当前位置:文档之家› 食用酒精-色度的测定(目视比色法)

食用酒精-色度的测定(目视比色法)

食用酒精-色度的测定(目视比色法)
食用酒精-色度的测定(目视比色法)

总磷的测定——钼酸铵分光光度法

总磷的测定——钼酸铵分光光度法 (GB 11893—89) 一、目的和要求 1.1 掌握总磷的测定方法与原理。 1.2 了解水体中过量的磷对水环境的影响。 二、原理 在中性条件下用过硫酸钾(或硝酸-高氯酸)使试样消解,将所含磷全部氧化为正磷酸盐。在酸性介质中,正磷酸盐与钼酸铵反应,在锑盐存在下生成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物。 本标准规定了用过硫酸钾(或硝酸—高氯酸)为氧化剂,将未经过滤的水样消解,用钼酸铵分光光度法测定总磷的方法。 总磷包括溶解的、颗粒的、有机的和无机磷。 本标准适用于地面水、污水和工业废水。 取25mL水样,本标准的最低检出浓度为0.01mg/L,测定上限为0.6mg/L。 在酸性条件下,砷、铬、硫干扰测定。 三、试剂 3.1 硫酸,密度为1.84g/mL。 3.2 硝酸,密度为1.4g/mL。 3.3 高氯酸,优级纯,密度为1.68g/mL。 3.4 硫酸(V/V),1+1。 3.5 硫酸,约0.5mol/L,将27mL硫酸(3.1)加入到973mL水中。 3.6 氢氧化钠溶液,1mol/L,将40g氢氧化钠溶于水并稀释至1000mL。 3.7 氢氧化钠溶液,6mol/L,将240g氢氧化钠溶于水并稀释至1000mL。 3.8 过硫酸钾溶液,50g/L,将5g过硫酸钾(K2S2O8)溶于水,并稀释至100mL。 3.9 抗坏血酸溶液,100g/L,将10g抗坏血酸溶于水中,并稀释至100mL。此溶液贮于棕色的试剂瓶中,在冷处可稳定几周,如不变色可长时间使用。 3.10 钼酸盐溶液:将13g钼酸铵[(NH4)6MO7O24·4H2O]溶于100mL水中,将0.35g酒石酸锑钾[KSbC4HO7·0.5H2O]溶于100mL水中。在不断搅拌下分别把上述钼酸铵溶液、酒石酸梯钾溶液徐徐加到300mL硫酸(3.4)中,混合均匀。此溶液贮存于棕色瓶中,在冷处可保存三个月。 3.11 浊度—色度补偿液,混合二体积硫酸(3.4)和一体积抗坏血酸(3.9)。使用当天配制。 3.12 磷标准贮备溶液,称取0.2197g于110℃干燥2h在干燥器中放冷的磷酸二氢钾(KH2PO4),用水溶解后转移到1000mL容量瓶中,加入大约800mL水,加5mL硫酸(3.4), μ磷。本溶液在玻璃瓶中可贮存然后用水稀释至标线,混匀。1.00mL此标准溶液含50.0g 至少六个月。 3.13 磷标准使用溶液,将10.00mL磷标准贮备溶液(3.12)转移至250mL容量瓶中,用水 μ磷。使用当天配制。 稀释至标线并混匀。1.00mL此标准溶液含2.0g 3.14 酚酞溶液,10g/L,将0.5g酚酞溶于50mL95%的乙醇中。

项目九、目视比色法测定水中微量铬

项目九、目视比色法测定水中微量铬 【概述】 我们知道,许多物质都有颜色,例如高锰酸钾水溶液呈紫红色,重铬酸钾水溶液呈橙色。当含有这些物质的溶液浓度改变时,溶液颜色的深浅度也会随之而发生变化,溶液越浓,颜色愈深,反之亦然。因此可以利用比较溶液颜色深浅的方法来确定溶液中有色物质的含量,这种方法称为比色分析。 用眼睛观察比较溶液颜色深浅来确定物质含量的分析方法称为目视比色法。 经过此专项能力的培养,能使你掌握目视比色法的基本原理和操作方法,学会测定溶液中有色物质的含量。 【学习途径】 〖知识部分〗 1.目视比色法测定金属离子含量的原理及方法 2.影响目视比色的因素 3.标准系列浓度的选择 4.数据处理方法

〖能力部分〗 1.选择、清洗比色管 2.配制铬标准贮备液 3.配制铬标准色列和试样显色溶液 4.对试样进行比色,确定试样中待测离子浓度 参考资料: 《仪器分析技术》黄一石主编化工出版社,2000. 【评价标准】 在1.5h内根据未知样浓度配制标准系列,目视观察比较,完成未知样测定。 【评定方法】 〖应知自测〗 当您通过学习后,应能熟练掌握本专项能力所需的知识要求,并能正确完成学习包中的自测题(也可根据指导教师要求进行测试)。〖应会测试〗(操作考核) 在您参加考试之前,应先检查自己是否完成了下列学习任务:

复习与本专项能力相关的模块。 学习并掌握本专项能力所需的知识,并通过自测。 能熟练使用本专项能力所需的仪器、试剂、设备,并能完成规定的测试任务。 您认为已能达到本专项能力的培训要求,即可参加专项能力的技能操作考核,考核成绩由监考教师认定。 【目视比色法的定义】 用眼睛观察比较溶液颜色深浅来确定物质含量的分析方法称为目视比色法。 【目视比色法测定物质含量的原理及方法】 目视比色法的基本原理是:将有色的标准溶液和被测溶液在相同条件下对颜色进行比较,当溶液液层厚度相同,颜色深度一样时,两者的浓度相等。其依据是:根据朗伯-比尔定律,标准溶液和被测溶液的吸光度分别为 A S=εS.C S.b S A X=εX.C X.b X

紫外-可见分光光度法习题(答案与解析)

