当前位置:文档之家› 高分子物理复习提纲 - 冉蓉 - 四川大学

高分子物理复习提纲 - 冉蓉 - 四川大学

《高分子物理》考前复习提纲.doc

考题的主要类型 1.概念题主要考查对高分子物理的基本概念的掌握和理解。 2.判断题主耍考察对基本理论和主耍结论的分析判断能力。 3?论述题主要测验基础理论、基本知识掌握的程度。 4 ?简答题主要考察运用所学理论知识对实际问题的综合和概括能力、分析与解决问题的能力。 5.计算题主要考察运用所学理论知识对实际问题的计算能力。 《高分子物理》考前复习提纲 一、考试内容与要求 第一章概论 1、掌握重均、数均分子量和分子量分布的定义、表示方法,并各记两种测定方法。 2、了解高分子物理的三个组成方面和高分子的聚集态类型。 3、掌握数均、重均分子量和多分散性指数的计算方法。会计算P24第7题。 第二章高分子的链结构 1、掌握高分子链的构型、构象、链段、均方末端距、内旋转、线型高分子、全同立构等概念。 2、了解影响聚合物柔性的因素。 3、能正确冋答下列问题 (1)弹性聚合物为何貝有柔弹性? (2)聚丙烯通过单键的旋转能否把全同立构变为间同立构?为什么? (3)如何表征大分子的柔性? (4)聚乙烯、聚内烯膳、聚氯乙烯的柔性顺序是什么?为什么? (5)涤纶和芳纶那个柔性大?为什么? 第三章高分子的溶液性质 掌握聚合物的溶解过程和溶剂选择 第四章高分子的多组分体系 掌握高分子共混物的相容性、多组分高分子的界面性质 第五章聚合物的非晶态 1、掌握非晶态、玻璃化转变、主价键、次价键、内聚能密度、GOLR聚合物、聚集态、切力变稀流体、取向、取向度等概念 2、了解取向高分子材料的单轴取向和双轴取向;非晶态聚合物

可能有两类取向,即分子取向和链段取向。 3、能正确lH|答下列问题 (1)线形非晶态高聚物的力学三态是什么?并分别给岀定义。 (2)玻璃化温度的影响因素有哪些? (3)黏度的影响因素有哪些? (4)聚合物为何没有气态? 第六章聚合物的结晶态. 1 学握晶体、晶系、结晶度、熔点、串晶、球晶等基本概念 2、能正确冋答下列问题 (1)结晶的必要条件和充分条件是什么? (2)什么是最佳结晶温度? (3)结晶度与强度的关系? (4)为何高聚物结品没冇明确的熔点而冇一个熔限? (5)涤纶和芳纶那个熔点高?为什么? 第七章聚合物的屈服和断裂 1、掌握聚合物的屈服应力、脆性断裂、韧性断裂、强迫高弹形变、脆化温度、冷拉、银纹、应力发白、应力集中等基本概念; 2、能正确回答下列问题 (1)影响聚合物实际强度的因素是什么? (2)强迫高弹形变与高弹形变冇何异同点?强迫高弹形变与塑性形变冇 何异同点? ''(3)为社么聚合物的实际强度总达不到理论强度? (4)取向可使材料的强度提高几倍至几I?倍,为什么? 第八章聚合物的高弹性与黏弹性 1、掌握力学松弛、松弛时间、高弹性、粘弹性、蠕变、应力松弛、 滞后现象和力学损耗等概念 2、了解聚合物的时温等效原理 3、会计算P257第9题 4、能正确刨答下列问题 (1)雨衣在墙上为什么越來越长? (2)嚅变和应力松弛的根木原因是什么? (3)橡胶高弹性的本质是什么? (4)麦克斯韦模型和开尔文模型分别适合描述什么黏弹现彖? (5)化纤的拉伸和定长定型分属于什么力学松弛?

高分子物理知识点总结

高分子物理知识点总结 导读:我根据大家的需要整理了一份关于《高分子物理知识点总结》的内容,具体内容:高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。高分子链的构型有旋光异构和几何异构两种类型。旋光异构是由于主链中的不对称碳原子形成的,有全同... 高分子物理是研究高分子物质物理性质的科学。下面我给你分享,欢迎阅读。 高分子链的构型有旋光异构和几何异构两种类型。 旋光异构是由于主链中的不对称碳原子形成的,有全同、间同和无规三种不同的异构体(其中,高聚物中全同立构和间同立构的总的百分数称为等规度。)。 全同(或等规)立构:取代基全部处于主链平面的一侧或者说高分子全部由一种旋光异构单元键接而成间同立构:取代基相间地分布于主链平面的两侧或者说两种旋光异构单元交替键接 无规立构:取代基在平面两侧作不规则分布或者说两种旋光异构单元完全无规键接 几何异构是由于主链中存在双键而形成的,有顺式和反式两种异构体。构象:原子或原子基团围绕单键内旋转而产生的空间分布。 链段:把若干个键组成的一段链作为一个独立运动的单元 链节(又称为重复单元):聚合物中组成和结构相同的最小单位

