当前位置:文档之家› 第7章 一阶电路和二阶电路的时域分析

第7章 一阶电路和二阶电路的时域分析

《电路分析基础》作业参考解答

《电路分析基础》作业参考解答 第一章(P26-31) 1-5 试求题1-5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。 (a )解:标注电压如图(a )所示。 由KVL 有 故电压源的功率为 W P 302151-=?-=(发出) 电流源的功率为 W U P 105222=?=?=(吸收) 电阻的功率为 W P 20452523=?=?=(吸收) (b )解:标注电流如图(b )所示。 由欧姆定律及KCL 有 A I 35 152==,A I I 123221=-=-= 故电压源的功率为 W I P 151151511-=?-=?-=(发出) 电流源的功率为 W P 302152-=?-=(发出) 电阻的功率为 W I P 459535522 23=?=?=?=(吸收) 1-8 试求题1-8图中各电路的电压U ,并分别讨论其功率平衡。 (b )解:标注电流如图(b )所示。 由KCL 有 故 由于电流源的功率为 电阻的功率为 外电路的功率为 且 所以电路的功率是平衡的,及电路发出的功率之和等于吸收功率之和。 1-10 电路如题1-10图所示,试求: (1)图(a )中,1i 与ab u ; 解:如下图(a )所示。 因为 所以 1-19 试求题1-19图所示电路中控制量1I 及电压0U 。 解:如图题1-19图所示。 由KVL 及KCL 有 整理得 解得mA A I 510531=?=-,V U 150=。

题1-19图 补充题: 1. 如图1所示电路,已知 , ,求电阻R 。 图1 解:由题得 因为 所以 2. 如图2所示电路,求电路中的I 、R 和s U 。 图2 解:用KCL 标注各支路电流且标注回路绕行方向如图2所示。 由KVL 有 解得A I 5.0=,Ω=34R 。 故 第二章(P47-51) 2-4 求题2-4图所示各电路的等效电阻ab R ,其中Ω==121R R ,Ω==243R R ,Ω=45R ,S G G 121==, Ω=2R 。 解:如图(a )所示。显然,4R 被短路,1R 、2R 和3R 形成并联,再与5R 串联。 如图(c )所示。 将原电路改画成右边的电桥电路。由于Ω==23241R R R R ,所以该电路是一个平衡电桥,不管开关S 是否闭合,其所在支路均无电流流过,该支路既可开路也可短路。 故 或 如图(f )所示。 将原电路中上边和中间的两个Y 形电路变换为?形电路,其结果如下图所示。 由此可得 2-8 求题2-8图所示各电路中对角线电压U 及总电压ab U 。 题2-8图 解:方法1。将原电路中左边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 14 12441=+?=,A I I 314412=-=-= 故 方法2。将原电路中右边的?形电路变换成Y 形电路,如下图所示: 由并联电路的分流公式可得 A I 2.16 14461=+?=,A I I 8.22.14412=-=-= 故 2-11 利用电源的等效变换,求题2-11图所示各电路的电流i 。 题2-11图 解:电源等效变换的结果如上图所示。 由此可得 V U AB 16=A I 3 2=

第五章动态电路的时域分析§59激励为任意波形的响应与卷

§5.9 激励为任意波形的响应与卷积积分 5.9.1 卷积积分 首先,设两个相同函数)(1t f 和)(2t f ,且0

自动控制原理_线性系统时域响应分析

武汉工程大学 实验报告 专业 班号 组别 指导教师 姓名 学号 实验名称 线性系统时域响应分析 一、实验目的 1.熟练掌握step( )函数和impulse( )函数的使用方法,研究线性系统在单位阶跃、单位脉冲及单位斜坡函数作用下的响应。 2.通过响应曲线观测特征参量ζ和n ω对二阶系统性能的影响。 3.熟练掌握系统的稳定性的判断方法。 二、实验内容 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 1 4647 3)(2 342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 2.对典型二阶系统 2 22 2)(n n n s s s G ωζωω++= 1)分别绘出)/(2s rad n =ω,ζ分别取0,,,和时的单位阶跃响应曲线,分析参数ζ对系统的影响,并计算ζ=时的时域性能指标ss s p r p e t t t ,,,,σ。 2)绘制出当ζ=, n ω分别取1,2,4,6时单位阶跃响应曲线,分析参数n ω对系统的影响。 3.系统的特征方程式为010532234=++++s s s s ,试用两种判稳方式判别该系统的稳定性。 4.单位负反馈系统的开环模型为 ) 256)(4)(2()(2++++= s s s s K s G

