当前位置:文档之家› 切削温度测量方法综述

切削温度测量方法综述

切削温度测量方法综述
切削温度测量方法综述

基于STM32的温湿度监测毕业论文

《物联网工程设计与实施》项目设计 项目课题:基于STM32的温湿度检测 院系:计算机科学与技术学院 专业:物联网工程 项目经理:学号:123921043 副经理:学号:123921024 项目成员:学号:123921002 项目成员:学号: 123921048 项目成员:学号: 123921054 项目成员学号: 123921025 项目成员学号: 123921011 项目成员学号: 123921023 指导教师: 2014 年 12月

目录 摘要 (5) Absract (7) 一.设计目标 (9) 二.设计方案 (9) 三.实验所需器材 (9) 四.设计内容 (9) 4.1 STM32模块 (9) 4.2 AM2302介绍 (11) 4.2.1 产品概述 (11) 4.2.2 应用范围 (12) 4.2.3 产品亮点 (12) 4.2.4 单总线接口定义 (12) 4.2.5 传感器性能 (13) 4.2.6 单总线通信 (13) 4.3 Nokia 5110 介绍 (15) 4.3.1 SPI接口时序写数据/命令 (15) 4.3.2 显示汉字 (15) 4.3.4 显示图形 (16) 4.4 原理图设计 (16) 4.5 PCB板设计 (17) 五.实验软件设计 (18) 5.1 温湿度传感器DHT22的程序 (18) 5.2 湿度显示函数 (21) 5.3主函数程序 (23) 5.3.1显屏程序 (23) 六.作品实物展示 (32) 七.设计总结 (33)

基于STM 32 的温湿度检测 摘要 随着现代社会的高速发展,越来越多的科学技术被应用于农业生产领域。在温室大棚中对温湿度、二氧化碳浓度等外部参数的实时准确的测量和调节更是保证农业高效生产的重要前提。本次课程设计中实现了一个基于STM32F103VET6的智能温湿度检测系统,目的是实现温湿度的采集和显示,温湿度的采集是作为自动化科学中一个必须掌握的检测技术,也是一项比较实用的技术。本次实验主要作了如下几个方面工作:首先通过对实时性、准确性、经济性和可扩展性等四个方向的分析比较之后,选择了STM32F103VE微控制器作为主控芯片和AM2303温湿度传感器来实现对温湿度数据进行采集;在Nokia5110显示屏上显示出温度和湿度,然后详细介绍了各个模块的工作原理和硬件电路设计思路,实现了温湿度数据实时准确的测量;之后阐述了系统各个部分的软件设计思路;最后对系统在实际应用中采集到的数据进行了处理,分析了误差产生的原因,并通过分段线性插值算法对系统非线性误差进行了校准,同未校准时采集的数据相比,校准后的数据准确度更高,稳定性更好。在保证测量效果的基础上,本系统设计中充分考虑到性价比和再次开发周期性等,具有成本低、设计开发方便、通用性强等特点,不仅适用于现代农业生产中,还能用于其它工业控制、机械制造等其它领域,具有一定的市场推广价值。 【关键词】:嵌入式技术,电路设计,STM32,AM2302温湿度采集,Nokia5110 显示屏,程序设计

车削时切削温度的测量

车削时切削温度的测量 一、实验目的及要求 1、掌握用自然热电偶法测量切削区平均温度的方法。 2、研究车削时,切削热和切削温度的变化规律及切削用理(包括切削速度、走刀量f、切削深度ap)对切削θ的影响。 3、用正交试验设计,确定在切削用量的三个因素中,影响切削温度的主次因素。 二、实验内容 用高速钢车刀和45#钢工件组成的热电偶,以正交试验计法实验切削温度的变化规律。 三、实验设备及用具 1、设备:CA6140型变通车床。 2、仪器:VJ37型直流电位差计(或毫伏表)。 3、刀具:高速钢外圆车刀。 4、工件:45#钢。 四、自然热电偶法测量温度的基本原理和方法 用热电偶测量温度的基本原理是:当两种化学成份不同的金属材料,组成闭合同路时,如果在这两种金属的两个接点上存在温度差(通常温度高的一端称为热端,温度低的一端称为冷端)。在电路上就产生热电势,实验证明,在一定的温度范围内,该热电热与温度具有某种线性关系。 热电偶的特性是: (1)任何两种不同金属都可配制成热电偶。 (2)任何两种均质导体组成的热电偶,其电动热的大小仅与热电极的材料和两接点的温度T、To有关,而与热电偶的几何形状及尺寸无关。 (3)当热电偶冷端温度保持一定,即To=C时,热电势仅是热端温度T的单值数,E= (t),这样,热电偶测量端的温度与热电势建立了——对应关系。 用自然热电偶法测量切削温度时,是利用刀具与工件化学成份的不同而组成热电偶的两级,如图(一)所示。(刀具和工件均与机床绝缘,以消除寄生热电偶的两极的影响),切削时,工件与刀具接触区的温度升后,就形成了热电偶的热端,而工件通过同材料的细棒或切屑再与导体连接形成一冷端,刀具由导线引出形成另一冷端,如在冷端处接入电位差计,即可测得热电势的大小,通过热电热——温度的换算从而反映出刀具与工件接触处的平均温度。 为了将测得的切削温度毫伏值换算成温度值,必须事先对实验用的自然热电