高分子可以分为线性、支化和交联三种类型。其中支化高分子的性质与线性高分子相似,可以溶解,加热可以熔化。但由于支化破坏了高分子链的规整性,其结晶能力大大降低,因此支化高分子的结晶度、密度、熔点、硬度和拉伸强度等,都较相应的线性高分子的低。 交联高分子是指高分子链之间通过化学键形成的三维空间网络结构,交联高分子不能溶解,只能溶胀,加热也不能熔融。 高分子链的构象就是由单键内旋转而形成的分子在空间的不同形态。 单键的内旋转是导致高分子链呈卷曲构象的根本原因,内旋转越自由,卷曲的趋势就越大。这种不规则的卷曲的高分子构象称为无规线团。 高分子链的内旋转并不是完全自由的,有键角和空间位阻的限制。 自由结合链的内旋转没有键角和位垒限制;自由旋转链有键角限制,但没有空间位阻的限制。自由结合链和自由旋转链都是假想的理想链,实际中是不存在的。 实际的高分子链既不是自由结合链,也不是自由旋转链,但可以看作是一个等效的自由结合链。 柔顺性:高分子链能够改变其构象的性质 末端距:线性高分子的一端到另一端的距离 内聚能:克服分子间的作用力,把1mol液体或者固体移到其分子间的引力范围之外所需要的能量(单位体积内的内聚能则称为内聚能密度) 聚合物在不同的条件下结晶,可以形成不同的形态。 聚合物的单晶一般只能在极稀溶液中(浓度小于0.1%)缓慢结晶才能形成。

最新高分子物理重要知识点复习课程

高分子物理重要知识点 第一章高分子链的结构 1.1高分子结构的特点和内容 高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。 英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。 与低分子相比,高分子化合物的主要结构特点是: (1)相对分子质量大,由很大数目的结构单元组成,相对分子质量往往存在着分布; (2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性; (3)高分子结构不均一,分子间相互作用力大; (4)晶态有序性较差,但非晶态却具有一定的有序性。 (5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。 高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1): 表1-1高分子的结构层次及其研究内容 由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。 此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构 高分子链的化学结构可分为四类: (1)碳链高分子,主链全是碳以共价键相连:不易水解 (2)杂链高分子,主链除了碳还有氧、氮、硫等杂原子:由缩聚或开环得到,因主链由极性而易水解、醇解或酸解(3)元素有机高分子,主链上全没有碳:具有无机物的热稳定性及有机物的弹性和塑性 (4)梯形和螺旋形高分子:具有高热稳定性 由单体通过聚合反应连接而成的链状分子,称为高分子链。聚合度:高分子链中重复单元的数目; 除结构单元的组成外,端基对聚合物的性能影响很大:提高热稳定性 链接结构是指结构单元在高分子链的联接方式(主要对加聚产物而言,缩聚产物的链接方式一般是明确的)。

2014年四川大学866高分子化学及物理学

一、选择题(下列各题中,各选出最佳答案填入空格处。每题2分,共18分) 1.苯乙烯乳液聚合达到恒速阶段,欲提高反应速率,可以采用 。 A.升高温度 B.加入单体 C.加入引发剂 D.加入单体及乳化剂 2.下列体系进行聚合时,聚合物的数均聚合度与引发剂用量无关的体系是 。 A.丙烯腈 + + BPO B.丙烯腈 + AIBN C. MMA + + BPO D.氯乙烯 + BPO 3.下列单体对进行自由基共聚时,较不易发生聚合的体系是 。 A.95%醋酸乙烯酯+5%苯乙烯 B.95%苯乙烯+5%醋酸乙烯酯 C.95%醋酸乙烯酯+5%乙烯 D.95%乙烯+5%醋酸乙烯酯 4.用对甲苯磺酸催化ω-羟基酸HO-(CH 2)n -COOH 进行缩聚反应时 。 A.羟基和羧基等物质的量配比,必能得到高分子量的聚酯 B.只要把反应的副产物除去,必能得到高分子量的聚酯 C.只有在高温下反应,才能得到高分子量的聚酯 D.当n>5时,才可能得到高分子量的聚酯 5.发生调聚反应的条件是 。 A.k p >>k tr k a ≈k p B.k p <>k tr k a

四川大学期末考试试题(A卷).doc

四川大学期末考试试题(A卷) (2013——2014 学年第一学期) 课程号:303066030课序号:课程名称:计算机基础及C程序设计语言 任课教师:刘亚梅刘洋任瑞玲曾晓东余勤罗伟王茂宁王忠邓丽华成绩: 适用专业年级:2012级学生人数:印题份数:学号:姓名: 考试须知 四川大学学生参加由学校组织或由学校承办的各级各类考试,必须严格执行《四川大学考试工作管理办法》和《四川大学考场规则》。有考试违纪作弊行为的,一律按照《四川大学学生考试违纪作弊处罚条例》进行处理。 四川大学各级各类考试的监考人员,必须严格执行《四川大学考试工作管理办法》、《四川大学考场规则》和《四川大学监考人员职责》。有违反学校有关规定的,严格按照《四川大学教学事故认定及处理办法》进行处理。 一、单项选择题(每题1.5分,共45分)(注:本题及以下各题均以VC++6.0为软件编程平台) 1.一个C程序总是从_______开始执行的。 A)main函数B)程序的第一行 C)程序的第一个函数D)不固定位置 2.以下对C语言的描述正确的是。 A)函数允许嵌套定义B)编译时不检查语法 C)用户所定义的标识符必须以字母开头D)转义字符以“\”开头 3.下列C语言中运算对象必须是整型的运算符是。 A) %= B) && C) = D) *= 4.若有以下程序段:int c1, c2=3, c3=2; c1=(float)c2/c3;则执行后,c1、c2的值分别是。 A)0,3.0 B) 1,3.0 C) 0,3 D) 1,3 5.下列变量定义中合法的是。 A)short_a=0xda; B)double b=1+5e2.5; C)int a=‘A’; D)float 2_and=1-e-3; 6.若变量已正确定义并赋值,符合C语言语法的表达式是。 A)++(a+1) B)a=7+b/c=a++ C)a=a+7=c+b D)a=’\0’ 7.设int a=1,b=2,c=3,m=4,n=5,p=3;,则执行表达式(a=m10);,则a和b的值分别是。 A)10和1 B)10和0 C)11和0 D)11和1 11.以下4个选项中,不能 ..看作一条语句的是。 A)if (b= =0) m=1;n=2; B)a=0,b=0,c=0; C)if (b==0){m=1;n=2;} D)if (a>0); 注:1试题字迹务必清晰,书写工整。本题8 页,本页为第 1 页