紫外-可见分光光度法 一、选择题(其中1~14题为单选,15~24题为多选) 1.以下四种化合物,能同时产生B吸收带、K吸收带和R吸收带的是() A. CH2CHCH O B. CH C CH O C. O CH3 D. CH CH2 2.在下列化合物中,π→π*跃迁所需能量最大的化合物是() A. 1,3-丁二烯 B. 1,4-戊二烯 C. 1,3-环已二烯 D. 2,3-二甲基-1,3-丁二烯 3.符合朗伯特-比耳定律的有色溶液稀释时,其最大吸收峰的波长位置() A. 向短波方向移动 B. 向长波方向移动 C. 不移动,且吸光度值降低 D. 不移动,且吸光度值升高 4.双波长分光光度计与单波长分光光度计的主要区别在于() A. 光源的种类及个数 B. 单色器的个数 C. 吸收池的个数 D. 检测器的个数 5.在符合朗伯特-比尔定律的范围内,溶液的浓度、最大吸收波长、吸光度三者的关系是() A. 增加、增加、增加 B. 减小、不变、减小 C. 减小、增加、减小 D. 增加、不变、减小 6.双波长分光光度计的输出信号是() A. 样品吸收与参比吸收之差 B. 样品吸收与参比吸收之比 C. 样品在测定波长的吸收与参比波长的吸收之差 D. 样品在测定波长的吸收与参比波长的吸收之比 7.在紫外可见分光光度法测定中,使用参比溶液的作用是() A. 调节仪器透光率的零点 B. 吸收入射光中测定所需要的光波 C. 调节入射光的光强度 D. 消除试剂等非测定物质对入射光吸收的影响

8.扫描K2Cr2O7硫酸溶液的紫外-可见吸收光谱时,一般选作参比溶液的是() A. 蒸馏水 B. H2SO4溶液 C. K2Cr2O7的水溶液 D. K2Cr2O7的硫酸溶液 9.在比色法中,显色反应的显色剂选择原则错误的是() A. 显色反应产物的ε值愈大愈好 B.显色剂的ε值愈大愈好 C. 显色剂的ε值愈小愈好 D. 显色反应产物和显色剂,在同一光波下的ε值相差愈大愈好 10.某分析工作者,在光度法测定前用参比溶液调节仪器时,只调至透光率为95.0%,测得某有色溶液的透光率为35.2%,此时溶液的真正透光率为() A. 40.2% B. 37.1% C. 35.1% D. 30.2% 11.用分光光度法测定KCl中的微量I—时,可在酸性条件下,加入过量的KMnO4将I—氧化为I2,然后加入淀粉,生成I2-淀粉蓝色物质。测定时参比溶液应选择() A. 蒸馏水 B. 试剂空白 C. 含KMnO4的试样溶液 D. 不含KMnO4的试样溶液 12.常用作光度计中获得单色光的组件是() A. 光栅(或棱镜)+反射镜 B. 光栅(或棱镜)+狭缝 C. 光栅(或棱镜)+稳压器 D. 光栅(或棱镜)+准直镜 13.某物质的吸光系数与下列哪个因素有关() A. 溶液浓度 B. 测定波长 C. 仪器型号 D. 吸收池厚度 14.假定ΔT=±0.50%A=0.699 则测定结果的相对误差为() A. ±1.55% B. ±1.36% C. ±1.44% D. ±1.63% 15.今有A和B两种药物的复方制剂溶液,其吸收曲线相互不重叠,下列有关叙述正确的是() A. 可不经分离,在A吸收最大的波长和B吸收最大的波长处分别测定A和B B. 可用同一波长的光分别测定A和B

磷的测定方法

全磷的测定 仪器:分光光度计,2KVA 方电炉;3KVA 调压变压器。 试剂: (1)浓H 2SO 4(二级) (2)HClO 4(二级,70-72%)。 (3)钼锑贮存液 浓H 2SO 4(二级)153ml 缓慢地倒入约400ml 水中,搅拌,冷却。10g 钼酸铵(二级)溶解于约60℃的300ml 水中,冷却。然后将H 2SO 4溶液缓缓倒入钼酸铵溶液中,再加入100ml0.5%酒石酸锑钾(KSbOC 4H 4O 6?2 1H 2O ,二级)溶液,最后用水稀释至1升,避光贮存。此贮存液含1%钼酸铵,5.5N H 2SO 4。 (4)钼锑抗显色剂 1.50g 抗坏血酸(C 6H 8O 6,左旋,旋光度+21~+22°,二级)溶于100ml 钼锑贮存液中。此液随配随用,有效期一天。 (5)二硝基酚指示剂 0.2g2,6-二硝基酚或2,4-二硝基酚[C 6H 3OH(NO 2)2]溶于100ml 水中。 (6)5ppmP 标准溶液 0.4390gKH 2PO 4(二级,105℃烘过2小时)溶于200ml 水中,加入5ml 浓H 2SO 4,转入1升容量瓶中,用水定容。此为100ppmP 标准溶液,可以长期保存。取此溶液准确稀释20倍,即为5ppmP 标准溶液,此溶液不宜保存。 实验步骤: (1)待测液的准备 称取通过100目的烘干土壤样品1.0xxxg 置于50ml 三角瓶中,以少量水湿润,加入浓H 2SO 4 8ml ,摇动后(最好放置过夜)再加入70-72%的HClO 4 10滴,摇匀,瓶口上放一小漏斗,至于电炉上加热消煮至瓶内溶液开始转白后,继续消煮20分钟,全部消煮时间为45-60分钟。将冷却后的消煮液用水小心地洗入100ml 容量瓶中,冲洗时用水应少量多次。轻轻摇动容量瓶,待完全冷却后,用水定容,用干燥漏斗和无磷滤纸将溶液滤入干燥的100ml 三角瓶中。同时做试剂空白实验。 (2)测定 吸取上述待测液2-10ml (含5-25P g μ)于50ml 容量瓶中,用水稀释至约30ml ,加二硝基酚指示剂2滴,用稀NaOH 溶液和稀H 2SO 4溶液调节pH 至溶液刚呈微黄色。然后加入钼锑抗显色剂5ml ,摇匀,用水定容。在室温高于15℃的条件下放置30分钟后,以空白试验溶液为参比液调零点,读取吸收值,在工作曲线上查出显色液P ppm 数。颜色在8小时内可保持稳定。 (3)工作曲线的绘制 分别吸取5ppmP 标准溶液0,1,2,3,4,5,6ml 于50ml 容量瓶中,加水稀释至约30ml ,加入钼锑抗显色剂5ml ,摇匀,定容。即得0,0.1,0.2,0.3,0.4,0.5,0.6ppm P 标准系列溶液,与待测溶液同时比色,读取吸收值。在各放个坐标纸上以吸收值为纵坐标,P ppm 数为横坐标,绘制成工作曲线。 结果计算: 全P ,%=10010 ppm 6????W P 分取倍数显色液体积显色液 式中 显色液Pppm ——从工作曲线上查得的Pppm 数; 显色液体积——50ml ; 分取倍数——消煮溶液定容体积/吸取消煮溶液体积; 6 10——将g μ换算成g ; W ——烘干土样重(g )。

