当前位置:文档之家› 35kv箱式变电站设计_secret(1)

35kv箱式变电站设计_secret(1)

毕业设计论文

题目35kV箱式变电站设计 __ 专业机电一体化班级机电学号 40 学生姓名

导师姓名

完成日期

XXXX大学毕业设计(论文)

XXXX大学

毕业设计(论文)任务书

设计(论文)题目:35kV箱式变电站设计

姓名:专业:机电一体化班级:机电学号 40

指导老师:朱培燕

一、基本任务及要求:

在规定时间内,完成以下工作:

1.35kV箱式变电站总体结构设计;

2.主接线设计与一次设备选型;

3. 二次系统设计; 4.箱式变电站智智能监控功能设计。

5. 提交毕业设计论文和图纸

二、进度安排及完成时间:

目录

摘要 (Ⅰ)

Abstract (Ⅱ)

第1章绪论 (1)

1.1 供配电技术的发展 (1)

1.2箱式变电站的类型、结构与技术特点 (1)

1.2.1 箱式变电站的类型 (1)

1.2.2 箱式变电站的结构 (1)

1.2.3 箱式变电站的技术特点 (2)

1.2.4 箱式变电站与常规变电站的对比分析 (3)

1.3 箱式变电站的技术要求与设计规范 (5)

1.3.1 额定值 (5)

1.3.2 设计和结构 (6)

1.3.3 使用条件 (7)

1.3.4 箱体要求 (8)

1.3.5箱式变电站内部电器设备 (8)

1.4 本课题的主要任务 (8)

第2章35kV箱式变电站总体结构设计 (9)

2.1 电气主接线的确定 (9)

2.1.1 主接线的基本形式 (9)

2.1.2 箱式变电站对主接线的基本要求 (9)

2.1.3 主接线的比较与选择 (10)

2.1.4 高压接线方式 (11)

2.2 箱式变电站箱体的确定 (11)

2.2.1 箱体的结构的确定 (11)

2..2.2 合理配置 (11)

2.3 变压器 (12)

2.3.1 变压器容量、接线组别的确定 (12)

2.3.2 变压器的散热处理 (13)

2.3.3 用负荷开关—熔断器组合电器保护变压器 (13)

XXXX大学毕业设计(论文)

2.4 箱式变电站总体布置 (14)

第3章35kV箱式变电站一次系统设计及设备选型 (15)

3.1 主电路设计 (15)

3.1.1 概述 (15)

3.1.2 一次系统设计原则 (15)

3.1.3 一次系统设计 (15)

3.2 设备选型 (16)

3.2.1 箱式变电站设备选型应注意的方面 (16)

3.2.2 设备选型的基本原理 (17)

3.2.3 高低压电器设备选择的要求 (18)

3.2.4 断路器的选型 (19)

3.2.5 熔断器的选型 (19)

3.2.6 互感器的选型 (21)

3.2.7 隔离开关的选型 (22)

3.2.8 开关柜的选型 (22)

第4章35kV箱式变电站二次系统设计 (23)

4.1 电气二次系统设计 (23)

4.1.1 二次系统定义及分类 (23)

4.1.2 电气测量仪表 (23)

4.1.3 二次系统设计 (23)

4.2 二次系统总体方案 (24)

4.3 断路器控制与信号回路 (25)

4.3.1 概述 (25)

4.3.2 控制回路设计 (26)

4.3.3 信号回路设计 (26)

4.4 电气测量与信号系统 (26)

第5章箱式变电站智能监控功能设计 (28)

5.1 箱式变电站的监控内容 (28)

5.1.1 电量监测与保护 (28)

5.1.2 防凝露保护 (28)

5.1.3 变压器室温度保护 (28)

5.1.4 参数在线数字化显示和设定 (28)

5.1.5 系统组网与集中化管理 (29)

5.2. 配电网自动功能 (29)

5.3 箱式变电站的智能监控方案 (30)

5.3.1 硬件设计原理 (30)

5.3.2 软件设计原理 (30)

结束语 (32)

参考文献 (33)

致谢 (34)

附录 A 箱式变电站总体布置

附录B 电气主接线图

附录C 35kV线路控制回路图

附录D 10kV线路控制回路图

XXXX 大学毕业设计(论文)

6

35kV 箱式变电站设计

摘 要:箱式变电站又称户外成套变电站,也有称做组合式变电站,它是发展于20

世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电

设备,由于它具有组合灵活,便于运输、迁移、安装方便,施工周期短、运行费用

低、无污染、免维护等优点,受到世界各国电力工作者的重视。进入20世纪90年

代中期,国内开始出现简易箱式变电站,并得到了迅速发展。 本课题的主要内容包括箱式变电站的发展应用,箱式变电站的结构分类,以及

箱式变电站一次系统设计极其设备选型,二次系统设计,以及箱式变电站的智能监

控系统。35kV 箱式变电站的设计高压侧额定电压为35kV ,低压侧额定电压为10kV ,

主变压器容量为5000kVA 。主接线采用单母线分段接线。

关键词:箱式变电站;结构;一次系统;二次系统

II

Design of 35 kV box-type transformer substation

ABSTRACT : Box-type transformer substation calls again outdoor a transformer

substation, also call to do the sectional transformer substation. It is a development

to wait to 70's Europe and America western prosper in the 60's of 20 centuries

the

nation release a kind of outdoor the set changes to give or get an electric shock of new

change to give or get an electric shock the equipments, because it have the

combination vivid, easy to conveyance, move, install convenience, start construction

construction the period is short and

circulate the expenses low, free from pollution,

do not need maintenance etc. advantage, suffer the international community

electric power the worker values.Enter the middle of 90's of 20 centuries. The

domestic starts appearing the simple box-type transformer substation , and got the

quick development.

The article regard box-type transformer substation as a development for relating

box-type transformer substation applied, the construction of box-type transformer substation divides into se-section, emphasizing the treatise box-type

transformer substation a the very equipments in design in subsystem chooses the

type, two subsystems design, and the intelligence of box-type transformer substation

supervises and control the system.The design high pressure side sum of box-type

transformer substation settles electric voltage as 35 kVs, the low-pressure side

sum settles electric voltage as 10 kVs, main

transformer capacity is 5000 kVA.The

lord connects the single mother in adoption in line line cent segment connects the line.

Keywords :box-type transformer substation ;construction ; first system ;second

system

XXXX 大学毕业设计(论文)

1

第1章 绪论

1.1 供配电技术的发展

随着市场经济的发展,国家在城乡电网建设和改造中,要求高压直接进入负荷中心,

形成高压受电—变压器降压—低压配电的供电格局,所以供配电要向节地、节电、紧凑

型、小型化、无人值守的方向发展,箱式变电站(简称箱变)正是具有这些特点的最佳产

品,因而在城乡电网中得到广泛应用。

其次随着社会发展和城市化进程的加快,负荷密度越来越高,城市用地越来越紧张,

城市配电网逐步由架空向电缆过渡,架杆方式安装的配电变压器越来越不适应人们的要

求。因此,预装式变电站成为主要的配电设备之一。再次人们对供电质量尤其是供电的 可靠性要求越来越高,而采用高压环网或双电源供电、低压网自动投切等先进技术的预

装式变电站成为首选的配电设备。

与此同时,由于信息化、网络化和智能化住宅小区发展,因此不仅要求箱变安全可

靠,同时要求具有“四遥”(遥测、遥讯、遥调、遥控)的智能化功能。这种智能箱式变电

站(简称智能箱变)环网供电时,在特定自主软件配合下,能完成故障区段自动定位、故

障切除、负荷转带、网络重构等功能,从而保证在一分钟左右恢复送电[1]。

1.2 箱式变电站的类型、结构与技术特点

1.2.1 箱式变电站的类型

箱式变电站有美式箱式变电站和欧式箱式变电站。美式预装式变电站在我国叫做

“预装式变电站”或“美式箱变 ”,一区别欧式预装式变电站。它将变压器器身、高压

负荷开关、熔断器及高低连线置于一个共同的封闭油箱内,构成一体式布置。用变压器

油作为带电部分相间及对地的绝缘介质。同时,安装有齐全的运行检视仪器仪表,如压

力计,压力释放阀,油位计,油温表等。欧式预装式变电站以前在我国习惯称为“组合

式变电站”,它是将高压开关设备、配电变压器和低压配电装置布置在三个不同的隔室

内,通过电缆或母线来实现电气连接。

1.2.2 箱式变电站的结构

美式预装式变电站的结构型式大致有三种:

(1)变压器和负荷开关、熔断器共用一个油箱;

35kV 箱式变电站设计

2

(2)变压器和负荷开关、熔断器分别装在上下两个不同的油箱内;

(3)变压器和负荷开关、熔断器分别装在左右两个不同的油箱内。

其中(1)型为美式箱变的原结构,它的特点是结构紧缩、简洁、体积小、重量轻。

(2)型和(3)型为(1)的变形。这种变型的理论根据是:开关操作和熔断器的动作

造成的游离碳会影响整个箱变的寿命。由于采用普通油和难燃油作为绝燃介质,使之既

可用于户外,又可用于户内,适用于住宅小区、共矿企业及各种公共场所,如机场、车

站、码头、港口、高速公路、地铁等。 欧式预装式变电站的总体结构包括三个主要部分:高压开关柜、变压器及低压配套

装置,其总体结构主要有两种形式:一种为组合式;另一种为一体式。组合式布置是高

压开关设备、变压器和低压配电装置三部分个为一室,即由高压室、变压器室和低压室

三个隔室组成,可按“目字型”或“品字型”布置,如图1.1所示。“目字型”布置与“品

字型”布置相比,“目字型”接线较为方便,故大多采用“目字型”布置。但“品字型”