温度测量方法

温度测量方法 温度是度量物体热平衡条件下冷热程度的物理量,它反映了物体内部微粒无规则运动的平均动能,是国际单位制中的7个基本物理量之一。由于在很多情况下,不能直接测量,故是种特殊量。自然界中,很多物质的物理属性以及众多的物理效应均与温度有关,因此人们利用他们随温度的变化规律来间接测量温度。 根据感温元件与被测介质接触与否,温度测量方法可分为:接触式和非接触式。接触式测温方法是通过传导、对流和辐射等传热方式感受被测介质的温度。此方法虽然简单、方便,但其间的热阻及感温元件的热惯性都会影响测温的迅速、准确。非接触式测温法的感温元件不与被测物体相接处,目前最常用的是辐射法,它直接利用被测对象的辐射能与温度的对应关系来测量其温度。与接触式测温方法相比,非接触式测温法具有如下优点:1、动态响应快。2、适合特殊场合。3、测温范围理论上无上限,其下线也随技术发展在向中低温扩展。由于非接触式测温法必须获得被测量对象的热辐射强度,因此存在以下缺点:1、受中间介质影响大。2、接收到的辐射能常常不能直接得出被测对象的实际温度,需要进行修正。 对应于两种测温方法,测温仪器亦分为接触式和非接触式两大类: 接触式仪器又可分为:膨胀式温度计(包括液体和固体膨胀式温度计、压力式温度计)、电阻式温度计(包括金属热电阻温度计和半导体热敏电阻温度计)、热电式温度计(包括热电偶和P-N结温度计)以及其它原理的温度计。 非接触式温度计又可分为辐射温度计、亮度温度计和比色温度计,由于它们都是以光辐射为基础,故也按统称为辐射温度计。 热电偶测温的应用原理 热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1、热电偶测温基本原理 将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路。当导体A和B 的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2、热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。

温度测量方法分类及优缺点概述

温度测量方法分类及优缺点概述 摘要:温度是表征物体冷热程度的物理量, 是国际单位制中七个基本物理 量之一, 它与人类生活、工农业生产和科学研究有着密切关系。随着科学技术水平的不断提高, 温度测量技术也得到了不断的发展。本文将讨论总结温度测量的各种方式,并分析他们各自的优缺点。 1.温度测量的分类 温度测量的分类可以通过其与被测量的物体是否接触分为接触式和非接触式。接触式测量仪表比较简单、可靠,测量精度高。但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡。接触式测量仪存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量。非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率、测量距离、烟尘和水汽等外界因素的影响,其测量误差较大。 2.接触式测量方法 2.1膨胀式温度测量 原理:利用物质的热胀冷缩原理即根据物体体积或几何形变与温度的关系进行温度测量。热胀冷缩式温度计包括玻璃液体温度计、双金属膨胀式温度计和压力式温度计等。 优点:结构简单, 价格低廉, 可直接读数,使用方便,非电量测量方式, 适用于防爆场合。 缺点:准确度比较低, 不易实现自动化, 而且容易损坏。 2.2电量式测温方法 利用材料的电势、电阻或其它电性能与温度的单值关系进行温度测量,包括热电偶温度测量、热电阻和热敏电阻温度测量、集成芯片温度测量等。 1.热电偶的原理是两种不同材料的金属焊接在一起,当参考端和测量端有温差时, 就会产生热电势, 根据该热电势与温度的单值关系就可以测量温度。热电偶具有结构简单, 响应快, 适宜远距离测量和自动控制的特点, 应用比较广泛。 2.热电阻是根据材料的电阻和温度的关系来进行测量的, 输出信号大, 准确度比较高, 稳定性好, 但元件结构一般比较大, 动态响应较差, 不适宜测量体积狭小和温度瞬变区域。 3.热敏电阻是一种电阻值随温度呈指数变化的半导体热敏感元件, 具有灵敏度高、价格便宜的特点, 但其电阻值和温度的关系线性度差,且稳定性和互换性也不好。 4.石英温度传感器是以石英晶体的固有频率随温度而变化的特性来测量温度的。石英晶体温度传感器稳定性很好, 可用于高精度和高分辨力的测量场合。随着电子技术的发展, 可以将感温元件和相关电子线路集成在一个小芯片上, 构成一个小型化、一体化及多功能化的专用集成电路芯片, 输出信号可以是电压、频率, 或者是总线数字信号, 使用非常方便,适用于便携式设备。 2.3接触式光电、热色测温方法

智能温度测量仪论文(DOC)

现代仪器课程设计智能化温度仪器设计 Design of Intellecturalized Temperature Instrument 所在学院:机械工程学院 所在系所:测控技术与仪器系 专业班级:测控 学生姓名: 学生学号: 指导老师:

江苏大学测控技术与仪器系 2011-12-30 智能化温度仪器设计 Design of Intellecturalized Temperature Instrument 任务指标:实时测量现场温度,测温范围-20℃~50℃,测量精度±0.5℃,仪器采用便携式结构,能显示测量温度,并有非线性补偿与滤波功能。 摘要:本次课程设计采用铂电阻PT100作为传感器测量外界温度。将铂电阻接入电桥测量现场温度,再经差动放大电路放大成0~5V的电压信号。然后通过ADC0809将采集到的模拟信号转变数字信号,再将数字信号送入AT89C52单片机通过编程实现非线性补偿与滤波功能,最后经LED显示器显示测量温度。 关键字:铂电阻,温度测量,实时显示。 Abstract: This course is designed with a PT100 platinum resistance temperature sensor outside. Access to bridge the platinum resistance temperature measurement site, and then zoom through the differential amplifier circuit into a voltage signal 0 ~ 5V. Then will be collected ADC0809 analog signals into digital signals and then digital signal into the AT89C52 microcontroller programmed to non-linear compensation and filtering, and finally through the LED display shows the temperature measurement. Keywords: platinum resistance, temperature measurement, real-time display.

实验二采用红外热像仪的切削温度测量

实验二采用红外热像仪的切削温度测量 一、实验概述 切削过程中,会产生一系列物理现象,如切削变形、切削力、切削热与切削温度、刀具磨损等。对切削加工过程中的切削力、切削温度进行实时测量,是研究切削机理的基本实验手段和主要研究方法。通过对实测的切削温度进行分析处理,可以推断切削过程中的切削变形、刀具磨损、工件表面质量的变化机理。在此基础上,可进一步为切削用量优化,提高零件加工精度等提供实验数据支持。 本实验是使用红外热像仪进行切削温度的非接触测量,研究切削用量对于切削温度的影响。通过本实验可使同学们熟悉制造技术工程中的基础实验技术和方法,了解用先进的仪器设备研究传统切削加工的方法。 二、实验目的 1、学习及掌握红外热像仪测量切削温度的方法,了解红外成像测温原理 2、研究υc、f对切削温度的影响. 三、实验仪器设备 1、CA6140车床 2、Flir A315 红外热像仪 3、刀具:YT15,角度:γ o = α o = κr= λs= 。 4、试件:45钢棒料 说明:刀具参数、车床和工件由各班学委负责准备或负责,红外热像仪的操作由胡玉琴同学负责。 四、实验原理 红外热像仪的基本工作原理是利用了斯蒂芬—波尔兹曼定律,即 E =εσT4(1) 式中 E ———物体辐射单元单位面积的辐射能量(W/ m2) ε———物体辐射单元表面辐射率(取决于物体表面性质) σ———斯蒂芬—波尔兹曼常数(σ = 5.76 ×10 - 8W/ m2·K4) T ———物体辐射单元的表面温度(K) 切削时,红外热像仪通过光机扫描机构探测工件(或刀具) 表面辐射单元的

辐射能量,并将每个辐射单元的辐射能量转换为电子视频信号,通过对信号进行处理,以可见图像的形式进行显示,显示的热像图代表被测表面的二维辐射能量场,若辐射单元的表面辐射率已知,则可通过斯蒂芬—波尔兹曼定律求出辐射单元表面的温度分布场及动态变化。虽然红外热像仪所测温度为相对温度,滞后于实际切削温度,但根据传热反求算法可准确求得切削过程中工件(或刀具) 的温度变化规律及动态分布。红外热像仪测温法具有直观、简便、可远距离非接触监测等优点,在恶劣环境下测量物体表面温度时具有较大优越性。 图1 红外热像仪组成结构原理图 注意:红外热像仪属于高值、精密、易损设备,未经允许,不能搬动或触摸。 五、实验方法与步骤 1.熟悉要使用的红外热像仪及其在线测量软件(Monitor;Tools;SDK),机床操作手柄及安全注意事项,安装试件,安放好红外热像仪及电脑设备,请辅导教师检查。 2.试验走刀量 f 对切削温度的影响 固定a p,V改变f,切削,记录保存瞬时的温度分布图和温度随时间的变化曲线。3.试验切削速度对切削温度的影响 固定a p,f 改变V 切削,记录保存瞬时的温度分布图和温度随时间的变化曲线。 六、实验报告要求 1、自行设计切削温度测量的单因素实验表格(预习完成),认真总结红外热像仪测温原理和方法。 2、对获得的温度分布图和变化曲线数据进行整理分析,并与教材上的经验公式计算结果进行比较分析。图线要贴在实验报告上。

