当前位置:文档之家› 长江三峡水库蓄水荷载地壳形变-GPS观测研究.pdf

长江三峡水库蓄水荷载地壳形变-GPS观测研究.pdf

长江三峡水库蓄水荷载地壳形变-GPS观测研究.pdf
长江三峡水库蓄水荷载地壳形变-GPS观测研究.pdf

浅谈地形变观测的发展与地震预报

浅谈地形变观测的发展与地震预报 地震预报是一个系统工程,需要长期的科学探索和科学积累,地形变观测系统已成为地震预报学科领域不可取代的力学型的基础观测系统。本文简述了地形变观测的发展历程以及其在地震预报中的运用。 标签:地震预报地形变测量 我国地域辽阔,地质构造复杂,是世界上地质灾害较严重的国家之一。地震就是对人们生活和生命、财产安全影响较大经常发生的一种灾害。地震的前兆是可以预见的。如果在地震前能获知一些前兆特征,便能提醒人们引起注意,从而减少地震造成的灾害。 地震预报是对未来破坏性地震发生的时间、地点和震级及地震影响的预测。 地震预报目前或今后很长一段时间都将是以观测为主的试验性科学。物理统计分析方法是研究地震孕育动力学过程或进行预测的最具有潜力的途径之一。地形变测量就是物理统计分析方法的其中一种。尽管2008年汶川和2011年东日本大地震预报失败,但这两次和其他大地震前后GPS和其他观测得到的地壳形变表明,大地震是有前兆的,是可以预报的. 地震孕育的能量来源于地壳运动过程中产生的应变能积累,地形变观测是监测地壳运动与变形、认识地震孕育过程与开展地震预测的重要手段。如2008年汶川地震后,通过对其地形变化监测,监测显示,汶川地震引起震中区域监测点的水平位移量达238厘米,沉降量达到70厘米,隆起量达30厘米。通过数据观测,得出结果:地震造成灾区地形发生重大变化地形发生重大变化。根据这个结论,开展地形变分析后可以有效预报大地震后的余震及其震级。 地形变测量是指对一个地区地面的相对变化进行的重复地形变测量或连续观测。一般是在某个区域布设相当数量的形变观测点,在区域外设立基准点,利用常规大地测量仪器和工程测量中监测变形的方法。通过定期观测,并通过适当的数据处理和物理解释准确确定区域内各测点的空间随时间变化的“绝对”位移与方向,以达到预测地震之目的。地形变观测目前已具有多种手段并形成一定规模。地震地形变观测系统目前所涵盖的主要观测手段有:垂直形变测量网、水平形变测量网即GPS区域复测、重力测量网、跨断层形变测量网、重力与固体潮观测台网、地倾斜与固体潮观测台网、地应变与固体潮观测台网和连续GPS监测网也叫GPS基准网等。所采用的手段和仪器主要有:水准测量、三角测量、倾斜仪、伸缩仪、电阻丝应变仪、激光测距仪、测潮仪;近些年来还发展到应用一系列空间对地观测技术,如GPS(全球空间定位系统)等。 地形变观测系统所测定的物理量包括:位移、旋转、速度,加速度、应变(应力)、蠕变、位错、重力、固体潮汐、地下介质物性参量(密度、勒夫数)、电离层与对流层介质物性参量(电子浓度、湿度…)等的空间分布及其随时间变化。

大坝变形监测施工与观测方法及要求

大坝变形监测施工与观测方法及要求 1.技术标准和规范: 承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。应执行的现行国家行业技术标准和规范主要有(但不限于): (1)《混凝土大坝安全监测技术规范》(SDJ336—89) (2)《土石坝安全监测技术规范》(SL60—94) (3)《国家一、二等水准测量规范》(GB12897—91) (4)《国家三角测量规范》(GB/T17942-2000) (5)《水利水电工程测量规范》(SL197—97) (6)《水利水电工程施工测量规范》(SL52—93) 2.变形监测仪器设备购置、加工: 变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。仪器、设备检验合格后应妥善保管。 3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装: 倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。按照设计坐标、高程进行钻孔孔位定位、放样。钻机就位,应认真进行校正。经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。钢管标、钢、铝管双金属标钻孔垂直度应满足保护管安装埋设的要求。 钻孔进尺满足设计要求后,应通知设计、地质、监理工程师,参加钻孔终孔验收,并进行单项工程阶段性验收签证。终孔验收后,及时进行倒垂孔保护管、

边坡变形监测方案实施及数据处理分析

边坡变形监测方案实施及数据处理分析 【摘要】边坡工程施工过程中,由于填挖面大,引起周边环境变形的可能性就高,需要对边坡进行有效的变形监测,针对变化及时采取一些方法处理,以保证设施的安全。这种项目就需要正确地采用一个合理的监测方案,对数据处理、分析。本文结合已完成项目的实例,对边坡进行水平位移和沉降监测,采用监测方法为精密二等水准、极坐标法,并对其进行分析。 【关键词】变形监测;基准网;变形点;边角网;极坐标法;闭合水准路线 1 工程概况 某变电站东南侧边坡于2011年发生滑坡,后采用42根抗滑桩进行加固处理。根据施工单位的反映,抗滑桩施工2012年3月施工完毕后至2012年5月初,抗滑桩发生位移,附近水泥地面发现裂缝,呈放大趋势。为了准确了解抗滑桩变形情况,要求对桩顶水平及垂直位移进行变形监测。 2 监测方案的实施 2.1 基准控制点和监测点的布设 2.1.1 基准网的建立 选择通视良好、无扰动、稳固可靠、远离形变护坡高度3倍即45m外比较稳定的地方埋设四个工作基点,其中三个工作基点A1、A2、A3采用有强制归心装置的观测墩,照准标志采用强制对中装置的觇牌。A2、A3为观测墩,地面高度约1.2m,埋深至基岩位置,A4为主要检核点,埋设在加固坎上,地质较为稳定。 A3、D12、SZ1为沉降基准点,D12在是4×4m的高压电塔加固水泥墩上,建成已超过一年,SZ1在另一电塔水泥墩上,墩台3.5×3.5m,建成时间超过三年,非常稳固。 2.1.2 变形点的建立 变形点应布置在边坡变形较大并能严格控制变形的边坡边沿位置。在边坡顶上布置27个变形监测点,编号分别为东侧为1-27。用膨胀螺栓垂直植入护坡混凝土中,螺栓孔深不小于100mm,露出地面30-80mm,用红色油漆在螺栓上做标记,并将螺栓顶部磨半圆。 基准点与各点位埋设完毕等候5天后,水泥凝固稳定后方可开始进行观测。 2.2 监测精度及频率要求