布置结构较为紧凑,特别是当变压器室排布多台变压器时,“品字型”布置较为有利。

(a)目字型布置 (b)品字型布置

图1.1 欧式预装式变电站的整体布置形式

HV —高压室;LV —低压室;TM —变压器室;ZL —操作走廊

1.2.3 箱式变电站的技术特点

箱式变电站的高压室一般是由高压负荷开关、高压熔断器和避雷器等组成的,可以

进行停送电操作并且有过负荷和短路保护。低压室由低压空气开关、电流互感器、电流

表、电压表等组成的。变压器一般采用 S9 或干式的等。箱式变中的电器设备元件,均

XXXX 大学毕业设计(论文)

3

选用定型产品,元器件的技术性能均满足相应的标准要求。为了可靠实现五防要求,各

电器元件之间采用了机械联锁,各电器元件都安装在有足够强度和刚度的结构上,以便

于导线的连接。操作采用电动方式,不需另配电源,由 TV 引出即可。另外箱式变还

都具有电能检测、显示、计量的功能,并能实现相应的保护功能,还设有专用的接地导

件,并有明显的接地标志。此外为适应户外工作环境,箱式变电站的壳顶一般都采用隔

层结构,内装有隔热材料,箱体底部和各室之间都有冷却进出风口,采用自然风冷和自

动控制的强迫风冷等多种形式,以保证电气设备的正常散热,具有防雨、防尘、防止小动物进入等措施。目前,国内生产的箱式变的电压等级:高压侧为 3 ~35kV 、低压侧为

0.4 ~10kV 。变压器的容量:当额定电压比为35/10 、6 、0.4 kV 时可从几百kV A ~

上万kV A 、当额定电压比为 10、6/0.4 kV kV ~几千A 。

箱式变电站有如下特点:

①技术先进安全可靠

箱体部分采用目前国内领先技术及工艺,外壳一般采用镀铝锌钢板,框架采用标准

集装箱材料及制作工艺,有良好的防腐性能,保证20年不锈蚀,内封板采用铝合金扣

板,夹层采用防火保温材料,箱体内安装空调及除湿装置,设备运行不受自然气候环境

及外界污染影响,可保证在-40℃~+40℃的恶劣环境下正常运行。

箱体内一次设备采用单元真空开关柜、干式变压器、干式互感器、真空断路器(弹

簧操作机构)等国内技术领先设备,产品无裸露带电部分,为全绝缘结构,完全能达到

零触电事故,全站可实现无油化运行,安全性高,二次采用微机综合自动化系统,可实

现无人值守。

②自动化程度高

全站智能化设计,保护系统采用变电所微机综合自动化装置,分散安装,可实现"

四遥",即遥测、遥信、遥控、遥调,每个单元均具有独立运行功能,继电保护功能齐

全,可对运行参数进行远方设置,对箱体内湿度、温度进行控制,满足无人值班的要求。

③工厂预制化

设计时,只要设计人员根据变电站的实际要求,作出一次主接线图和箱外设备的设

计,就可以选择由厂家提供的箱变规格和型号,所有设备在工厂一次安装、调试合格,

真正实现变电所建设工厂化,缩短了设计制造周期;现场安装仅需箱体定位、箱体间电

缆联络、出线电缆连接、保护定值校验、传动试验及其它需调试的工作,整个变电站从

安装到投运大约只需5~8天的时间,大大缩短了建设工期。

④组合方式灵活

箱式变电站由于结构比较紧凑,每个箱体均构成一个独立系统,这就使得组合方式

35kV箱式变电站设计

4

灵活多变,我们可以全部采用箱式,即35kV及10kV设备全部箱内安装,组成全箱式变电所;也可以采用35kV设备室外安装,10kV设备及控保系统箱内安装,这种组合方式,特别适用于农网改造中的旧所改造,即原有35kV设备不动,仅安装一个10kV开关箱即可达到无人值守的要求。

⑤投资省、见效快

箱式变电站(35kV设备户外布置,10kV设备箱内安装)较同规模综自变电站(35kV 设备户外布置,10kV设备布置于户内高压开关室及中控室)减少投资40%~50%。

⑥占地面积小。

1.2.4箱式变电站与常规变电站的对比分析

箱式变电站(在IEC及欧洲称为高压/低压预装式变电站)是一种集成化程度高,工厂预安装、节能、节地的发展中设备与常规变电站相比,占地为1/20,工期为1/7,投资为1/2。在国外应用极度为广泛,在西欧占变电站总数的70%以上,美国为90%。在我国应用为10%,是一种方兴未艾的装备。

三种类型的箱式变电站的特点如下:

(1)欧洲式:特点是防护性好,多了一个外壳,变压器散热不易,要降低容量运行;

(2)美国式:特点是变压器保持户外设备本质,散热好,结构紧凑,但是在我国10kV电网系中性不接地系统,因此一相熔丝熔断时不能跳开三相负荷开关,造成非全相运行,危及变压器及用电设备,并且不易实现配电自动化;

(3)中国式:从欧洲式派生而来,结合中国用户需要改进而成,但是符合中国电力部门各种法规标准要求,可铅封电能计量箱,无功补偿,一应俱全。

箱式变电站与常规变电站性能比较见表1.1。

预装式变电站是输变电设备发展方向,由前所述,我国应用仅10%左右,而国外已达到的70-90%,所以预装式变电站其社会效益显著,市场前景广阔。

XXXX大学毕业设计(论文)

表1.1箱式变电站与常规变电站性能对比表

(10kV800K

例)

4 安装地点和负

2:1

1.3箱式变电站的技术要求与设计规范

根据国家标准《高压/低压预装式变电站》(GB/T12467-1998),箱式变电站的技术要求与设计规范如下。

1.3.1额定值

(1)额定电压:对高压开关设备和控制设备,按GB/T 11022。对低压开关设备和控制开关设备,按GB/T 14048.1和GB 7251.1。

(2)额定绝缘水平:对高压开关设备和控制设备,按GB/T 11022;对低压开关设备和控制设备,按GB/T 14048.1和GB 7251.1。低压开关设备和控制设备的最低额定冲击耐受电压至少应为GB/T 16935.1—1997的表1中IV类过电压的给定值。

(3)额定频率和相数:按GB/T 11022、GB/T 14048.1和GB 7251.1。

(4)额定电流和温升:额定电流按GB/T 11022和GB 7251.1。高压开关设备和控制开关设备的温升按GB/T 11022,低压开关设备和控制设备的温升,按GB 7251.1。

(5)额定短时耐受电流:对于高压开关设备和控制开关设备,按GB/T 11022;对低

5

35kV 箱式变电站设计

6

压开关设备和控制开关设备,按GB 7251.1;对变压器按IEC 76-5和GB 6450。

(6)额定短路持续时间:对高压开关设备和控制设备,按GB/T 11022;对低压开关

设备和控制设备,按GB 7251.1。

(7)操动机构和辅助回路的额定电源电压:对高压开关设备和控制开关设备,按

GB/T 11022;对低压开关设备的控制设备,按GB 7251.1。

(8)操动机构和辅助回路的额定电源频率:对高压开关设备和控制设备,按GB/T

11022;对低压开关设备的控制设备,按GB 7251.1。

(9

)预装式变电站的额定最大容量:预装式变电站的额定最大容量是设计变电站时

指定的变压器的最大额定值。

1.3.2

设计和结构

预装式变电站应设计成能够安全进行正常使用、检查和维护。

(1)接地:除按GB/T11022,还应符合以下规定。应提供一条连接预装式变电站

的每个元件的接地导体。接地导体的电流密度,如用铜导体,当额定短路持续时间为1s

时不应超过200A/mm 2,当额定短路持续时间为3s 时不应超过125A/mm 2;但其截面积

不应小于30mm 2。它的端部应有合适的接线端子,以便和装置的接地系统连接。

(2)辅助设备:对于预装式变电站内的低压装置(例如照明、辅助电源等),适用

时,按GB/T 14821.1或GB7251.1防护等级:防止人员触及危险部件、并防止外来物体

进入和水分浸入设备的保护是必需的。

(3)主接线设计与一次设备选型预装式变电站外壳的防护等级应不低于GB4208

—1993中的IP23D 更高的防护等级可以按GB4208予以规定。

(4)操作通道:预装式变电站内部的操作通道的宽度应适应于进行任何操作和维

护。该通道的宽度应为800mm 或更大些。预装式变电站内部的快关设备和控制设备的

门应朝出口方向关闭,或者是转动的,这样不致减少通道的宽度。门在任一开启位置或

开关设备和控制设备突出的机械传动装置不应将通道的宽度减少到500mm 。

(5)预装式变电站的选用导则

对于给定的运行方式,选用预装式变电站时,要按正常负荷条件和故障情况的要求

来选择各元件的额定值。外壳级别的选择取决于周围温度和变压器的负荷系数。对某一

额定外壳等级,变压器的负荷系数取决于变电站安装处的周围温度。对变动的负荷,可

按GB/T 17211,采用一个修正系数。可以用本标准的附录D 来确定外壳级别和变压器

的负荷系数。

(6)主变压器与箱体之间应满足最小防火净距

《35~110kV 变电站设计规范》中规定,耐火等级为二级的建筑物与变压器(油浸)

XXXX大学毕业设计(论文)

之间最小防火净距为10m。其面对变压器、可燃介质电容器等电器设备的外墙(符合防火墙要求),在设备总高加3m及两侧各3m的范围内不设门窗不开孔洞时,则该墙与设备之间的防火净距可不受限制;如在上述范围内虽不开一般门窗,但设有防火门时,则该墙与设备之间的防火净距应等于或大于5m。