总磷测定方法

总磷 在天然水和废水中,磷几乎都以各种磷酸盐的形式存在,它们分为正磷酸盐,缩合磷酸盐(焦磷酸盐、偏磷酸盐和多磷酸盐)和有机结合的磷酸盐,它们存在于溶液中,腐殖质粒子中或水生生物中。 天然水中磷酸盐含量较微。化肥、冶炼、合成洗涤剂等行业的工业废水及生水污水中常含有较大量磷。磷是生物生长的必需的元素之一。但水体中磷含量过高(超过0.2mg/L)可造成藻类的过量繁殖,直至数量上达到有害的程度(称为富营养化),造成湖泊、河流透明度降低,水质变坏。 1.方法的选择 水中磷的测定,通常按其存在的形式,而分别测定总磷、溶解性正磷酸盐和总溶解性磷,如下图所示 消解 2.样品的采集和保存

总磷的测定,于水样采集后,加硫酸酸化至PH≤1保存。溶解性正磷酸盐的测定,不加任何试剂。于2—5℃冷处保存,在24h内进行分析。 水样的预处理 采集的水样立即经0.45μm微孔滤膜过滤,其滤液可溶性正磷酸盐的测定。滤液经下述强氧化剂的氧化分解,测得可溶性总磷。取混合水样(包括悬浮物),也经下述强氧化剂分解,测得水中总磷含量。 (一)过硫酸钾消解法 仪器 (1)医用手提式高压蒸汽消毒器或一般民用压力锅(1— 1.5kg/cm2)。 (2)电炉,2kw。 (3)调压器、2kvA(0—220v) (4)50ml(磨口)具塞刻度管。 试剂 5%(m/V)过硫酸钾溶液:溶解5g过硫酸钾于水中,并稀释至100 ml。 步骤

(1)吸取25.00 ml混匀水样(必要时,酌情少取水样,并加水至 25 ml,使含磷量不超过30μg)于50 ml具塞刻度管中,加过硫 酸钾溶液4 ml,加塞后管口包一小块纱布并用线扎紧,以免加热时玻璃塞冲出。将具塞刻度管放在大烧杯中,置于高压蒸汽消毒器或民用压力锅中加热,待锅内压力达1.0kg/cm2 (相应温度为120℃)时,调节电炉温度使保持此压力30min后,停止加热,待压力表指针将至零后,取出放冷。 (2)试剂空白和标准溶液系列也经同样的消解操作。 注意事项 (1)如采样时水样用酸固定,则用过硫酸钾消解前将水样调至中性。 (2)一般民用压力锅,在加热至顶压阀出气孔冒气时,锅内温度为120℃。 (3)当不具备压力消解条件时,亦可在常压下进行,但操作步骤如下: 分取适量混匀水样(含磷不超过30μg)于150ml锥形瓶中,加水至50 ml,加数粒玻璃珠,加1 ml3+7硫酸溶液,5ml 5%过硫酸钾溶液,置电炉上加热煮沸,调节温度使保持微沸30—40min,至最后体积为10ml 止。放冷,加1滴酚酞指示剂,滴加氢氧化钠溶液至刚呈微红色,再滴加1mol/L硫酸溶液使红色腿去,充分摇匀。如溶液不澄清,则用滤纸过滤于50 ml比色管中,用水洗锥形瓶及滤纸,一并移入比色管中,加水至标线,供分析用。

聚合硫酸铁全铁含量测定重铬酸钾法(仲裁法)

5.2 全铁含量的测定(聚合硫酸铁)5.2. 1重铬酸钾法(仲裁法) 5. 2. 1.1 方法提要在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,过量的氯化亚锡用氯化汞予以除去,然后用重铬酸钾标准溶液滴定。聚合硫酸铁含铁量测量反应方程式为:2Fe3+ + Sn2+ - 2Fe2+ + Sn4+SnCl2 + 2HgCl2 — SnCl4 + Hg2Cl2 6Fe2 十+ Cr20?2' + 14H+= 6Fe3+ + 2Cr3 十+ 7H20 5.2.1.2试剂和材料5.2. 1.2, 1 水,GB/T 6682,三级。5.2. 1.2.2氯化亚锡溶液:250 g/L0称取25. 0 g氯化亚锡置于干燥的烧杯中,加人20 mL盐酸,加热溶解,冷却后稀释到100 mL,保存于棕色滴瓶中,加人高纯锡粒数颗。5.2. 1.2.3 盐酸溶液:1 + U 5. 2. 1.2, 4氯化汞饱和溶液。5. 2. 1. 2. 5硫?磷混酸:将150 mL硫酸,缓慢注人到含500 mL水的烧杯中,冷却后再加人150 mL磷酸,然后稀释到]000 mL容量瓶中&5.2. 1.2.6 重铬酸钾标准滴定溶液:(:(1/61<:20207) = 0.1 11101/1^5. 2. 1.2.7 二苯胺磺酸钠溶液:5 g/L。5.2. 1.3分析步骤称取液体产品约1. 5 g或固体产品约0, 9 g,精确至0. 000 2 g,置于250 mL锥形瓶中,加水20 mL,加盐酸溶液20 mL,加热至沸,趁热滴加氯化亚锡溶液至溶液黄色消失,再过量1滴,快速冷却,加氯化汞饱和溶液5 mL,摇匀后静置1 min,然后加水50 mL,再加入硫-磷混酸10 mL,二苯胺磺酸钠指示剂4 ?5滴.,立即用重铬酸钾标准滴定溶液滴定至紫色(30 s不褪)即为终点。5.2. 1.4结果的计算聚合硫酸铁全铁含量以质量分数w计,数值以%表示,按式(1)计算: VcM ^ = roo^xlo°......................................................................... ⑴