试用劳斯稳定判据判断系统的稳定性,并求出使得闭环系统稳定的K 值范围。 三、实验结果及分析 1.观察函数step( )和impulse( )的调用格式,假设系统的传递函数模型为 14647 3)(2342++++++=s s s s s s s G 可以用几种方法绘制出系统的阶跃响应曲线试分别绘制。 方法一:用step( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 1 3 7]; den=[1 4 6 4 1]; t=0::10; step(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-step Response of G(s)=s^2+3s+7/(s^4+4s^3+6s^2+4s+1)') Unit-step Response of G(s)=s 2+3s+7/(s 4+4s 3+6s 2+4s+1) t/s (sec) c (t ) 方法二:用impulse( )函数绘制系统阶跃响应曲线。 程序如下: num=[0 0 0 1 3 7 ]; den=[1 4 6 4 1 0]; t=0::10; impulse(num,den) grid xlabel('t/s'),ylabel('c(t)') title('Unit-impulse Response of G(s)/s=s^2+3s+7/(s^5+4s^4+6s^3+4s^2+s)')

电路分析II复习(有答案)

谐振部分: 基本概念 1. RLC串联谐振电路在谐振时,电感上电压和电容上电压其绝对值大小相等=Q0U S,但相位相差180°。 2. RLC并联谐振电路在谐振时,流过电感和电容的电流其绝对值大小相等=Q0I S,但相位相差180°。 3. RLC串联谐振电路品质因数Q=100,若U R=10mV,则电源电压U= 10 mV,电容两端电压U C= 1V。 4. RLC串联回路谐振时,阻抗B,总电流A,回路品质因数Q越高,通频带D,选择性E。(A.最大 B.最小 C.越大 D.越小 E.越好 F.越坏) 5. GLC并联回路谐振时,导纳B,总电压A,回路品质因数Q越高,通频带△ω则D,选择性E。(A.最大 B.最小 C.越大 D.越小 E.越好 F.越坏) 6. 图示串联谐振电路的品质因数Q等于B。(A.1 B.10 C.100 D.200 ) 图示RLC串联电路,其谐振角频率为1000 rad/s,品质因素Q=10,谐振时阻抗为100 ,求(1)L、C、通频带B;(2)若电源的有效值U=10V,则谐振时U 、I L 为何值?(10分) 解:

. U L R C U - +R U - -. L + U ++.C . - 00 200111 11000502Δ10210001L L QR ()Q ,L H R C F L f B f Hz Q ()U QU V U I .A R ωωμωππ == == ======== =故 2. 如下图RLC 串联交流电路: 谐振时,已知谐振频率,10KHZ f =,通频带HZ B W 100=,试问回路品质因数 Q 为多少?若此时 ?,1===C L U U V U (10分) 解: 1010W L C f Q B U U QU V = ==== 二端口电路 1.从双口网络 输入端 看进去的阻抗,称为输入阻抗in Z = i i U I 输入端电压输入端电流 。 2. 双口网络的输出阻抗0Z 的定义是将信号源 短路 ,将负载L Z 开路 处理后,从输出端看进去的阻抗。 三相电路 1. 由三个频率相同、振幅相同,但相位彼此相差 120° 的电压源构成三相交流电源。 2. 三相电路中,星形(Y )连接时,线电压l U 是相电压p U 的 倍,在 相位上l U 超前p U 30° 。 3. 三相电路中,三角形(△)连接时,线电压l U 是相电压p U 的 1 倍。

电路(巨辉)第6章作业+参考答案

第6章 正弦稳态电路分析——作业参考解答 一、P6-14电路如图所示,当s rad 50ω/=时,求in Z 。 解:相量模型如图所示,则: Ω)4 1j 43( )]Z Z //(Z [Z Z C 1R 1R L in +=++= 二、P6-19电路如图所示,当s rad 10ω4 /=时,求in Z ,并画出串联、并联等效模型及等效元件参数。 . (a ) (b ) (c ) 解:(1)求串联模型及元件参数 设电压和电流,则相量模型如图解 (a): Ω20j 10210j L ωj Z 34L =??== , Ω100j 10110j 1 C ωj 1Z 6 4C -=??== - 由KVL 得:()? ? ? +-+=U 2I 100j 20j 50U 11, 控制量:1I 50U ? ? = 可得:()11I 80j 150U ? ?-=, 则等效阻抗:()Ω 80j 150I U Z 1 1eq -== ?? 等效元件参数:Ω150R =, 且:C 101j C ω1j 80j 4 -=-=- 求得:uF 25.1C = 串联等效元件参数模型如图解 (b)所示; (2) ()S 0028.0j 0052.0Z 1 Y eq eq +== Ω3.192G 1R S 102.5G 3==→?=-, uF 28.0C C 10j C ωj 0028.0j 4=?== 并联等效元件参数模型如解 (c)所示。 三、P6-25用节点分析法求图所示电路电压0u 。 ..U . o 解: V 025U s ?∠=? Ω10j 101010j L ωj Z 33L =??== , Ω20j 10 5010j 1C ωj 1Z 6 3C -=??== - 设参考节点、各独立节点,得相量模型如图所示: ????????? ?? ??? ??????+== -=???? ??++-+--? ∠=--???? ? ?-++?????????2 01002121U 10j 3030U 20U I I 4U 10j 301 20j 1U 20j 120025U 20j 1U 20j 1201201 可求得:φU U 00∠=? 则:V )φt 10cos(2U u 300+= 四、P6-32利用网孔分析法求图所示电路的电流0I ? 。 90o V Ω ω5.0j L j Z L ==Ωω2j C j 1 Z C -==