四川大学高分子材料专业认识实习报告

一:实习时间 2013.7.2-2013.7.3 二:实习地点 1.四川航天技术研究院(成都航天模塑股份有限公司) 2.四川凯力威科技股份有限公司 三:实习目的 认识实习是本科教学计划中非常重要的一个环节,通过认识实习,我们能够了解高分子材料工业化生产的一些典型合成过程,高分子材料的一些典型成型方法,了解高分子材料的应用领域。 通过认识学习,有助于我们将基础课程如化工原理,高分子化学,材料科学与工程基础等专业基础理论知识与生产实际相结合,进一步理解和深化过去学到的知识。并能够为即将要学习的专业课程如高分子物理、聚合物加工基础、聚合反应工程、材料工厂设计等课程积累生产实践经验。 认识实习有助于我们了解工厂的生产组织管理知识和企业的经营管理模式。了解化工生产易燃易爆的特殊性,掌握基本的安全常识,培养严格的组织纪律性。 总之,认识实习是与今后的职业生活直接相关的,通过认识实习可以直接认识生产流水线和相关工艺,将课堂所学与实际的工厂生产结合起来,通过感性认识巩固加深理性认识,获得在书本上不易了解和学到的生产现场的实际知识,提高实践动手能力,并学习工程技术人员和师傅们敬业奉献、精益求精的高尚品质,开拓视野,广阔心胸,培养积极思考、解决困难的习惯,为后继专业课的学习、课程设计和毕业设计打下坚实的基础。 四:实习内容 (1)四川航天技术研究院 单位简介:四川航天技术研究院(四川航天管理局)隶属于中国航天科技集团公司。前身是国防三线建设062基地和064基地,2005年正式更名为四川航天技术研究院,在四川成都挂牌成立;该院是一个以航天型号产品、航天技术应用产业、服务业三大产业为主,以国防装备生产、火箭弹研制、航天技术应用为重点,航天制造优势突出、自主创新能力强的大型科研生产联合体。 我们参观的四川航天技术研究院的成员单位之一,成都航天模塑股份有限公司,位于四川省成都市龙泉驿经济技术开发区,该公司成立于1998年12月,主营业务为大中型汽车塑料内外装饰件、功能件及大中型汽车塑料模具,从产品设计、模具设计、模具制造、制件加工、售后服务提供全方位解决方案。主要产品包括:仪表台系列、保险杠系列、车门护板/立柱系列、车轮装饰罩系列、车载空调/暖风机外壳系列、挡泥板系列、防擦条系列、格栅系列、门槛系列、豪华车门扶手系列、杂物盒/袋系列、及大中型汽车塑料模具。是四川最大规模及综合实力最强的汽车塑料内饰件专业厂商。 实习记录:在带队老师的带领下,经过一个多小时车程,我们从学校来到了四川航天技术研究院。负责接待的老师先为我们讲解了安全知识及参观过程中的注意事项(如不要随意触摸设备,不允许拍照等),接着让我们参观了展厅,是公司的产品展示,如保险杠等汽车零部件,而在后续的参观中,我们将看到这些部件是如何生产、成型的。 在一位大概四十多岁的男师傅的带领下,我们参观了模具生产车间。车间很大,里面噪音很大,师傅的讲解很难听清。不过我们还是对模具生产制造知识有了大致的认识。

高分子物理重要知识点

高分子物理重要知识点 (1人评价)|95人阅读|8次下载|举报文档 高分子物理重要知识点 (1人评价)|96人阅读|8次下载|举报文档 1 高分子物理重要知识点第一章高分子链的结构 1.1高分子结构的特点和内容高分子与低分子的区别在于前者相对分子质量很高,通常将相对分子质量高于约1万的称为高分子,相对分子质量低于约1000的称为低分子。相对分子质量介于高分子和低分子之间的称为低聚物(又名齐聚物)。一般高聚物的相对分子质量为104~106,相对分子质量大于这个范围的又称为超高相对分子质量聚合物。英文中“高分子”或“高分子化合物”主要有两个词,即polymers和Macromolecules。前者又可译作聚合物或高聚物;后者又可译作大分子。这两个词虽然常混用,但仍有一定区别,前者通常是指有一定重复单元的合成产物,一般不包括天然高分子,而后者指相对分子质量很大的一类化合物,它包括天然和合成高分子,也包括无一定重复单元的复杂大分子。与低分子相比,高分子化合物的主要结构特点是:(1)相对分子质量大,由很大数目的结构单元组成,相对