关于温度控制系统论文

前言 随着电子技术的发展、数字电路应用领域的扩展,现今社会,产品智能化、数字化已成为人们追求的一种趋势,设备的性能、价格、发展空间等备受人们的关注,尤其对电子设备的精密度和稳定度最为关注随着单片机技术的不断发展,控制设备也跟着不断变化,对产品试验环境的要求也越来越严格。鉴于此,环境温度是试验环境中的一项重点,环境温度的高低直接影响产品的电气和机械性能参数,环境温度的准确度对测试温度的方法要求越来越高,而对环境温度的控制更显的重要。温度检测的传统方法是使用诸如热电偶、热电阻、半导体PN结之类的模拟温度传感器。信号经取样、放大后通过模数转换,再交由单片机处理。被测温度信号从温敏元件到单片机,经过众多器件,易受干扰、不易控制且精度不高。为了准确的测试与控制环境温度,因此,本系统采用一种新型的可编程温度传感器DS18B20,它能代替模拟温度传感器和信号处理电路,直接与单片机沟通,完成温度采集和数据处理。DS18B20与AT89S52结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 第一章绪论 随着信息时代的到来,智能化已是现代温度控制系统发展的主流方向。特别是近年来,温度控制系统已应用到人们生活的各个方面,但温度控制一直是一个未开发的领域,却又是与人们息息相关的一个实际问题。针对这种实际情况,设计一个温度控制系统,具有广泛的应用前景与实际意义。 温度是科学技术中最基本的物理量之一,物理、化学、生物等学科都离不开温度。在工业生产和实验研究中,像电力、化工、石油、冶金、航空航天、机械制造、粮食存储、酒类生产等领域内,温度常常是表征对象和过程状态的最重要的参数之一[1]。比如,发电厂锅炉的温度必须控制在一定的范围之内;许多化学反应的工艺过程必须在适当的温度下才能正常进行;炼油过程中,原油必须在不同的温度和压力条件下进行分馏才能得到汽油、柴油、煤油等产品。没有合适的温度环境,许多电子设备就不能正常工作,粮仓的储粮就会变质霉烂,酒类的品质就没有保障。因此,各行各业对温度控制的要求都越来越高。可见,温度的测量和控制是非常重要的。

浅谈红外测温仪的设计文献综述

单位代码01 学号090102128 分类号 密级 文献综述 浅谈红外测温仪的设计 院(系)名称信息工程学院 专业名称电子信息工程 学生姓名 指导教师 2013年 2 月28 日

浅谈红外测温仪的设计 摘要 09年大规模爆发甲型H1N1流感,它的前期症状是高烧38℃以上(少数长期病患者除外),大部分人口集中地区均对进出人员进行测体温来排查感染者。传统的温度计面对突如其来的流感对于测温技术的快速准确等要求明显比较乏力。红外测温仪可为防止甲型H1N1流感的扩散和传播提供了快速、非接触测量手段,可广泛、有效地用于人群的体温排查,通过非接触红外测温仪就可以很快得到体温。红外测温打破了传统的接触式测温模式,它根据被测物体的红外辐射能量来确定物体的温度,不与被测物体接触,具有不扰动被测物体温度分布场,温度分辨率高、响应速度快、测温范围广,稳定性好、可同时测量环境温度和目标温度的特点[1]。近年来在汽车电子、航空和军事上得到越来越广泛的应用。这里列举几种实现红外测温的方案并比较其优缺点。 关键词:51单片机、红外测温、非接触

1 红外测温系统 1.1 红外测温系统概述 一般来说,测温方式可分为接触式和非接触式,接触式测温只能测量被测物体与测温传感器达到热平衡后的温度,所以响应时间长,且极易受环境温度的影响;非接触红外测温仪采用红外技术可快速测得温度读数。只需瞄准、按动触发器,在显示屏上读出温度数据。红外测温仪重量轻、体积小、使用方便,并能可靠地测量热的,危险的或难以接触的物体,而不会污染或损坏被测物体。红外测温仪每秒可测若干个读数,而接触测温仪每秒测量就需要若干分钟的时间。 红外测温作为一门新技术和新方法,它的出现是红外技术的发展结果。红外技术是研究红外辐射的产生、传输、转换、探测并付诸应用的一门科学技术。近20年来,红外测温技术在产品质量控制和监测!设备在线故障诊断安全保护以及节约能源等方面发挥了或正在发挥着重要作用,逐渐被广泛应用于电力,食品加工。冶金、石化、医疗、科研等多种行业中[2]。 由于红外热像仪价格昂贵,这大大限制了它的推广应用,而点式红外测温仪价格相比较来说还是较低的,就测温精度来说,点式红外测温仪和红外热像仪相比精度相当,并且很多应用场合精度要求不是很高,可以采取一定措施弥补其缺点,而又不太大的增加其成本。 1.2红外测温原理 一切温度高于绝对零度的物体都在不停地向周围空间发出红外辐射能量。物体的红外辐射特性:辐射能量的大小及其按波长的分布与它的表面温度有着密切的关系,因此,通过对物体自身辐射的红外能量的测量,使能准确地测定它的表面温度,这就是红外辐射测温所依据的客观基础。发射率是表征物体辐射红外线的能力,它是相同温度和波长下的实际物体与黑体的单色辐射出度之比,所以亦称比辐射率,它是表征物体辐射本领的重要热物性参数,发射率越大,物体表面的辐射率越强。大部分有机物或金属氧化物表面的发射率都在0.85-0.98之间,光洁的金属表面或抛光的物体发射率很低,所以,材料种类、表面粗糙度、理化结构和材料厚度都是影响发射率的主要因素[3]。