北航自动控制原理实验报告- 一、二阶系统的电子模拟及时域响应的动态测试

成绩 北京航空航天大学 自动控制原理实验报告 学院机械工程及自动化学院 专业方向机械工程及自动化 班级 学号 学生姓名刘帆 自动控制与测试教学实验中心

实验一 一、二阶系统的电子模拟及时域响应的动态测试 实验时间2014年11月15日 实验编号 同组同学 一、实验目的 1、 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2、 学习在电子模拟机上建立典型环节系统模型的方法。 3、 学习阶跃响应的测试方法。 二、实验内容 1、 建立一阶系统的电子模型,观测并记录在不同时间常数T 时的跃响应曲线,并测定其过渡过程时间T s 。 2、 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间T s 。 三、实验原理 1、一阶系统阶跃响应性能指标的测试 系统的传递函数为:()s ()1 C s K R s Ts φ=+()= 模拟运算电路如下图 : 其中2 1 R K R = ,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.2,0.51,1.0。记录实验数据,测量过度过程的性能指标,其中取正负5%误差带,按照经验公式取3s t T =

2、二阶系统阶跃响应性能指标的测试 系 统 传递函数为: 令ωn=1弧度/秒,则系统结构如下图: 二阶系统的 模拟电路图如下: 在实验过程中,取22321,1R C R C ==,则 442312R R C R ζ==,即42 12R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,0.707,1;记录所测得的实验数据以及其性能指标,取正负5%误差 带,其中当ζ<1时经验公式为2 1 3.5 %100%,s n e t ζσζω- -=?= ,当ζ=1时经验公式 为n 4.75 ts ω= 四、试验设备: 1、HHMN-1型电子模拟机一台。 2、PC 机一台。 3、数字万用表一块。 4、导线若干。

一阶动态电路的响应测试实验报告

一阶动态电路的响应测试实验报告 1.实验摘要 1、研究RC电路的零输入响应和零状态响应。用示波器观察响应过程。电路参数:R=100K、C=10uF、Vi=5V 2.从响应波形图中测量时间常数和电容的充放电时间 2.实验仪器 5V电源,100KΩ电阻,10uF电容,示波器,导线若干 2.实验原理 (1)RC电路的零输入响应和零状态响应 (i)电路中某时刻的电感电流和电容电压称为该时刻的电路状态。t=0时,电容电压uc(0)称为电路的初始状态。 (ii)在没有外加激励时,仅由t=0零时刻的非零初始状态引起的响应称为零输入响应,它取决于初始状态和电路特性(通过时间常数τ=RC来体现),这种响应时随时间按指数规律衰减的。 (iii)在零初始状态时仅由在t0时刻施加于电路的激励引起的响应称为零状态响应,它取决于外加激励和电路特性,这种响应是由零开始随时间按指数规律增长的。 (iiii)线性动态电路的完全响应为零输入响应和零状态响应之和动态网络的过渡过程是十分短暂的单次变化过程。要用普通示波器观察过渡过程和测量有关的参数,就必须使这种单次变化的过程重复出现。为此,我们利用信号发生器输出的方波来模拟阶跃激励信号,即利用方波输出的上升沿作为零状态响应的正阶跃激励信号;利用方

波的下降沿作为零输入响应的负阶跃激励信号。只要选择方波的重复周期远大于电路的时间常数τ,那么电路在这样的方波序列脉冲信号的激励下,它的响应就和直流电接通与断开的过渡过程是基本相同的2.时间常数τ的测定方法: 用示波器测量零输入响应的波形,根据一阶微分方程的求解得知uc=Um*e-t/RC=Um*e-t/τ,当t=τ时,即t为电容放电时间,Uc(τ)=0.368Um。 此时所对应的时间就等于τ。亦可用零状态响应波形增加到0.632Um 所对应的时间测得,即电容充电的时间t. (2)测量电容充放电时间的电路图 如图所示,R=100KΩ,us=5V,c=10uF,单刀双掷开关A. 4实验步骤和数据记录 (i)按如图所示的电路图在连接好电路,测量电容C的两端电压变化,即一阶动态电路的响应测试。 (ii)用示波器测量电容两端的电压,示波器的测量模式调整为追踪。(iii)打开电源开关,将开关和电压源端相接触,使电容充电,用示