配电装置的最低耐火等级为二级,箱式配电站箱体内部一次系统采用单元真空开关柜结构,每个单元均采用特制铝型材装饰的大门结构,每个间隔后部均设有双层防护板,即可打开的外门,我们在设计工作中,主变与箱体之间最小防火净距建议采用10m,以确保变电所安全运行。

(7)10kV电缆出线应穿钢管敷设

为求美观,变电所内10kV箱式配电站箱体四围一般均设计为水泥路面,10kV线路终端杆一般在变电所围墙外10m处。如果将电缆直埋,引至线路终端杆,将给检修带来很大不便。因此10kV电缆出线应穿钢管敷设,以方便用户维护检修。如10kV线路终端杆距离变电所较远,则箱体至变电所围墙段的10kV电缆出线必须穿钢管敷设。在电缆出线末端的线路终端杆上装设新型过电压保护器,以防止过电压。

(8)操作通道

预装式变电站内部的操作通道的宽度应适于进行任何操作和维护。该通道的宽度应为800mm或更大些。预装式变电站内部的开关设备和控制设备的门应朝出口方向,或者是转动的,这样不致减小通道的宽度。门在任一开启位置或开关设备突出的机械传动装置不应将通道的宽度减小到500mm。

1.3.3 使用条件

(1)正常使用条件

①外壳:预装式变电站应设计成能在按GB/T 11022规定的正常户外使用条件下使用。

②高压开关设备和控制设备:在外壳内部按GB 7251.1规定的正常户外使用条件。

③变压器:外壳内的变压器在额定电流下,其温升比无外壳条件下的要求高,会超过GB 1094.2或GB 6450 规定的温度极限。变压器的使用条件应按安装地点外部的使用条件和外壳级别来确定。变压器的制造厂或用户能够据此计算降低变压器的使用容量。

(2)特殊使用条件

高压开关设备和低压开关设备和控制设备在海拔超过1000m的地区按GB/T 11022的规定。低压开关设备和控制设备在海拔超过2000m的地区按GB/T7251.1的规定。变压器在海拔超过1000m的地区,按GB 1094.2或GB 6450的规定[11]。

7

35kV箱式变电站设计

8

1.3.4 箱体要求

(1)箱体内照明、通风、防沙、散热应满足正常运行、维护要求,并应加装温度、湿度测量表计、凝露器、烟雾报警装置,并将温度、湿度、凝露、烟雾报警探头信号接入综合自动化系统,要考虑安装通讯设备的位置。

(2)箱顶应考虑自然排水功能。

(3)要抗紫外线辐射,抗暴晒性能好,不易导热可避免因外部温度过高而引起箱体温度升高。

(4)防潮性能好,不会因冷热突变而产生凝露。

(5)防腐、防裂、阻燃、防冻性能好。

(6)要机械强度高,耐压抗张,抗冲击。

(7

)对环境有良好的协调性,能美化环境,可适应各种气候条件,外形美观,结

构紧凑,箱体占地面积少,节约土地。

1.3.5 箱式变电站内部电器设备

(1)箱式变电站高压配电装置接线应尽量简单,既有终端变电站接线,也应有适应环网供电的接线。高压配电装置宜采用符合开关加熔断器组合结构,油浸式变压器容量在800kVA及以上时,应采用能切断电源的装置与变压器瓦斯保护相配合。高压配电装置应具有防止误拉、合开关设备,带负荷拉、合刀闸,带电挂地线,带地线合闸和工作人员误入带电间隔的五防措施。负荷开关和熔断器之间也应有可靠的连锁。箱体门内侧应附有主回路线路图、控制线路图、操作程序及注意事项。母线宜采用绝缘导线(或绝缘母线)。高压进出线应考虑电缆的安装位置和便于进行试验。

(2)变压器应采用损耗低、体积小、适合箱体内安装的结构。根据不同的用户要求,可以采用油浸式、干式或气体绝缘式、无载调压式或有载调压式。变压器如有油枕,其油标应便于监视。变压器的铭牌应面向箱门一侧。容量315kVA及以上变压器,宜装设电接点温度计,以监测变压器上层油温(或气体温度)和启动通风冷却装置。

1.4 本课题的主要任务

(1)35KV箱式变电站的总体结构设计

(2)箱式变电站主接线设计于一次设备选型

(3)二次系统设计

(4)箱式变电站智能监控功能设计

XXXX 大学毕业设计(论文)

9

第2章 35kV 箱式变电站的总体结构设计

2.1 电气主接线的确定

2.1.1 主接线的基本形式

主接线的基本形式,就是主要电气设备常用的几种连接方式,概括为有母线的接线形式和无母线的接线形式两大类。

(1)具有母线的电气主接线 ①单母线接线:单母线接线是一种最原、最简单的接线方式。

②单母线分段接线

③双母线及双母线分段接线

③旁路母线接线方式

(2)无母线的电气主接线

①桥形接线:当具有两台变压器和两条线路时,在变压器线路接线的基础上,在其中间架一连接桥,则称为桥形接线

②单元接线:发电机与变压器直接连接成一个单元,组成发电机

2.1.2 箱式变电站对主接线的基本要求

概况地说,对主接线的基本要求包括安全、可靠、灵活、经济四个方面

安全包括设备安全及人身安全。要满足这一点,必须按照国家标准和规范的规定,正确选择电气设备及正常情况下的监视系统和故障情况下的保护系统,考虑各种人身安全的技术措施。

可靠就是主接线应满足对不同负荷的不中断供电,且保护装置在正常运行时不误动、发生事故时不拒动,能尽可能的缩下停电范围。为了满足可靠性要求,主接线应力求简单清晰。电器是电力系统中最薄弱的元件,所以不应当不适当地增加电器的数目,以免发生事故。

灵活是用最少的切换,能适应不同的运行方式,适应调度的要求,并能灵活、简便、迅速地倒换运行方式,使发生故障时停电时间最短,影响范围最小。因此,电气主接线必须满足调度灵活、操作方便的基本要求。

经济是指在满足了以上要求的条件下,保证需要的设计投资最少。在主接线设计时,主要矛盾往往发生在可靠性与经济性之间。欲使主接线灵活、可靠,必须要选用高质量的设备和现代化的自动装置,从而导致投资费用的增加。因此,主接线的设计应满足可

35kV箱式变电站设计

靠性和灵活性的前提下,做到经济合理。主要应从投资声、占地面积少、电能损耗小等几个方面综合考虑。

2.1.3主接线的比较与选择

单母线接线是一种原始、最简单的接线,所有电源及出线均接在同一母线上,其优点是简单明显,采用设备少,操作简便,便于扩建,造价低。缺点是供电可靠性低。母线及母线隔离开关等任一元件发生故障或检修时,均需使整个配电装置停电。因此,单母线接线方式一般只在发电厂或变电所建设初期无重要用户或出线回路数不多的单电源小容量的厂中采用。

在主接线中,断路器是电力系统的主开关;隔离开关的功能主要是隔离高压电源以保证其他设备和线路的安全检修。例如,固定式开关柜中的断路器工作一段时间需要检修时,在断路器断开电路的情况下,拉开隔离开关;恢复供电时,应先合隔离开关,然后和断路器。这就是隔离开关与断路器配合操作的原则。由于隔离开关无灭弧装置,断流能力差,所以不能带负荷操作。

单母线分段接线是采用断路器(或隔离开关)将母线分段,通常是分成两段。母线分段后可进行分段检修,对于重要用户,可以从不同段引出两个回路,当一段母线发生故障时,由于分段断路器在继电保护作用下自动将故障段迅速切除,从而保证了正常母线不间断供电和不致使重要用户停电。两段母线自动同时故障的机遇很小,可以不予考虑。在供电可靠性要求不高时,亦可用隔离开关分段,任一段母线发生故障时,将造成两断母线同时停电,在判断故障后,拉开分段隔离开关,完好段即可恢复供电。

单母线分段接线既具有单母线接线简单明显、方便经济的优点,又在一定程度上提高了供电可靠性。但它的缺点是当一段母线隔离开关发生故障或检修时,该段母线上的所有回路到要长时间停电。单母线分段接线连接的回路数一般可比单母线增加一倍。

双母线分段接线有如下优点:可轮换检修母线或母线隔离开关而不致供电中断;检修任一回路的母线隔离开关时,只停该回路;母线发生故障后,能迅速恢复供电;各电源和回路的负荷可任意分配到某一组母线上,可灵活调度以适应系统各种运行方式和潮流变化;便于向母线左右任意一个方向顺延扩建。

但双母线也有如下的缺点:造价高;当母线发生故障或检修时,隔离开关作为倒换操作电器,容易误动作。但可加装断路器的连锁装置或防误操作装置加以克服。

当进线回路数或母线上电源较多时,输送和穿越功率较大,母线发生事故后要求尽快恢复供电,母线和母线设备检修时不允许影响对用户的供电,系统运行调度对接线的灵活性有一定要求时采用双母线接线。

综上可知,单母线接线造价低而供电稳定性低,双母线供电稳定性高但其造价高且

10

XXXX 大学毕业设计(论文)

11

接线线路复杂,而单母线分段接线一方面线路简单,造价低,另一方面其供电稳定性也能在一定程度上能够得以保证。所以35kV 母线选用单母线接线方式,10kV 采用单母线分段接线。

2.1.4 高压接线方式

高压侧,采用负荷开关+限流熔断器作为就压器的主保护,一般有环网、双电源和终端三种供电方式,有两组插入式熔断器和后备保护熔断器串联进行分段范围保护。限流熔断器一相熔断时必须能联动跳开三相负荷开关,不发生缺相运行。线路侧负荷开关