实验三-切削温度实验

实验三切削温度实验 一、实验目的和要求 1.了解车削时自然热电偶的构成以及采用自然热电偶进行切削温度实验的原理和 方法; 2.掌握自然热电偶现场快速标定的原理和方法,并获得其标定公式; 3.进行切削温度单因素实验或正交实验,了解切削用量对切削温度的影响规律,获 得切削温度的实验公式; 4.认知计算机辅助实验硬、软件的系统构成,并熟悉自然热电偶标定与切削温度实 验软件的具体操作。 二、实验原理与测量方法 1. 切削温度实验与标定系统的组成 切削温度实验系统由切削系统、切削温度实验仪器和计算机系统三大部分组成(图1、图3)。切削系统包括组成自然热电偶的工件(切屑)和硬质合金刀片,以及水银集电器、专用测温车刀等。切削温度实验仪器包括室温采集与数显板、三路高精度高倍率线性放大板以及为自然热电偶快速标定提供加热电源与控制的元器件等。计算机系统包含12位A/D板、计算机主机及其外设。此外,本系统还设置了自然热电偶标定附件。 系统使用接插线缆连接: 1)切削系统?切削温度实验仪器; 2)标定电源连接; 3)切削温度实验仪器?计算机系统之间有 两组扁平线接插件。 4)仪器电源线与普通的计算机电源线相同。 5)切削温度实验仪器接地螺钉位于其背面 的钢板上,请务必将切削温度实验仪器用 电线连接到符合标准的地线上! 图1 自然热电偶测温系统框图

图2 在车床上的切削温度实验系统全貌 2. 切削温度的测量方法 在切削过程中,硬质合金刀片和工件(切屑)组成了自然热电偶,切削温度实验就是将这个自然热电偶作为传感器来测量切屑温度的。切削时,自然热电偶产生的是温差热电势和温差热电流,“刀-屑”及“刀-工”接触区的高温端温度与硬质合金刀片另一端的冷端温度之差相当显著,所以,产生的热电势可以测量得到。硬质合金刀片作为自然热电偶的一个热电极,工件和切屑作为另一极。再将工件和切屑组成的这一极分成两部分,前者包括被切削加工的工件和与其紧密相连的一段切屑,后者就是一段切屑,这两段切屑端部的电压就是实验的检测对象——自然热电偶的热电势值。由于工件和切屑组成的热电极的前一部分是随着机床主轴旋转的,为将旋转着的切屑的热电势引导出来,便于检测,实验采用了水银集电器。 需要特别关注的是绝缘问题,在这里,由于棒状工件采用了尾顶尖,必须在尾顶尖莫氏锥面和车床尾座主轴莫氏锥孔之间进行绝缘处理,常用的方法是在尾顶尖莫氏锥面上涂塑或贴上一层塑料薄膜。当然,硬质合金车刀刀体与四方刀架之间(上、下两面),也需要垫上绝缘垫片。

常见的温度检测方法

常见温度检测方法分析 摘要:在目前工农业生产和国民经济生活中,温度测量日益重要,新型温度传感器不断涌现,通过对现代常用温度传感器的工作原理和特性的分析,便于在工作中根据具体情况,选用提供依据,以减少生活生产中不必要的损失。 关键词:温度;检测方法;传感器;测量 Study On Methods Of Measuring Teamperature Abstract:In the of industrial and agricultural Produetionornationaleconomicife,measuringtemperatureisinereasinglyimportant,andmoderntemrerat uresensorseontinuouslyarise.Prineipleand charaeterofmoderntemperaturesensorsanalyzedhere is usefulforseientific eworkers.It is foundmentalto choicetemperaturesensorsforuser aeeordingto praetieal circumstances ,So that it can reduce unnecessary lossin thelife production. Keywords:temperature:sensor;measure 温度是科学技术中最基本的物理量之一, 物理、化学、热力学、飞行力学、流体力学等学科都离不开温度,它也是工业生产中最普遍最重要的参数之一。许多工农业产品的质量都与温度密切相关,比如, 离开合适的温度, 许多化学反应就不能正常进行甚至不能进行;没有合适的温度炉窑就不能炼制出合格的产品;没有合适的温度环境, 农作物就不能正常生长, 许多电子仪器就不能正常工作, 粮仓的储粮就会变质霉烂, 家禽的孵化也不能进行。可见, 温度的测量与控制十分重要。 测温方法很多,仅从测量体与被测介质接触与否来分,有接触式测温与非接触式测温两大类。接触式测温是基于热平衡原理,测温敏感元件必须与被测介质接触,使两者处于同一热平衡状态,具有同一温度,如水银温度计,热电偶温度计等就是利用此法测量。非接触式测温是利用物质的热辐射原理,测温元件不需与被测介质接触,而是通过接收被测物体发出的辐射热来判断温度,如辐射温度计,光纤温度计等[1]。 接触式测温简单、可靠,且测量精度高。但是由于测温元件需与被测介质接触后进行的热交换,才能达到热平衡,因而产生了滞后现象。另外,由于受到耐高温材料的限制,接触式测量不能应用于很高温度的测量。非接触式测温,由于测温元件不与被测介质接触,因而其测温范围很广,其测温上限原则上不受限制,测温速度也较快,而且可以对运动体进行测量。但是,它受到物体的发射率,被测对象到仪表之间的距离,烟尘和水汽等其它介质的影响,一般测温误差较大,目前使用较广的是接触式测温。下面介绍几种现代常用温度测量方法。 1电阻温度传感器 这种传感器以电阻作为温度敏感元件,根据敏感材料不同又可分成热电阻式和热敏电阻式,热电阻式一般用金属材料制成, 如铂、铜、镍等1热敏电阻是以半导体材料制成的陶瓷器件, 如锰、镍、钴等金属的氧化物与其它化合物按不同配比烧结而成。 热电阻的温度系数一般为正值,以铂电阻为例, 其阻值Rt 与温度间的关系为Rt=R0(1+At+Bt2), 0℃≤t≤650℃; Rt= R0[1+At+Bt2+Ct3(t- 100) ],- 200℃≤t≤0℃, 其中A = 319684×10- 8/℃, B= - 518470