一阶电路和二阶电路的时域分析

第7章一阶电路和二阶电路的时域分析 教研室:基础教研室教师姓名: §7-1 动态电路的方程及其初始条件 一、动态电路的方程 1.动态电路:含有动态元件(电容或电感)的电路。 2.动态电路的方程:电路中有储能元件(电容或电感)时,根据KCL、KVL和VCR所建立的电路方程是以电流、电压为变量的微分方程或微分-积分方程,方程的阶数取决于电路结构和动态元件个数。 一阶动态电路:仅含一个动态元件的电路。

3.换路和过渡过程:当电路的结构或元件的参数发生改变时(如电源或无源元件的断开或接入,信号的突然注入等),称为换路,换路可能使电路改变原来的工作状态,而转变到另一个工作状态,这种转变需要经历一个过程,在工程上称为过渡过程。 0=t :换路时刻,换路经历的时间为 0_ 到 +0; -=0t :换路前的最终时刻; +=0t :换路后的最初时刻; 4.经典法(时域分析法):根据KCL ,KVL 和VCR 建立描述电路的以时间为自变量的线性常微分方程,然后求解常微分方程,从而得到所求变量(电流或电压)的方法。 用经典法求解常微分方程时,必须根据电路的初始条件确定解答中的积分常数。 电路独立初始条件:)0(+C u 和 L i )0(+,其余称为非独立初始条件。 二、电路的初始条件 1.电容的电荷和电压 ??? ? ???+=+=??ξξξ ξd t t i C t u t u d t t i t q t q C C C C C C 0000)(1)()()()()( 取 +-==0 ,00t t , 则 ?? ???+=+=??+ -+--+-+ ξ ξξ ξd i c u u d i q q C C C C C C 0000)(1)0()0()()0()0( 若 有限C i , 则 0)(00=? + - ξξd i C ,且 ?? ?==-+ -+)0()0() 0()0(C C C C u u q q 2.电感的磁链和电流 ??? ? ???+=+=??ξξξξψψd t t u L t i t i d t t u t t L L L L L L 0000)(1)()()()()( 取 +-==0 ,00t t ,则 ?? ???+=+=??+ -+--+-+ ξ ξξ ξψψd u L i i d u L L L L L L 0000)(1)0()0()()0()0(

动态电路的时域分析报告

动态电路的时域分析习题 10-1 设图(a )、(b )电路达到稳态,在0=t 时开关S 动作,试求图中所标电压、电流的初 值。 C u L i L (a) (b) 题10-1图 S 开,等效图如图所示: S 闭: 解:对(a)图 当0t -=时,求(0)C u - 10 (0)(0)1510510 C C u u V +-==?=+ 0t +=时,求123(0),(0),(0)i i i +++ 1+2+15-5 (0)=(0)==0.5A 5+5 i i 3(0)0i A + = (b )S 开 S 闭 _ (0) u (0)L u (0)L 对(b)图 当0t -=时,求(0)L i - (0)(0)2L L i i A +-== 当0t +=时,求(0),(0)L L u u -+ 42(0)4L u +?+= (0)4L u +=-

(0)2240u +=?-= 10-2 电路如图所示,已知Ω==421 R R ,Ω=23R ,H L 1=,V U S 121=,V U S 62=。 电路原来处于稳定状态,0=t 时,开关S 闭合,试求)0(+L i 和)0(+L u 。 题10-2 图 题10-2 图 解: S 开S 闭 当0t -=时,求(0)L i - 2 23 (0)(0)1S L L U i i A R R +-== =+ 当0t +=时,求(0)L u + 111813421253246(0)10 (0)3 L L i i i i i i i u u ++??=?? =+????????+=???? =???? +=+= 10-3 设图示电路达到稳态,在0t =时开关S 动作,试求(0)c u +、(0)L i +、(0)i +、dt du C /)0(+和(0)L di dt +。 (a)(b) 解:当0t -=时,求(0),(0)c L u i --,等效电路如图(a ) 15(0)(0).(60//20)530(60//20) C C u u V +-===+ _1560(0)(0).0.2530(60//20)6020 L L i i A +===++ 当0t +=时,求(0),(0)L c u i ++,等效电路如图(b ) (0)5200.250L u V +=-?= R S U -+2S L