植株全氮磷钾测定方法

植株全氮的测定 1 主题内容与适用范围 本标准规定了植株全氮测定的硫酸-过氧化氢消煮、碱化后蒸馏定氮的方法。 本标准适用于禾本科植株全氮含量的测定。 2引用标准 GB/T 603 化学试剂试验方法中所用制剂及制品的制备 GB/T6682 分析实验室用水规格和试验方法 NY/T 297-1995 有机肥料全氮的测定 3 方法原理 植株样品用浓硫酸加双氧水消煮,使有机氮转化为铵盐。铵盐经碱化后形成氨,经蒸馏将氨吸收到硼酸溶液中。以甲基红—溴甲酚绿为指示剂,用标准酸滴定,测定植株中的全氮含量(不包括全部硝态氮)。 4 试剂 所有试剂除注明者外,均为分析纯。分析用水应符合GB/T 6682分析实验室用水规格和试验方法三级水的规格。 4.1 硫酸(GB/T 625)。 4.2 30%过氧化氢(GB 6684)。 4.3氢氧化钠:40%,(m/V)溶液 称取40g氢氧化钠(GB 629 分析纯)溶于100mL水中。 4.4硼酸:2%(v/m)溶液 20g硼酸(GB 628)溶于1L约60℃去离子水中,冷却后再用稀碱调节溶液pH至4.5。使用前每升硼酸溶液中加入甲基红-溴甲酚绿混合指示剂20mL,并用稀酸或稀碱调节至微红色,此时该溶液的PH值为4.5。 4.5甲基红-溴甲酚绿混合指示剂 0.5g溴甲酚绿(HG 3-1220)和0.1g甲基红(HG 3-958)于研钵中,加少量95%乙醇研磨至指示剂全溶为止,最后加95%的乙醇至100mL。 4.6硫酸标准液[c(1/2 H2SO4)=0.02mol/L](GB 601)。 5 仪器 通常实验室仪器和 5.1消煮管:50mL或100mL。 5.2消煮炉或可调电炉:1000W。 5.3弯颈小漏斗:¢2cm。 5.4 凯氏定氮仪:全自动或半自动。 5.5分析天平:感量为0.1mg。 5.6移液管:5,10mL。 6 检试样的制备 取风干的实验室待测样品充分混匀后,按四分法缩减至100g,粉碎,籽粒全部通过0.

第八章 分光光度法

第六章 吸光光度法 一、问答题 1. 摩尔吸收系数的物理意义是什么?其大小和哪些因素有关?在分析化学中κ有何意义? 2. 朗伯-比尔定律的物理意义是什么?什么是透光度?什么是吸光度?二者之间的关系是什么? 3. 为社么物质对光发生选择性吸收? 4. 分光光度计有哪些主要部件?它们各起什么作用? 5 当研究一种新的显色剂时,必须做哪些实验条件的研究?为什么? 6 什么是吸收光谱曲线?什么是标准曲线?它们有何实际意义?利用标准曲线进行定量分析时可否使用透光度T 和浓度c 为坐标? 7 测定金属钴中微量锰时在酸性液中用KIO 3将锰氧化为高锰酸根离子后进行吸光度的测定。若用高锰酸钾配制标准系列,在测定标准系列及试液的吸光度时应选什么作参比溶液? 8 吸光度的测量条件如何选择?为什么?普通光度法与示差法有何异同? 9 光度分析法误差的主要来源有哪些?如何减免这些误差?试根据误差分类分别加以讨论。 10 常见的电子跃迁有哪几种类型? 11 在有机化合物的鉴定和结构判断上,紫外-可见吸收光谱提供信息具有什么特点? 二、计算题 1.以邻二氮菲光度法测定Fe (Ⅱ),称取试样0.500g ,经处理后,加入显色剂,最后定容为50.0mL ,用1.0 cm 吸收池在510 nm 波长下测得吸光度A =0.430,计算试样中的w (Fe)(以 百分数表示);当溶液稀释一倍后透射比是多少?(ε510=1.1×104 ) 2.%0.61%10010 =?=-A T 已知KMnO 4的ε 545 =2.2×103 ,计算此波长下浓度为0.002% (m/v )KMnO 4溶液在3.0cm 吸收池中的透射比。若溶液稀释一倍后透射比是多少? 3. 以丁二酮肟光度法测定镍,若络合物NiDx 2的浓度为1.7×10-5mol ·L -1 ,用2.0cm 吸收 池在470nm 波长下测得的透射比为30.0%。计算络合物在该波长的摩尔吸光系数。 4. 根据下列数据绘制磺基水杨酸光度法测定Fe (Ⅲ)的工作曲线。标准溶液是由0.432g 铁铵矾[NH 4Fe(SO 4)2·12H 2O]溶于水定容到500.0mL 配制成的。取下列不同量标准溶液于50.0mL 容量瓶中,加显色剂后定容,测量其吸光度。 V (Fe(Ⅲ))(mL ) 1.00 2.00 3.00 4.00 5.00 6.00 A 0.097 0.200 0.304 0.408 0.510 0.618 测定某试液含铁量时,吸取试液5.00mL ,稀释至250.0mL ,再取此稀释溶液2.00mL 置于50.0mL 容量瓶中,与上述工作曲线相同条件下显色后定容,测得的吸光度为0.450,计算试液中Fe(Ⅲ)含量(以g/L 表示)。 5. 以PAR 光度法测定Nb ,络合物最大吸收波长为550nm ,ε=3.6×104 ;以PAR 光度法测定 Pb ,络合物最大吸收波长为520nm ,ε=4.0×104 。计算并比较两者的桑德尔灵敏度。 6. 有两份不同浓度的某一有色络合物溶液,当液层厚度均为1.0cm 时,对某一波长的透射

硫酸亚铁铵中铁含量测定(重铬酸钾法)