大坝变形监测施工与观测方法及要求

(一)大坝变形监测施工与观测方法及要求 1.技术标准和规范: 承建工程变形监测仪器设备的检验、率定、埋设安装与施工期观测,应严格执行现行国家行业技术标准和规范,以及设计文件、承包合同要求。应执行的现行国家行业技术标准和规范主要有(但不限于): (1)《混凝土大坝安全监测技术规范》(SDJ336—89) (2)《土石坝安全监测技术规范》(SL60—94) (3)《国家一、二等水准测量规范》(GB12897—91) (4)《国家三角测量规范》(GB/T17942-2000) (5)《水利水电工程测量规范》(SL197—97) (6)《水利水电工程施工测量规范》(SL52—93) 2.变形监测仪器设备购置、加工: 变形监测仪器设备购置、加工应按照经监理工程师批准的设计图纸、仪器设备清单进行。仪器设备购置、加工前应向监理工程师报送:(1)仪器设备购置、加工计划:(2)仪器设备检验、率定计划。仪器设备运抵施工现场后,应会同监理工程师开箱检查验收,应向仪器设备供应方索取仪器设备出厂合格证,计量检测证。仪器、设备检验合格后应妥善保管。 3.倒垂孔、钢管标、钢铝管双金属标造孔施工与埋设安装: 倒垂孔、钢管标、钢铝管双金属标应在施工部位形成后进行。按照设计坐标、高程进行钻孔孔位定位、放样。钻机就位,应认真进行校正。经校正安装固定的钻机,主轴必须严格垂直,钻孔孔位定位精度须满足设计要求。钻孔施工过程中应每进尺1 m~2m,采用倒垂浮体组配合弹性导中器进行钻孔垂直度检测,以控制钻孔质量,进而指导调整钻孔施工。倒垂孔钻孔垂直度应满足保护管安装埋设完成后,其保护管有效孔径必须在大于100mm。钢管标、钢、

变形监测及数据处理方案

目录 摘要.............................................................................................................................................. I Abtract.............................................................................................................................................. I I 1 工程概况 (1) 2 监测目的 (2) 3 编制依据 (3) 4 控制点和监测点的布设 (4) 4.1 变形监测基准网的建立 (4) 4.2 监测点的建立 (4) 4.3 监测级别及频率 (5) 5 监测方法及精度论证 (6) 5.1水平位移观测方法 (6) 5.2沉降观测方法 (8) 5.3基坑周围建筑物的倾斜观测 (9) 6 成果提交 (10) 7 人员安排及施工现场注意事项 (11) 8 报警制度 (13) 9 参考文献 (13) 附录1 基准点布设示意图 (15) 附录2 水准观测线路设示意图 (16) 附录3 水平位移和沉降观测监测报表 (17) 附录4 巡视监测报表样表 (18) 附录5 二等水准测量观测记录手薄 (19) 附录6 水平位移记录表 (20)

1 工程概况 黄金广场6#楼基坑支护工程位于合肥市金寨路和黄山路交口西南角,基坑开挖深度为12.4m~13.3m,为临时性工程,为一级基坑,重要性系数1.1,基坑使用期为六个月。 由于多栋建筑物与基坑侧壁距离较近,均在基坑影响范围内。按照国家现行有关规范强制性条文,“开挖深度大于或等于5m或开挖深度小于5m但现场地质情况和周围环境较复杂的基坑工程以及其他需要监测的基坑工程应实施基坑工程监测。”为了及时和准确地掌握基坑在使用期间的变形情况以及基坑相邻建筑物主体结构的沉降变化,需对基坑进行水平位移(或沉降)变形监测,并对相邻建筑物进行沉降监测。为此,编制以下检测方案。