典型二阶系统的时域响应与性能分析

实验二 典型二阶系统的时域响应与性能分析 一、实验目的 1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。 2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 二、实验设备 PC 机一台,TD-ACS 教学实验系统一套。 三、实验原理 典型二阶系统开环传递函数为:) 1()1()(101101 += += s T s T K s T s T K s G ;其中,开环放大系数01K K = 。系统方块图与模拟电路如图2-1与图2-2所示。 图2-1典型二阶系统方块图 图2-2模拟电路图 先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路

中,观察二阶系统的动态性能及稳定性。 设R T K K s T T s T 200,2.0,10 1 10== ===, 系统闭环传递函数为: 2 222 221)()(n n n s s T K s T s T K K s Ts K s R s C ωζωω++=+ +=++= 其中,自然振荡频率:R T K n 10 10 == ω 阻尼比:4 102521R T K T n = = = ωζ 典型二阶系统的瞬态性能指标: 超调量:2 1%ζζπ δ--=e 峰值时间:2 1ζ ωπ-= n p t 峰值时间的输出值:2 11)(ζζπ -=+=e t C p 调节时间: 1)欠阻尼10<<ζ,???????=?=?≈5324 ,,t n n s ζωζω 2)临界阻尼1=ζ,???????=?=?≈575.4284 .5,,t n n s ωω 3)过阻尼1>ζ,? ??=?=?≈532 411,p ,p t s ,1p -与2p -为二阶系统两个互异的 负实根12 2,1-±-=-ζ ωζωn n p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点 1p -的一阶系统来近似表示。

动态电路的时域分析(2)测验题

动态电路的时域分析(2)答案解析 解析:开关闭合前,电路已达到稳态,等效电路图如下: 由此可得:i L (0 _) = 20 10 +10 =1A , u C (0 _) = 1?10 =10V ; 根据换路定则知开关闭合闭合瞬间,电容电压和电感电流不会突变,因此 u C (0 + ) =u C (0 _) =10V ,i L (0 + ) =i L (0 _) =1A 。所以答案选D。

解析:开关闭合前,电路已达到稳态,等效电路图如下: 由此可得:i L (0 _) = 12V 2Ω+2Ω = 3A ,根据换路定则知开关闭合闭合瞬间,电感电流 不会突变,因此i L (0 + ) =i L (0 _) = 3A 。开关闭合后等效电路图如下:

2?2 L -t - 显然,R =Ω=1Ω,因此τ==1s 所以i(t) =i (0 )e τ= 3e t A ,eq 2 +2R eq L L + 所以答案选A。 解析:开关闭合前,电路已达到稳态, 等效电路图如下图所示:

由 KCL 知:i =i - 0.5u ,又有i =u 1 = 0.25u , 1 1 4 1 由此可知:i1 - 0.5u1 = 0.25u1 ,从而得到i1 = 0.75u1 ; 对外回路列写KVL 方程得:u1 + 4i1 -10 = 0 ,所以10 =u1 + 4? 0.75u1 = 4u1 , 解得u=5 V , i = 15 A ,故i (0 _) =i(0 ) = 15 A ; 1 2 1 8 L L +?8 开关闭合后,等效电路图如下: 同样有i1 = 0.75u1 ,依然对外回路列写KVL 方程得:u1 + 2i1 -10 = 0 , 联立方程解得u1 = 4V , i1 = 3A;故i L (∞) = 3A ; 由于受控源的存在,此处使用外加电源法求等效电阻,等效电路图如下:

【实验报告】一、二阶系统的电子模拟及时域响应测试

实验名称:一二阶系统的电子模拟及时域响 应测试 课程名称:自动控制原理实验

目录 (一)实验目的 (3) (二)实验内容 (3) (三)实验设备 (3) (四)实验原理 (3) (五)一阶系统实验结果 (3) (六)一阶系统实验数据记录及分析 (7) (七)二阶系统实验结果记录 (8) (八)二阶系统实验数据记录及分析 (11) (九)实验总结及感想............................................................................错误!未定义书签。 图片目录 图片1 一阶模拟运算电路 (3) 图片2 二阶模拟运算电路 (3) 图片3 T=0.25仿真图形 (4) 图片4 T=0.25测试图形 (4) 图片5 T=0.5仿真图形 (5) 图片6 T=0.5测试图形 (5) 图片7 T=1仿真图形 (6) 图片8 T=1测试图形 (6) 图片9 ζ=0.25s仿真图形 (8) 图片10 ζ=0.25s测试图形 (8) 图片11 ζ=0.5s仿真图形 (9) 图片12 ζ=0.5s测试图形 (9) 图片13 ζ=0.8s仿真图形 (10) 图片14 ζ=0.8s测试图形 (10) 图片15 ζ=1s仿真图形 (11) 图片16 ζ=1s测试图形 (11) 表格目录 表格1 一阶系统实验结果 (7) 表格2 二阶系统实验结果 (11) 一二阶系统的电子模拟及时域响应测试