硫酸亚铁铵中铁含量测定 一、实验目的 1. 掌握重铬酸钾法测定亚铁盐中铁含量的原理和方法; 2. 了解氧化还原指示剂的作用原理和使用方法。 二、实验的重点和难点 重点:滴定操作的熟练应用;产品分析程序,氧化还原指示剂的应用。难点:氧化还原指示剂作用原理与终点的确定。 四、实验原理 K e Cr zQ在酸性介质中可将Fe2+离子定量地氧化,其本身被还原为Cr3+,反应式为: Cr2O72- + 6Fe2+ + 14H+—Cr+ + 6Fe3+ + 7H2O 滴定在HsPQ—bSQ混合酸介质中进行,以二苯胺磺酸钠为指示剂,滴定至溶液呈紫红色,即为终点。 Fe (III )的限量分析则是利用Fe (III )与KSCN形成血红色配合物,将硫酸亚铁铵成品配制成溶液与各标准溶液进行比色,以确定杂质Fe (川)含量范围。 五、实验用品 仪器:容量瓶(250 mL)、烧杯(100 mL 250 mL )、移液管(25 mL)、滴定管(50 mL)、量筒(10 mL)、锥形瓶、目视比色管等。 药品:硫酸亚铁铵(学生自制)、K262Q (AR)、二苯胺磺酸钠0.2%、H s PQ 85%等。 六、实验内容 1.0.02 mol ?L -1 K262C7标准溶液配制 用差减法称取约1.2?1.3 g (准确至0.0002 g )烘干过的K262G于250 mL烧杯中,加H z O溶解,定量转入250mL容量瓶中,加H2O稀释至刻度,充分摇匀。计算其准确浓度。 2.硫酸亚铁铵中Fe (II )的测定 准确称取1?1.5g (NHD 2SQ ? FeSQ ? 6H2O样品,置于250 mL烧杯中,加入8 mL3 mol ?L

重铬酸钾法测COD

一、重铬酸钾法测定(CODCr)的原理 在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算水样化学需氧量。 二、仪器 1、500ml 全玻璃回流装置。 2、加热装置(电炉)。 3、25ml 或50ml 酸式滴定管、锥形瓶、移液管、容量瓶等。 三、试剂 1、重铬酸钾标准溶液(C1/6K2Cr2O7);称取预先在120℃烘干2h 的基准或优质纯重铬酸钾12.258g 溶于水中,移入1000ml 容量瓶,稀释至标准线,摇匀。 2、试亚铁灵指示液:称取 1.485g 邻菲啰啉(C12H8N2?H2O)、0.695g 硫酸亚铁(FeSO4?7H2O)溶于水中,稀释至100ml,储于棕色瓶内。 3、硫酸亚铁铵标准溶液(C(NH4)2 Fe(SO4)2?6H2O):称取39.5g 硫酸亚铁铵溶于水中,边搅拌边缓慢加入20ml 浓硫酸,冷却后移入1000ml 容量瓶中,加水稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定方法:准确吸取10.00ml 重铬酸钾标准溶液于500ml 锥形瓶中,加水稀释至110ml 左右,缓慢加入30ml 浓硫酸,混匀。冷却后,加入3 滴试亚铁灵指示液(约0.15ml),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 C=0.2500×10.00/V 式中:C-----硫酸亚铁铵标准溶液的浓度(mol/L); V-----硫酸亚铁铵标准溶液的用量(ml)。 4、硫酸-硫酸银溶液:于500ml 浓硫酸中加入5g 硫酸银。放置1-2d,不时摇动使其溶解。 5、硫酸汞:结晶或粉末。 四、测定步骤 1、移液管移水样5.00mL于消解罐中,加入5.00mL消解液(重铬酸钾),即时摇匀,再加入5.00mL催化剂(硫酸-硫酸银溶液),摇匀。 2、另做一空白样,加5.00mL蒸馏水,其他照加。 3、放入微波炉消解 3罐——5min 4罐——6min 5罐——7min 4、消解液倒入锥形瓶中,冲洗消解罐3次,加2滴指示剂,用硫酸亚铁铵回滴,颜色由黄经蓝绿至红褐色,即为终点 5,标定硫酸亚铁铵溶液

有效磷的测定(Olsen法)

土壤有效磷的测定(Olsen法) (pH 8.5 0.5molL-1NaHCO3浸提—钼锑抗比色法) 一、实验目的及说明 土壤中有效磷的含量,随土壤类型、气候、施肥水平、灌溉、耕作栽培措施等条件的不同而异。通过土壤有效磷的测定,有助于了解近期内土壤供应磷的情况,为合理施用磷肥及提高磷肥利用率提供依据。 土壤速效磷的测定中,浸提剂的选择主要是根据土壤的类型和性质测定。浸提剂是否适用,必须通过田间试验来验证。浸提剂的种类很多,近20年各国渐趋于使用少数几种浸提剂,以利于测定结果的比较和交流。我国目前使用最广学的浸提剂是0.5molL-1NaHCO3溶液(Olsen法),测定结果与作物反应有良好的相关性[1],适用于石灰性土壤、中性土壤及酸性水稻土。此外还使用0.03molL-1NH4F-0.025molL-1HCl溶液(Black法)为浸提剂,适用于酸性土壤和中性土壤。 同一土壤用不同的方法测得的有效磷含量可以有很大差异,即使用同一浸提剂,而浸提时的土液比、温度、时间、振荡方式和强度等条件的变化,对测定结果也会产生很大的影响。所以有效磷含量只是一个相对的指标。只有用同一方法,在严格控制的相同条件下,测得的结果才有相对比较的意义。在报告有效磷测定的结果时,必须同时说明所使用的测定方法。 二、方法原理 石灰性土壤中磷主要以Ca-P(磷酸钙盐)的形态存在。中性土壤Ca-P、Al-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定的比例。0.5molL-1NaHCO3(pH8.5)可以抑制Ca2+的活性,使某些活性更大的与Ca结合的P浸提出来;同时,也可使比较活性的Fe-P和Al-P起水解作用而被浸出。浸出液中磷的浓度很低,须用灵敏的钼蓝比色法测定,其原理详见土壤全磷的测定章节。 当土样含有机质较多时,会使浸出液颜色变深而影响吸光度,或在显色出现浑浊而干扰测定,此时可在浸提排荡后过滤前,向土壤悬液中加入活性碳脱色,或在分光光度计800nm 波长处测定以消除干扰。 三、实验仪器 研钵、20目筛子、电子天平(0.0001)、振荡器、722分光光度计、振荡器、勺子、小烧杯、容量瓶 四、试剂配制 (1)0.5mol·L-1NaHCO3(pH8.5)浸提剂42.0gNaHCO3(0.5mol 化学纯)溶于约800ml 水中,稀释至1L,用浓NaOH调节至pH8.5(用pH计测定),贮于聚乙稀瓶或玻璃瓶中,用塞塞紧。该溶液久置因失去CO2而使pH升高,所以如贮存期超过20天,在使用前必须检查并校准pH值。 (2)无磷的活性碳粉和滤纸须做空白试验,证明无磷存在。如含磷较多,须先用2mol·L-1HCl浸泡过液,用水冲洗多次后再用0.5mol·L-1NaHCO3浸泡过液,在布氏漏斗上抽滤,用水冲洗几次,最后用蒸馏水淋洗三次,烘干备用。如含磷较少,则直接用0.5mol·L-1 NaHCO3处理。 (3)钼锑抗试剂(6.5mol·L-1[H+])20.0g钼酸铵[(NH4)6Mo7O24·4H2O](分析纯)溶于300ml约60℃的水中,冷却。另取180ml浓H2SO4(分析纯)慢慢注入约400ml水中,

