 5.已知i 为虚数单位,若复数()12i z a R a i +=∈+为纯虚数,则z a +=( ) A B .3 C .5 D .6.若复数1z i =-,则1z z =-( ) A B .2 C . D .4 7.已知复数5 12z i =+,则z =( ) A .1 B C D .5 8.若 1m i i +-是纯虚数,则实数m 的值为( ). A .1- B .0 C .1 D 9.在复平面内,复数z 对应的点是()1,1-,则1 z z =+( ) A .1i -+ B .1i + C .1i -- D .1i - 10.已知()312++=+a i i bi (,a b ∈R ,i 为虚数单位),则实数+a b 的值为( ) A .3 B .5 C .6 D .8 11.已知复数z 满足()1+243i z i =+,则z 的虚部是( ) A .-1 B .1 C .i - D .i 12.若i 为虚数单位,,a b ∈R ,且2a i b i i +=+,则复数a bi -的模等于( ) A B C D

复 数 的 运 算 法 则

复数基础——复数的基本运算_2 回顾复数 复数的基本运算 回顾复数 将下列数字写成复数形式: ?简单复习一下,复数是包含实数部分和虚数部分的数。 如果有a+bi,a是实数,b是实数,这是复数。a是实部,bi是虚数部分(注:虚部不包括i)。 为什么bi是虚部?因为bi带有特殊系数i,这个虚数单位,这个特殊的数i,在这里乘以了b。我相信大家都会觉得怪诞,不过根据定义:?在此之前,不存在对某个数取平方后得到-1,现在取i的平方,得到-1,关于虚数(单位)的特别的知识点是它的平方是负数。复数有用之处在于它使我们有能力解决很多方程,这些方程在只允许实数解的情况下无解。复数在很多方面都有用,特别是在工程领域,还有其他领域,比如物理等等。现在,我们不会花很多心思讨论复数定义,在大家处理更多数字后,特别是接触到某些工程应用后,希望大家明白虚数的价值。 回到问题中来,把上面的数字写成复数形式。 ?怎么把它写成复数呢?把它写成实部和虚部的组合。可以写成: -21 = -21+0i ?0i等于0,所以它仍等于-21,实际上这里没有虚部,-21本身就是复数形式,很简单。同样的:

7i是虚数形式的,所以这里没有实部,实部是0,虚部是7i,所以等于0 + 7i。 复数的基本运算 很多时候解方程都会碰到根号下负数的情况,比如根号下-1或者-9:由于如何实数的平方不是0就是正数,所以以上两个数这些没有定义,为了定义这些数,人们引入i的概念,i是虚数单位,i的定义是:这就是解决了根号下负数的问题,这样一来,根号下-9是多少呢?它等于i乘以根号9,即3i, 为什么,想想3i平方是多少? 这是指数性质。所以,这样的定义就拓展到了,所有负数开根号的情况: 3i是所谓的虚数,它其实也不比其他数“虚”,某种意义上,负数真的存在吗?只不过是将负号放在前面表示抽象含义,负号只是表示它和大小的关系。任何数乘以虚数单位i都是虚数。解二次方程时,你会发现结果有时会实数和虚数并存(有实数部分和虚数部分),举个例子:这不能化简了,因为实数和虚数不能相加,大家可以把这当作不同维度,一个数有实部5,还有虚部2i,这叫做复数。复数可以在平面中表示:虚数也就是虚轴,在纵轴2i,上图表示为2个单位。 实数也就是实轴,在实轴5,上图表示为5个单位。 所以这个图形表示为:5+2i。在以后讲复数应用时,我还会举更多例子,现在只需要知道定义即可。看看有什么运算,两复数相加怎么做:a是实部,bi是虚部,另一个复数是:

恒等式的证明

第五讲恒等式的证明 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 1.由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 例1 已知x+y+z=xyz,证明:x(1-y2)(1-z2)+y(1-x2)(1-z2)+z(1-x2)(1-y2)=4xyz. 分析将左边展开,利用条件x+y+z=xyz,将等式左边化简成右边. 证因为x+y+z=xyz,所以 左边=x(1-z2-y2-y2z2)+y(1-z2-x2+x2z2)+(1-y2-x2+x2y2) =(x+y+z)-xz2-xy2+xy2z2-yz2+yx2+yx2z2-zy2-zx2+zx2y2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz

复数代数形式的四则运算(教学设计)(2)

复数代数形式的四则运算(教学设计)(2) §3.2.2复数代数形式的乘除运算 教学目标: 知识与技能目标: 理解并掌握复数的代数形式的乘法与除法运算法则,熟练进行复数的乘法和除法的运算。理解复数乘法的交换律、结合律、分配律;了解共轭复数的定义及性质 过程与方法目标: 理解并掌握复数的除法运算实质是分母实数化类问题 情感、态度与价值观目标: 复数的几何意义单纯地讲解或介绍会显得较为枯燥无味,学生不易接受,教学时,我们采用讲解或体验已学过的数集的扩充的,让学生体会到这是生产实践的需要从而让学生积极主动地建构知识体系。 教学重点:复数代数形式的除法运算。 教学难点:对复数除法法则的运用。 教学过程: 一、复习回顾,新课引入: 1、复数z1与z2的和的定义:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i. 2、复数z1与z2的差的定义:z1-z2=(a+bi)-(c+di)=(a-c)+(b-d)i. 3、复数的加法运算满足交换律: z1+z2=z2+z1. 4、复数的加法运算满足结合律: (z1+z2)+z3=z1+(z2+z3) 二、师生互动、新课讲解: 1.乘法运算规则: 规定复数的乘法按照以下的法则进行: 设z1=a+bi,z2=c+di(a、b、c、d∈R)是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i. 其实就是把两个复数相乘,类似两个多项式相乘,在所得的结果中把i2换成-1,并且把实部与虚部分别合并.两个复数的积仍然是一个复数. 2.乘法运算律: (1)z1(z2z3)=(z1z2)z3 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵z1z2=(a1+b1i)(a2+b2i)=(a1a2-b1b2)+(b1a2+a1b2)i, z2z1=(a2+b2i)(a1+b1i)=(a2a1-b2b1)+(b2a1+a2b1)i. 又a1a2-b1b2=a2a1-b2b1,b1a2+a1b2=b2a1+a2b1. ∴z1z2=z2z1. (2)z1(z2+z3)=z1z2+z1z3 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵(z1z2)z3=[(a1+b1i)(a2+b2i)](a3+b3i)=[(a1a2-b1b2)+(b1b2+a1b2)i](a3+b3i) =[(a1a2-b1b2)a3-(b1a2+a1b2)b3]+[(b1a2+a1b2)a3+(a1a2-b1b2)b3]i =(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2b3+a1a2b3-b1b2b3)i, 同理可证: z1(z2z3)=(a1a2a3-b1b2a3-b1a2b3-a1b2b3)+(b1a2a3+a1b2a3+a1a2b3-b1b2b3)i, ∴(z1z2)z3=z1(z2z3). (3)z1(z2+z3)=z1z2+z1z3. 证明:设z1=a1+b1i,z2=a2+b2i,z3=a3+b3i(a1,a2,a3,b1,b2,b3∈R). ∵z1(z2+z3)=(a1+b1i)[(a2+b2i)+(a3+b3i)]=(a1+b1i)[(a2+a3)+(b2+b3)i] =[a1(a2+a3)-b1(b2+b3)]+[b1(a2+a3)+a1(b2+b3)]i =(a1a2+a1a3-b1b2-b1b3)+(b1a2+b1a3+a1b2+a1b3)i. z1z2+z1z3=(a1+b1i)(a2+b2i)+(a1+b1i)(a3+b3i) =(a1a2-b1b2)+(b1a2+a1b2)i+(a1a3-b1b3)+(b1a3+a1b3)i =(a1a2-b1b2+a1a3-b1b3)+(b1a2+a1b2+b1a3+a1b3)i