地壳形变

大地测量联合反演理论及应用 联合反演模型的研究:赵少荣(1991)系统地研究了“基于固体力学的大地测量反演问题”,给出了基于固体力学模式的多类大地测量反演的解算模型;许才军(1994)给出了大地测量联合反演构造应力场的解算模型; 晁定波等(1997)进一步提出了四维整体大地测量有限单元法,把四维整体大地测量模型(包括GPS,水准,GPS水准和重力监测数据)与固体力学基本方程结合起来,对大地测量和地球物理数据进行有效的整体处理,强化了边界的大地测量约束,具有改善刚度矩阵方程数学性质和降低其阶数的优点,从而提高反演解的稳定性和可靠性。P. Segall等(1997)根据永久GPS网的扩建在时空上为地壳形变量提供了足够的数据,建立了一种网络反演滤波模型,它可以综合频繁收集到的各类大地测量网络数据来估计断层滑动的时空分布,反演获得各种参数,包括观测误差、局部移动、瞬时和空间平滑参数。大地测量反演模型的建立涉及到正演模型和观测数据的类型、反演模型选择及反演参数辨识。正演模型是反演模型的基础,只有清楚正演问题建立正演模型,才能给出反演模型。大地测量反演已由单一的观测数据的反演,发展到多种观测数据的大地测量联合反演问题,这种多种观测数据的大地测量联合反演问题不仅仅指大地测量的多种观测数据,而且也包括不同类型的(地震、地质和大地测量等)多种观测数据。 联合变形、重力和地震资料反演研究地球内部介质参数:地球内部介质的弹性参数μ和λ是利用地表的形变观测资料研究地球的应力场及内部的物质运动所必需的参数。观测资料表明,在地球内部,介质的弹性参数μ和λ存在横向和纵向上的不均匀性。(1)利用变形资料可以研究地球介质弹性参数μ和λ;2)利用地震和重力观测资料可以研究参数μ和λ的不均匀性。由于参数μ、λ与介质的密度、横波速度和纵波速度参数有关,而密度、横波速度和纵波速度参数又是地震观测资料的场源,密度参数还是重力数据的场源,因此,进一步探求参数μ和λ结构的问题,可以转化为利用地震和重力观测资料反演密度、横波速度和纵波速度参数结构的问题。联合变形、重力和地震资料研究地球内部介质参数的联合反演问题可以表示为: BX = UL NX = g SX = d (1)式(1)可以通过下列目标函数取极小值求解:Φ= ( UL-BX)TWL( UL-BX)+(g-NX)T

波堆水电站外部变形监测

波堆水电站外部变形监测 发表时间:2018-12-28T14:03:34.907Z 来源:《河南电力》2018年14期作者:刘和平王辉 [导读] 本文主要针对对西藏波堆水电站大坝、坝左右岸及原DJ开挖料场水平位移变形、垂直位移沉降观测方案的确定及数据采集。监测的主要内容为大坝水平位移监测、垂直位移监测、左右岸及原开挖料场变形、沉降监测。 (中国水利水电第五工程局有限公司四川成都 610225) 摘要:本文主要针对对西藏波堆水电站大坝、坝左右岸及原DJ开挖料场水平位移变形、垂直位移沉降观测方案的确定及数据采集。监测的主要内容为大坝水平位移监测、垂直位移监测、左右岸及原开挖料场变形、沉降监测。 关键词:水平位移变形监测;垂直沉降监测;二等水准;交汇法;变形分析 1工程概况 波堆水电站属波得藏布流域规划四级梯级水电站中的第三级水电站,主要开发任务是发电。工程位于西藏林芝地区波密县倾多镇境内,波得藏布中下游河段(通多村附近),距离倾多镇12km,波密县43km。 波堆水电站为波得藏布四级梯级水电站开发中的第三级,为坝后引水式水电站。波堆水电站坝址以上流域面积为2453km2,年平均流量为132m3/s。水库正常蓄水位2788m,死水位2784m,水库总库容1087.52万m3,电站装机3台,单机容量3200kW,总装机容量为 9.6MW。工程由首部取水枢纽工程(包括沥青混凝土心墙土石坝、左岸洞式溢洪道和泄洪洞等主要建筑物)、引水发电隧洞和厂区枢纽工程(包括地面厂房、升压站和尾水等主要建筑物)组成。 工程总体布置是采用碾压式沥青混凝土心墙碎石土坝挡水、左岸洞式溢洪道+泄洪洞(兼导流隧洞)、左岸发电引水洞引水和地面厂房。 大坝位于东经95°32′10″,北纬30°05′40″,为碾压式沥青混凝土心墙土石坝,坝顶长147.7m,坝顶宽7.00m,最大坝高44.65m。 2外部变形监测布置及要求 由于水利水电工程一般规模大、范围广、影响因素多,单纯依靠内观监测仪器监测建筑物的性状具有很大的局限性。为了能正确、全面地了解、掌握工程的工作性态,分析和预测预报岩体及相邻建筑物的变化趋势,使用测量仪器与专用仪器对枢纽建筑物表面变形现象进行监测,通过监测确定在各种负载和外力作用下,水工建筑物的形状、大小空间状态和时间特征,了解大坝及其附属建筑物的表面变化规律、为评定大坝运行安全提供基本的信息资料。 大坝外部变形监测是监测组成的主要内容,建立牢固、稳定、可靠的基准点是外部变形监测的首要任务。波堆水电站的基准网主要分为水平位移监测基准控制网、垂直位移监测基准控制网,主要任务是监测大坝、左右岸坡、下游厂房及DJ1原料场的位移和沉降。根据《混凝土坝安全监测技术规范》DL/T5178-2016的要求,对坝区网点的选择、监测精度和稳定性都做了勘察和研究。根据地形、地质和波堆水电站建筑物的特点,对网点的体系的构建、基准网点数量、位置通视、覆盖率等做了深入思考。 2.1布置 波堆水电站地处高原地区,坝址区域处于峡谷带,河床狭窄,右岸山体垂直高耸,两岸基本成V型的河谷。电站每年4-10月份雨量充沛,很容易造成山体滑坡,大坝属于沥青混凝土芯墙土石坝,蓄水后坝体变形、沉降的监测也尤为关键。波堆水电站的平面控制网基准点由业主提供的设计GPS基点引测,设计GPS点由三个水准高程点和两个平面坐标点组成。 波堆水电站平面控制网由四个网点构成,沿大坝左右两岸分布。平面监测网基准点选择通视良好、地基稳定且能长期保存的地方,测线避开强电磁场的干扰,观测墩为现浇钢筋混凝土,结构坚固可靠,不易变形,底部开挖至新鲜或微风化基岩上,并与基岩紧密结合,保证观测墩的稳固。观测墩顶部设置强制对中盘,强制对中盘调整水平,不平度小于4′。具体埋设和技术要求完全按照《混凝土坝安全监测技术规范》DL/T5178-2016的要求执行。布置网如下图1所示 图1 水平布置基准网图 沉降位移监测网的基准点设在了沉降变形区以外的稳定地区,打孔安装埋设了双金属标。打孔深度35m,孔底深度完全位于完整基岩面上,孔径不小于ф325 mm,确保双金属标的273фmm外保护管安装;孔斜不大于0.5°。标心铝管为铝锰合金管。使用橡胶环来固定标心管,标心管丝扣要防水,安装后钢标比铝标高出35~45mm。安装完成后在保护管与孔壁之间填入细砂,保证密实。孔口1m管外孔隙用水泥砂浆填注。 平面位移监测点全部设在了大坝坝顶下游,分别为点号005、006、007、008,坝体在填筑完成后,在回填料层深挖1.5m,浇筑基座,采用钢筋混凝土标墩是观测稳固连接。,具体埋设和观测技术要求按照设计图纸和《混凝土坝安全监测技术规范》DL/T5178-2003的要求执行。 垂直位移变形网的测点共12个,分别安装埋设于浇筑的混凝土观测墩上,安装了测点保护罩进行了保护。测点主要沿左岸上坝路和下游道路布设,用来监测大坝、尾水厂房、升压站及周边附属建筑物的垂直位移沉降。