仪器分析紫外可见分光光度法

第7章紫外可见光谱分析 教学时数:5学时 教学要求: l、掌握有机化合物的紫外-可见吸收光谱。 2、理解分子吸收光谱与物质结构的关系。 3、理解紫外分光光度计的基本组成及主要性能和测定方法。 4、了解紫外-可见分光光度法在工业生产和科学研究中的应用。 教学重点与难点: 重点:分子吸收光谱原理,吸收定律(比耳定律),影响吸收谱带的因素,溶剂效应,有机化合物结构推断,单组分、多组分定量分析。 难点:用经验规则计算 max 7-1分析光谱概述 通常指的紫外光谱主要是近紫外(200-400nm)和部分可见光区(400-800nm)的光;这些光的能量相当于共价健电子和共轭分子的价电子跃迁,故又称电子光谱,或紫外可见光谱。 UV-VIS是研究物质在紫外,可见光区的分子吸收光谱的分析方法,由于价电子跃迁时所需能量在紫外,可见区,所以UV-VIS是研究推断化合物结构以及进行成分分析的重要手段。 一、分子光谱的产生 分子光谱包括电子光谱、振动、转动光谱。

E分子=Ee+Ev+Er+E平动+…… E≈Ee+Ev+Er 所以:1、紫外,可见光谱研究的是电子光谱。 2、其分析的基本原理是建立在Larmbet-Beer定律上。 其中λmax εmax 为定性分析的重要参数。 A=εbc 定量分析的依据 比吸收系数E1%=10×ε/M 二、UV-VIS主要研究对象 凡所产生π-π*,n-π*跃迁的有机化合物在紫外,可见都有吸收,故其主要是研究含共轭双键的化合物。 7-2 化合物电子光谱的产生 一、电子跃迁的类型 根据分子轨道理论,当原子形成分子时,原子轨道将重新进行线性组合而形成分析轨道。 *轨道的能量 σ<ππ*>π>σ* 关于“极性”:根据光电子能谱中的解释如下: 电子进入成键轨道,键能增强,键距缩短,极性减弱; 电子进入反键轨道,键长伸长,偶极距增加,极性增加。

荧光分光光度分析法

第一章荧光分光光度分析法 1.1概述 1.1.1 基本原理 由高压汞灯或氙灯发出的紫外光和蓝紫光经滤光片照射到样品池中,激发样品中的荧光物质发出荧光,荧光经过滤过和反射后,被光电倍增管所接受,然后以图或数字的形式显示出来。物质荧光的产生是由在通常状况下处于基态的物质分子吸收激发光后变为激发态,这些处于激发态的分子是不稳定的,在返回基态的过程中将一部分的能量又以光的形式放出,从而产生荧光。 不同物质由于分子结构的不同,其激发态能级的分布具有各自不同的特征,这种特征反映在荧光上表现为各种物质都有其特征荧光激发和发射光谱,因此可以用荧光激发和发射光谱的不同来定性地进行物质的鉴定。 在溶液中,当荧光物质的浓度较低时,其荧光强度与该物质的浓度通常有良好的正比关系,即IF=KC,利用这种关系可以进行荧光物质的定量分析,与紫外-可见分光光度法类似,荧光分析通常也采用标准曲线法进行。 1.1.2 基本结构 图1 荧光分光光度计工作原理示意图 (1)光源:为高压汞蒸气灯或氙弧灯,后者能发射出强度较大的连续光谱,且在300nm~400nm 范围内强度几乎相等,故较常用。 (2)激发单色器:置于光源和样品室之间的为激发单色器或第一单色器,筛选出特定的激发光谱。 (3)发射单色器:置于样品室和检测器之间的为发射单色器或第二单色器,常采用光栅为单色器。筛选出特定的发射光谱。

(4)样品室:通常由石英池(液体样品用)或固体样品架(粉末或片状样品)组成。测量液体时,光源与检测器成直角安排;测量固体时,光源与检测器成锐角安排。(5)检测器:一般用光电管或光电倍增管作检测器。可将光信号放大并转为电信号。 1.1.3 仪器操作规程 1.1.3.1 开机 a. 确认所测试样液体或固体,选择相应的附件。 b. 先开启仪器主机电源,预热半小时后启动电脑程序RF-5301PC,仪器自检通过后,即可正常使用。 1.1.3.2 测样 (1)spectrum模式 a. 在“Acquire Mode”中选择“Spectrum”模式。 ?对于做荧光光谱的样品,“Configure”中“Parameters”的参数设置如下:“Spectrum Type”中选择Emission;给定EX波长;给定EM的扫描范围(最大范围220nm—900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”完成参数的设定。 ?对于做激发光谱的样品,“Configure”中“Parameters”的参数设置如下:“Spectrum Type”中选择Excitation;给定EM波长;给定EX的扫描范围(最大范围220nm—900nm);设定扫描速度;扫描间隔;狭缝宽度,点击“OK”,完成参数的设定。 b. 在样品池中放入待测的溶液,点击“Start”,即可开始扫描。 c. 扫描结束后,系统提示保存文件。可在“Presentation”中选择“Graf” “Radar” “Both Axes Ctrl+R”来调整显示结果范围;在“Manipulate” 中选择“Peak Pick”来标出峰位,最后在“Channel”中进行通道设定。 d. 述操作步骤对固体样品同样适用。 (2)Quantitative模式 a. 在“Acquire Mode”中选择“Quantitative”模式。 b. “Configure”中“Parameters”的参数设置如下: Method 选择“Multi Point Working Curve” ;“Order of Curve” 中选择“1st和