必须配有直流电源电动操作机构,可实现无外来交流电源状态下自启动。环网回路必需

配置检测故障电流用的电流互感器或传感器。

高压开关选用可靠性高和具有自动化装置及智能化接口的先进的产品:如SF6负荷开关、压气式负荷开关、真空负荷开关等。

环网供电单元一般至少由三个间隔组成,即二个环缆进出间隔和一个变压器回路间隔。其中,负荷开关QLA和QLB在隔离故障线段时,能及时恢复回路的连续供电;同负荷开关QLC相连的熔断器F在中压/低压变器发生内部故障时起保护作用;QLC对溶断器和变压器还起隔离和接地作用。

2.2 箱式变电站箱体的确定

2.2.1 箱体结构的确定

箱式变电站按结构主要有美式箱变和欧式箱变。欧式箱变造价低而美式箱变体积小,约为同容量欧式箱变的1/3~1/5。常规土建变电站占地面积最大,欧式箱变次之,美式箱变常规土建变电站建造周期最长,欧式箱变次之。综合考虑一般35kV 箱式变电站的箱体选择欧式箱变。

2.2.2 合理配置

根据实际情况可以采用不同的箱变配置方案,一般将主变压器和电容器等充油设备,放置在箱体外,设置两个箱体,一个35kV 箱体,一个10kV 箱体,其中一个箱体预留保护装置的位置。考虑节省资金,也可以将35kV 断路器等设备放于户外,只设置10kV 箱体。

箱体的底座和骨架一般采用槽钢和角钢焊接而成,顶盖和四壁采用金属板内衬阻燃材料压制而成,能起到隔热的作用。根据当地实际情况,可在订货时对主体结构提出相应的要求。我县地处盐碱地带,对设备的抗腐蚀性能要求较高,因此除主体框架采取了

35kV 箱式变电站设计

12

防腐工艺加工外,箱体的整体外层衬板采用了0.5mm 厚的不锈钢板。

维护走廊是箱变正常运行和检修中的重要环节,箱变的一个缺陷就是空间狭小,厂家从成本和设备紧凑性考虑,维护走廊一般都尽量压缩。在选型时应该将维护走廊作为一项指标来考虑,不然会给将来的运行和维护,造成很大麻烦。

箱体的密封和防尘是一个重要方面,特别是保护装置对防尘等指标要求较高,应引起重视。

箱体的底板下面,一般作为电缆室,在考虑箱体基础的设计时,应顾及到电缆的安装和维护方便,应考虑人员出入、通风以及照明等方面的要求。

2.3 变压器

2.3.1

变压器容量、接线组别的确定

箱变用变压器为降压变压器,一般将

10KV降至

380

V/220V,变压器容量一般为160~1600KVA,最常用的容量为315~630KVA。其器身为三相三柱或三相五柱结构、Dyn11或Yyn12联结,熔断器连接在“Δ”外部。三相五柱式Dyn11变压器的优点是带三相不对称负荷能力强,不会因三相负载不对称造成中性点电压偏移,负载电压质量可得到保证,这种变压器具有很好的耐雷特性。变压器应具有齐全的运行检视仪器仪表,如油位表和上层油温表及反映顶部气压强度的真空压力表等。

变压器选用S9-M、S11M全密封、免维护、低噪音、性价比高的油浸式变压器(噪音≤50dB)或新型干式变压器(噪音≤55dB)等。采用干式变压器时,变压器室必须配散热系统。目前,国内大多采用新S9或S11系列配电变压器,有的也采用了非晶合金变压器,其优点是空载损耗很小,只有1/4~1/3,但其价格高出1.3~1.6倍,但随着制造技术的提高,一旦价格下来,非晶合金变压器会占据市场主导地位。

综合考虑35kV 箱式变电站变压器的容量确定为5000kVA ,因为三相五拄D ,yn11连接变压器带三相不对称负载能力强,不会因三相负载不对称造成中性点电压偏移,负载电压质量可得到保证;此外,这种变压器还具有很好的耐雷特性。因此变压器的连接组别为三相五柱D ,yn11,阻抗电压为U d =7.0%,采用油浸式变压器。由于三相五拄D ,yn11联结,如果熔断器一相熔断后,会造成低压侧两相电压不正常,为额定电压的1/2,会使负载欠压运行。因此将熔断器连接在“△”内部。因为这样如果熔断器一相熔断后不会造成低压侧两相电压不正常,熔断器所对应的低压侧相电压几乎为零,其它两相电压正常。而站用变压器容量确定为50kVA ,连接组别采用D ,yn11,接在35kV 母线上将35kV 电压降低为0.4kV 供箱式变电站本身使用。

35KV降压变电站设计

[目录] 前言 第一篇任务书 一、设计要求 二、原始资料 三、设计任务 四、设计成果 第二篇说明书 第一章概述 第二章主接线设计方案 第三章主变台数和容量的选择 第四章所变的选择和所用电的设计 第五章短路电流计算 第六章导体及电气设备的选择. 第三篇计算书 一、主变容量的计算 二、短路电流计算 参考资料

第一篇任务书 一、设计要求 1、建立工程设计的正确观点,掌握电力系统设计基本原则和方法。 2、培养独立思考、解决问题的能力。 3、学习使用工程设计手册和其他参考书的能力,学习撰写工程设计说明书。 二、原始资料 1、某国营企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。 2、距本变电所6Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1000MVA 。 3、待设计的变电所10KV无电源,考虑以后装设的组电容器,提高功率因素,故要求预留两个间隔。 4、本变电所10KV母线到各个车间均用电缆供电,其中一车间和二车间为一类负荷,其余为二类负荷,Tmax=4000h ,各馈线负荷如表1—1

5、所用电的主要负荷见表1—2

6、环境条件 1)当地最热月平均最高温度29.9°c,极端最低温度-5.9°c,最热月地面0.8m 处土壤平均26.7°c ,电缆出线净距100mm。 2)当地海拔高度507.4m。雷暴日数36.9日/年:无空气污染,变电所地处在 P≤500m·Ω的黄土上。 三、设计任务 1、设计本变电所的主电路,论证设计方案是最佳方案,选址主变压器的容量和台数。 2、设计本变电所的自用电路,选择自用变压器的容量和台数。 3、计算短路电流。 4、选择导体及电气设备。 四、设计成果 1、设计说明书和计算书各一份 2、主电路和所用电路图各一份 第二篇说明书 第一章概述 一、设计依据 根据设计任务书给出的条件。 二、设计原则

35KV某变电站综合自动化改造工程施工组织设计

35kV金熊变电站综合自动化改造工程施工设计方案

说明 一、本施工方案一式六份,分别送潜江供电公司生技部、安监部、调度、输变电工区,另一份放在施工现场,一份本单位存档。 二、施工方案经过上级审批通过后,必须严格按计划执行,各类施工必须按计划时间开工及在计划工期内完成。 三、施工方案中的各类施工,如涉及到需要办理停电第一种工作票时必须按规定报票。 四、较大型的施工项目,如需有关部门人员到施工现场的,应事先告知。 五、在施工过程中如需申请中间验收的应及时通知相关部门人员组织中间验收,并妥善保管中间验收结论。 六、工程完工后申请竣工验收,经验收合格后,办理竣工报告及移交相关资料等。

编制/日期:审核/日期:会审/日期:

批准/日期: 1 概况:为了进一步保护证电网的安全运行,提高供电可靠性,根据上级的工作安排,我们对35kV金熊变电站进行综自改造。具体内容为: 1.1 新增屏位基础及屏底电缆沟施工,室外电缆沟改造。 1.2 后台安装调试。 1.3 更换35KV主变保护测控屏、公用柜屏、直流屏、交流屏。1.4 新增35KV线路保护测控屏、远动屏、不间断电源柜。 1.5 更换10KV所属馈线保护装置8套及CT 9组,更换10VPT。

1.6 更换室外端子箱为不锈钢端子箱,新增检修端子箱。 1.7 更换相应的二次电缆。 1.8 室外电缆沟改造。 1.9更换站变为S11-100/35型。 1.10执行反措:屏柜接地铜排环状连接接地、CT二次N级在端子箱接地、PT二次N级引至保护屏接地、等等。 为了安全、优质、按时地完成此项工程,特编制本方案。 2组织措施: 2.1 工作负责人:xxx。 负责该项工程施工的组织、协调,根据工程进度调整工作计划和组织验收施工质量,保证工程进度和工程质量。督促全体工作人员认真执行安全措施,确保安全生产。 2.2 现场负责人:别必举。 负责该项工程施工的组织、协调。工作负责人不在现场的时候,履行工作负责人职责。 2.3 现场安全负责人:王卫华。 职责:督促全体施工人员认真贯彻执行国家颁布的安全法规,及企业制定的安全规章制度;深入现场每道工序,掌握安全重点部位的情况,检查各种防护措施,纠正违章指挥,违章作业,并建立违章作业登记;参加项目经理组织的定期安全检查,查出的问题要督促在限期内整改完成;发现危险及危害职工生命安全的重大安全隐患,有权力制止作业,并组织施工人员撤离危险区域;负责检查现场所做的安全措施是否符合实际,并做好危险点的分析与控制。 2.4 一次工作负责人:田刚。

35KV变电站毕业设计(完整版).doc

35kV 变电站设计原始数据 本次设计的变电站为一座35kV 降压变电站,以10kV给各农网供电,距离本变电站15km和10km处各有一个系统变电所,由这两个变电所用35kV双回架空线路向待设计的变电站供电,在最大运行方式下,待设计的变电站高压母线上的短路功率为 1500MVA。 本变电站有 8 回 10kV架空出线,每回架空线路的最大输送功率为 1800kVA;其中 #1 出线和 #2 出线为Ⅰ类负荷,其余为Ⅱ类负荷及Ⅲ类负荷, Tmax=4000h,cosφ=0.85。 环境条件:年最高温度 42℃;年最低温度 -5℃;年平均气温 25℃;海拔高度 150m;土质为粘土;雷暴日数为 30 日/ 年。