分子质量往往存在着分布;(2)主链有一定的内旋自由度使分子链弯曲而具有柔顺性;(3)高分子结构不均一,分子间相互作用力大;(4)晶态有序性较差,但非晶态却具有一定的有序性。(5)要使高聚物加工成为有用的材料,需加入填料、各种助剂、色料等。高分子的结构是非常复杂的,整个高分子结构是由不同层次所组成的,可分为以下三个主要结构层次(见表1-1):表1-1高分子的结构层次及其研究内容 名称内容备注链结构一级结构(近程结构)结构单元的化学组成键接方式构型(旋光异构,几何异构)几何形状(线形,支化,网状等)共聚物的结构指单个大分子与基本结构单元有关的结构二级结构(远程结构)构象(高分子链的形状)相对分子质量及其分布指由若干重复单元组成的链段的排列形状三级结构(聚集态结构、聚态结构、超分子结构)晶态非晶态取向态液晶态织态指在单个大分子二级结构的基础上,许多这样的大分子聚集在一起而成的聚合物材料的结构由于高分子结构的如上特点,使高分子具有如下基本性质:比重小,比强度高,弹性,可塑性,耐磨性,绝缘性,耐腐蚀性,抗射线。此外,高分子不能气化,常难溶,粘度大等特性也与结构特点密切相关。 1.2高分子链的近程结构高分子链的化学结构可分为四类:(1)碳链高分子,主链全是碳以共价

2011年四川大学866高分子化学及物理学

一、选择顾(下列各题中,各选出最佳答案填入空格处。每题2分,共18分) 1.让聚乙烯在下列条件下结晶,在 可生成伸直链晶体的结果。 A.从极稀溶液中缓慢结晶; B.从熔体中结晶; C.极高压力下固体挤出; D.在溶液中强烈搅拌下结晶; 2.用NaOH 中和聚丙烯酸水溶液时,黏度 。 A.先增大再逐渐下降; B.先下降再逐渐增大; C.单调递增; D.单调递降。 3.黏度法测定聚合物分子量的实验中,纯溶剂和溶液的流出时间以 为宜; A.大于100秒; B.小于100秒; C.大于70秒; D.小于70秒; 4. 1,4-丁二烯聚合物可以形成顺式和反式两种构型的聚丁二烯橡胶,它们被称 为 A.旋光异构体 B.几何异构体 C.间同异构体 D.无规异构体 5.非晶态高聚物在 温度下拉伸才可以产生强迫高弹性变。 A.室温 B.T b -T g , C.T g 以上 D.T m 以上 6.玻璃化温度不能用以下 方法测定。 A.DMA B.膨胀计法 C.双折射法 D.热分析法 7.M 1、M 2两单体共聚,若r 1=0.75,r 2=0.20,若起始01f =0.80,所形成的共聚物瞬间组成为01F 。共聚反应进行到t 时刻,共聚物组成为1F ,单体组成为1f ,则 。 A.1f >01f B.1F >01F C.1F <01F D.1f <01f 8.在自由基聚合中,具有能同时获得高聚合速率和高相对分子质量的实施方法是 。 A.悬浮聚合 B.本体聚合 C.溶液聚合 D.乳液聚合 9. 下列单体中能进行自由基聚合的单体有 ,能进行阳离子聚合的单体有 。 A.CH 2=CHCl B.CH 2=CHOC 2H 5 C.CH 2=C(CH3)CH=CH 2 D.CH 2=CHNO 2 二、以适当的单体合成下列聚合物,注明引发剂,指出聚合反应机理。 (每题2分,共8分) (1)强酸型阳离子交换树脂 (2)聚碳酸酯 (3)端羟基聚苯乙烯 (4)LLDPE 三、简要回答:(每题10分,共30分) 1、有两种乙烯和丙烯的共聚物,其组成相同(均为65%乙烯和35%丙烯),但其

高分子物理知识点

构象:具有一定组成和构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性和规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成和稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M 小结晶速度块,M 大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m 高 熔融熵?S m :与分子间链柔顺性有关。分子链越刚,?S m 小 聚合物的熔点和熔限和结晶形成的温度T c 有一定的关系: 结晶温度Tc 低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc 高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物, 在该体系中存在两种或两种以上不同的聚合物, θ θθ22sin 2 3 1)1cos 3(2 1-=-=f