切削温度测量方法概述..

热工测量仪表作业 切削温度测量方法概述Summary of Cutting Temperature Measurement Methods 作者姓名:王韬 专业:冶金工程 学号:20101360 指导老师:张华 东北大学 Northeastern university 2013年6月

切削温度测量方法概述 王韬 东北大学 摘要:高速切削加工现已成为当代先进制造技术的重要组成部分,切削热与切削温度是高速切削技术研究的重要内容。本文根据国内外高速切削温度测量方法的研究现状,对目前常用的切削温度测量方法进行了分类和比较,主要包括接触式测温、非接触式测温和其他测量方法三种,详细介绍了热电偶法、光辐射法、热辐射法、金相结构法等几种常用切削测温方法的基本原理、优缺点、适用范围及发展状况;介绍了几种新型高速切削温度测量方法。最后对各种测量方法作了比较,探讨了切削温度实验测量方法研究的发展方向。 关键词: 切削温度,测量方法,发展状况 Summary of Cutting Temperature Measurement Methods Wang Tao Northeastern university Abstract: High-speed machining has become an important part of the contemporary advanced manufacturing technology. Cutting heat and cutting temperature is the important content of high speed cutting technology research. This paper gives the background to the measurement of metal cutting temperatures and a review of the practicality of the various methods of measuring cutting temperature while machining metals. Classify the cutting temperature measurement methods, mainly including non-contact temperature measurement, non-contact temperature test of other three kinds of measurement methods; Introduced the thermocouple method, radiation method, radiation method and metallographic structure of the basic principle of several kinds of commonly used cutting temperature measurement method, the advantages and disadvantages, applicable scope and the status of the development; Several new high-speed cutting temperature measurement methods are introduced. Finally discusses the development direction of cutting temperature experiment measurement method research for a variety of measurement methods. Keywords:metal cutting, cutting temperature, measurement method

低压空气开关电弧现代测试技术的研究综述_图文(精)

李兴文(1978—,男,副教授,博士,研究方向为电弧电接触理论及其应用和电力电子技术。 低压空气开关电弧现代测试 技术的研究综述 3 李兴文,陈德桂,吐松江?卡日,李瑞 (西安交通大学电力设备电气绝缘国家重点实验室,陕西西安710049 摘要:空气开关电弧是以空气为灭弧和绝缘介质的低压电器中最为复杂的物理现象。针对电弧运动过程特别是电弧背后击穿现象、电弧温度、电弧组分及其浓度等方面,综述了CCD 和光纤阵列、光谱诊断技术及磁测试技术等低压空气开关电

弧的现代测试技术的特点及其应用,并指出了空气开关电弧实验研究中所面临的几个问题。 关键词:电弧;测试;光谱;光纤阵列 中图分类号:T M 501+ .2文献标识码:A 文章编号:100125531(20080120006204 Rev i ew of the I nvesti ga ti on on the M odern M ea surem en t Technolog i es of L ow Volt age A i r Sw itch Arc L I X ingw en,CHEN D egui,TUSON GJ I AN G Kari,L I R ui (State Key Laborat ory of Electrical I nsulati on and Power Equi pment, Xi πan J iaot ong University,Xi πan 710049,China Abstract:A ir s witch arc is the most comp lex phenomenon in l ow voltage electric apparatus using air as quenching and insulati on mediu m.W ith regarding t o arc moti on p r ocess,es pecially,arc back commutati on phe 2nomenon,arc te mperature,arc compositi on and the corres ponding concentrati on,the characteristics and app licati on of modern measurement technol ogies including CCD,op tical fiber array,s pectru m diagnostics and magnetic diag 2nostics were reviewed .Finally,s ome i m portant p r oble m s in the experi m ental studies of arc s witching arc were pointed . Key words:arc;m ea sure m en t ;spectru m;opti ca l f i ber array 陈德桂(1933—,男,教授,博士生导师,研究方向为新型低压电器的研究和开发等。吐松江?卡日(1985—,男,硕士研究生,研究方向为低压电器。李瑞(1985—,男,