35KV变电站设计 一、变电站负荷的计算及无功功率的补偿 1.负荷计算的意义和目的 所谓负荷计算,其实就是计算在正常时通过设备和导线的最大电流,有了这个才可以知道选择多大截面的导线、设备。负荷计算是首要考虑的。要考虑很多因素才能计算出较为准确的数值。如果计算结果偏大,就会将大量的有色金属浪费, 增加制作的成本。如果计算结果偏小,就会使导线和设备运行的时候过载,影响 设备的寿命,耗电也增大,会直接影响供电系统的稳定运行。 2.无功补偿的计算、设备选择 2.1无功补偿的意义和计算 电磁感应引用在许多的用电设备中。在能量转换的过程中产生交变磁场,每个周 期内释放、吸收的功率相等,这就是无功功率。在电力系统中无功功率和有功功 率都要平衡。有功功率、无功功率、视在功率之间相互关联。 S P2Q2 S——视在功率, kVA P——有功功率, kW Q——无功功率, kvar 由上述可知,有功功率稳定的情况下,功率因数 cosφ越小则需要的无功功率越 大。如果无功功率不通过电容器提供则必须从该传输系统提供,以满足电力线和变 压器的容量需要增加的电力需求。这不仅增加了投资的供给,降低了设备的利用 率也将增加线路损耗。为此对电力的国家规定:无功功率平衡要到位,用户应该 提高用电功率因数的自然,设计和安装无功补偿设备,及时投入与它的负载和电 压的基础上变更或切断,避免无功倒送回来。还为用户提供了功率因数应符合相 应的标准,不然,电力部门可能会拒绝提供电力。所以无功功率要提高功率因

35kV变电站一次部分设计(中)

35kV变电站一次部分设计(中)

第6章 无功补偿 6.1 无功补偿概述 电力系统中有许多根据电磁感应原理工作的电气设备,如变压器、电动机、感应炉等。都是依靠磁场来传送和转换电能的电感性负载,在电力系统中感应电动机约占全部负荷的50%以上。电力系统中的无功功率很大,必须有足够的无功电源,才能维持一定的电压水平,满足系统安全稳定运行的要求。 电力系统中的无功电源由三部分组成:1、发电机可能发出的无功功率(一般为有功功率的40%-50%);2、无功功率补偿装置(并联电容器和同步调相机)输出无功功率;3、110kV 及以上电压线路的充电功率。电力系统中如无功功率小,将引起供电电网的电压降低。电压低于额定电压值时,将使发电、送电、变电设备均不能达到正常的出力,电网的电能损失增大,并容易导致电网震荡而解列,造成大面积停电,产生严重的经济损失和政治影响。电压下降到额定电压值的60%~70%时,用户的电动机将不能启动甚至造成烧毁。所以进行无功补偿是非常有必要的。 6.2 无功补偿的计算 补偿前cos 1?=0.75,求补偿后达到0.9。因此可以如下计算:设需要补偿XMva 的无功 则 cos 2?=∑∑''S P =2250.751276.851276.8)(X -+=0.9 (6-1) 解得 X=3.377MVar 6.3 无功补偿装置 无功补偿装置分为串联补偿装置和并联补偿装置两大类。并联补偿装置又可分为同期调相机、并联电容补偿装置、静补装置等几大类。 同期调相机相当于空载运行的同步电动机在过励磁时运行,它向系统提供可无级连续调节的容性和感性无功,维持电网电压,并可以强励补偿容性无功,提高电网的

35KV变电站土建方案

五、施工方案 组织机构图 1、主变压器基础 一侧预埋4根DN40镀锌钢管,一侧预埋2根DN50镀锌钢管。一端与基础顶平齐,另一端埋至就近电缆沟。基础尺寸 2.675*2.675,基础埋深为1.65M。基础混凝土采用C30,;垫层混凝土采用C15。钢材采用Q235B,焊条采用E43。钢筋采用HPB235级,基础钢筋保护层厚度40MM。油池混凝土地坪以0.5%坡度坡向集水井,最薄处不小于100MM。油池内

干铺卵石,粒径为50-80MM,铺设厚度不小于250MM。所有埋管管底标高度0.8M,伸入电缆沟时管口应高于沟底100MM。所有埋件焊缝均为满焊,焊缝高度为8MM。所有埋管弯曲半径不小于10倍管径。 励磁支架及基础 基础垫层采用C10混凝土,杯基采用C20混凝土,二次灌浆采用C25细石砼。电杆外形长度3500MM,地面以上2500MM。 防火墙施工:做100厚C10砼垫层,每隔200MM,横竖交错搭接直径为8和10的配筋。墙体与构造柱连接处砌成马牙槎,同时与墙体埋设钢筋拉结在一起。构造柱混凝土为C25砼,先砌墙后浇注。墙体0.000以下采用强度等级MU10机红砖,M10水泥砂浆砌筑。0.000以上采用强度等级MU10机红砖,M10混合砂浆砌筑。地面高度4500MM,最后压顶梁。 2、地基处理 各建构筑物基础基本以泥岩为持力层,基底与泥岩层间如有空隙采用毛石混凝土回填。 照明:全站照明采用正常照明和事故照明两种方式。 生产综合楼内正常电源电压采用交流380V,动力和照明系统共用的方式,由楼内主控室的交流屏供电。35KV配电室,10KV配电室、主控室、电容器室及接地变室设事故照明,事故照明电源电压采用直流220V,正常时由交流屏供电,当工作照明电源故障时,蓄电池直流系统应自动投入,由直流屏供电。楼内事故照明灯由事故照明箱集中控制,就地不设事故照明开关。 2.11 通风方案及设备选型 根据《35~110kV变电所设计规范》(GB 50059-1992)的规定,配电装置室等房间内每小时通风换气次数不应低于6次。接地变配电装置室需通风,通风采用自然进风、机械排风的方式,按照换气次数不小于

35kV箱式变电站设计(样本)

目录 摘要 (Ⅰ) Abstract (Ⅱ) 第1章绪论 (1) 1.1 供配电技术的发展 (1) 1.2箱式变电站的类型、结构与技术特点 (1) 1.2.1 箱式变电站的类型 (1) 1.2.2 箱式变电站的结构 (1) 1.2.3 箱式变电站的技术特点 (2) 1.2.4 箱式变电站与常规变电站的对比分析 (3) 1.3 箱式变电站的技术要求与设计规范 (5) 1.3.1 额定值 (5) 1.3.2 设计和结构 (6) 1.3.3 使用条件 (7) 1.3.4 箱体要求 (8) 1.3.5箱式变电站内部电器设备 (8) 1.4 本课题的主要任务 (8) 第2章35kV箱式变电站总体结构设计 (9) 2.1 电气主接线的确定 (9) 2.1.1 主接线的基本形式 (9) 2.1.2 箱式变电站对主接线的基本要求 (9) 2.1.3 主接线的比较与选择 (10) 2.1.4 高压接线方式 (11) 2.2 箱式变电站箱体的确定 (11) 2.2.1 箱体的结构的确定 (11) 2..2.2 合理配置 (11) 2.3 变压器 (12) 2.3.1 变压器容量、接线组别的确定 (12) 2.3.2 变压器的散热处理 (13) 2.3.3 用负荷开关—熔断器组合电器保护变压器 (13)

2.4 箱式变电站总体布置 (14) 第3章35kV箱式变电站一次系统设计及设备选型 (15) 3.1 主电路设计 (15) 3.1.1 概述 (15) 3.1.2 一次系统设计原则 (15) 3.1.3 一次系统设计 (15) 3.2 设备选型 (16) 3.2.1 箱式变电站设备选型应注意的方面 (16) 3.2.2 设备选型的基本原理 (17) 3.2.3 高低压电器设备选择的要求 (18) 3.2.4 断路器的选型 (19) 3.2.5 熔断器的选型 (19) 3.2.6 互感器的选型 (21) 3.2.7 隔离开关的选型 (22) 3.2.8 开关柜的选型 (22) 第4章35kV箱式变电站二次系统设计 (23) 4.1 电气二次系统设计 (23) 4.1.1 二次系统定义及分类 (23) 4.1.2 电气测量仪表 (23) 4.1.3 二次系统设计 (23) 4.2 二次系统总体方案 (24) 4.3 断路器控制与信号回路 (25) 4.3.1 概述 (25) 4.3.2 控制回路设计 (26) 4.3.3 信号回路设计 (26) 4.4 电气测量与信号系统 (26) 第5章箱式变电站智能监控功能设计 (28) 5.1 箱式变电站的监控内容 (28) 5.1.1 电量监测与保护 (28) 5.1.2 防凝露保护 (28) 5.1.3 变压器室温度保护 (28)

35KV降压变电站设计

[目录] 前言 第一篇任务书 一、设计要求 二、原始资料 三、设计任务 四、设计成果 第二篇说明书 第一章概述 第二章主接线设计方案 第三章主变台数和容量的选择 第四章所变的选择和所用电的设计 第五章短路电流计算 第六章导体及电气设备的选择. 第三篇计算书 一、主变容量的计算 二、短路电流计算 参考资料

第一篇任务书 一、设计要求 1、建立工程设计的正确观点,掌握电力系统设计基本原则和方法。 2、培养独立思考、解决问题的能力。 3、学习使用工程设计手册和其他参考书的能力,学习撰写工程设计说明书。 二、原始资料 1、某国营企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。 2、距本变电所6Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1000MVA 。 3、待设计的变电所10KV无电源,考虑以后装设的组电容器,提高功率因素,故要求预留两个间隔。 4、本变电所10KV母线到各个车间均用电缆供电,其中一车间和二车间为一类负荷,其余为二类负荷,Tmax=4000h ,各馈线负荷如表1—1