复数的三角形式的运算(一) 教案示例

复数的三角形式的运算(一)·教案示例 目的要求 1.掌握复数三角形式的乘法运算法则. 2.理解复数三角形式的乘法运算的几何意义,并能简单地应用. 内容分析 1.在代数形式下,两个复数的乘积(a +bi)(c +di)按照多项式展开,从而得出乘法运算法则.在三角形式下,两个复数的乘积r1(cos θ1+isin θ1)·r2(cos θ2+isin θ2)仍可按代数形式(r1cos θ1+ir1sin θ1)(r2cos θ2+ir2sin θ2)来计算.但这样运算较繁杂,而且没有体现出三角形式下模与辐角的特征和作用,因此很有必要研究两个复数的乘积的结果(也是一个复数)的模与原来两个复数的模、辐角与原来两个复数的辐角之间的关系. 2.三角形式下两个复数z1=r1(cos θ1+isin θ1)与z2=r2(cos θ2+isin θ2)的乘法公式及法则: r1(cos θ1+isin θ1)·r2(cos θ2+isin θ2)=r1r2[cos(θ1+θ2)+isin(θ1+θ2)] 即,两个复数相乘,积的模等于各复数的模的积,积的辐角等于这两个复数的辐角的和. 上述法则中,注意“积的辐角等于这两个复数的辐角的和”指的是积的辐角的集合等于原来两个复数的辐角集合中各自任取一个,求和角,所有和角组成的集合.而积的辐角主值不一定等于这两个复数的辐角主 值的和.如-=π,-=π,--==π≠π+π.arg(i)arg(1)arg[(i)(1)]argi 32232 arg(z1·z2)与argz1、argz2的关系是 arg(z1·z2)=argz1+argz2+2k π(k 取某一整数) 其中整数k 使argz1+argz2+2k π∈[0,2π). 3.根据三角形式的乘法法则,结合向量知识,可以对复数乘法的几何意义解释如下: 在复平面内作出z1、z2对应的向量,将向量按逆时针方向旋转一个角θ2(若θ2<0,则 按顺时针方向旋转一个角|θ2|),再把它的模变为原来的r2倍,所得向量 就表示积z1z2. 也就是说,复数乘法实质上就是向量的旋转和伸缩.旋转方向与角度取决于从另一复数的辐角集中取出来的值,伸长或缩短及其倍数取决于另一复数的模的大小. 4.将两个复数相乘的结果推广到有限个复数相乘,即为 r1(cos θ1+isin θ1)·r2(cos θ2+isin θ2)·…·rn(cos θn +isin θn) =r1r2…rn[cos(θ1+θ2+…+θn)+isin(θ1+θ2+…+θn)](n ≥2). 可以用数学归纳法说明: 1°当n =2时,乘法公式成立.

恒等式证明

初一数学竞赛系列讲座(7) 有关恒等式的证明 一、知识要点 恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。 二、例题精讲 例1 求证:a 1+(1-a 1)a 2+(1-a 1)(1-a 2)a 3+…+(1-a 1)(1-a 2)…(1-a n-1)a n =1-(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 分析:要证等式成立,只要证明1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) 证明:1- a 1- (1-a 1)a 2- (1-a 1)(1-a 2)a 3 -…- (1-a 1)(1-a 2)…(1-a n-1)a n =(1-a 1)[ 1- a 2- (1-a 2)a 3- (1-a 2)(1-a 3)a 4 -…- (1-a 2)(1-a 3)…(1-a n-1)a n ] =(1-a 1) (1-a 2)[ 1- a 3- (1-a 3)a 4- (1-a 3)(1-a 4)a 5 -…- (1-a 3)(1-a 4)…(1-a n-1)a n ] =(1-a 1) (1-a 2) (1-a 3)[ 1- a 4- (1-a 4)a 5- (1-a 4)(1-a 5)a 6 -…- (1-a 4)(1-a 5)…(1-a n-1)a n ] =…… =(1-a 1)(1-a 2)…(1-a n-1)(1-a n ) ∴ 原等式成立 例2 证明恒等式 ()()()()()() 11322321121132322121a a a a a a a a a a a a a a a a a a a a a a a a n n n n ++++++=++++++ (第二十届全俄数学奥林匹克九年级试题) 证明 评注:裂项是恒等变形中常用的一种方法 ()()()()()()11322321121322211113232121132322121111111111111a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n ++++++=???? ??+-++???? ??+-+???? ??+-=???? ??+-++???? ??+-+???? ??+-=++++++

复数的运算(一)