温湿度检测设计毕业论文

第1章绪论 1、1研究的目的和意义 随着社会的进步和生产需要,利用无线传感进行温度数据采集的方式应用已经渗透到生活各个方面。 在工业现场,由于生产环境恶劣,工作人员不能长时间停留在现场观察设备是否运行正常,因此需要采集数据并传输数据到一个环境相对较好的操控室内,这样就会产生数据传输问题。由于厂房过大、需要传输数据过多,使用传统的有线数据传输方式就需要铺设很多很长的通讯线。这样浪费资源,占用空间,可操作性差,出现错误换线困难。而且,当数据采集点处于运动状态、所处的环境不允许或时,数据甚至无法传输,此时便需要利用无线传输的方式进行数据收集。 在农业生产上,不论是温室大棚的温湿度监测,还是粮仓的管理,传统上都是采取分区取样的人工方法。这样工作量大,可靠性差,而且大棚和粮仓占地面积大,检测目标分散,测点较多。传统的方法已经不能满足当前农业发展的需要。在当前的科技水平下,无线通信技术的发展使得温度采集测量更加精确,简便易行。在日常生活中,随着人们生活水平不断的提高,居住条件也逐渐变得智能化。如今很多家庭都会安装室内温湿度采集控制系统,其原理就是利用无线通信技术采集室内温湿度数据,并根据室内温度情况进行遥控通风等操作。通过自动调节室内温度湿度,可以更好地改善人们的居住环境。以上只是简单列举几个现实的例子,在现实生活中,这种无线温度采集系统已经被成功应用于工农业、军事国防、环境监测、机器人控制等许多重要领域。而且类似于这种温湿度采集系统的无线通信网络已经被广泛的应用到民用和军事领域。凡是布线繁杂或不允许布线的场合都希望能通过无线方案来解决。为此,需要设计相应的接口系统,控制这些射频芯片工作,完成可靠稳定的无线数据传输,这样的研究也变得更加有意义了[1]。 1、2 国内外研究现状 在温湿度采集设备出现以前,人们都是分别使用温度计和湿度计进行

切削温度测量方法综述

3中国博士后科学基金资助项目(项目编号:中博基2000-23) 教育部留学回国人员科研启动基金资助项目(项目编号:教外司留 2000-479) 收稿日期:2001年10月 切削温度测量方法综述3 刘战强 黄传真 万 熠 艾 兴 山东大学 摘 要:对目前常用的切削温度测量方法进行了综合评述,介绍了各种测温方法的基本原理、优缺点及适用范围。关键词:金属切削, 切削温度, 测量方法 Summary of Cutting T emperature Measurement Methods Liu Zhanqiang Huang Cuanzhen Wan Y i et al Abstract :The present methods used to measure the cutting temperature are summarized.The fundamental principles ,merits and demerits and application ranges of these cutting temperature measurement methods are introduced. K eyw ords :metal cutting , cutting temperature , measurement method 1 引言 在机械制造业中,虽然已发展出各种不同的零件成型工艺,但目前仍有90%以上的机械零件是通过切削加工制成。在切削过程中,机床作功转换为等量的切削热,这些切削热除少量逸散到周围介质中以外,其余均传入刀具、切屑和工件中,刀具、工件和机床温升将加速刀具磨损,引起工件热变形,严重时甚至引起机床热变形。因此,在进行切削理论研究、刀具切削性能试验及被加工材料加工性能试验等研究时,对切削温度的测量非常重要。测量切削温度时,既可测定切削区域的平均温度,也可测量出切屑、刀具和工件中的温度分布。常用的切削温度测量方法主要有热电偶法、光辐射法、热辐射法、金相结构法等[1~5]。 2 切削温度测量方法 2.1 热电偶法 当两种不同材质组成的材料副(如切削加工中的刀具—工件)接近并受热时,会因表层电子溢出而产生溢出电动势,并在材料副的接触界面间形成电位差(即热电势)。由于特定材料副在一定温升条件下形成的热电势是一定的,因此可根据热电势的大小来测定材料副(即热电偶)的受热状态及温度变化情况。采用热电偶法的测温装置结构简单,测量方便,是目前较成熟也较常用的切削温度测量方法。根据不同的测量原理和用途,热电偶法又可细分为以下几种: (1)自然热电偶法 自然热电偶法[1,3,4]主要用于测定切削区域的 平均温度。采用自然热电偶法的测温装置如图1所示。 它是利用刀具和工件分别作为自然热电偶的两极,组成闭合电路测量切削温度。刀具引出端用导线接入毫伏计的一极,工件引出端的导线通过起电刷作用的铜顶尖接入毫伏计的另一极。测温时,刀具与工件引出端应处于室温下,且刀具和工件应分别与机床绝缘。切削加工时,刀具与工件接触区产生的高温(热端)与刀具、工件各自引出端的室温(冷端)形成温差电势,该电势值可用接入的毫伏计测出,切削温度越高,该电势值越大。切削温度与热电势毫伏值之间的对应关系可通过切削温度标定得到。根据切削实验中测出的热电势毫伏值,可在标定曲线上查出对应的温度值。 图1 自然热电偶法测量切削温度示意图 采用自然热电偶法测量切削温度简便可靠,可 方便地研究切削条件(如切削速度、进给量等)对切削温度的影响。值得注意的是,用自然热电偶法只能测出切削区的平均温度,无法测得切削区指定点的温度;同时,当刀具材料或(和)工件材料变换后,切削温度—毫伏值曲线也必须重新标定。 (2)人工热电偶法 人工热电偶法(也称热电偶插入法)[1,3]可用于