5、所用电的主要负荷见表1—2 交流焊机10.5 6、环境条件 1)当地最热月平均最高温度29.9°c,极端最低温度-5.9°c,最热月地面0.8m 处土壤平均26.7°c ,电缆出线净距100mm。 2)当地海拔高度507.4m。雷暴日数36.9日/年:无空气污染,变电所地处在 P≤500m2Ω的黄土上。 三、设计任务 1、设计本变电所的主电路,论证设计方案是最佳方案,选址主变压器的容量和台数。 2、设计本变电所的自用电路,选择自用变压器的容量和台数。 3、计算短路电流。 4、选择导体及电气设备。

35KV降压变电所设计方案

35KV降压变电所设计方案 第一篇任务书 一、设计要求 1、建立工程设计的正确观点,掌握电力系统设计基本原则和方法。 2、培养独立思考、解决问题的能力。 3、学习使用工程设计手册和其他参考书的能力,学习撰写工程设计说明书。 二、原始资料 1、某国营企业为保证供电需求,要求设计一座35KV降压变电所,以10KV电缆给各车间供电,一次设计并建成。 2、距本变电所6Km处有一系统变电所,由该变电所用35KV双回路架空线路向待定设计的变电所供电,在最大运行方式下,待设计的变电所高压母线上的短路功率为1000MVA 。 3、待设计的变电所10KV无电源,考虑以后装设的组电容器,提高功率因素,故要求预留两个间隔。 4、本变电所10KV母线到各个车间均用电缆供电,其中一车间和二车间为一类负荷,其余为二类负荷,Tmax=4000h ,各馈线负荷如表1—1 序号车间名称计算用有功功率 (kw) 计算用无功功率 (kvar) 1 一车间 1046 471

2 二车间 735 487 3 机械车间 808 572 4 装配车间 1000 491 5 锻工车间 920 276 6 高压站 1350 297 7 高压泵房 737 496 8 其他 931 675 5、所用电的主要负荷见表1—2 序号车间名称额定容 量(KW) 功率因 素 (cos ) 安 装 台 数 工 作 台 数 备注 1 主充电机20 0.88 1 1 周期性负 荷 2 浮充电机 4.5 0.85 1 1 经常性负 荷 3 蓄电池室通 风2.7 0.88 1 1 经常性负 荷 4 室装配装置 通风110.79 2 2 周期性负 荷 5 交流焊机10.5 0.5 1 1 周期性负 荷

35kV箱式变电站设计开题报告

重庆大学网络教育学院 学生毕业设计(论文)开题报告 一、课题的目的及背景: 目的:了解研究箱式变电站的智能监控系统。箱式变电站作为一种新型的变电站,与常规变电站相比,具有占地面积小、现场安装工作量少、安装周期短、可以自由移动、减少线路损耗、投资少等优点,被广泛应用于城区、农村10~110kv中小型变(配)电站、厂矿及流动作业用变电站的建设与改造。因其易于深入负荷中心,减少供电半径,提高末端电压质量,特别适用于农村电网改造,被誉为21世纪变电站建设的目标模式。其广泛的运用,有利于实现自动化,智能化,减少人为造成的故障,提高国家电网的供电质量。为此应该对变电站进行很好的监控及保护。 背景:随着市场经济的发展,在城乡电网建设和改造中,要求高压直接进入负荷中心,形成高压受电—变压器降压—低压配电的供电格局,所以供配电要向节地、节电、紧凑型、小型化、安全、无人值守的方向发展。箱式变电站就是为适应这种发展要求设计的一种新式供电设备,又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备。 箱式变电站就是为适应这种发展要求设计的一种新式供电设备,又称户外成套变电站,也有称做组合式变电站,它是发展于20世纪60年代至70年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备。国外相关研究综述:箱式变电站是60年代从国外发展起来的一种新式供电设备,从结构上来说,基本上可分为欧洲式和美国式两种。 二、基本原理: 箱式变电站通常可分为一次设备和二次设备俩大类,主接线所连接都是一次设备,而二次设备是指测量表计、控制及信号设备、继电保护设备。 三、结构组成: 箱式变电站的发展应用及箱式变电站的结构分类;掌握箱式变电站一次系统设计及其设备选型、二次系统设计;箱式变电站有美式箱式变电站和欧式箱式变电站。美式预装式变电站在我国

35kV降压变电所电气设计-毕业设计

目录 中文摘要 (1) 英文摘要 (2) 1 引言 (3) 1.1 设计的原始资料 (3) 1.2 设计的基本原则: (3) 1.3 本设计的主要内容 (4) 2主接线的设计 (5) 2.1 电气主接线的概述 (5) 2.2 电气主接线基本要求 (5) 2.3 电气主接线设计的原则 (5) 2.4 主接线的基本接线形式 (6) 2.5 主接线的设计 (6) 2.6 电气主接线方案的比较 (6) 3 负荷计算 (8) 3.1 负荷的分类 (8) 3.2 10kV侧负荷的计算 (8) 4 变压器的选择 (10) 4.1 主变压器的选择 (10) 4.1.1 变压器容量和台数的确定 (10) 4.1.2 变压器型式和结构的选择 (10) 4.2 所用变压器的选择 (11) 5 无功补偿 (12) 5.1 无功补偿概述 (12) 5.2 无功补偿计算 (13) 5.3 无功补偿装置 (13) 5.4 并联电容器装置的分组 (14) 5.5 并联电容器的接线 (14) 6 短路电流的计算 (15) 6.1 产生短路的原因和短路的定义 (15) 6.2 电力系统的短路故障类型 (15) 6.3 短路电流计算的一般原则 (15) 6.4 短路电流计算的目的 (16) 6.5 短路电流计算方法 (16) 6.6 短路电流的计算 (17) 7 高压电器的选择 (19)

7.1 电器选择的一般原则 (19) 7.2 高压电器的基本技术参数的选择 (20) 7.3 高压电器的校验 (20) 7.4 断路器的选择选择 (21) 7.5 隔离开关的选择 (24) 7.6 电流互感器的选择 (26) 7.7 电压互感器的选择 (28) 7.8 母线的选择 (29) 7.9 熔断器的选择 (30) 8 继电保护和主变保护的规划 (31) 8.1 继电保护的规划 (31) 8.1.1 继电保护的基本作用 (31) 8.1.2 继电保护的基本任务 (31) 8.1.3 继电保护装置的构成 (31) 8.1.4 对继电保护的基本要求 (31) 8.1.5 本设计继电保护的规划 (32) 8.2 变压器保护的规划 (33) 8.2.1 变压器的故障类型和不正常工作状态 (33) 8.2.2 变压器保护的配置 (34) 8.2.3 本设计变压器保护的整定 (34) 9 变电所的防雷保护 (36) 9.1 变电所防雷概述 (36) 9.2 避雷针的选择 (37) 9.3 避雷器的选择 (38) 结论与展望 (40) 致谢 (41) 参考文献 (42)

35kV箱式变电站工程设计

35kV箱式变电站工程设计成人高等教育 毕业设计 题目:35kV箱式变电站设计 学生姓名:张立佳 专业:电气工程及其自动化 完成时刻:2012年4月20日

箱式变电站又称户外成套变电站,立即高压受电、变压器降压、低压配电等功能有机地组合在一起,安装在一个防潮、防锈、防尘、防鼠、防火、防盗、隔热、全封闭、可移动的钢结构箱体内,机电一体化,全封闭运行,专门适用于矿山、住宅小区等都市公用设施,用户可按照不同的使用条件、负荷等级选择箱式变电站。箱式变电站进展于20世纪60年代至7 0年代欧美等西方发达国家推出的一种户外成套变电所的新型变电设备,进入20世纪90年代中期,国内开始显现简易箱式变电站,并得到了迅速进展。随着中国都市现代化建设的飞速进展,都市配电网的持续更新改造,必将得到广泛的应用。 本课题的要紧内容包括箱式变电站的进展应用,箱式变电站的结构分类,以及箱式变电站一次系统设计极其设备选型以及二次系统设计。35kV 箱式变电站的设计高压侧额定电压为35kV,低压侧额定电压为10kV,主变压器容量为5000kV A。主接线采纳单母线分段接线。 关键词:箱式变电站;结构,一次系统,二次系统

摘要Ⅰ 目录Ⅰ 第一章引言1 第二章箱式变电站的类型、结构与技术特点2 2.1 箱式变电站的类型2 2.2 箱式变电站的技术特点2 2.3 箱式变电站的箱体要求 3 第三章35kV箱式变电站的总体结构设计5 3.1 箱式变电站对主接线的差不多要求 5 3.2 主接线的选择 5 3.3 高压接线方式 6 3.4 箱式变电站箱体的确定6 3.5 变压器的散热处理6 3.6 箱式变电站总体布置 7 第四章35KV箱式变电站一次系统设计与设备选型8 4.1 一次系统设计 8 4.2 箱式变电站设备选型应注意的方面 8 4.3 设备选型的差不多原理8 4.4 高压一次设备的选型 8 4.5 低压一次设备选型9 4.6 高压熔断器的选择13 4.7 开关柜的选型 13 第五章35kV箱式变电站二次系统设计13 5.1 二次系统的定义及分类14 5.2 电气测量外表及测量回路14 5.3 二次系统设计 15 5.4 断路器操纵与信号回路15 5.5 操纵回路设计 23

35KV变电站毕业设计(完整版)