高分子物理期末知识点总结

UNIT1.碳链高分子:主链全部由C以共价键相连接;杂链:主链含C,以及O、S等两种或以上的原子以共价键相连接;构造:聚合物分子的各种形状(线形、枝化、交联、梯形、螺旋)构型:由化学键固定的原子在空间几何排列;构像:原子或原子团绕单键内旋转所产生的空间排布。旋光异构体:结构单元为-CH2-CHX-型,包含一个不对称C,所形成的异构体;分为全同:取代基都在主平面一侧或都由一种旋光异构单元键接而成;间同:相间分布于或两种交替链接;无规:不规则分布或两种无规链接。链段:高分子链中的单键旋转时互相牵制,一个键转动,要带动附近的一段链一起运动,把若干个键组成的一段链作为一个独立运动的单元。自由连结链:一个孤立高分子链在旋转时不考虑键角限制和位垒的障碍,每个分子由足够过的不占有体积的化学键自由结合而成的,每个键在任方向取向几率相等的理想模型。自由旋转链:分子链中每个键在键角所允许的方向自由转动,不考虑空间位阻对旋转的影响;等效自由:将一个原来有n个键长为l键角固定旋转不自由的键组成的链可视为Z个长度为b的自由结合链段的的高分子链;链的柔性:分子链能够改变其构象的性质.(不但高分子本身是一个独立运动单元,而且在每个高分子中还存在能独立运动的小单元,他们热运动的结果 使链有强烈的卷曲倾向,这是大分子链具备柔性的最根本内在原因)柔性实质:构象数增,S增,分子链卷曲程度增,分子链在无外力作用下总是自发采取卷曲形态,使构象熵最大。平衡态柔性:热力学平衡条件下的柔性,取决于反式与旁式构象之间的能量差ΔUtg。动态柔性:在外界条件影响下从一种平衡态构象向另一种平衡态构象转变的难易程度,转变速度取决于位能曲线上反式和旁式构象之间的位垒ΔUb与外场作用能之间的关系(ΔUb与kT).影响柔性的因素:分子结构:a主链结构1主链全部由单键组成,一般柔性较好,PE PP;不同单键,柔性不同Si-O>C-N>C-O>C-C.2有孤立双键,柔性大,顺式聚1,4-丁二烯;共轭双键,不能内旋转,分子刚性,聚乙炔,聚苯;有芳杂环,柔性差,芳香尼龙.b取代基1极性大作用力大,内旋转受阻,柔性差,PAN聚氯乙烯>聚1,2-二氯乙烯.3极性取代基的分布对柔性有影响,聚偏二氯乙烯>聚氯乙烯.4非极性取代基,基团体积大,空间位阻大,内旋困难,柔性差,PS1/2不良溶剂。χ1kT的物理意义:把一个溶剂分子放入高聚物中时引起的能量变化。高分子aq与小分子aq区别?什么时候可当成理想aq?比小分子aq溶解的缓慢的多,粘度明显大于小分子aq,性质存在相对摩尔质量的依赖性,而分子量有分散性,故研究很复杂;当链段与溶剂相互作用产生的混合热和混合熵相互抵消时。X1=1/2,U1e=0的溶液才能将此高分子溶液看做是理想溶液,但即使是X1=1/2,高分子溶液的ΔHm也不为0.符合理想溶液条件的高分子溶液混合自由能来源于混合热和混合熵。X1=1/2的高分子溶液宏观上热力学性质遵从理想溶液规律,其微观状态与小分子理想溶液有本质区别。过量化学位:Flory-Krigbaum稀溶液理论:1高分子稀溶液中链段的分布是不均匀的,而是以链段云得形式分布在溶剂中,每一链段云可近似球体.2在连段云内,以质心为中心,链段的径向分布符合高斯分布.3链段云彼此接近要引起自由能的变化,每个高分子链段云有其排斥体积。(引入热参数,令,定义θ=)θ温度:超额混合热/超额混合熵;θ溶液:当T=θ时,Δu1E为零,链段间与溶剂间作用能抵消,无扰状态,排斥体积为零;当T=θ,此时的高分子aq,在宏观上看热力学性质遵从理想aq,但微观状态仍是非理想,因混合热和混合熵均不为零,只是两者的效应刚好抵消,所以Δu1E=0,这一条件为θ条件或θ状态,(θ条件:选择合适的溶剂和温度,可以使溶剂分子对高分子构象所产生的干扰忽略不计(此时高分子“链段”间的相互作用等于”链段”与溶剂分子间的相互作用).在θ条件下测得的高分子尺寸为无干扰尺寸,只有无干扰尺寸才是高分子本身结构的反应)对应为θ溶剂,对应温度为θ温度。。第二维利系数A2:与χ1一样,表征高分子链段与溶剂分子之间的相互作用。凝胶:交联聚合物溶胀体,不熔不溶,既是聚合物浓溶液,又是高弹性固体;冻胶:由范德华力交联形成,加热或拆散可拆散范德华力交联而溶解。 UNIT4.数均分子量Mn:按物质的量统计的平均分子量;重均分子量Mw:按质量统计的平均分子量;Z均分子量Mz:按Z量的统计平均分子量;黏均分子量Mη:用稀溶液黏度法测得的平均分子量(z ≥w≥η≥n)。单分散:z=w=n。为什么z≥w≥η≥n?因为Mn靠近低分子量部分,则低分子量部分对其影响大,Mw靠近高分子量部分,则高分子量对其影响较大,一般用Mw表征比Mn更恰当,聚合物熔体粘度依赖于高分子量部分。