切削热的产生与切削温度的测量

切削热的产生与切削温度的测量 切削热和由此产生的切削温度是金属切削过程中的一个重要物理现象。大量的切削热使切削区域的温度升高,直接影响刀具的磨损和寿命,并影响工件的加工精度和表面质量。切削温度也可作为自动化生产中监控因素,所以研究切削热和切削温度变化规律对生产时间有重要的意义。 (一)切削热的产生和传出被切金属层在刀具的作用下发生弹性变形和塑性变形,这是切削热的一个来源。同时,切屑与前刀面、工件与后刀面间消耗的摩擦功也将转化为热能,这是切削热的又一个来源 (见图1)。 如果忽略后刀面上的摩擦功和进给运动所消耗的功,并假定主运动所消耗的功全部转化为热能,则单位时间内产生的切削热可算出: Qc=Fzvc 式中Qc--每秒钟内产生的切削热,单位为J/s ; Fz--主切削力,单位为N; vc--切削速度,单位为m/s。 图1 切削热的产生和传出 (二)切削温度及其测量方法 切削温度一般是指刀具与工件接触区域的平均温度。切削温度测量的方法很多,如图2所示。目前比较常用的测量切削温度的方法是热电偶法和光热辐射法。下面将分别进行阐述。

t 红外线F 板彳成胶片[法 r 热敏顔料法 热緻电饱达 域热计法 I 金属纽飙观察法 图2 切削温度的测量方法 1. 热电偶法 热电偶法又分为自然热电偶法和人工热电偶法(见表 1)。 表1 自然热电偶与人工热电偶比较 切別臥度测宦法 「单牟刀法 r fl 然热电偶法 「热电侧法* I 人工热砸偶法 '插入匸件法 『福射热计法 PhS 电池法 锯光电二极仰法

图3 自然热电偶法测温示意图 1.铜顶尖2?铜销3.车床主轴尾部4.工件5.刀具 图4 人工热电偶法测温示意图 a)测前刀面温度b)测工件温度 要想知道前刀面上的温度,还需应用传热学的原理和公式进行推算。应用人工热电偶法测温,并辅以传热学计算所得到的刀具、切屑和工件的切削温度分布情况(见图5)。

温度测量方法分类及优缺点概述

温度测量方法分类及优 缺点概述 -CAL-FENGHAI.-(YICAI)-Company One1

温度测量方法分类及优缺点概述 摘要:温度是表征物体冷热程度的物理量, 是国际单位制中七个基本物理 量之一, 它与人类生活、工农业生产和科学研究有着密切关系。随着科学技术水平的不断提高, 温度测量技术也得到了不断的发展。本文将讨论总结温度测量的各种方式,并分析他们各自的优缺点。 1.温度测量的分类 温度测量的分类可以通过其与被测量的物体是否接触分为接触式和非接触式。接触式测量仪表比较简单、可靠,测量精度高。但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡。接触式测量仪存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量。非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率、测量距离、烟尘和水汽等外界因素的影响,其测量误差较大。 2.接触式测量方法 膨胀式温度测量 原理:利用物质的热胀冷缩原理即根据物体体积或几何形变与温度的关系进行温度测量。热胀冷缩式温度计包括玻璃液体温度计、双金属膨胀式温度计和压力式温度计等。 优点:结构简单, 价格低廉, 可直接读数,使用方便,非电量测量方式, 适用于防爆场合。 缺点:准确度比较低, 不易实现自动化, 而且容易损坏。 电量式测温方法 利用材料的电势、电阻或其它电性能与温度的单值关系进行温度测量,包括热电偶温度测量、热电阻和热敏电阻温度测量、集成芯片温度测量等。 1.热电偶的原理是两种不同材料的金属焊接在一起,当参考端和测量端有温差时, 就会产生热电势, 根据该热电势与温度的单值关系就可以测量温度。热电偶具有结构简单, 响应快, 适宜远距离测量和自动控制的特点, 应用比较广泛。 2.热电阻是根据材料的电阻和温度的关系来进行测量的, 输出信号大, 准确度比较高, 稳定性好, 但元件结构一般比较大, 动态响应较差, 不适宜测量体积狭小和温度瞬变区域。 3.热敏电阻是一种电阻值随温度呈指数变化的半导体热敏感元件, 具有灵敏度高、价格便宜的特点, 但其电阻值和温度的关系线性度差,且稳定性和互换性也不好。 4.石英温度传感器是以石英晶体的固有频率随温度而变化的特性来测量温度的。石英晶体温度传感器稳定性很好, 可用于高精度和高分辨力的测量场合。随着电子技术的发展, 可以将感温元件和相关电子线路集成在一个小芯片上, 构成一个小型化、一体化及多功能化的专用集成电路芯片, 输出信号可以是电压、频率, 或者是总线数字信号, 使用非常方便,适用于便携式设备。 接触式光电、热色测温方法

相关主题
文本预览
相关文档 最新文档