(一)实验目的 1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。 2.学习在电子模拟机上建立典型环节系统模型的方法。 3.学习阶跃响应的测试方法。 (二)实验内容 1.建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。 2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其 超调量σ%及过渡过程时间TS。 (三)实验设备 HHMN电子模拟机,实验用电脑,数字万用表 (四)实验原理 一阶系统:在实验中取不同的时间常数T,由模拟运算电路,可得到不同时间常数下阶跃响应曲线及不同的过渡时间。一阶系统结果预期:时间常数T越小,调节时间t越小,响应曲线很快就接近稳态值,一阶系统无超调量。模拟运算电路原理图如下: 图片 1 一阶模拟运算电路 二阶系统:δ取不同的值,将会形成不同的阶跃响应曲线及不同的超调量δ%、过渡时间及其它参数指标。二阶系统结果预期:δ为阻尼比,当0<δ<1时,系统时间响应具有振荡特性,为欠阻尼状态;当δ=1时,为临界阻尼,无振荡;当δ>1时,为过阻尼状态,无振荡。模拟运算电路图如下: 图片 2 二阶模拟运算电路 (五)一阶系统实验结果

信号与系统的时域分析实验报告

实验一信号与系统的时域分析 一、实验目的 1.用示波器观察一阶电路的零输入响应,零状态响应及完全响应。 2.理解并掌握一阶电路各响应的物理意义。 3.观察和测定RLC串联电路的阶跃响应和冲激响应,并研究电路参数对响应波形的影响。 4.观察RLC并联谐振电路对高频脉冲激励的响应,并研究电路参数对响应波形的影响。 5.熟悉和掌握常用的用于信号与系统时域仿真分析的Matlab函数; 6.牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表 二、实验原理 (一)实验箱部分 1、一阶电路的零输入、零状态响应分析 一阶连续时间系统如图所示: 图1-1 一阶连续系统实验电路 其模型可用微分方程 1 c c dV V V dt R R +=表示。微分方程的解反映了该系统的响应,其中 零输入响应由方程的齐次解得到,零状态响应由方程的全解得到。完全响应由零输入响应和零状态响应得到。

2、二阶电路的瞬态响应 图1-2 RLC串联电路响应实验电路图 RLC串联电路的阶跃响应和冲激响应的观察电路如上图所示,其阶跃响应和冲激响应可以有三种情况。 R>R

实验二--典型系统的时域响应分析实验仿真报告答案

实验二典型系统的时域响应分析 1. 实验目的 1) 通过用MATLAB 及SIMULINK 对控制系统的时域分析有感性认识。 2) 明确对于一阶系统,单位阶跃信号、单位斜坡信号以及单位脉冲信号的响应曲线图。 3) 对于二阶系统阶跃信号的响应曲线图以及不同阻尼比、不同自然角频率取值围的二阶系统曲线比较图。 4) 利用MATLAB 软件来绘制高阶控制系统的零极点分布图,判断此系统是否有主导极点,能否用低阶系统来近似,并将高阶系统与低阶系统的阶跃响应特性进行比较5)编制简单的M文件程序。 2. 实验仪器 PC计算机一台,MATLAB软件1套 3. 实验容 1)一阶系统的响应 (1) 一阶系统的单位阶跃响应 在SIMULINK 环境下搭建图1的模型,进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s(0.8s+1)]由拉氏反变换得h(t)=1-e^(-t/0.8) (t>=0) 由此得知,图形是一条单调上升的指数曲线,与理论分析相符。

(2) 一阶系统的单位斜坡响应 在SIMULINK环境下搭建图2的模型,将示波器横轴终值修改为12进行仿真,得出仿真曲线图。 理论分析:C(s)=1/[s^2(4s+1)]可求的一阶系统的单位斜坡响应为c(t)=(t-4)+4e^(-t/4) e(t)=r(t)-c(t)=4-4e^(-t/4) 当t=0时,e(t)=0,当趋于无穷时,误差趋于常值4. 3)一阶系统的单位脉冲响应 在medit 环境下,编译一个.m 文件,利用impulse()函数可以得出仿真曲线图。此处注意分析在SIMULINK 环境中可否得到该曲线图。