地壳形变知识点整理

?全球问题:①地球动力现象引起的地震海啸火山等自然灾害,给人类生命财产带来损失②全球气候变暖、海平面上升、局部地层沉降和海上溢油公害等是随着工业发展引起的环境问题③由于人口增加和陆地资源枯竭,需开拓生存空间和寻找新矿产资源。 ?地壳运动:指在地球内部构造应力作用下所引起的地壳一些元素的相对运动。它们可以是⊥运动、水平运动或地倾斜运动,综合表现为大面积的地壳形变。广:地质旋回、狭:构造旋回。分类:水平运动指组成地壳的岩层,沿∥地球表面方向的运动,又称造山运动或褶皱运动;⊥运动又称升降运动或造陆运动,表现为岩层部分区域的隆起和相邻区域的下降。长期运动是在地质时间尺度内的运动,由几千年到几百万年,它与板块运动有关;瞬变运动与地震和火山等活动相联系的。范围:全球板块运动和区域及局部地壳运动。地壳运动监测:测定板块运动参数、大陆板块和海洋板块的内部形变、板块边界与大地震有关的区域形变和局部形变、其他地震活动区的区域形变和局部形变,主要通过建立全球测定板块运动监测网和区域、局部地壳运动监测网实现。 ?地壳形变:指在地球内力和外力作用下,地球的地壳表面产生的升降、倾斜、错动等现象及其相应的变化量。成因:①人类活动,地表形变:离散性、短暂性和局部性; ②地球自转和极移,形变:全球规模特性,可理论计算;③日月等天体对固体地球在引力作用下,形变:固体潮,理论上可严格计算;④大地构造运动(地球内部的构造原因),地壳构造形变:连续性、长期性、区域性、复杂性。地壳形变测量:对一个地区的地壳表面的相对变化进行重复或连续的观测称为地壳形变测量。特点:①以动态观测替代大地测量只以静态观测方式来测定地面点变化,并分析研究其物理意思;②主要在构造带、多震区和具有潜在地震危险的重点地区及在大坝等要害部位进行,而大地测量未考虑这些;③测点设置要求稳定可靠,布网边长短、测量精度高、复测周期密。任务:监测地壳形变运动,具体观测元素是地表点位置变化。种类:①全球板块运动监测:主要用来测定板块运动参数,测定大陆板块和海洋板块的内部形变,VLBI、SLR 、GPS。②全国及区域地壳形变测量:精密水准、高精度流动重力、高精度空间大地。③断层形变测量:短水准、短基线、短边GPS网等。④定点形变测量:有效地监测地壳的连续变动,地倾斜、地应变、重力台站。 全球板块运动监测:意义:①寻找矿产资源,板块运动的边界是生成矿源的地点;②防灾减灾,地震一般发生在板块的边界。方法:VLBI测量、SLR测量、GPS测量等。 ?VLBI:可提供整体运动和地壳运动的丰富信息,短时间测量即可得极高精度。特点:目标源和参考源(点源)距离近;两种源时间间隔小。①纯几何方法,不涉及地球重力场;②不受气候限制,有长期稳定性;③提供以河外射电源为参考的最佳准惯性参考系。?SLR:测定台站的位置变化或站间基线长度的变化率来确定板块运动参数。在一列选定的时间间隔内联合求解测站的坐标、卫星轨道和地球定向参数EOP→测站间基线的时间序列→线性拟合→基线长度变化率。不足:①由于采用可见光,受天气影响大,不能全天候观测;②SLR台站建立和维护费用高。精度:取决于在各所选时间间隔内测得的站间基线精度、基线的观测误差;EOP误差以及卫星的定轨误差均有影响。?GNSS WGS84:世界大地坐标系统,地心系,GPS广播星历。WGS84(G1150):美国对WGS84第3次精化获得的框架。G框架用GPS资料确定,1150开始用的时间。 ?空间大地测量方法:建立现代板块运动模型。观测值:站坐标和站速度(与参考框架有关)→绝对运动参数,站间基线长度变化率(无关)→相对~。原理:板块构造学说认为相邻两板块之间的相对运动实际上是围绕通过地球中心的一个轴的旋转运动,通常用欧拉定理来表述V=ω×r。相对运动参数:,k、l板块上i、 j测站间基线长度的变化 率,kl ω是k对l的相对运动角速度,R i 、R j:i、j的坐标矢量,测两板块间若干ij B →由上式加权的最小二乘平差得kl ω。绝对运动参数:Ω(ω x ,ωy,ωz)角速度矢量,r(x,y,z)位置矢量,λ、φ经纬度。欧拉定理V=ω×r→地心系→地球近似为球体→站心系→角速度ω、纬度Φ、经度Λ。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - = ? ? ? ? ? ? ? ? ? ? z y x G z y x x y x z y z V V V ω ω ω ,? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - = ? ? ? ? ? ? ? ? ? ? z y x G z y x r r r r r r V V V ω ω ω λ ? λ ? λ ? ? λ ? ? cos cos sin cos cos cos sin sin cos sin , ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? - - - = ? ? ? ? ? ? z y x r n e r r r r r V V ω ω ω ? λ ? λ λ ? λ cos cos sin sin sin sin cos ,。 区域地壳形变监测:区域空间尺度由几百到1000km的瞬变运动,GPS/INSAR/GRAVITY+VLBI/SLR;局部几百米到几十公里+LEVELING。 ?2000国家GPS大地控制网:2000国家重力、GPS大地网。缺陷:密度<全国天文大地网;所提供的低密度的3维地心坐标框架不能完整实现中国的3维地心系。解决:~GPS 网+全国天文大地网联合平差,将后者纳入3维地心系,并提高其精度和现势性,使我国的大地坐标框架在密度和分布方面实现我国3维地心大地坐标系的跨越式进步。CGCS2000通过~大地控制网的坐标和速度具体实现。参考历元2000.0。 ?GPS用于地壳⊥形变监测:①有可能利用GPS观测直接得到毫米级的大地高数据。重复GPS观测可以求定大地高的变化(或站心系U分量的变化)。②由于椭球体法线与该点夹角很小,大地高和正常高方向基本重合,∴可用大地高的变化代替正常高的变化,即可利用重复GPS观测取代精密水准以监测地面的升降变化。u分量与正常高变化:?h=?u/cos αAB。∵αAB=1°(S AB=110km)→cos αAB ≈1∴S AB ≈100km,可用?u代替?h。 ?InSAR:合成孔径雷达干涉测量一种以合成孔径雷达天线记录到的回波信号为信息源,利用干涉测量获取地球表面的三维地形、地表形变和地物特征变化等信息的测量技术。处理流程:配准、生成干涉图、平地相位消除、去地形影响、干涉图滤波、相位解缠。星载INSAR优点:①全球范围②成像测绘带宽③全天候④轨道稳定,多次成像重复性好⑤飞行平稳,无运动补偿问题⑥下视角小,图像阴影小。局限:①轨道固定,侦察