分子量测定方法:端基分析(Mn)、沸点升高或冰点降低(Mn)、气相渗透法VPO(Mn)、渗透压法(Mn)、黏度法(Mη)。沸升冰降测的是Mn?是的,通过热力学推导,可知,溶液的沸点升高值ΔTb和冰点降低值ΔTf正比于溶液浓度,即正比于溶质分子数,而与溶质的分子量成反比,由此可推导出高分子数均分子量Mn。稀溶液依数性:沸点升高、冰点下降、蒸汽压下降、渗透压等数值仅与溶液中的溶质数有关,而与溶质的本性无关。特性粘度[η](表示高分子aq的c趋于0时,单位浓度的增加对增比浓度或相对粘度对数的贡献);体积排除色谱法(SEC):又称凝胶渗透色谱法(GPC),分离机理:在分离作用由于大小不同的分子在色谱柱中的多孔性填料中占据的空间体积不同造成的。色谱柱中装填表面和内部有着各种大小不同的空洞和通道的多孔填料,以待测样品的某种溶剂充满柱子,最大的分子,只能留在填料颗粒之间,走的路径最短,先被溶剂冲出来,较大的分子,走颗粒间的路径和颗粒内较大的孔,路径长一些,较后被冲出来,较小的分子,颗粒间、颗粒内的大孔,还进入颗粒内的小孔,走的路径最多,最后被溶剂冲洗出来(大分子Ve小,小分子Ve大)SEM纵坐标记录洗提液与纯溶剂折射率差值Δn,在极稀溶液中,相当与Δc(洗提液的相对浓度),横坐标是保留体积Vr(淋出体积Ve),表征分子尺寸大小。保留体积小,分子尺寸大。 VPO:加入不挥发溶质沸点升高冰点降低蒸汽压下降。由于溶液的依数性,沸点升高值正比于浓度反比与分子量。由于高分子溶液热力学性质与理想溶液偏差,只有无限稀释才符合。所以测各种浓度,外推在恒温密闭容器内充有溶剂饱和蒸汽,将一滴不挥发溶质的溶液滴1和溶剂滴2悬在这个饱和蒸气中。由于1中溶剂的蒸气压较低,就会有溶剂分子从饱和蒸气相凝聚到溶液滴上。并放出凝聚热,使1温度升高。由于依数性,达平衡时,两液滴温差与溶质摩尔分数成正比。ΔT=AX2,ΔT温度差,X2溶质摩尔分数。 UNIT5.分子运动及转变特点:①运功单元的多重性A高分子链的整体运动:分子分子链质量中心的相对移动。B链段运动:区别于小分子的特殊运动形式。质量中心不变,一部分链段通过单键内旋转而相对于另一部分链段运动,使大分子可以伸展或卷曲。C链节、支链、侧击的运动。D晶区内的分子运动②分子运动的时间依耐性:外因作用下,聚合物从一平衡态通过分子运动过渡到另一与外界条件相连的新的平衡总需要时间,原因是整个分子链,链段、链节等运动单元的运动都需要克服内摩擦阻力,不可能瞬间完成③分子运动的温度依耐性:升温,一方面运动单元热运动能量提高,另一方面由于体积膨胀,分子距离增加,运动单元活动空间增大,松弛加快,松弛时间减小。聚合物分子运动特点:a.运动单元的多重性,包括整分子链平移、链段运动、链节支链侧基等小尺寸单元的流动、原子在平衡位置的振动、晶区的运动b.高分子运动的时间依赖性c.分子运动的温度依赖性松弛时间:橡皮由Δx(t)变为Δx(0)的1/e倍时所需要的时间,表征松弛过程快慢。(开始较快,后来越慢)。论述自由体积理论:液体或固体,它的整个体积包括两个部分:一部分是为分子本身占据的,称占有体积;另一部分是分子间的空隙,称自由体积,它以大小不等的空穴无规分布在聚合物中,提供了分子的活动空间,使分子链可能通过转动和位移而调整构象。在玻璃化温度以下,链段运动被冻结,自由体积也处于冻结状态,其空穴尺寸和分布基本上保持固定。聚合物的玻璃化温度为自由体积降至最低值的临界温度。在此温度下,自由体积提供的空间已不足以使聚合物分子链发生构象调整,随着温度升高,聚合物的体积膨胀只是由于分子振幅、链长等的变化,即分子占有体积的膨胀,而在玻璃化温度以上,自由体积开始膨胀,为链段运动提供了空间保障,链段由冻结状态进入运动状态,随着温度升高,聚合物的体积膨胀除了分子占有体积的膨胀之外,还有自由体积的膨胀,体积随温度的变化率比玻璃化温度以下为大。为此,聚合物的比体积-温度曲线在Tg时发生转折,热膨胀系数在Tg发生突变。影响Tg的因素:①主链的柔性:柔性越高,Tg高②取代基:侧基极性强,Tg高;极性基数高,Tg高;取代基位阻高,内旋转受阻程度高,Tg高③构型:全同Tg较低;顺反异构中,反式分子柔性差,Tg较高④分子量:M较低时,M高,Tg高;当分子量超过一定值后,Tg不再依赖分子量⑤外力速率:张力可强迫链段沿张力方向运动,Tg低,压力使分子链运动困难,Tg升高;冷却速率快,Tg高。另外:调节Tg手段:增塑、共聚、共混。聚合物Tg开始时随相对分子质量增大而升高,当达到一定值之后,Tg变为与相之无关的常数?相对分子质量对Tg的影响主要是链端的影响,处于链末端的链段比链中间的链段受的牵制要小些,因而有比较剧烈的运动,链端浓度的增加预期Tg会降低,链端浓度与数均相对分子质量成反比,超过临界相对分子质量后链端的比例很小,其对Tg影响可以忽略。