重铬酸钾法测cod实验报告范文.doc

重铬酸钾法测cod实验报告范文 篇一:重铬酸钾法COD测定及颜色变化原理 一、重铬酸钾法测定COD原理 在强酸性溶液中,准确加入过量的重铬酸钾标准溶液,加热回流,将水样中还原性物质(主要是有机物)氧化,过量的重铬酸钾以试亚铁灵作指示剂,用硫酸亚铁铵标准溶液回滴,根据所消耗的重铬酸钾标准溶液量计算化学需氧量。 Cr2O7+14H+6e 2Cr+7H2O (水样的氧化) Cr2O7+14H+6Fe 2Cr+6Fe+7H2O (滴定) Fe+ 试亚铁灵(指示剂)→ 红褐色(终点) 二、器材 1.250mL全玻璃回流装置; 2.四联可调电炉; 3.25或50ml酸式滴定管、锥形瓶、移液管、容量瓶等。 三、试剂 1.重铬酸钾标准溶液(C=0.2500mo1/L):称取预先在0℃烘干2h的基准或优质纯重铅酸钾.258g溶于水中,移入1000mL 容量瓶,稀释至标线,摇匀。 2.试亚铁灵指示剂:称取1.485g邻菲啰啉(CH8N2.H2O)、0.695g硫酸亚铁FeSO4.7H2O)溶于水中,稀释至100ml,贮于棕色瓶内。

3.硫酸亚铁铵标准溶液(c≈0.1mol/L):称取39.5g硫酸亚铁铵溶于水中,边搅拌边缓慢加入20mL浓硫酸,冷却后移入1000ml容量瓶中,加入稀释至标线,摇匀。临用前,用重铬酸钾标准溶液标定。 标定方法:准确吸取10.00ml重铬酸钾标准溶液于500mL 锥形瓶中,加入稀释至110ml左右,缓慢加入30mL浓硫酸,混匀。冷却后,加入3 滴试亚铁灵指试液(约0.15mL),用硫酸亚铁铵溶液滴定,溶液的颜色由黄色经蓝绿色至红褐色即为终点。 式中;C--硫酸亚铁铵标准溶液的浓度(mol/L); V一一硫酸亚铁铵标准溶液的用量(ml)。 4.硫酸一硫酸银溶液:于500mL浓硫酸中加入5g硫酸银。放置l-2d,不时摇动使其溶解。 5.硫酸汞:结晶或粉末。 6.待测样品 四、测定步骤 1.取20.00 mL混合均匀的水样(或适量水样稀释至20.00mL)置于250mL磨口的回流锥形瓶中,准确加入10.00mL 重铬酸钾标准溶液及数颗小玻璃珠或沸石,连接磨口回流冷凝管,从冷凝管上口慢慢地加入30mL硫酸一硫酸银溶液,轻轻摇动锥形瓶,使溶液摇匀,加热回流2h(自开始沸腾时计时)。对于化学需氧量高的废水样,可先取上述操作所需体积1/10的废水样和试剂于15×150mm硬质玻璃试管中,摇匀,加热后观察是

总磷的测定方法

总磷的测定方法 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

总磷的测定 一、钼酸铵分光光度法 ㈠原理: 在中性条件下,过硫酸钾溶液在高压釜内经120℃以上加热,产生如下反应:K2S2O4+H2O→2KHSO4+[O] 从而将水中的有机磷、无机磷、悬浮物内的磷氧化成正磷酸。 在酸性介质中,水样中溶解性正磷酸与钼酸铵反应,在锑盐存在下尘成磷钼杂多酸后,立即被抗坏血酸还原,生成蓝色的络合物,在880nm和700nm波长下均有最大吸收度。 ㈡仪器: 医用手提式蒸汽消毒器或一般压力锅(1.1—1.4kg/cm2) 50ml具塞(磨口)比色管 纱布和棉线 分光光度计及10mm或30mm比色皿 ㈢注意事项: 1、水中砷将严重干扰测定,使测定结果偏高。 2、含Cl化合物高的水样品在消解过程中会产生Cl2。对测定产生负干扰,含 有大量不含磷的有机物会影响有机磷的消解转化成正磷酸。此类样品应选用其他消解方法。例如:HNO3—HClO4方法消解样品。 3、过硫酸钾溶解比较困难,可于40℃左右的水浴锅上加热溶解,但切不可将 烧杯直接放在电炉上加热,否则局部温度到达60℃过硫酸钾即分解失效。(四)优缺点

适用于地表水,生活污水,工业废水的测定。 二、钼锑抗分光光度法 ㈠原理: 在酸性条件下, 正磷酸盐与钼酸铵、酒石酸锑氧钾反应, 生成磷钼杂多酸, 被还原剂抗坏血酸还原, 则变成蓝色络合物, 通常即称磷钼蓝。在波长700 mm、光程10 mm 处, 光的吸收程度与磷钼蓝的浓度成正比。 计算方法: 磷酸盐( P, mg /L) = m /V 式中, m - 由校准曲线查得的磷量( g) ; V- 水样体积( mL)。 本方法检出限为0. 01~ 0. 6 mg /L。 ㈡主要仪器与试剂: 仪器:7220分光光度计(上海第三仪器厂) 试剂:空白溶液: 电导率< 1 S /cm 的实验用水, 要求平行测定的相对偏差50%。 天然水样: 取具有代表性的水样, 放置一定时间, 使组成趋向稳定, 并且水样中总磷浓度不能为未检出。 加标天然水样: 在天然水样中加入一定浓度的被测物, 使其浓度大于天然水样, 但不应超过0. 9 C。 标准样品: 环保部总磷标准样品, 真值=( 0. 320 ! 0. 014) mg /L。 以上除空白以外的各种溶液, 平行测定的相对偏差按分析结果所在数量级0. 01 mg /L、0. 1mg /L, 应分别小于20% 、10% 。其他所需试剂均按文献[ 1] 要求配制。