变形监测总结(20200528080747)

第一章 变形的概念:指变形体(根据变形监测区域大小,可将变形监测对象分为三大类:全球性的、区域性的、工程与局部性的,本文统称其为变形体)在各种致变因素 的作用下,其形状、大小及位置在时间域和空间域中的变化。 变形观测的概念:指为了解变形量大小,通过定期测量观测点相对于基准点的变 化量,从历次观测结果比较了解变形随时间与空间的发展情况。这个过程即是变形观测。 产生变形原因:1.自然原因:地震、板块运动、日照、风震 2.人为的原因:(1)地下水的过量抽采(2)地下矿物的开采(3)建筑物的荷载(4)其它因素 变形的危害与控制:变形的危害:1)地面建(构)筑物裂缝、倒塌;2)交通、通讯设施损害管线损害;3)港口设施失效4)桥墩下沉,净空减小,水上交通 受阻5)滨海城市海水侵蚀 6)诱发地震 控制:(1)控制地下水开采;(2)进行地下水回灌,保持地下水位;(3)加固建筑物进行等。 变形观测的目的:确保工程安全运营进行变形分析,建立预报变形的理论和方法 变形观测的主要内容:沉降观测、水平位移观测、裂缝观测、倾斜观测、挠度监 测、滑坡监测等 变形观测的意义:实用上:检查各种工程建筑物及其基础的稳定性,及时掌握变形情况,为安全性诊断提供必要的信息,以便及时发现问题并采取措施 科研上:更好地理解变形机理,验证有关工程设计的理论和地 壳运动假说,进行反馈设计以及建立有效的变形预报模型 变形观测的主要技术方法: 1.常规测量方法 2.GPS的应用3.摄影测量方法 4.特殊测量手段法 5.综合各种技术方法。 变形观测的特点:1.精度要求高 2.重复观测3.数据处理要求高 4.多学科的配合5.责任重大 变形的分类:一般情况,变形可分为静态变形和动态变形两大类。 静态变形主要指变形体随时间的变化而发生的变形,这种变形一般速度较慢,需要较长的时间才能被发觉。 动态变形主要指变形体在外界荷载的作用下发生的变形,这种变形的大小和速度与荷载密切相关,在通常情况下,荷载的作用将使变形即刻发生。 根据变形体的变形特征,变形可分为变形体自身的形变和变形体的刚体位移。 变形体自身形变包括:伸缩、错动、弯曲和扭转四种变形; 刚体位移包含整体平移、整体转动、整体升降和整体倾斜四种变形。 变形观测的精度与观测周期:制定变形监测精度取决于监测目的、允许变形的大小、仪器和方法所能达到的精度。 一般而言,实用目的观测中误差应小于允许变形值的1/10~1/20,科研目的观测中误差应小于允许变形值的1/20~1/100 变形观测的周期:观测周期的概念:相邻两次变形观测的间隔时间 观测周期的确定 基本原则:根据建(构)筑物的特征、变形速率、观测精度要求和工程地质条件 及施工过程等因素综合考虑。 变形观测周期的确定应以能系统反映所测建筑变形的变化过程、且不遗漏其变化时刻为原则,并综合考虑单位时间内变形量的大小、变形特征、观测精度要求及