聚合物中加入单体、溶剂、增塑剂等低分子物时导致Tg下降:Tg具有可加和性,这些物质Tg较高分子低许多,所以混和Tg比聚合物低。分子结构与结晶能力的关系(为什么结晶聚合物结晶不完整?)a.链的对称性、规整性越高,结晶能力越强b.共聚,无规共聚降低结晶能力c.链柔性差降低结晶能力,柔性太好不能结晶d.分子间作用力过大降低结晶能力e.交联降低结晶能力f.分子量增大限制结晶。{高压力下形成的结晶高聚物结晶体密度高,拉应力可以加速高聚物结晶}。结晶聚合物边熔融边升温的现象是由于试样中含有完善程度不同的晶体。结晶时,如果降温程度不是足够的慢,随着熔体黏度的增加,分子链的活动性减小,来不及作充分的位置调整,则结晶停留在不同的阶段上;等温结晶过程中,也存在着完善程度不同的晶体。这时再升温,在通常的升温速度下,比较不完善的晶体将在较低的温度下熔融,比较完善的晶体则要在较高的温度下熔融,因而出现较宽的熔融范围。结晶过程的特点:结晶温度区间在Tg与Tm之间;同一聚合物在同一结晶温度下,结晶速度随结晶时间过程而变化;结晶聚合物结晶不完善,没有精确的熔点,存在容限。 UNIT6.什么情况下符合虎克定律?在形变很小时,交联橡胶的应力应变关系才符合虎克定律。 UNIT7.五个区域:玻璃态区、玻璃—橡胶转变区、橡胶—弹性平台区、橡胶流动区、液体流动区。力学松弛:聚合物的各种性能表现出对时间的依赖性。蠕变:一定的温度、较小恒应力持续作用下,材料应变随时间增加而增大的现象(包括瞬时可逆的普弹形变ε1、滞后可逆高弹形变ε2、不可逆的黏性形变ε3;Tg以下,链段运动松弛时间很长,ε2很小;材料本体粘度很大,ε3很小;因此蠕变主要由ε1构成,蠕变量很小。Tg以上,链段运动的松弛时间变短,导致ε2较大,材料的本体粘度η3仍很大,ε3较小,蠕变主要由ε2构成,夹杂少量ε3。同时,ε 3 随时间的发展而发展,导致总形变不断发展)。应力松弛:恒定温度和形变保持不变时,聚合物内部应力随时间增加而逐渐衰减的现象;产生原因:当聚合物受到外力作用发生变形时,分子链段要沿着外力方向伸展与外力相适应,因而在材料内部产生内应力。但是链段的热运动又可以使某些链缠结散开,以至于分子链之间可以产生小的相对滑移;同时链段运动也会调整构象使分子链逐渐地回复到原来蜷曲状态,从而使内应力逐渐地消除掉。(当温度远小于Tg时,链段运动的能力很弱,应力松弛非常慢;当温度太高时,应力松弛过程进行太迅速。只有在Tg温度附近几十度的范围内,应力松弛现象才比较明显)。滞后:聚合物在交变应力作用下形变落后于应力变化的现象;产生原因:链段的运动受到内摩擦阻力作用的结果,当外力变化时,链段的运动受到内摩擦阻力的作用跟不上外力的变化,所以形变总是落后于应力,滞后了一个相位差δ。(外力作用频率适中,链段一方面可以运动,但又不能完全跟上应力的变化,这时滞后现象才能充分体现出来)力学损耗或内耗:在有滞后现象存在时,由于形变的发展落后于应力的变化,当第一周期的形变还没有完全恢复时,材料又会受到第二个周期应力的作用,因此每个周期都会有一部分弹性储能没有释放出来,这部分能量最终转变为热能,以热量的形式释放出来,造成损耗。影响因素:1温度a温度低,分子运动弱,不运动摩擦消耗能量小,内耗小.b温度高,分子运动快,应变跟得上应力变化,δ小,内耗小.c温度适中,跟不上应力变化, δ大,内耗大.2频率a频率快,分子运动跟不上应力的交换频率,摩擦消耗能量小,内耗小b频率很慢,应变跟得上应力变化, δ小,内耗小c频率适中,分子可以运动但跟不上应力频率变化, δ大,内耗大.3次级运动的影响:次级运动越多,所做的功可以通过次级运动耗散掉.时温等效原理:对于同一个力学松弛过程,既可以在较高温度和较短的外力作用时间下表现出来,也可以在较低温度和较长的外力作用时间下表 现出来。即:升高温度与延长外力作用时间对分子运动是等效的,对聚合物的粘弹性是等效的。 UNIT8.非晶态聚合物应力应变曲线:1.弹性形变区:直线斜率即为杨氏模量,此阶段普弹性,由于高分子键长键角和小运动单元的变化产生。2.屈服阶段:应变软化点,超过此点,大外力使本来冻结的链段开始运动,为大形变提供条件。3.大变形区:高弹性形变区,本质上与高弹形变一样是链段运动,它在外力作用发生。4.应变硬化区:分子链取向排列使强度提高。5.断裂。。屈服点以后,材料大变形的分子机理主要是g的链段运动,即在外力作用下,玻璃态p原来被冻结的链段开始运动,g链的伸展提供了材料的大变形,此时,p处于玻璃态,即使去除外力形变不能自动回复,只有升到 Tg以上链段运动解冻,分子链重新蜷曲,形变才可回复)。