紫外分光光度法在药物分析中的应用

紫外分光光度法在药物分析中的应用 蒋贤森临床52 2152001037 摘要 药物分析是分析化学的一个重要应用领域,在药物分析工作中经常出现含复杂成分的药物或复方药物,对此经典的容量分析,重量分析等化学分析方法往往难于处理,一般都要借助于仪器分析方法,我国在药物分析方法上的研究经过几十年的发展已经有了很大的进步,用于药品质量控制的分析方法日益增多,使用的仪器类型日趋先进,并且仪器分析所占的比率越来越大,常用的仪器分析方法有紫外红外分光光度法气相色谱法液相色谱法毛细管电泳质谱法热分析法等,这些方法都有各自的特点和应用范围,紫外分光光度法由于具有方法简便灵敏度和精确度高重现性好可测范围广等明显优点,加之其仪器价格相对低廉易于维护因而越来越为分析工作者所重视,发展成为仪器分析方法中应用最广泛的方法以我国历版药典为例,紫外分光光度法的应用在其中占据很大的比例,高居各种仪器分析方法之首。虽然不断有新的分析方法出现,但紫外分光光度法因为具有灵敏度高快速准确等特点一直是制剂含量测定的首选方法,紫外分光光度法可广泛应用于分析合成药物,生物药品以及中药制剂等各种药物。 对紫外分光光度法,在飞速发展的现代药物分析领域中的可靠性

和作用作了总结,以大量的文献和数据说明紫外分光光度法仍然是有效可行的一种药物分析方法,紫外分光光度法发展到今天已经成为一种非常成熟的方法,衍生出许多种具体的应用方法如:双波长和三波长分光光度法差示分光光度法导数分光光度法薄层扫描紫外光谱法光声光谱法热透镜光谱分析法催化动力学分光光度法速差动力学分光光度法流动注射分光光度法以及化学计量学辅助的紫外分光光度法等等。 这些方法大都可用于药物分析的含量测定之中。 在此仅介绍其中的几种方法。 关键词:紫外分光光度法双波长三波长分光光度法差示分光光度法导数分光光度法 双波长三波长分光光度法 普通的单波长分光光度法要求试样透明无浑浊,对于吸收峰相互重叠的组分,或背景很深的试样分析往往难以得到准确的结果,双波长分光光度法简称双波长法,是在传统的单波长分光光度法的基础上发展起来的。使用二个单色器得到二个不同波长的单色光,它取消了参比池,通过波长组合在一定程度上能消除浑浊背景和重叠谱图的干扰,双波长法一般要求有二个等吸光度点,而三波长法,则只需在吸收曲线上任意选择三个波长 1 2 3 处测量吸光度,由这三个波长处的吸光度 A1 A2 A3计算 A A 与待测物浓度成正,因而可通过 A-C

重铬酸钾法测铁矿中铁的含量

重铬酸钾法测定铁矿石中铁的含量 一、实验原理 将粉碎到一定粒度的铁矿石用热的浓盐酸溶解其中大部分的金属氧化物。待金属氧化物分解完全后,趁热加入SnCl2将大部分Fe3+还原为Fe2+,溶液由红棕色变为浅黄色,然后再以Na2WO4为指示剂,用TiCl3将剩余的Fe3+全部还原为Fe2+,当Fe3+完全还原为Fe2+之后,过量1-2滴TiCl3将溶液中的Na2WO4还原为蓝色的五价钨化物,俗称“钨蓝”,故指示溶液呈蓝色。采用SnCl2—TiCl3联合还原的反应方程式为: 2Fe3++Sn2+→Sn4++2Fe2+ 3Fe3++Ti3++H2O→3Fe2++TiO2++2H+ 加入硫磷混酸后蓝色会褪去(不褪色的可以振荡,使其被空气中的O2氧化褪色),然后加入二苯胺磺酸钠指示剂,用标准重铬酸钾溶液滴定至溶液呈稳定的紫色即为终点,在酸性溶液中,Cr2O72-滴定Fe2+的反应式如下: Cr2O72-+6Fe2++14H+→6Fe3++2Cr3++7H2O 在滴定过程中,产生的Fe3+(黄色)对终点的观察有干扰,所以通常加入磷酸,使Fe3+与磷酸形成无色的Fe(HPO4)2-配合物,消除Fe3+的颜色干扰,以便以观察终点,同时由于生成了Fe(HPO4)2-,使Fe3+的浓度大量下降,避免了二苯胺磺酸钠指示剂被Fe3+氧化而过早改变颜色,使滴定终点提前到达的现象,从而降低了滴定分析的误差。 二、仪器与药品 仪器:分析天平;酸式滴定管;聚四氟乙烯坩埚;锥形瓶;电热板;表面皿;量筒;滴管。 药品:1:1硫酸;氢氟酸;HCl溶液1+1;10% SnCl2溶液;100g/L Na2WO4溶液;1:9 TiCl3溶液;二苯胺磺酸钠溶液(2g/L);硫磷混酸;K2Cr2O7标准溶液。 三、实验步骤 称取约0.20g的样品置于聚四氟乙烯坩埚中,加水润湿后,加3mL入1+1硫酸、5ml氢氟酸,盖上盖,在电热板上加热分解,经常摇动坩埚,待试样分解完全后继续加热至冒三氧化硫白烟,取下,冷却,加少量水,温热可使可溶盐类溶解。将溶液转移至250mL锥形瓶中,用蒸馏水将盖上的酸冲入锥形瓶中。 加10mL1:1盐酸,加热至近沸,趁热滴加10%的SnCl2溶液至溶液呈浅黄色,若SnCl2过量,浅黄色完全消失呈无色,则用少量重铬酸钾滴定至溶液呈浅黄色。用水冲洗杯壁,在水槽中冷却。加入6滴Na2WO4,然后加入50mL蒸馏水,边滴加TiCl3边摇动,直到溶液刚出现蓝色。加入50mL蒸馏水,再加入硫—磷混酸20mL至蓝色褪去。再加入6滴二苯胺磺酸钠指示剂,用重铬酸钾滴定至溶液呈稳定的紫色,即为终点。

相关主题
文本预览
相关文档 最新文档