地壳形变课后题答案

第一章绪论 1. 地壳运动与变形的基本内涵是什么? 地壳运动:是在地球内部构造应力的作用下,所引起的地壳一些元素的相对运动,它可以是垂直运动,水平运动或地倾泻运动。综合表现为大面积的地壳变形。 地壳形变:是指在地球内力和外力作用下,地球的地壳表面产生的升降、倾斜、错动等现象及其相应的变化量。 2. 你对地壳运动与变形的具体表现形式有哪些认识? 其表现形式主要有:断裂,地震,火山,滑坡,泥石流,地面裂缝与沉降,冰川运动。 3. 现代大地测量学在地球动力学研究中可以发挥哪些作用? 4. 简述地球物理大地测量学的发展。 第二章地壳形变测量 1. 地壳形变测量有哪几类?各有什么特点? (1)全球板块运动监测 主要用来测定板块运动参数,测定大陆板块和海洋板块的内部形变,其观测手段主要采用VLBI、SLR 和GPS等空间测量技术。 (2)全国及区域地壳形变测量 测定亚板块及构造块体的地壳形变,给出全国大陆动力学的边界条件,以及全国大陆应力场、形变场变化过程的总体和分区特征;区域地壳形变测量主要测定块体边界与大地震有关的区域形变,它可以给出大陆内部地形变的时空演变图象。 (3)断层形变测量 在各活动构造块体边界上进行的近场构造变形测量。能够直接测定块体边界断裂及其不同段落的现今活动方式、相对位移速率以及它们随时间变化的过程,提供震间、震前、同震与震后滑动等构造活动的微动态信息。 目前以短水准、短基线、短边GPS网以及由水管倾斜仪、伸缩仪、蠕变仪、短边激光测距仪或重力仪组成的台阵等为主要手段。 (4)定点形变测量 主要包括地倾斜、地应变和重力(固体潮汐)台站观测。这种方法可以有效地监测地壳的连续变动,可以通过不同时间间隔的采样,在相当宽的频带范围内对地壳动力学现象进行观测。 2. GPS连续跟踪站测量属于定点形变测量吗?为什么? 属于 第三章:地球参考系统与地球参考框架 1. 什么是惯性参考系? 其时间是均匀流逝的,空间是均匀和各向同性的;在这样的参考系内,描述运动的方程有着最简单的形式。这样的参考系就是惯性系 牛顿运动定律成立的参考系,称为惯性参考系,简称惯性系。 2. 我国的大地测量坐标基准有哪些? 1954年北京坐标系;1980年西安坐标系(1980年国家大地坐标系);2000国家大地坐标系。 3. 大地坐标系建立的基本原理是什么? 4. 全球最优的协议地球参考架CTRF是如何建立的? 由IERS组织,遵循以下原则①原点位于包括海洋和大气在内的整个地球的质心;②长度国际单位制为米,尺度为广义相对论下的局域地球框架;③定向为最初由国际时间局(BIH)所给出1984.0定向;④定向的时变通过一个关于全球的水平构造运动的非净旋转条件(地壳无整体旋转)来保证。