高分子材料课程教学大纲

高分子材料课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:高分子材料 所属专业:材料化学 课程性质:必修 学分:2 (二)课程简介、目标与任务; 课程简介:高分子材料是材料科学与工程科学科的一个重要组成部分,课程以聚合物材料为研究对象,从材料学基本知识为基础,结合高分子材料自身的特点,结合高分子材料的各类助剂,主要讲述了各类高分子材料的特征、物理性质(如力,电,摩擦学等性质)及应用领域;此外,也介绍了各类功能高分子材料的制备及主要品种,应用范围及其加工工艺。 目标与任务:本课程是针对材料化学专业开设的一门必修课。通过对本课程的学习,使学生掌握高分子材料结构,合成和性能三者之间的关系,了解主要高分子材料及其应用,并进一步掌握当今高分子材料的研究及发展现状,开阔视野,拓宽知识面。本课程以课堂讲述为主,辅以资料查阅文献调研及习题解答。 (三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 高分子材料这门课以高分子导论为基础,某些章节与高分子导论有紧密的联系,应课程要求,需要具备化学合成及高分子物理方面的基础知识。 (四)教材与主要参考书。 教材: 《高分子材料导论》主编:张留成化学工业出版社2007 主要参考书目: 1.《高分子材料》第二版,贾红兵,宋晔,杭祖圣,南京大学出版社,2013 2.《高分子科学教程》主编:韩哲文华东理工大学出版社2001 3.《高分子化学与物理教程》主编:赫立新、潘炯玺化学工业出版社1997 4.《高聚物结构、性能与测试》主编:焦剑、雷渭媛化学工业出版社2003 5.《高分子化学》主编:潘祖仁化学工业出版社第四版 6.Hall C. Polymer Materials. The Macmillan press LTD. 1981. 二、课程内容与安排 第一章高分子材料概述 第一节材料科学及其发展现状 第二节高分子材料的基本概念的命名和分类

高分子物理知识点

构象:具有一定组成与构型的高分子链通过单键的内旋转而形成的分子中的原子在空间的排列 柔性: 高分子链中单键内旋的能力; 高分子链改变构象的能力; 高分子链中链段的运动能力; 高分子链自由状态下的卷曲程度。 链段:两个可旋转单键之间的一段链,称为链段 影响柔性因素: 1支链长,柔性降低;交联度增加,柔顺性减低。 2一般分子链越长,构象数越多,链的柔顺性越好。 3分子间作用力越大,聚合物分子链所表现出的柔顺性越小。分子链的规整性好,结晶,从而分子链表现不出柔性。 控制球晶大小的方法: 1控制形成速度; 2采用共聚方法,破坏链的均一性与规整性,生成较小的球晶; 3外加成核剂,可获得小甚至微小的球晶。 聚合物的结晶形态: 1单晶:稀溶液,慢降温,螺旋生长 2球晶:浓溶液或熔体冷却 3树枝状晶:溶液中析出,低温或浓度大,分子量大时析出; 4纤维状晶:存在流动场,分子量伸展,并沿流动方向平行排列; 5串晶:溶液低温,边结晶边搅拌; 6柱晶:熔体在应力作用下冷却结晶; 7伸直链晶:高压下融融结晶,或熔体结晶加压热处理。 结晶的必要条件: 1内因: 化学结构及几何结构的规整性; 2外因:一定的温度、时间。 结晶速度的影响因素: 1温度——最大结晶温度:低温有利于晶核形成与稳定,高温有利于晶体生长; 2压力、溶剂、杂质:压力、应力加速结晶,小分子溶剂诱导结晶; 3分子量:M小结晶速度块,M大结晶速度慢; 熔融热焓?H m :与分子间作用力强弱有关。作用力强,?H m高 熔融熵?S m:与分子间链柔顺性有关。分子链越刚,?S m小 聚合物的熔点与熔限与结晶形成的温度T c有一定的关系: 结晶温度Tc低(< Tm ),分子链活动能力低,结晶所得晶体不完善,从而熔限宽,熔点低; 结晶温度Tc高(~ Tm ),分子链活动力强,结晶所得晶体更加完善,从而熔限窄,熔点高。 取向:在外力作用下,分子链沿外力方向平行排列。聚合物的取向现象包括分子链、链段的取向以及结晶聚合物的晶片等沿特定方向的择优排列。 取向机理: 1高弹态:单键的内旋转。外力作用下,链段取向;外力解除,链段解取向 2粘流态:高分子各链段的协同运动。外力作用下,分子链取向;外力解除,分子链解取向 3结晶高聚物:非晶区取向,可以解取向;晶粒取向,不易解取向 取向度: 高分子合金又称多组分聚合物,在该体系中存在两种或两种以上不同的聚合物,不论组分就是否以化学键相连接 θ θ θ 2 2sin 2 3 1 )1 cos 3( 2 1 - = - = f

相关主题
文本预览
相关文档 最新文档