理论分析:C (s )=5/(0.8s+2)=(5/2)/(0.4s+1)可求的g(t)=6.25e^(-t/0.4),是一个单调递减的函数。 两种环境下得到的曲线图不一致。 2)二阶系统的单位阶跃响应 二阶系统的闭环传递函数标准形式为 2 22 2)(n n n s s s G ωζωω++= 其阶跃响应可以分以下情况解出 ①当0=ζ时,系统阶跃响应为 )cos(1)(t t c n ω-= ②当10<<ζ时,系统阶跃响应为 )sin(111)(2 θωζ ζω+--=- t e t c d t n 其中ζζθ/121-=-tg ,21ζωω-=n d ③当1=ζ时,系统阶跃响应为 t n n e t t c ωω-+-=)1(1)( ④当1>ζ时,系统阶跃响应为 ???? ??---=21 2 21121)(λλζωλλt t n e e t c 其中121---=ζζλ,122-+-=ζζλ (1)自然角频率1=n ω 选取不同阻尼比=ζ0,0.2,0.4,0.6,0.8,1.0,2.0,用MATLAB 得到二阶系统阶跃响应

一阶电路和二阶电路的时域分析

南京工程学院教案【教学单元首页】 第10-16 次课授课学时14 教案完成时间:

第七章一阶电路和二阶电路的时域分析 一、教学基本要求 1.掌握动态电路的特点、换路的概念。2.熟练掌握换路定律及初始值的计算。 3.掌握零输入响应的求取,时间常数的意义和求取。 4.掌握零状态响应,了解零状态的RL电路的正弦响应的特点。 5.掌握全响应的两种分解,熟练掌握求解一阶电路全响应的三要素法。6.了解零状态响应、全响应微分方程的特点,求解的方法。 7.掌握二阶电路零输入响应的微分方程的特点,掌握零输入响应解的三种情况,了解在过渡过程中各元件能量的变化规律。 8.掌握阶跃函数的表示和应用,掌握一阶、二阶电路阶跃响应的求解。9.掌握冲激函数表示及与阶跃函数的关系,掌握用阶跃响应求冲激响应的方法。10.了解求解一阶、二阶电路的冲激响应的方法。 二、教学重点与难点 1. 教学重点:(1)动态电路方程的建立和动态电路初始值的确定; (2)时间常数的概念与求取;(3)一阶电路零输入和零状态响应; (4)求解一阶电路的三要素方法及全响应的两种分解; (5)二阶电路微分方程编写,零输入响应微分方程解的三种情况; (6)一阶、二阶电路的阶跃响应,冲激响应; 2.教学难点:(1)应用基尔霍夫定律和电感、电容的元件特性建立动态电路方程; (2)电路初始条件的概念和确定方法; (3)零状态的RL电路的正弦响应的特点;(4)冲激响应的计算; (5)二阶电路的零状态响应、全响应求解的方法和区别。 三、本章与其它章节的联系: 本章讨论的仍是线性电路,因此前面讨论的线性电路的分析方法和定理全部可以用于本章的分析中。第9章讨论的线性电路的正弦稳态响应就是动态电路在正弦激励下的稳态分量的求解。

《电路分析基础》课程练习试题和答案

电路分析基础 第一章 一、 1、电路如图所示, 其中电流I 1为 答( A ) A 0.6 A B. 0.4 A C. 3.6 A D. 2.4 A 3Ω 6Ω 2、电路如图示, U ab 应为 答 ( C ) A. 0 V B. -16 V C. 0 V D. 4 V 3、电路如图所示, 若R 、U S 、I S 均大于零,, 则电路的功率情况为 答( B ) A. 电阻吸收功率, 电压源与电流源供出功率 B. 电阻与电流源吸收功率, 电压源供出功率 C. 电阻与电压源吸收功率, 电流源供出功率 D. 电阻吸收功率,供出功率无法确定

U I S 二、 1、 图示电路中, 欲使支路电压之比 U U 1 2 2=,试确定电流源I S 之值。 I S U 解: I S 由KCL 定律得: 2 23282 22U U U ++= U 248 11 = V 由KCL 定律得:04 2 2=+ +U I U S 11 60 - =S I A 或-5.46 A 2、用叠加定理求解图示电路中支路电流I ,可得:2 A 电流源单独作用时,I '=2/3A; 4 A 电流源单独作用时, I "=-2A, 则两电源共同作用时I =-4/3A 。

3、图示电路ab 端的戴维南等效电阻R o = 4 Ω;开路电压U oc = 22 V 。 b a 2 解:U=2*1=2 I=U+3U=8A Uab=U+2*I+4=22V Ro=4Ω 第二章 一、 1、图示电路中,7 V 电压源吸收功率为 答 ( C ) A. 14 W B. -7 W C. -14 W D. 7 W