GNSS地壳形变异常检测理论与方法

一一 第45卷一第6期测一绘一学一报 V o l .45,N o .6 一2016年6月A c t aG e o d a e t i c ae tC a r t o g r a p h i c aS i n i c a J u n e ,2016 引文格式:X U K e k e .T h e o r y a n d M e t h o d f o rD e t e c t i n g A b n o r m a l C r u s t a l D e f o r m a t i o nU s i n g G N S S [J ].A c t aG e o d a e t i c a e t C a r t o g r a p h i c a S i n i c a ,2016,45(6):756.(徐克科.G N S S 地壳形变异常检测理论与方法[J ].测绘学报,2016,45(6):756.)D O I :10.11947/j .A G C S .2016.20160152 G N S S 地壳形变异常检测理论与方法 徐克科1, 21.河南理工大学测绘与国土信息工程学院,河南焦作454000;2.同济大学测绘与地理信息学院,上海200092 T h e o r y a n dM e t h o d f o r D e t e c t i n g A b n o r m a l C r u s t a l D e f o r m a t i o nU s i n g G N S S X UK e k e 1, 21.S c h o o l o f S u r v e y i n g a n dL a n d I n f o r m a t i o nE n g i n e e r i n g o fH e n a nP o l y t e c h n i cU n i v e r s i t y ,J i a o z u o 454000,C h i n a ;2.C o l l e g eo f S u r v e y i n g a n dG e o GI n f o r m a t i o no f T o n g j i U n i v e r s i t y ,S h a n g h a i ,200092,C h i n a 一一地震的孕育过程是一个长期缓慢的过程, 地震发生时断层破裂所释放的能量只是一部分,其中有很大一部分能量在地震前后以无震蠕滑的形式释放.因此,检测这些形变异常信息对于地震危险性评估至关重要.随着G N S S 监测网络数据的持续积累,时空分辨率越来越高,就有可能从中挖掘出更有价值的形变信息.本文利用G N S S 时空数据, 从高精度数据处理二全球板块运动模型构建二多尺度速度场与应变场估计二地壳微动态形变异常检测和断层滑移时空反演等方面,研究了G N S S 地壳形变异常检测理论与方法.主要研究内容与结果如下: (1)重建了G N S S 测站速度估计模型:法方程重构模型二基线向量最小二乘模型二卡尔曼滤波模型和坐标时序模型.前3种模型将坐标二速度二年二半年周期项作为参数,在进行网平差的同时一并求解速度值.坐标时序模型引入白噪声和幂律噪声组合,分析了区域周期项振幅与相位空间分布的一致性.基于4种模型,估计了川滇陆态网G N S S 测站速度.结果差异在1mm /a 内,精度在亚毫米级.从而验证了这些速度估计模型的一致性. (2 )提出了基于统计假设检验和稳健估计的全球板块运动模型构建方法.利用I T R F 2008V E L 求取的全球板块欧拉参数与先前模型具有较好的一致性.建立了相对欧亚板块背景场的中国大陆速度场,分析了中国大陆现今地壳运动特征. (3)构建了G N S S 多尺度速度场和应变场估计模型. 利用负位错模拟数据作了大量试验,结果表明,不同尺度的应变场具有检测不同空间范围的地壳形变的能力.利用2009 2011年陆态网数据估计并分析了中国大陆3 8尺度的应变场及形变特征. (4 )联合卡尔曼滤波和主成分时空分析,集时空滤波与形变检测于一体,构建了瞬态无震蠕滑时空检测模型,进一步提高了数据时空信噪比.利用滇西南陆态网 G N S S 数据,检测其时空分布特征与2011年缅甸Mw 7.2级地震相对应.得出了滇西南区域的断层活动可能会受到缅甸地震带的影响. (5)提出了基于G N S S 基线面应变和G N S S 网形的 震前形变异常检测方法.得出2013年芦山M s 7.0地震和日本近年来的4次地震在震前数月的时间内均有不同程度的异常偏离.尤其G N S S 基线夹角二基线方位角和第一剪应变的异常变化更为突出.推断震前可能产生了强烈的左旋剪切构造应力变化,加速了芦山地震的孕育发生. (6 )以地壳形变检测与断层滑移反演为一体,构建了G N S S 主成分和卡尔曼滤波时空反演模型.通过模拟试验,得出了正确反演断层滑移时空分布所需要的最低信噪比和最优的台站分布密度.以2005年苏门答腊Mw 8.7地震震后余滑和2006年墨西哥慢滑移为例,反演了断层蠕滑时空分布. 中图分类号:P 228一一一一文献标识码:D 文章编号:1001G1595(2016)06G0756G01基金项目:国家973项目(2013C B 733304 );国家自然科学基金(41404023 )收稿日期:2016G04G05 作者简介:徐克科(1979 ),男,副教授,2015年7月毕业于同济大学,获工学博士学位(指导教师:伍吉仓教授),研究方向为G N S S 数据处理与地壳形变分析. A u t h o r :X U K e k e (1979 ),m a l e ,r e c e i v e dh i sd o c t o r a l d e g r e e f r o mT o n g j iU n i v e r s i t y o nJ u l y 2015(P h Da d v i s o r :P r o f .W U J i c a n g ),m a j o r si n G N S S d a t a p r o c e s s i n g a n d c r u s t a l d e f o r m a t i o na n a l y s i s E Gm a i l :12x k k @t o n g j i .e d u .c n

变形监测数据处理课程教案第一章

《变形监测数据处理》课程教案 班级 测绘工程 0841-08420-1021 科目变形监测课程类型专业课学时数 4 教学内容第一章绪论 教学目的通过本章的学习,要求学生掌握变形监测的内容、目的与意义,熟悉变形监测技术及其发展,变形分析的的内涵及其研究进展。 重点变形监测的主要内容及其目的 难点本章无难点 教学方法课堂讲授 教学进程 第一讲变形监测的内容、目的与意义(2学时) 第二讲变形监测技术及其发展;变形分析的的内涵及其研究进展(2学时) 课后总结各种工程建筑物、构筑物变形监测的主要内容 变形监测三个方面的目的及三个方面的意义。 熟悉常见的几种变形监测技术,了解变形监测分析的内涵。 作业无 第一章变形监测数据处理 主要参考书: 1.陈永奇,吴子安,吴中如.变形监测分析与预报.北京:测绘出版社,1998 2.吴子安.工程建筑物变形观测数据处理.北京:测绘出版社,1989 3.陈永奇.变形观测数据处理.北京:测绘出版社,1988 4.吴中如.水工建筑物安全监控理论及其应用.北京:高等教育出版社,2003 5.吴中如,顾冲时.大坝原型反分析及其应用.南京:江苏科学技术出版社,2000 6.夏才初,潘国荣.土木工程监测技术.北京:中国建筑工业出版社,2001 7.王尚庆.长江三峡滑坡监测预报.北京:地质出版社,1999