课题:4.2复数的运算(一) 教学目的:掌握复数的加法运算及意义 教学重点:复数加法运算. 教学难点:复数加法运算的运算率 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.虚数单位i:(1)它的平方等于-1,即21 i=-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 2. i与-1的关系: i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i 3. i的周期性:i4n+1=i, i4n+2=-1, i4n+3=-i, i4n=1 4.复数的定义:形如(,) +∈的数叫复数,a叫复数的实部,b叫复 a bi a b R 数的虚部全体复数所成的集合叫做复数集,用字母C表示* 3. 复数的代数形式:复数通常用字母z表示,即(,) =+∈,把复 z a bi a b R 数表示成a+bi的形式,叫做复数的代数形式 4. 复数与实数、虚数、纯虚数及0的关系:对于复数(,) +∈,当 a bi a b R 且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0. 5.复数集与其它数集之间的关系:N Z Q R C. 6. 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等即:如果a,b,c,d∈R,那么a+bi=c+di?a=c,b=d 一般地,两个复数只能说相等或不相等,而不能比较大小.如果两个复数都 是实数,就可以比较大小只有当两个复数不全是实数时才不能比较大小 7. 复平面、实轴、虚轴: ∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表 示复数的平面叫做复平面,也叫高斯平面,x轴叫做实 轴,y轴叫做虚轴 实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序

初中数学重点梳理:恒等式证明

恒等式证明 知识定位 代数式的恒等变形是初中代数的重要内容,它涉及的基础知识较多,主要有整式、分式与根式的基本概念及运算法则,因式分解的知识与技能技巧等等,因此代数式的恒等变形是学好初中代数必备的基本功之一.本讲主要介绍恒等式的证明.首先复习一下基本知识,然后进行例题分析. 两个代数式,如果对于字母在允许范围内的一切取值,它们的值都相等,则称这两个代数式恒等. 把一个代数式变换成另一个与它恒等的代数式叫作代数式的恒等变形.恒等式的证明,就是通过恒等变形证明等号两边的代数式相等. 证明恒等式,没有统一的方法,需要根据具体问题,采用不同的变形技巧,使证明过程尽量简捷.一般可以把恒等式的证明分为两类:一类是无附加条件的恒等式证明;另一类是有附加条件的恒等式的证明.对于后者,同学们要善于利用附加条件,使证明简化.下面结合例题介绍恒等式证明中的一些常用方法与技巧. 知识梳理 知识梳理1:由繁到简和相向趋进 恒等式证明最基本的思路是“由繁到简”(即由等式较繁的一边向另一边推导)和“相向趋进”(即将等式两边同时转化为同一形式). 知识梳理2:比较法 比较法利用的是:若0,则(作差法);或若1,则(作商法)。a a b a b a b b -==== 这也是证明恒等式的重要思路之一。 知识梳理3:分析法与综合法 根据推理过程的方向不同,恒等式的证明方法又可分为分析法与综合法.分析法是从要求证的结论出发,寻求在什么情况下结论是正确的,这样一步一步逆向推

导,寻求结论成立的条件,一旦条件成立就可断言结论正确,即所谓“执果索因”.而综合法正好相反,它是“由因导果”,即从已知条件出发顺向推理,得到所求结论. 知识梳理4:其他解题方法及技巧 除了上述方法,设k 、换元等方法也可以在恒等式证明中发挥效力. 例题精讲 【试题来源】 【题目】已知x+y+z=xyz ,证明:x(1-y 2)(1-z 2)+y(1-x 2)(1-z 2)+z(1-x 2)(1-y 2)=4xyz . 【答案】因为x+y+z=xyz ,所以 左边=x(1-z 2-y 2-y 2z 2)+y(1-z 2-x 2+x 2z 2)+(1-y 2-x 2+x 2y 2) =(x+y+z)-xz 2-xy 2+xy 2z 2-yz 2+yx 2+yx 2z 2-zy 2-zx 2+zx 2y 2 =xyz-xy(y+x)-xz(x+z)-yz(y+z)+xyz(xy+yz+zx) =xyz-xy(xyz-z)-xz(xyz-y)-yz(xyz-x)+xyz(xy+yz+zx) =xyz+xyz+xyz+xyz =4xyz=右边. 【解析】将左边展开,利用条件x+y+z=xyz ,将等式左边化简成右边. 【知识点】恒等式证明 【适用场合】当堂例题 【难度系数】3 【试题来源】 【题目】已知1989x 2=1991y 2=1993z 2,x >0,y >0,z >0,且 111 1x y z ++=198919911993198919911993x y z ++=++ 【答案】 令1989x 2=1991y 2=1993z 2=k(k >0),则

相关主题
相关文档 最新文档