范世贵主编《电路基础》答案第十三章 一阶电路时域分析

第十三章一阶电路时域分析 13-1 图题13-1所示电路,t<0时K一直在0点。今从t=0时刻开始。每隔T 秒,依次将K向左扳动,扳道4点是长期停住。试画出u(t)的波形,并用阶跃函数将u(t)表示出来。 答案 解: u(t)的波形如图13-1(a)所示。 13-2 粗略画出下列时间函数的波形。 (2)tU(t+1); (1)tU(t); (3)(t-1)U(t-1); (4)-tU(t); (5)tU(t-1)

(6)U(t-1)U(t-2); (7)U(t)+U(t-2); (8)U(-t+3); (9)tU(3t+1); (10)()()t U t δ (11) ()(1)t U t δ-; (12)5(1)t e U t --; (13)U (t-1)-U(t-4)。 答案 解:各波形相应如图题13-2所示。

13-3 求下列导数: (1) [()(1)]d u t U t dt --; (2) [()(1)]d u t U t dt - ; (3) [()] t d e U t dt α-; (4) 5[(4)]t d e U t dt --; (5) 22[()]d tU t dt 答案 解:(1) ()(1) t t δδ--; (2) (1)t δ-;

(3) ()()t t e U t αδα--; (4) 55(4)5(4)t t e t e U t δ-----; (5) ()t δ。 13-4 写出下表格单一元件电路的单位阶跃响应i(t)、u(t)的表达式。画出波形。 ()t (u t ) ()u t ()) u t ()i t ()u t

二阶系统时域响应特性的实验研究

2011-2012 学年第1 学期 院别: 控制工程学院 课程名称: 自动控制原理A 实验名称: 二阶系统时域响应特性的实验研究实验教室: 6111 指导教师: 瞿福存 小组成员(姓名,学号): 实验日期:2012 年11 月15 日 评分:

四、实验结果(含仿真曲线、数据记录表格、实验结果数据表格及实验分析与结论等) 1、分别选择不少于四个n w和ζ(代表四种阻尼状态)取值,仿真二阶系统的阶跃(或脉冲)响应。 ζ对时域响应的影响: (1)仿真观察 仿真程序: wn=2;zeta=[-0.1,0,0.2,0.7,1,2]; t=0:0.1:9; hold on for i=1:length(zeta) sys=tf(wn^2,[1,2*zeta(i)*wn,wn^2]); step(sys,t) end hold off grid on gtext('ζ=-0.1');gtext ('ζ=0'); gtext('ζ=0.2');gtext('ζ=0.7');gtext('ζ=1.0'); gtext('ζ=2.0') 仿真曲线: 实验数据记录: ζ超调量(%)调节时间峰值时间上升时间 -0.1 无无无无

实验数据记录: w超调量(%)调节时间峰值时间上升时间n 0.1 16.3 80.8 36.3 16.4 0.3 16.3 26.9 12.1 5.46 0.6 16.3 13.5 6 2.73 1.0 16.3 8.08 3.6 1.64 1.6 16.3 5.05 2.3 1.03 实验分析与结论: 一定时,ωn越大,上升时间、峰值时间、调节时间都变小,瞬态响应分量衰减越迅速,系统能够更快达到稳态值,响应的快速性越好;ωn的变化不引起超 调量变化。 2.分别选择不少于三个取值的附加零点、极点,仿真二阶系统的阶跃(或脉冲)响应。 (1)附加极点阶跃响应: 仿真程序: zeta=0.5;wn=[2];r=[0.1,0.5,4]; t=0:0.1:6; hold on for i=1:length(r) sys1=tf(wn^2,[1,2*zeta*wn,wn^2]);sys2=tf([1],[r(i) 1]); sys=sys1*sys2;

自动控制原理实验 典型系统的时域响应和稳定性分析

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:典型系统的时域响应和稳定性分析实验时间: 学生成绩:教师签名:批改时间: 一、目的要求 1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。 2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。 3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。 二、实验设备 PC机一台,TD—ACC教学实验系统一套 三、实验原理及内容 1.典型的二阶系统稳定性分析 (1) 结构框图:如图 1.2-1 所示。 图1.2-2 (2) 对应的模拟电路图:如图 1.2-2 所示。 图1.2-2

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: (3) 理论分析 系统开环传递函数为: ;开环增益: (4) 实验内容 先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中, 观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。在此实验中(图 1.2-2), 系统闭环传递函数为: 其中自然振荡角频率: 2.典型的三阶系统稳定性分析 (1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别: 实验名称:实验时间: 学生成绩:教师签名:批改时间: 图 1.2-3 (2)模拟电路图:如图1.2-4 所示。 图 1.2-4 (3)理论分析: 系统的特征方程为: (4)实验内容: 实验前由Routh 判断得Routh 行列式为:

相关主题
文本预览
相关文档 最新文档