K1+478~K1+5888段左侧片石混凝土挡土墙第1部分 35kV变电站设计原始数据 本次设计的变电站为一座35kV降压变电站,以10kV给各农网供电,距离本变电站15km和10km处各有一个系统变电所,由这两个变电所用35kV双回架空线路向待设计的变电站供电,在最大运行方式下,待设计的变电站高压母线上的短路功率为1500MVA。 本变电站有8回10kV架空出线,每回架空线路的最大输送功率为1800kVA;其中#1出线和#2出线为Ⅰ类负荷,其余为Ⅱ类负荷及Ⅲ类负荷,Tmax=4000h,cos φ=0.85。 环境条件:年最高温度42℃;年最低温度-5℃;年平均气温25℃;海拔高度150m;土质为粘土;雷暴日数为30日/年。

K1+478~K1+5888段左侧片石混凝土挡土墙第1部分 35KV变电站设计 一、变电站负荷的计算及无功功率的补偿 1.负荷计算的意义和目的 所谓负荷计算,其实就是计算在正常时通过设备和导线的最大电流,有了这个才可以知道选择多大截面的导线、设备。负荷计算是首要考虑的。要考虑很多因素才能计算出较为准确的数值。如果计算结果偏大,就会将大量的有色金属浪费,增加制作的成本。如果计算结果偏小,就会使导线和设备运行的时候过载,影响设备的寿命,耗电也增大,会直接影响供电系统的稳定运行。 2.无功补偿的计算、设备选择 2.1无功补偿的意义和计算 电磁感应引用在许多的用电设备中。在能量转换的过程中产生交变磁场,每个周期内释放、吸收的功率相等,这就是无功功率。在电力系统中无功功率和有功功率都要平衡。有功功率、无功功率、视在功率之间相互关联。 S——视在功率,kVA P——有功功率,kW Q——无功功率,kvar 由上述可知,有功功率稳定的情况下,功率因数cosφ越小则需要的无功功率越大。如果无功功率不通过电容器提供则必须从该传输系统提供,以满足电力线和变压器的容量需要增加的电力需求。这不仅增加了投资的供给,降低了设备的利用率也将增加线路损耗。为此对电力的国家规定:无功功率平衡要到位,用户应该提高用电功率因数的自然,设计和安装无功补偿设备,及时投入与它的负载和电压的基础上变更或切断,避免无功倒送回来。还为用户提供了功率因数应符合相应的标准,不然,电力部门可能会拒绝提供电力。所以无功功率要提高功率因素,在节约能源和提高质量具有非常重要的意义。无功补偿指的是:设备具有容性负载功率和情感力量负荷,并加入在同一电路,能量的两个负载之间的相互交换。 无功补偿装置被广泛采用在并联电容器中。这种方法容易安装并且施工周期短,成本低易操作维护。 2.2 提高功率因数 P——有功功率 S1——补偿前的视在功率

煤矿地面35kV变电站的设计毕业设计(论文)

摘要 本设计初步设计了煤矿地面35kV变电站的设计。其设计过程主要包括负荷计算、主接线设计、短路计算、电气设备选择、继电保护方案、变电所的防雷保护与接地等。通过对煤矿35KV变电站做负荷统计,用需用系数法进行负荷计算,根据负荷计算的结果确定出该站主变压器的台数、容量及型号。用标幺值法对供电系统进行了短路电流计算,为电气设备的选择及校验提供了数据。根据煤矿供电系统的特点,制定了矿井变电所的主结线方式、运行方式、继电保护方案。其中35KV 侧为全桥接线,6KV主接线为单母分段。两台主变压器采用分列运行方式。并根据电流整定值以及相关数据的校验,选择了断路器、隔离开关、继电器、变压器等电气设备。 关键字:负荷计算; 变电站; 继电保护;运行方式

目录 摘要 (1) ABSTRACT .............................. 错误!未定义书签。 1 概述 (1) 1.1 设计依据 (1) 1.2 设计目的及范围 (1) 1.3 矿井基础资料 (1) 2 负荷计算 (4) 2.1 负荷计算的目的 (4) 2.2 负荷计算方法 (4) 2.3 负荷计算过程 (5) 2.3.1 各用电设备组负荷计算 (5) 2.3.2 低压变压器的选择与损耗计算 (8) 2.3.3 6kV母线侧补偿前总计算负荷 (11) 2.3.4 无功补偿计算及电容器柜选择 (11) 2.3.5 补偿后6kV母线侧总计算负荷及功率因数校验 . 12 3 变电所主变压器选择 (13) 3.1 变压器的选取原则 (13) 3.2 变压器选择计算 (13) 3.3 变压器损耗计算 (14) 3.4 35kV侧全矿负荷计算及功率因数校验 (15) 3.5 变压器经济运行方案的确定 (15) 4 电气主接线设计 (16) 4.1 对主接线的基本要求 (16) 4.2 本所电气主接线方案的确定 (16) 4.2.1 确定矿井35kV进线回路 (16) 4.2.2 35kV、6kV主接线的确定 (17) 4.2.3下井电缆回数的确定 (17) 4.2.4 负荷分配 (18) 5 短路电流计算 (20) 5.1 短路电流计算的目的 (20) 5.2 短路电流计算中应计算的数值 (20) 5.3 三相短路电流计算计算的步骤 (20) 5.4短路电流计算过程 (21) 5.5短路参数汇总表 (30) 5.6 负荷电流统计表 (32) 6 高压电气设备的选择 (33)

美式箱变设计.

美式箱变设计 随着城市建设规模的扩大及对环境的考虑,过去的那种集中降压、长距离配电以及架空电网已经不能适应现代城市的供电发展。城网改造要求高压直接进市区,变电设备深入负荷中心,电能通过地下电缆传输,配电设备与周围环境协调一致。同时因为配电设备深入到负荷中心,要求运行可靠性高,高性能(低损耗、低噪声、高抗短路强度),体积要小型化,安装简便,免维护。由此组合变压器应运而生。 组合变压器是20世纪90年代初从美国引入的技术,(所以也熟称为美式箱变)。因其结构紧凑,安装便捷,运行灵活,安全可靠,维护简单等优点而迅速被接受。目前,组合变压器已经有了飞速的发展,生产厂家不完全统计已有上百家,相关元器件配套厂家也发展有数十家,包括可配套高电压元器件。 性能优良:性能水平高,采用10、11型系列或非晶合金系列,损耗低、噪声低,抗短路能力强。 功能齐全、简单可靠:可切断负荷电流,进行全范围的电流保护,高压进线方式灵活(环网、终端),可实现断相(欠压保护),具有变电站的基本功能。 投入少、占地小、安装方便、见效快;体积小,约为同容量组合式变电站体积的1/3,省时,安装方便,现场安装只需要拧紧四个螺栓及接好进出电缆即可; 安全性好。全封闭,外表无任何导电部件,因此无需考虑绝缘距离,能保证人身安全,采用全绝缘的肘型电缆插头配合固定在支座上的高压套管接头,插拔方便。 定义:将变压器器身、开关设备、熔断器、分接开关及辅助设备进行组合的变压器。组合式变压器(成套性强、体积小、占地少、能深入负荷中心、提高供电质量、减少损耗、送电周期短、选址灵活、对环境适应性强、安装使用方便、运行可靠、投资少、见效快) 型号标注 额定容量 电压等级 产品型号字母顺序及含义

35KV变电站一次设计

2007级高职毕业设计 题目35KV企业变电所电气一次设计 教学系部电力工程系 专业发电厂及电力系统 年级 2007级 指导教师 学生姓名 学号 2010年 1月 10日 目录

原始资料分析- 4 - 第一章主接线的选择- 6 - 1-1主接线的设计原则和要求-6- 1-2主接线的拟定-7- 1-3主接线的比较与选定-11- 1-3-1技术比较- 11 - 1-3-2 经济比较- 12 - 1-4所用电的设计-14- 1-4-1所用电设的要求计- 14 - 第二章变压器的选择- 16 - 2-1主变的选择-16- 2-1-1 变电站变压器台数的选择原则- 16 - 2-1-2 变电站主变压器台数的确定- 17 - 2-1-3 变电所主变压器容量的确定原则- 17 - 2-1-4 待设计变电所主变压器容量的计算和确定- 17 -2-1-5 主变压器绕组数的确定- 18 - 2-1-6主变压器相数的确定- 18 - 2-1-7主变压器调压方式的确定- 18 - 2-1-8主变压器绕组连接组别的确定- 18 - 2-1-9 主变压器冷却方式的选择- 19 - 2-2所用变的选择-20- 2-2-1 所用变台数的选择- 20 - 2-2-2 所用变容量的选择- 20 - 第三章短路电流的计算- 21 - 3-1短路的基本知识-21- 3-2计算短路电流的目的-22- 3-3短路电流实用计算的基本假设-23- 3-4短路电流的计算步骤-23- 第四章设备的选择与校验- 28 - 4-1电气选择的一般条件-28- 4-1-1按正常工作条件选择导体和电器- 29 - 4-1-2按短路情况校验- 30 - 4-2高压断路器的选择及校验-31- 4-2-1对高压断路器的基本要求- 31 - 4-2-2额定电流的计算- 32 - 4-2-3高压断路器的选择结果及校验- 33 -

35kV降压变电站电气部分设计毕业设计

35kV降压变电站电气部分设计毕业设计 目录 摘要................................................. ABSTRACT .............................................. 目录 ................................................ 毕业设计任务书......................................... 前言 .............................................. 一毕业设计概述 (1) 1.1毕业设计题目 (1) 1.2毕业设计目的 (1) 1.3毕业设计内容 (1) 二 35KV降压变电站设计 (2) 2.1设计原则及特点 (2) 2.2设计原则 (2) 2.3设计特点 (2) 2.3设计说明 (2) 三主变压器的选择 (3)