8.李珍照.大坝安全监测.北京:中国电力出版社,1997 9.岳建平等.变形监测技术与应用. 国防工业出版社 2007 10.何秀凤.变形监测新方法及其应用.科学出版社 2007 11.伊晓东等.变形监测技术及应用.黄河水利出版社,2007 12.白迪谋.工程建筑物变形观测和变形分析.西南交通大学出版社,2002 13.朱建军等.变形测量的理论与方法.中南大学出版社,2004 14.唐孟雄等.深基坑工程变形控制.中国建筑工业出版社,2006 15.黄声享等.小浪底水利枢纽外部变形规律研究. 测绘出版社,2008.12 规范: 1.中华人民共和国行业标准.建筑变形测量规范(JGJ8-2007). 北京:中国建筑工业 出版社,2008 2.中华人民共和国水利行业标准. 混凝土大坝安全监测技术规范(DL/T 5178-2003). 北京:中国水利水电出版社, 2004 1.1 变形监测的内容、目的与意义 本节要求了解并掌握三方面的内容:变形监测的基本概念;变形监测的内容;变形监 测的目的和意义。 1.1.1 变形监测的基本概念 变形的概念:变形是自然界的普遍现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时空域中的变化。变形体的变形在一定范围内被认为是允许的,如果超出允许值,则可能引发灾害。自然界的变形危害现象时刻都在我们周边发生着,如地震、滑坡、岩崩、 地表沉陷、火山爆发、溃坝、桥梁与建筑物的倒塌等。 变形监测的概念:所谓变形监测,就是利用测量与专用仪器和方法对变形体的变形现象 进行监视观测的工作。其任务是确定在各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。变形监测工作是人们通过变形现象获得科学认识、检验理论和假设的必要手段。 变形体的范畴:变形体的范畴可以大到整个地球,小到一个工程建(构)筑物的块体, 它包括自然的和人工的构筑物。根据变形体的研究范围,可将变形监测研究对象划分为这样 三类: ?全球性变形研究,如监测全球板块运动、地极移动、地球自转速率变化、地潮等; ?区域性变形研究,如地壳形变监测、城市地面沉降等; ?工程和局部性变形研究,如监测工程建筑物的三维变形、滑坡体的滑动、地下开采使引起的地表移动和下沉等。

变形监测与数据处理期末试题

1监测网的平差基准包括(固定基准,重心基准,拟稳基准) 2根据变形体的研究范围,可将变形监测研究对象划分为(全球性,区域性,工程和局部性)3变形分析的研究内容通常可分为(几何分析,物理解释) 4变形监测的概念,意义,什么是变形监测的几何分析,物理解释 5变形监测方案的内容 6变形监测网设计的质量准则 7平均间隙法的基本思想 8.变形的频率取决于p45 9.P25平稳随机过程的定义 10对于监测网平差的参考系问题,经典平差采用固定基准,自由网平差采用重心基准,拟稳平差采用拟稳基准 11要搞清变形的规律,必须分析引起变形的因素,对于大坝而言,引起变形的原因主要包括静水压力,坝体的温度变化,时效变化 12测量机器人P31 13常用的变形监测数学模型有:回归分析法,灰色系统模型,时间序列模型,神经网络模型 14变形监测所研究的理论和方法主要涉及到变形信息的获取、变形信息的分析与解释、变形预报 15 GPS用于变形监测的作业模式可分为周期性和连续性两种 16 简述变形监测技术中,地面监测方法的优点 17控制网优化设计问题的分类及解法:零类设计(基准设计)、一类设计(结构图形设计)、二类设计(观测值权的分配)、三类设计(网的改造或加密方案设计)。 18若监测资料分析的结果存在大的偏差, 则有两种可能现象: 误差引起(大误差或粗差);真实变形(突变)。 19变形监测网可分为两类:有固定基准的绝对网(参考网);没有绝对固定基准的相对网(自由网)。 20什么是变形监测的相对网、绝对网,他们之间有什么区别? 绝对网中,固定基准位于变形体之外,在各观测周期中认为是不变的,以作为测定变形点绝对位移的参考点,这种监测网平差采用经典平差方法便可实现。 相对网中,由于全部网点均位于变形体上,没有必要的起算基准,是一种自由网,平差时存在参考系秩亏,为了分析变形,需要寻找一个恰当的变形参考系。 21下表为某坝2个坝段半年的水平位移观测资料,为了分析它们之间相互检核的可能性试利用相关系数检验他们之间的相关程度。(取置信水平α=0.01)

三江口水利枢纽工程大坝边坡变形监测方案

大坝边坡变形监测方案 1、编制依据 1、三江口水利枢纽工程右坝肩施工图设计文件 2、《水利水电工程施工测量规范》(SL52-93) 3、《工程测量规范》(GB50026-2003) 4、《国家三角测量规范》(GB/T17942-2000) 5、《国家三、四等水准测量规范》(GB12898-2009) 6、三江口水利枢纽工程坝肩地形地质调查资料 2、工程概况 2.1工程基本情况 三江口水利枢纽工程位于重庆市彭水县青平乡境内的普子河下游,距彭水县城35km,是普子河流域规划的第四个阶梯级电站。 三江口水利枢纽工程是一水利综合利用工程,工程的开发任务为发电、灌溉、场镇供水和农村人、畜饮水。根据《防洪标准》(GB50201-94),三江口水利枢纽工程属Ⅲ等中型工程。水库为不完全年调节水库,正常蓄水位306.0m,总库容6813万m3,灌溉面积 5.231万亩,向乡镇及人畜年供水量1325万m3,电站总装机3.0万kw。 枢纽建筑物主要由拦河大坝、溢流表孔、电站进水口、发电引水系统及电站厂房、灌溉干渠及大型渠系交叉建筑物等组成。 拦河大坝为混凝土双曲拱坝,在其右岸非溢流坝段设置取水建筑物,泄水建筑物包括溢流表孔、大坝底孔。大坝基础高程为236.00m,坝顶高程309.50m,最大坝高73.5m,坝顶长度201.06m,中部偏左岸布置5孔表孔泄洪;坝顶宽5m,底宽18m;压力引水隧洞全长603m,圆型洞身开挖断面6.3m。 2.2工程地质 2.2.1气象 普子河流域属亚热带湿润气候区,气候温和,雨量弃沛,四季分明。多年平均气温17.6℃,极端最高气温44.1℃,极端最低气温~3.8℃,多

相关主题
文本预览
相关文档 最新文档