3.1主变压器容量、台数、型号选择 (3) 3.2站用变压器选择 (4) 3.3低损耗配电变压器的结构 (5) 3.4低损耗配电变压器的特点 (6) 3.5油浸式变压器防火安全措施 (6) 四变电站电气主接线设计 (8) 4.1电气主接线的基本要求和原则 (8) 4.2电气主接线设计程序 (9) 4.3电气主接线设计 (11) 五短路电流计算 (15) 5.1短路概述 (15) 5.2造成短路原因 (15) 5.3短路危害 (15) 5.4短路计算 (16) 六电气设备的选择 (22) 6.1电气设备及分类 (22) 6.2电气设备的选择 (23) 七防雷保护设计 (32) 7.1雷电过电压 (32) 7.2雷电的危害 (32) 7.3防雷保护装置 (32)

35kV变电站典型方案设计技术原则

35kV变电站典型方案设计编制原则 1 总则 1.1 本原则基于以下基本原则 1.1.2变电站全部按无人值班变电站设计,设备选型原则是高可靠性、高技术含量、少维护或免维护、无油化、小型化。根据电网现状及规划,变电站主接线力求简单、可靠。 1.1.2主接线及设备选型应满足遥控实现运行方式改变和电能质量调整的需要,减少运行人员的现场操作。 1.1.3在主接线、设备选型及平面布置上,应考虑电网现状及规划,城市中心区、城区及城郊等不同地域的负荷密度和性质,变电站在电网中的重要性及投资效益等因素,通过经济技术分析,选取优化方案。 1.1.4 变电站主变压器一般为2或3台,在负荷密度较大且重要的地区,宜采用3台,并应满足当一台停运(故障)时,其余主变容量应不小于60%的全部负荷。 1.1.5 短路电流的确定,按可能发生最大短路电流的正常接线方式确定,不考虑切换过程中并列运行方式。变电站在允许电压波动范围内,主变压器低压侧最大短路电流应控制在:10kV不大于16kA,否则应采取降低短路电流的措施。 1.1.6变电站宜采用电气闭锁或机械闭锁,实现完善的五防闭锁功能。条件允许时也可采用微机五防闭锁。 1.1.7 变电站应设置防火、防盗设施。 1.1.8变电站应合理控制工程造价,尽量减少占地面积,弱化室内装饰,外装饰应与当地环境相协调。 2 主接线 2.1当35kV进线两回,且两台主变时,宜采用内桥接线。35kV线路有转供负荷,且进线三回及以上时,宜采用单母线分段接线。当3台主变压器时,宜采用扩大内桥接线或线变组接线方式。 2.2 当主变压器为两台时,10kV侧宜采用单母线分段接线。当主变压器为三台时,10kV宜采用单母线四分段接线方式。 3 设备选型 3.1 主变压器 3.1.1主变压器应采用低损耗、低噪音产品。低损耗指标参照10型标准;低噪音指标:控制在60dB 以下。 3.1.2 市区变压器宜选用自冷有载调压型,郊区宜选用风冷型。 3.1.3 变压器与GIS不宜采用油气联接方式。 3.1.4 主变压器容量及组别 3.1. 4.1主变压器容量 一般宜选用20MVA;高负荷密度地区可选31.5MVA。 3.1. 4.2 电压及组别 35±3×2.5%/10.5kV YN,d11 3 .2 其它主要设备选型 3.2.1 户外设备应加强外绝缘,选取防污型产品,泄露比距按污秽等级确定,最低不得小于2.5cm/ kV。 3.2.2 35kV配电装置可选用金属铠装可移开式或固定式开关柜、敞开式组合电器、敞开式断路器,断路器选用SF6或真空型,操作机构优先选用弹簧机构。 3.2.3户外35kV隔离开关宜选用高可靠一体化产品。主刀采用电动机构,地刀采用手动机构,瓷柱采用高强瓷,抗弯强度不小于8kN。 3.2.4户外35kV电流互感器城区变电站一般选用干式或SF6型,郊区一般选用油浸式;电压互感器宜选用电容式。 3.2.5避雷器:应采用硅橡胶或高瓷质外绝缘的氧化锌产品。 3.2.6 10kV开关柜选用金属铠装可移开式;断路器选用真空或SF6型。 3.2.7 开关柜应具备完善的五防闭锁功能。 4 配电装置型式 4.1 配电装置型式的选择应考虑所在地区的地理位置及环境条件。市区内优先选用占地少的户内配电装置型式,郊区可采用敞开式设备户外布置。 4.2根据《工业企业厂界噪声标准》(GB12348-90)和《城市区域环境噪声标准》(GB3096-93),变电站的运行噪音应低于表1的水平。

35kV箱式变电站设计

中国地质大学(北京) 现代远程教育 专科实习报告 题目35kV箱式变电站设计 学生姓名都春起批次112 专业电气工程及其自动化学号1129301910010学习中心安徽合肥学习中心 2012 年11 月

中国地质大学(北京)继续教育学院现代远程教育专科生毕业论文设计 摘要 在我国目前箱式变电站使用的广泛、各行各业都在使用,箱式变电站又称户外成套变电站,即将高压受电、变压器降压、低压配电等功能有机地组合在一起,安装在一个防潮、防锈、防尘、防鼠、防火、防盗、隔热、全封闭、可移动的钢结构箱体内,机电一体化,全封闭运行,特别适用于负荷集中的经济开发区、工厂、矿山、住宅小区等城市公用设施,用户可根据不同的使用条件、负荷等级选择箱式变电站。 关键词:箱式变电站;一次系统,二次系统、设计、选型。 2

中国地质大学(北京)继续教育学院现代远程教育专科生毕业论文设计 ABSTRACT In a wide range of industries in our country at present, box-type substation use are in us e, a ls o k n o wn a s ou td oo r bo x-typ e su bs ta tio n c om pl e te s ub sta ti on, th e hi gh voltage electric, step-down transformer, low voltage distribution functions are organically combined together, mounted in a waterproof,rustproof, dustproof, rat proof, fire prevention, anti-theft, heat insulation, all closed, can mobile steel structure box body,electromechanical integration, closed operation, especially suitable for load concentrated economic development zone,factories, mines, the residential areas in city public facilities, the user can be used according to different conditions, load level selection of box-type substation. Keywords: Box-type substation; a system, the two system, design,selection. 3

35KV变电站设计-35kv变电站接线图

摘要 变电站是改变电压的场所。为了把发电厂发出来的电能输送到较远的地方,必须把电压升高,变为高压电,到用户附近再按需要把电压降低,这种升降电压的工作靠变电站来完成。变电站的主要设备是开关和变压器。按规模大小不同,称为变电所、配电室等变电站是把一些设备组装起来,用以切断或接通、改变或者调整电压,在电力系统中,变电站是输电和配电的集结点,变电站主要分为:升压变电站,主网变电站,二次变电站,配电站。 一个典型的变电站要求变电设备运行可靠、操作灵活、经济合理、扩建方便。出于这几方面的考虑,本论文设计了一个35kV降压变电站,此变电站有两个电压等级,一个是35kV,一个是10kV。同时对于变电站内的主设备进行合理的选型。本设计选择选择两台主变压器,其他设备如断路器,隔离开关,电流互感器,电压互感器,无功补偿装置和继电保护装置等等也按照具体要求进行选型、设计和配置,力求做到运行可靠,操作简单、方便,经济合理,具有扩建的可能性和改变运行方式时的灵活性。使其更加贴合实际,更具现实意义。 本文以35kV厂用电变电所设计为例,论述了工厂供电系统中变电所一次二次设计全过程。通过对变电所的主接线设计,站用电接线设计,短路电流计算,电气设备动、热稳定校验,主要电气设备型号及参数的确定,运行方式分析,防雷及过电压保护装置的设计,电气总平面及配电装置断面设计和无功补偿方案设计,较为详细地完成了电力系统中变电站设计。 关键词:35KV变电所设计负荷计算;短路电流;变压器选择 word文档可自由复制I编辑

Abstract The place is change voltage substation. In order to make electricity power transmission to distant places, must take voltage increases, into high voltage and to users according to need to nearby voltage reduced again, this kind of work by lifting voltage substation to complete. The main transformer substation equipment is switch and transformers. According to size different operations etc, called the substation, the substation is used to assemble some equipment to cut or connected, change or adjusting voltage, in the power system, the substation transmission and distribution of power are mainly divided into the rally point, the substation provids pressor substation, substation, power substation, second, match. A typical substation needs the reliable and flexible operation, the economic rationality and free expansion of the equipments. For the consideration of these aspects, the paper designs a transformer substation of 35kV which has tow level of voltage, one is 35kV, and the other is 10kV. At the same time, choose the rational selection as to the main equipments in substation. This design chooses two main transformers. As to other equipments such as Circuit Breaker, Isolating switch, Current Transformer, Voltage Transformer, Reactive power compensation device, Protective Relay and so on are to be selected, designed, and configured in accordance with specific requirements. In order to make it reliable to operate, easy and simple to manipulate, economical, with the possibility of expansion and flexibility of changing its operation. As to make it more actual and practical significant. This article 35 kV power substation factory to design as an example, this paper discusses the factory power supply system of substation a second design process. Through the design of substation Lord wiring, standing electricity wiring design, short-circuit current calculation, electrical equipment dynamic and thermal stability check, the main electrical equipment model and parameter determination, and operation mode analysis, overvoltage protection device lightning protection and the design, electrical total plane and power distribution equipment design and cross section of reactive power compensation scheme design, are detailed in the power system, completed the substation design. Key words:35kV substation design load calculation; short-circuit current; transformer choice word文档可自由复制I编辑

相关主题
文本预览
相关文档 最新文档